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I congratulate Fan and Lv for their stimulating and thought-provoking paper. Variable
screening is among the primary goals in high-dimensional data analysis. Having a com-
putationally efficient and statistically accurate method for retaining relevant and deleting
thousands of irrelevant variables is highly desirable.

Sure independence screening (SIS) is a marginal method. This makes it very easy to
use. In order to understand the properties of a marginal view, consider the well known
relation for a linear model of the form Y =

∑p
j=1 βjX

(j) + ε:

βj 6= 0 ⇐⇒ Parcorr(Y, X(j)|{X(k); k 6= j}) 6= 0.

Of course, if Corr(X(j), X(k)) = 0 for j 6= k there is an exact correspondence to the marginal
view:

βj 6= 0 ⇐⇒ Corr(Y, X(j)) 6= 0.

And in fact, Fan and Lv justify SIS for the situation with fairly uncorrelated variables: their
discussion of Condition 4 in Section 5.1 implies (for large p) that the correlation matrix
among the X-variables is “not too far away” from the identity. In contrast to the purely
marginal view, it is possible to start with the marginal approach and then gradually consider
partial correlations from low to higher order. This can be achieved within the framework
of so-called faithful distributions, a concept which is mainly used in the literature about
graphical modeling. For linear models, Bühlmann and Kalisch (2008) introduce partial
faithfulness which holds if and only if for every j:

Parcorr(Y, X(j)|X(S)) = 0 for some S ⊆ {1, . . . , p} \ j =⇒ βj = 0.

Bühlmann and Kalisch (2008) argue that the class of linear models satisfying this condition
is quite broad. Roughly speaking, the partial faithfulness assumption implies that a large
(in absolute value) marginal or partial correlation does not tell us much, but a zero (partial)
correlation says a lot. The idea of SIS is the other way round: a large marginal correlation
is interpreted as importance for the corresponding variable while no decision is taken for
small correlations. The PC-algorithm (Spirtes et al., 2000) exploits the partial faithfulness
assumption. Instead of assuming fairly uncorrelated covariates (as in SIS) or partial faith-
fulness, the Lasso (Tibshirani, 1996) is another alternative which requires some coherence
assumptions for the design matrix ruling out cases with too strong linear dependence (of
certain design sub-matrices).
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method assumption computational complexity
SIS “fairly” uncorrelated covariates O(np)

Lasso coherence conditions for design O(np min(n, p))
PC-algo partial faithfulness O(npγ) (1 ≤ γ ≤ C)

The exponent γ in the computational complexity of the PC-algorithm depends on the
underlying sparsity. Asymptotic theory for high-dimensional settings include: for the Lasso
(Meinshausen and Bühlmann, 2006; van de Geer, 2008; Meinshausen and Yu, 2007; Zhang
and Huang, 2007; Bickel et al., 2007); for the PC-algorithm (Kalisch and Bühlmann, 2007;
Bühlmann and Kalisch, 2008). For finite samples, we consider two simulation models:

Model (1): example III from Section 4.2.3; p = 1000, n = 50; ρ = 0.5

Model (2): Y =
∑5

j=1 X(j) + ε; p = 1000, n = 50; ρ = 0.5

For model (1), Fan and Lv report that P[Mtrue ⊆ M̂] = 0 for SIS and the Lasso when

using |M̂| = n − 1. But some differences between the methods can be easily detected in

Figures 1 and 2. In addition to the single number P[Mtrue ⊆ M̂], it is important to report
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Fig. 1. Number of true positives
Pp

j=1
I(β̂j 6= 0, βj 6= 0) (with | cM| = n − 1) for 100 simulations from

model (1) (left) and model (2) (right). The number of effective variables equals 5.

also performance measures such as the number of true positives or ROC-curves to get a
more complete picture. In our small simulation study we see that the Lasso (and also the
PC-algorithm) has a better “global” accuracy than SIS. The price to pay for this higher
accuracy is a more complicated procedure although we should note that the Lasso has also
linear computational complexity in dimensionality p if p � n. Interestingly, we note that
SIS does well in the conservative domain where the false positive rate is very low. I do not
know whether we can expect such a behavior in a wide variety of scenarios: if such findings
would be true in general, this would indeed be a strong argument in favor of the simple SIS
method for detecting very few but most relevant variables among say thousands of others.
A (presumably difficult) theory which would support such a finding is lacking though.

I agree with the authors that iterative SIS (ISIS) mitigates many of the problems oc-
curring with the marginal approach of SIS. However, we need to choose a tuning parameter
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Fig. 2. ROC-curves for model (1) (top) and model (2) (bottom). Right: zoom-in for the domain with
small false positive rate.

k (or denoted in the paper by k1, k2, . . . , k` ) which is really unpleasant: ideally, for some
rough sort of variable screening, there should be no other tuning parameter involved except
the number of variables which are to selected from screening. When using k = 1 in ISIS, we
end up with a procedure which is somewhere between orthogonal matching pursuit (which
is almost identical to forward variable selection), and matching pursuit which is the same
as L2Boosting with componentwise linear least squares (Friedman, 2001; Bühlmann and
Yu, 2003; Bühlmann, 2006). In particular in the high-dimensional setting with fairly low
signal to noise ratio, the boosting approach is in our experience often better than orthogonal
matching pursuit or forward variable selection. Why ISIS? Why not using the established
boosting approach for variable screening (which is presumably not so different from Lasso,
see (Efron et al., 2004))? And if there would be strong reasons for ISIS, how should we
select the tuning parameter k for screening whose optimal choice may be in conflict with
accurate prediction?

Finally, the authors stress the fact about ultra high-dimensionality. In their framework,
the dimensionality p = pn is a function of sample size such that

log(pn) = O(nξ) for some ξ > 0.

The usual approaches in asymptotic analysis (exponential inequalities, entropy arguments)
would require that ξ < 1 which is equivalent to log(pn)/n → 0 (n → ∞). Fan and Lv write
in Section 5.1 (discussion of Condition 1) that “the concentration property in (16) makes
restriction on ξ”. What is the upper bound for ξ > 0, e.g. in the Gaussian case? Do we



4 P. Bühlmann

see here another range of high-dimensionality, or is ultra high-dimensionality the same as
high-dimensionality where log(pn)/n → 0?

It is my pleasure to second the vote of thanks: this paper will stimulate a lot of future
research.
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