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Magging: Maximin Aggregation
for Inhomogeneous
Large-Scale Data
In this paper, the authors show how maximum aggregation can address certain

challenges in large-scale data analysis of inhomogeneous data.

By Peter Bühlmann and Nicolai Meinshausen

ABSTRACT | Large-scale data analysis poses both statistical

and computational problems which need to be addressed

simultaneously. A solution is often straightforward if the data

are homogeneous: one can use classical ideas of subsampling

and mean aggregation to get a computationally efficient

solution with acceptable statistical accuracy, where the aggre-

gation step simply averages the results obtained on distinct

subsets of the data. However, if the data exhibit inhomogene-

ities (and typically they do), the same approach will be

inadequate, as it will be unduly influenced by effects that are

not persistent across all the data due to, for example, outliers

or time-varying effects. We show that a tweak to the aggrega-

tion step can produce an estimator of effects which are

common to all data, and hence interesting for interpretation

and often leading to better prediction than pooled effects.
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high-dimensional statistics; linear model; mixture model;
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I . INTRODUCTION

‘‘Big data’’ often refers to a large collection of observations

and the associated computational issues in processing the

data. Some of the new challenges from a statistical

perspective include:

1) the analysis has to be computationally efficient

while retaining statistical efficiency [6];

2) the data are ‘‘dirty’’: they contain outliers, shifting
distributions, unbalanced designs, to mention a few.

There is also often the problem of dealing with data in real

time, which we add to the (broadly interpreted) first

challenge of computational efficiency [8].

We believe that many large-scale data are inherently
inhomogeneous: that is, they are neither independent

identically distributed (i.i.d.) nor stationary observations

from a distribution. Standard statistical models (e.g., linear

or generalized linear models for regression or classifica-

tion, Gaussian graphical models) fail to capture the

inhomogeneity structure in the data. By ignoring it,

prediction performance can become very poor and

interpretation of model parameters might be completely
wrong. Statistical approaches for dealing with inhomoge-

neous data include mixed effect models [11], mixture

models [9], and clusterwise regression models [7]: while

they are certainly valuable in their own right, they are

typically computationally very cumbersome for large-scale

data. We present here a framework and methodology which

addresses the issue of inhomogeneous data while still being

vastly more efficient to compute than fitting much more
complicated models such as the ones mentioned above.

A. Subsampling and Aggregation
If we ignore the inhomogeneous part of the data for a

moment, a simple approach to address the computational
burden with large-scale data is based on (random) subsam-

pling: construct groups G1; . . . ;GG with Gg � f1; . . . ; ng,
where n denotes the sample size and f1; . . . ; ng is the index

set for the samples. The groups might be overlapping (i.e.,

Gg \ Gg0 6¼ ; for g 6¼ g0) and do not necessarily cover the

index space of samples f1; . . . ; ng. For every group Gg , we

compute an estimator (the output of an algorithm) �̂g

and these estimates are then aggregated to a single ‘‘overall’’
estimate �̂aggr, which can be achieved in different ways.

If we divide the data into G groups of approximately equal

size and the computational complexity of the estimator scales
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for n samples like n� for some � > 1, then the subsampling-
based approach above will typically yield a computational

complexity which is a factor G��1 faster than computing the

estimator on all data, while often just incurring an

insubstantial increase in statistical error. In addition, and

importantly, effective parallel distributed computing is very

easy to do and such subsampling-based algorithms are well

suited for computation with large-scale data.

Subsampling and aggregation can thus partially address
the first challenge about feasible computation but fails for

the second challenge about proper estimation and infer-

ence in presence of inhomogeneous data. We will show that

a tweak to the aggregation step, which we call ‘‘maximin

aggregation,’’ can often deal also with the second challenge

by focusing on effects that are common to all data (and not

just mere outliers or time-varying effects).

B. Bagging: Aggregation by Averaging
In the context of homogeneous data, Breiman [1]

showed good prediction performance in connection with

mean or majority voting aggregation and tree algorithms

for regression or classification, respectively. Bagging

simply averages the individual estimators or predictions.

C. Stacking and Convex Aggregation
Again in the context of homogeneous data, the

following approaches have been advocated. Instead of
assigning a uniform weight to each individual estimator as

in bagging, Wolpert [14] and Breiman [2] proposed to

learn the optimal weights by optimizing on a new set of

data. Convex aggregation for regression has been studied

in [5] and has been proved to lead to approximately equally

good performance as the best member of the initial

ensemble of estimators. But in fact, in practice, bagging

and stacking can exceed the best single estimator in the
ensemble if the data are homogeneous.

D. Magging: Convex Maximin Aggregation
With inhomogeneous data, and in contrast to data

being i.i.d. or stationary realizations from a distribution,

the above schemes can be misleading as they give all data

points equal weight and can easily be misled by strong

effects which are present in only small parts of the data and

absent for all other data. We show that a different type of

aggregation can still lead to consistent estimation of the

effects which are common in all heterogeneous data, the

so-called maximin effects [10]. The maximin aggregation,
which we call magging, is very simple and general and can

easily be implemented for large-scale data.

II . AGGREGATION FOR REGRESSION
ESTIMATORS

We now give some more details for the various aggregation

schemes in the context of linear regression models with an

n� p predictor (design) matrix X, whose rows correspond

to n samples of the p-dimensional predictor variable, and

with the n-dimensional response vector Y 2 Rn; at this

point, we do not assume a true p-dimensional regression
parameter; see also the model in (2). Suppose we have an

ensemble of regression coefficient estimates �̂g 2 Rp

ðg ¼ 1; . . . ;GÞ, where each estimate has been obtained

from the data in group Gg , possibly in a computationally

distributed fashion. The goal is to aggregate these

estimators into a single estimator �̂aggr.

A. Mean Aggregation and Bagging
Bagging [1] simply averages the ensemble members

with equal weight to get the aggregated estimator

mean aggregation: �̂aggr :¼
XG

g¼1

wg �̂g;

where wg ¼
1

G
; for all g ¼ 1; . . . ;G:

One could equally average the predictions X�̂g to obtain

the predictions X�̂aggr. The advantage of bagging is the

simplicity of the procedure, its variance reduction property

[4], and the fact that it is not making use of the data, which

allows simple evaluation of its performance. The term

‘‘bagging’’ stands for Bootstrap aggregating (mean aggre-

gation) where the ensemble members �̂g are fitted on

bootstrap samples of the data, that is, the groups Gg are
sampled with replacement from the whole data.

B. Stacking
Wolpert [14] and Breiman [2] propose the idea of

‘‘stacking’’ estimators. The general idea is in our context as

follows. Let ŶðgÞ¼X�̂g2Rn be the prediction of the gth mem-

ber in the ensemble. Then, the stacked estimator is found as

stacked aggregation: �̂aggr :¼
XG

g¼1

wg �̂g;

where w :¼ arg minw2W Y �
X

g

ŶðgÞwg

�����
�����

2

where the space of possible weight vectors is typically of
one of the following forms:

(ridge constraint): W ¼ w : kwk2 � s
� �

for some s > 0

(sign constraint): W ¼ fw : min
g

wg � 0g

(convex constraint):W¼ w :min
g

wg�0 and
X

g

wg¼1

( )
:

If the ensemble of initial estimators �̂g ðg ¼ 1; . . . ;GÞ is
derived from an independent data set, the framework of
stacked regression has also been analyzed in [5]. Typically,
though, the groups on which the ensemble members are
derived use the same underlying data set as the aggregation.
Then, the predictions ŶðgÞ are for each sample point

i ¼ 1; . . . ; n defined as being generated with �̂
ð�iÞ
g , which is
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the same estimator as �̂g with observation i left out of group

Gg (and consequently �̂
ð�iÞ
g ¼ �̂g if i 62 Gg). Instead of a leave-

one-out procedure, one could also use other leave-one-out

schemes, such as, e.g., the out-of-bag method [3]. To this

end, we just average for a given sample over all estimators

that did not use this sample point in their construction,

effectively setting �̂
ð�iÞ
g � 0 if i 2 Gg. The idea of ‘‘stacking’’

is thus to find the optimal linear or convex combination of all

ensemble members. The optimization is G-dimensional and

is a quadratic programming problem with linear inequality

constraints, which can be solved efficiently with a general-

purpose quadratic programming solver. Note that only the

inner products ŶðgÞtŶg0 and ŶðgÞtY for g; g0 2 f1; . . . ;Gg are

necessary for the optimization.

Whether stacking or simple mean averaging as in

bagging provides superior performance depends on a range

of factors. Mean averaging, as in bagging, certainly has an
advantage in terms of simplicity. Both schemes are,

however, questionable when the data are inhomogeneous.

It is then not evident why the estimators should carry equal

aggregation weight (as in bagging) or why the fit should be

assessed by weighing each observation identically in the

squared error loss sense (as in stacked aggregation).

C. Magging: Maximin Aggregation for
Heterogeneous Data

We propose here Maximin aggregating, called mag-

ging, for heterogeneous data: the concept of maximin
estimation has been proposed in [10], and we present a

connection in Section III. The differences and similarities

to mean and stacked aggregation are:

1) the aggregation is a weighted average of the

ensemble members (as in both stacked aggrega-

tion and bagging);

2) the weights are nonuniform in general (as in

stacked aggregation);
3) the weights do not depend on the response Y (as in

bagging).

The last property makes the scheme almost as simple as

mean aggregation as we do not have to develop elaborate

leave-one-out schemes for estimation (as in, e.g., stacked

regression). Magging is choosing the weights as a convex

combination to minimize the ‘2-norm of the fitted values

magging: �̂aggr :¼
XG

g¼1

wg �̂g;

where w :¼ arg minw2CG

X
g

ŶðgÞwg

�����
�����

2

;

and CG :¼ w : min
g

wg�0 and
X

g

wg¼ 1

( )
: (1)

If the solution is not unique, we take the solution with the

lowest ‘2-norm of the weight vector among all solutions.

The optimization and computation can be implemen-
ted in a very efficient way. The estimators �̂g are computed

in each group of data Gg separately, and this task can be

easily performed in parallel. In the end, the estimators

only need to be combined by calculating optimal convex

weights in G-dimensional space (where typically G� n
and G� p) with quadratic programming; some pseudo-

code in R [12] for these convex weights is presented in the

Appendix. Computation of magging is thus computation-
ally fast and simple. Furthermore, magging is very generic

(e.g., one can choose its own favored regression estimator

�̂g for the gth group) and also straightforward to use in

more general settings beyond linear models.

The magging scheme will be motivated in Section III

with a model for inhomogeneous data, and it will be shown

that it corresponds to maximizing the minimally ‘‘ex-

plained variance’’ among all data groups. The main idea is

that if an effect is common across all groups Gg

ðg ¼ 1; . . . ;GÞ, then we cannot ‘‘average it away’’ by

searching for a specific convex combination of the weights.

The common effects will be present in all groups and will

thus be retained even after the minimization of the

aggregation scheme.

The construction of the groups Gg ðg ¼ 1; . . . ;GÞ for

magging in presence of inhomogeneous data is rather

specific and described in Section III-D1 for various scenarios.
There, Examples 1 and 2 represent the setting where the data

within each group are (approximately) homogeneous,

whereas Example 3 is a case with randomly subsampled

groups, despite the fact of inhomogeneity in the data.

1) Relation to the Maximin Effect Estimator: Magging is

related to the maximin effect estimator proposed in [10].

Both of them aim to estimate the maximin effect
parameter which is explained in Section III. Magging

though is much more general than the maximin effect

estimator. The former is a general aggregation technique

which is easy to implement: in particular, when aggregat-

ing predictions with weights

w ¼ arg minw2CG

X
g

ŶðgÞwg

�����
�����

2

it can be used with any nonlinear base learner for ŶðgÞ. On

the other hand, the maximin effect estimator and its

efficient computation is specifically designed for linear

models with ‘1- or ‘2-norm regularization.

III . INHOMOGENEOUS DATA AND
MAXIMIN EFFECTS

We motivate in the following why magging (maximin

aggregation) can be useful for inhomogeneous data when
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the interest is in effects that are present in all groups
of data.

In the linear model setting, we consider the framework

of a mixture model

Yi ¼ Xt
i Bi þ "i; i ¼ 1; . . . ; n (2)

where Yi is a univariate response variable, Xi is a

p-dimensional covariable, Bi is a p-dimensional regression

parameter, and "i is a stochastic noise term with mean zero

and which is independent of the (fixed or random)

covariable. Every sample point i is allowed to have its own

and different regression parameter; hence, the inhomoge-
neity occurs because of changing parameter vectors, and

we have a mixture model where, in principle, every sample

arises from a different mixture component. The model in

(2) is often too general: we make the assumption that the

regression parameters B1; . . . ; Bn are realizations from a

distribution FB

Bi 	 FB; i ¼ 1; . . . ; n (3)

where Bi’s do not need to be independent of each other.

However, we assume that Bi’s are independent from Xi’s

and "i’s.

Example 1 (Known Groups): Consider the case where

there are known groups Gg with Bi � bg for all i 2 Gg .

Thus, this is a clusterwise regression problem (with known

clusters) where every group Gg has the same (unknown)

regression parameter vector bg. We note that the groups Gg

are the ones for constructing the magging estimator

described in the previous section.

Example 2 (Smoothness Structure): Consider the situa-

tion where there is a smoothly changing behavior of Bi’s

with respect to the sample indices i: this can be achieved

by positive correlation among Bi’s. In practice, the sample

index often corresponds to time. There are no true

(unknown) groups in this setting.

Example 3 (Unknown Groups): This is the same setting as

in Example 1 but the groups Gg are unknown. From an

estimation point of view, there is a substantial difference

from Example 1 [10].

A. Maximin Effects
In model (2) and in Examples 1–3, we have a

‘‘multitude’’ of regression parameters. We aim for a single

p-dimensional parameter, which contains the common

components among all Bi’s (and essentially sets the

noncommon components to the value zero). This can be

done by the idea of so-called maximin effects which we
explain next.

Consider a linear model with the fixed p-dimensional

regression parameter b which can take values in the

support of FB from (3)

Yi ¼ Xt
i bþ "i; i ¼ 1; . . . ; n (4)

where Xi and "i are as in (2) and assumed to be i.i.d. We

will connect the random variables Bi in (2) to the values b
via a worst case analysis as described below: for that

purpose, the parameter b is assumed to not depend on the
sample index i. The variance which is explained by

choosing a parameter vector � in the linear model (4) is

V�;b :¼ EjYj2 � EjY � Xt�j2 ¼ 2�tSb� �tS�

where S denotes the covariance matrix of X. We aim for

maximizing the explained variance in the worst (most

adversarial) scenario; this is the definition of the maximin

effects.

Definition [10]: The maximin effect parameter is

bmaximin ¼ arg min� max
b2suppðFBÞ

�V�;b

and note that the definition uses the negative explained

variance �V�;b.

The maximin effects can be interpreted as an aggre-
gation among the support points of FB to a single parameter

vector, i.e., among all Bi’s (e.g., in Example 2) or among all

the clustered values bg (e.g., in Examples 1 and 3); see also

Fact 1. The maximin effect parameter is different from the

pooled effects bpool ¼ arg min� EB½�V�;B
 and, a bit sur-

prisingly, also rather different from the prediction analog

bpred�maximin¼arg min� max
b2suppðFBÞ

E ðXtb� Xt�Þ2
� �

:

In particular, the value zero has a special status for the

maximin effect parameter bmaximin, unl ike for

bpred�maximin or bpool; see [10]. The following is an

important ‘‘geometric’’ characterization which indicates
the special status of the value zero; see also Fig. 1.

Fact 1 [10]: Let H be the convex hull of the support of

FB. Then

bmaximin ¼ arg min�2H �
tS�:
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That is, the maximin effect parameter bmaximin is the point

in the convex hull H which is closest to zero with respect to

the distance dðu; vÞ ¼ ðu� vÞtSðu� vÞ; in particular, if

the value zero is in H, the maximin effect parameter equals

bmaximin � 0.
The characterization in Fact 1 leads to an interesting

robustness issue which we will discuss in Section III-B.

The connection to magging (maximin aggregation) can

be made most easily for the setting of Example 1 with

known groups and constant regression parameter bg within

each group Gg . We can rewrite, using Fact 1

bmaximin ¼
XG

g¼1

w0
g bg

w0 ¼ w0
1 ; . . . ;w0

G

� �
¼ arg minw2CG

XG

g;g0¼1

wgwg0b
T
g Sbg

¼ arg minw2CG
EX

XG

g¼1

wgXbg

�����
�����

2

2

where CG is as in (1). The magging estimator is then using

the plug-in principle with estimates �̂g for bg and

k
P

g wgŶðgÞk2

2
for EXk

PG
g¼1 wgXbgk

2

2
.

B. Robustness
It is instructive to see how the maximin effect

parameter is changing if the support of FB is extended,
possibly rendering the support nonfinite. There are two

possibilities, illustrated in Fig. 2. In the first case,

illustrated in the left panel of Fig. 2, the new parameter

vector bnew is not changing the point in the convex hull of

the support of FB that is closest to the origin. The maximin

effect parameter is then unchanged. The second situation

is illustrated in the right panel of Fig. 2. The addition of a

new support point here does change the convex hull of the
support such that there is now a point in the support closer

to the origin. Consequently, the maximin effect parameter

will shift to this new value. The maximin effect parameter

thus is either unchanged or is moving closer to the origin.

Therefore, maximin effect parameters and their estimation

exhibit an excellent robustness feature with respect to

breakdown properties.

The question might occur whether the maximin effects
are then very conservative in nature and in fact coincide

often with the origin. We will show that this is not the case

for high-dimensional spaces. Note that the maximin effects

do not coincide with the origin if all bg, g ¼ 1; . . . ;G, lie on

one hemisphere, that is, there exists a direction � 2 Rp

such that �tbg > 0 for all g 2 1; . . . ;G. As an extreme

scenario, we can imagine bg being sampled independently

uniform on the sphere. Even in this scenario, the
probability that the maximin effects do not vanish is given

by Wendel’s theorem [13] as

2�Gþ1
Xp�1

k¼0

G� 1

k

	 


which is for G ¼ pþ 1 (that is one group more than there
are dimensions) equal to

1� 2�p

even higher for smaller number G of groups, and for

G ¼ 2p, we obtain the probability 0.5. The chance that the

maximin effects vanish identically is thus very small in

higher dimensional spaces, even if the groups are sampled

centro-symmetric around the origin for each group, as long

as the number of groups G is not exceeding the number of
dimensions by a factor larger than one.

C. Maximin Effects Under Time-Varying Effects
To illustrate the maximin effects with a small example

and compare with pooled estimation, we can use a simple

model, where one part of the signal is constant and another

part of the signal is changing in strength over time.

Specifically, assume that one direction v has a constant

effect strength, while the effect in a direction w has a linear

trend bi ¼ vþ w½�0 þ ði� 1Þð�1 � �0Þ=ðn� 1Þ
 for the

training data i ¼ 1; . . . ; n, where v and w are two

directions that are orthogonal with respect to S. The
pooled population effects over the training data are

bpool ¼ vþ w�pool, where �pool ¼ ð�0 þ �1Þ=2. Consider

G groups of consecutive observations. The population

maximin effects are given by bmaximin ¼ vþ w�maximin,

where �maximin ¼ arg minx2½�min;�max
 jxj, using Fact 1,

where ½�min; �max
 is the range of the population effects

in the direction of w among all the groups g ¼ 1; . . . ;G.

Fig. 1. Illustration of Fact 1 in dimension p ¼ 2.
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In the limit of a large number G of groups, we have

�min ¼ minf�0; �1g and �max ¼ maxf�0; �1g. If the

linear trend in the direction w continues to hold and we

calculate the test mean squared error over the samples

i ¼ nþ 1; nþ 2; . . ., we have

Etest kY � Xbmaximink2
2

� �
� Etest kY � Xbpoolk2

2

� �

if and only if j�1j � j�0j, that is, if the effect strength at

the end of the training data is weaker than at the start of

the training phase (intuitively as the effects in direction of

w will then continue to weaken on the test data or have
already changed sign compared with the start of the

training phase). The inequality is strict if j�1jG j�0j and

the difference between the test set errors becomes large

with increasing value of j�0j � j�1j, meaning an increasing

amount of heterogeneity. Moreover, looking at the

explained variance, let Ftrend ¼ f� : � ¼ vþ w� with � 2
Rg be the set of all coefficients where direction v is

constant and direction w variable. It is then easy to show
that for all �0; �1 and number G of groups

min
b2Ftrend

EðVb;bmaximin
Þ � min

b2Ftrend

EðVb;bpool
Þ

that is, the worst case explained variance over Ftrend

(which is a larger set than the one seen for training) is

always better under the maximin effects than under the

pooled effects. Magging will, in general, shrink a direction

more if the signal is varying strongly in this direction,

while it will retain all directions where the effect is stable.

Of course, one price to pay for this is increased estimation

noise compared to the pooled estimator as magging

operates in each group on a smaller sample size, which

we will quantify in the following.

D. Statistical Properties of Magging
We will derive now some statistical properties of

magging, the maximin aggregation scheme, proposed in
(1). They depend also on the setting-specific construction of

the groups G1; . . .GG which is described in Section III-D1.

Assumptions: Consider the model (2) and that there are

G groups Gg ðg ¼ 1; . . . ;GÞ of data samples. Denote by Yg

and Xg the data values corresponding to group Gg .

1) Let b�g be the optimal regression vector in each

group, that is b�g ¼ EB½jGgj�1P
i2Gg

Bi
. Assume

that bmaximin is in the convex hull of fb�1 ; . . . ; b�Gg.
2) We assume random design with a mean-zero

random predictor variable X with covariance

matrix S and let Ŝg ¼ jGgj�1Xt
gXg be the empirical

Gram matrices. Let �̂g ðg ¼ 1; . . . ;GÞ be the

estimates in each group. Assume that there exists
some �1; �2 > 0 such that

max
g

�̂g � b�g

� �t

S �̂g � b�g

� �
� �1

max
g
kŜg � Sk1 � �2

Fig. 2. Illustration of the case with a finite number of possible values for B. (Left) The values b1; . . . ;b7 are possible realizations of Bi, and bmaximin

is the closest point to zero in the convex hull of fb1; . . . ;b7g (in black). When adding a new additional realization bnew, the convex hull becomes

larger (in dashed blue). As long as the new support point is in the blue shaded half-space, the maximin effect parameter bmaximin remains the

same regardless of how far away the new support point is added. (Right) A new additional realization bnew arises which does not lie in the

blue shaded half-space, the convex hull becomes larger (in dashed blue), and the new maximin effect parameter becomes bnew;maximin. Since

the new convex hull (in dashed blue) gets enlarged by a new realized value bnew, the corresponding new maximin effect parameter bnew;maximin

must be closer to the origin than the original parameter bmaximin. Thus, it is impossible to shift bmaximin away from zero by placing new

realizations at arbitrary positions.
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where m ¼ ming jGgj is the minimal sample size
across all groups.

3) The optimal and estimated vectors are sparse in

the sense that there exists some � > 0 such that

max
g

b�g

��� ���
1
� � and max

g
k�̂gk1

� �:

Assumption A1) is fulfilled for known groups, where

the convex hull of fb�1 ; . . . ; b�Gg is equal to the convex hull

of the support of FB and the maximin-vector bmaximin is

hence contained in the former. Example 1 is fulfilling the

requirement, and we will discuss generalizations to the

settings in Examples 2 and 3 in Section III-D1.

Assumptions A2) and A3) are relatively mild: the first
part of A3) is an assumption that the underlying model is

sufficiently sparse. If we consider standard Lasso estima-

tion with sparse optimal coefficient vectors and assuming

bounded predictor variables, then A2) is fulfilled with high

probability for �1 of the order �ðlogðpGÞ=mÞ1=2 (faster

rates are possible under a compatibility assumption)

and �2 of order logðpGÞ=m, where m ¼ ming jGgj denotes

the minimal sample size across all groups; see, for
example, [10].

Define for x 2 Rp the norm kxk2
S ¼ xtSx and let

�̂magging be the magging estimator (1).

Theorem 1: Assume A1)–A3). Then

k�̂magging � bmaximink
2

S � 6�1 þ 4�2�
2:

A proof is given in the Appendix.

The result implies that the maximin effect parameter

can be estimated with good accuracy by magging (maximin

aggregation) if the individual effects in each group can be
estimated accurately with standard methodology (e.g.,

penalized regression methods).

1) Construction of Groups and Their Validity for Different
Settings: Theorem 1 hinges mainly on assumption A1). We

discuss the validity of the assumption for the three

discussed settings under appropriate (and setting-specific)

sampling of the data groups.

Example 1 (Known Groups Continued): Obviously, the

groups Gg ðg ¼ 1; . . . ;GÞ are chosen to be the true known

groups.

Assumption A1) is then trivially fulfilled with known

groups and constant regression parameter within groups

(clusterwise regression).

Example 2 (Smoothness Structure Continued): We
construct G groups of nonoverlapping consecutive ob-

servations. For simplicity, we would typically use equal

group size m ¼ bn=Gc so that G1 ¼ f1; 2; . . . ;mg;
G2 ¼ fmþ 1; . . . ; 2mg; . . . ;GG ¼ fðG� 1Þmþ 1; . . . ; ng.

When taking sufficiently many groups and for a

certain model of smoothness structure, condition A1)

will be fulfilled with high probability [10]: it is shown

there that it is rather likely to get some groups of
consecutive observations where the optimal vector is

approximately constant and the convex hull of these

‘‘pure’’ groups will be equal to the convex hull of the

support of FB.

Example 3 (Unknown Groups Continued): We construct G
groups of equal size m by random subsampling: sample

without replacement within a group and with replacement
between groups.

This random subsampling strategy can be shown to

fulfill condition A1) when assuming an additional so-called

Pareto condition [10]. As an example, a model with a

fraction of outliers fulfills A1) and one obtains an

important robustness property of magging which is closely

connected to Section III-B.

E. Numerical Example
We illustrate the difference between mean aggregation

and maximin aggregation (magging) with a simple

example. We are recording, several times, data in a time

domain. Each recording (or group of observations)

contains a common signal, a combination of two frequency

components, shown in the top left of Fig. 3. On top of the
common signal, seven out of a total of 100 possible

frequencies (bottom left in Fig. 3) add to the recording in

each group with a random phase. The 100 possible fre-

quencies are the first frequencies 2	j=P, j ¼ 1; . . . ; 100, for

periodic signal with periodicity P defined by the length of

the recordings. They form the dictionary used for least

squares estimation of the signal, and the magging estimate

is formed in this Fourier space. In total, G ¼ 50 recordings
are made, of which the first 11 are shown in the second

column of Fig. 3. The estimated signals are shown in the

third column, removing most of the noise but leaving the

random contribution from the noncommon signal in place.

Averaging over all estimates in the mean sense yields little

resemblance with the common effects. The same holds

true if we estimate the coefficients by pooling all data into

a single group (first two panels in the rightmost column of
Fig. 3). Magging (maximin aggregation) and the closely

related but less generic maximin estimation [10], on the

other hand, approximate the common signal in all groups

quite well (bottom two panels in the rightmost column of

Fig. 3). The magging estimate retains substantial weight

only on dictionary elements corresponding to low

frequencies, showing that the common signal is to be

Bühlmann and Meinshausen: Magging: Maximin Aggregation for Inhomogeneous Large-Scale Data

132 Proceedings of the IEEE | Vol. 104, No. 1, January 2016



found in the low-frequency component and that higher

frequencies do not show much commonality between the

settings.

Meinshausen et al. [10] provide other real data results

where maximin effect estimation leads to better out-of-
sample predictions in two financial applications.

IV. CONCLUSION

Large-scale and ‘‘Big’’ data poses many challenges from a

statistical perspective. One of them is to develop

algorithms and methods that retain optimal or reasonably

good statistical properties while being computationally

Fig. 3. Left column shows the data generation. Each group has the same fixed common effect (shown in red at the top left), and gets random

noise as well as other random periodic contributions added (with random phase), where the latter two contributions are drawn independently for

all groups g ¼ 1; . . . ;G ¼ 50. The second column shows the realizations of Yg for the first groups g ¼ 1; . . . ; 11, while the third shows the least

squares estimates of the signal when projecting onto the space of periodic signals in a certain frequency range. The last column shows from

top to bottom: (a) the pooled estimate one obtains when adding all groups into one large data set and estimating the signal on all data

simultaneously (the estimate does not match closely the common effects shown in red); (b) the mean aggregated data obtained by averaging

the individual estimates (here identical to pooled estimation); (c) the (less generic) maximin effect estimator from [10]; and (d) magging: maximin

aggregated estimators (1), both of which match the common effects quite closely.
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cheap to compute. Another is to deal with inhomogeneous
data which might contain outliers, shifts in distributions,

and other effects that do not fall into the classical

framework of identically distributed or stationary observa-

tions. Here we have shown how magging (‘‘maximin

aggregation’’) can be a useful approach addressing both of

the two challenges. The whole task is split into several

smaller data sets (groups), which can be processed trivially

in parallel. The standard solution is then to average the
results from all tasks, which we call ‘‘mean aggregation’’

here. In contrast, we show that finding a certain convex

combination, we can detect the signals which are common

in all subgroups of the data. While ‘‘mean aggregation’’ is

easily confused by signals that shift over time or which are

not present in all groups, magging (‘‘maximin aggrega-

tion’’) eliminates as much as possible these inhomoge-

neous effects and just retains the common signals which is
an interesting feature in its own right and often improves

out-of-sample prediction performance. h

APPENDIX

Proof of Theorem 1: Define for w 2 CG [where CG � RG is

as defined in (1) the set of positive vectors that sum to one]

�̂ðwÞ :¼
XG

g¼1

wg �̂g and �ðwÞ :¼
XG

g¼1

wgb�g

and let for Ŝ ¼ n�1XtX

L̂ðwÞ :¼ �̂ðwÞtŜ�̂ðwÞ and LðwÞ :¼ �ðwÞtS�ðwÞ:

Then, w� ¼ arg minw LðwÞ and bmaximin ¼ �ðw�Þ and

ŵ ¼ arg minw L̂ðwÞ and �̂magging ¼ �̂ðŵÞ. Now, using A3)

sup
w2CG

L̂ðwÞ � LðwÞ
  � sup

w2CG

�ðwÞtðS� ŜÞ�ðwÞ
 

þmax
g

b�g � b̂g

��� ���2

S

� �2 max
w2CG

�ðwÞk k1

	 
2

þ�1:

Hence, as w� ¼ arg minw2CG
LðwÞ and ŵ ¼ arg minw L̂ðwÞ

LðŵÞ � Lðw�Þ þ 2ð�1 þ �2�
2Þ: (5)

For D :¼ �ðŵÞ � �ðw�Þ

LðŵÞ ¼ �ðŵÞk k2
S¼ ð�ðw�Þ þ DÞtSð�ðw�Þ þ DÞ

¼ �ðw�ÞtS�ðw�Þ þ 2DtS�ðw�Þ þ DtSD

� Lðw�Þ þ kDk2
S

where DtS�ðw�Þ � 0 follows by the definition of the

maximin vector �ðw�Þ ¼ bmaximin. Combining the last

inequality with (5)

�ðŵÞ � �ðw�Þk k2
S� 2ð�1 þ �2�

2Þ (6)

Furthermore, by A3)

sup
w2CG

�̂ðwÞ � �ðwÞ
��� ���2

S
� �1:

Using the equality for �̂magging ¼ �̂ðŵÞ

�̂ðŵÞ � �ðŵÞ
��� ���2

S
� �1: (7)

Combining (6) and (7)

k�̂magging � bmaximink
2

S

¼ �̂ðŵÞ � �ðw�Þ
��� ���2

S

� 2 �̂ðŵÞ � �ðŵÞ
��� ���2

S
þ �ðŵÞ � �ðw�Þk k2

S

	 

� 2 �1 þ 2ð�1 þ �2�

2Þ
� �

¼ 6�1 þ 4�2�
2

which completes the proof.

Implementation of Magging in R: At the top of the next page,

we present some pseudocode for computing the weights

w1; . . . ;wG in magging (1), using quadratic programming in

the R-software environment.
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[4] P. Büuhlmann and B. Yu, ‘‘Analyzing
bagging,’’ Ann. Stat., vol. 30, pp. 927–961,
2002.

[5] B. Bunea, A. Tsybakov, and M. Wegkamp,
‘‘Aggregation for Gaussian regression,’’
Ann. Stat., vol. 35, pp. 1674–1697, 2007.

[6] V. Chandrasekaran and M. I. Jordan,
‘‘Computational and statistical tradeoffs via

convex relaxation,’’ Proc. Nat. Acad. Sci.,
vol. 110, pp. E1181–E1190, 2013.

[7] W. DeSarbo and W. Cron, ‘‘A maximum
likelihood methodology for clusterwise
linear regression,’’ J. Classification, vol. 5,
pp. 249–282, 1988.

[8] M. W. Mahoney, ‘‘Randomized algorithms for
matrices and data,’’ Found. Trends Mach.
Learn., vol. 3, pp. 123–224, 2011.

[9] G. McLachlan and D. Peel, Finite Mixture
Models. New York, NY, USA: Wiley, 2004.

[10] N. Meinshausen and P. Büuhlmann,
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libraryðquadprogÞ
theta G cbindðtheta1; . . . ; thetaGÞ #matrix with G columns :

#each column is a regression estimate

hatS G� tðXÞ % �% X=n #empirical covariance matrix of X

H G� tðthetaÞ % �% hatS % �% theta #assume that it is positive definite

#ðuse Hþ xi � I; xi > 0 small; otherwiseÞ
A G� rbind repð1; GÞ; diagð1; GÞð Þ #constraints

b G c 1; repð0; GÞð Þ
d G� repð0; GÞ #linear term is zero

w G� solve:QP H; d; tðAÞ; b; meq ¼ 1ð Þ #quadratic programming solution to

#argminðx^t H xÞ such that Ax >¼ b and

#first inequality is an equality
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