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Abstract
Guarding against false positive selections is important in many applications. We discuss methods
based on subsampling and sample splitting for controlling the expected number of false positives
and assigning p-values. They are generic and especially useful for high-dimensional settings.
We review encouraging results for regression, and we discuss new adaptations and remaining
challenges for selecting relevant variables, based on observational data, having a causal or inter-
ventional effect on a response of interest.
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1 Introduction

Determining important variables for a response of interest is an often encountered problem in
many applications. We consider it in the high-dimensional framework where the number of vari-
ables is much larger than sample size. Furthermore, we address variable importance for two very
different targets, namely either in terms of regression effects or with respect to causal or interven-
tion effects. A lot of work has been done in the past for variable selection in high-dimensional
(generalized) regression [24, 7, 31, 18, 30, 29, 17, 32, 28, 2] while the counterpart for causal or
interventional analysis based on observational data is much less developed [16].

All of these methods need to be complemented with measures of uncertainty, especially for
controlling false positive selections (type I error) which is a prime concern in e.g. medical appli-
cations. The main difficulty is that the parameter corresponding to a variable is not a marginal
effect but rather a functional of a multi-dimensional distribution: hence, statistical inference is
much more challenging than for e.g. large-scale multiple testing of many marginal parameters
[6] or global tests [10]. For non-marginal parameters such as regression coefficients or causal
effects one can rely on subsampling or sample-splitting: we review and discuss stability selection
[19] and construction of p-values [20] for regression problems (Section 3), and we adapt the tech-
niques for the more ambitious task of variable selection for causal or interventional targets based
on observational data (Section 4).

2 Variable selection in high-dimensional regression

Consider the situation with a univariate response variable Y and p-dimensional covariate X . The
response and the covariates can be continuous or discrete and the latter are deterministic (fixed
design) or random (random design). The data is assumed to be realizations from a generalized
linear model of the form

Y1, . . . , Yn independent

g(E[Yi|Xi = x]) = µ+

p∑
j=1

βjx
(j), (2.1)

1Seminar für Statistik, ETH Zürich, Switzerland
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where g(·) is a real-valued, known link function, µ denotes the intercept and β the generalized
regression parameters. An implicit assumption of the model in (2.1) is that the (conditional)
distribution of Yi (given Xi) is depending on Xi only through the function g(E[Yi|Xi]). The
linear model is a special case with identity link function g(η) = η and we then write

Y = Xβ + ε, (2.2)

with Y = (Y1, . . . , Yn)T , (n×p)-design matrix X whose ith row equalsXi and ε = (ε1, . . . , εn)T

with independent components and E[εi|Xi] = 0 for all i. With this notation, we always absorb
a potential intercept term into the design matrix X (and we would then have p + 1 columns in
X with an intercept and p covariates; for notational simplicity, we omit this detail in the sequel).
When assuming that the model is true, we denote the true parameter by β0.

We allow that the dimension of the covariate may be much larger than sample size n, i.e.,
high-dimensionality with p� n. To cope with this situation, we need to regularize the statistical
estimation procedure.

2.1 The Lasso

The Lasso [24] is a very popular and powerful method to estimate the parameters in a high-
dimensional generalized linear model. For the linear model in (2.2), the parameters are estimated
by

β̂(λ) = arg min
β

(
‖Y −Xβ‖22/n+ λ‖β‖1

)
, (2.3)

where ‖Y − Xβ‖22 =
∑n

i=1(Yi − (Xβ)i)
2, ‖β‖1 =

∑p
j=1 |βj | is the `1-norm and where λ ≥

0 is a penalty parameter. The estimator has the property that it does variable selection in the
sense that β̂j(λ) = 0 for some j’s (depending on the choice of λ) and β̂j(λ) can be thought
as a shrunken least squares estimator; hence, the name Least Absolute Shrinkage and Selection
Operator (LASSO).

For generalized linear models in (2.1), the Lasso estimator is defined by penalizing the nega-
tive log-likelihood with the `1-norm. The (conditional) probability or density of Y |X = x is of
the form p(y|x) = pµ,β(y|x) and the negative log-likelihood equals −

∑n
i=1 log(pµ,β(Yi|Xi)).

The `1-norm penalized Lasso estimator is then defined as:

µ̂(λ), β̂(λ) = arg min
µ,β

(
−n−1

n∑
i=1

log(pµ,β(Yi|Xi)) + λ‖β‖1

)
,

where we usually do not penalize the intercept term (and the same remark applies to the Lasso for
a linear model above).

For linear and generalized linear models, the Lasso can be computed very efficiently since it
involves convex optimization only. In comparison, an all subset selection method is not feasible
due to the combinatorial complexity when p is large.

2.1.1 Variable selection with the Lasso

With the Lasso estimator β̂(λ), we can do prediction and variable selection. We are particularly
interested in the latter. We implicitly assume that only a fraction of the variables in the generalized
linear model is relevant: we denote the true active set of variables and its cardinality (the sparsity
of the model) as

S0 = {j; β0
j 6= 0, j = 1, . . . , p} with s0 = |S0|.

The simplest way to estimate S0 with the Lasso is

Ŝ(λ) = {j; β̂j(λ) 6= 0, j = 1, . . . , p}. (2.4)
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We remark that the variables with corresponding non-zero estimated coefficients remain the same
across different solutions β̂(λ) of the Lasso (different solutions occur when p > n since the
optimization, although convex, is not strictly convex). Furthermore, it is worth pointing out that
no significance testing is involved.

The selection in (2.4) can be mathematically justified, assuming restrictive conditions. In a
linear model, the main assumptions for consistent variable selection concern the (fixed or random)
design matrix X and the magnitude of the non-zero regression coefficients. The condition on the
design is called neighborhood stability [18] or irrepresentable condition [29, 30]. Under such
a design condition, and assuming that the non-zero regression coefficients satisfy a “beta-min”
condition of the form

inf
j∈S0

|β0
j | �

√
s0 log(p)/n, (2.5)

The following is shown in [18]: for a suitable λ = λn �
√

log(pn)/n,

P[Ŝ(λ) = S0]→ 1 (n→∞), (2.6)

where the asymptotics allows that p = pn grows such that log(pn)/n→ 0.
In practice, we would choose the regularization parameter λ by cross-validation, e.g., 10-fold

CV, leading to λ̂CV. There is supporting theory for particular examples, and there is a lot of
empirical evidence as well for many more examples, that

P[Ŝ(λ̂CV) ⊇ S0] is large, (2.7)

if the design behaves reasonably and condition (2.5) holds. For such a screening result, we need
less restrictive design conditions (i.e. compatibility condition or restricted eigenvalue assumption)
than for recovering the active set S0: for a fixed λ �

√
log(p)/n, this is discussed in e.g. [3,

Cor.7.6]. The screening result in (2.7) is very useful because |Ŝ(λ)| ≤ min(n, p) for any λ.
Thus, when p � n, we achieve an immense dimensionality reduction (in terms of the original
covariates) which contains with high probability the true active variables from S0.

We will discuss below that this view point is rather optimistic in real applications. The main
reason for it stems from the fact that the irrepresentable condition on the design and the “beta-min”
condition in (2.5) are restrictive and (essentially) necessary for variable selection consistency of
the Lasso, and also the screening result still needs condition (2.5).

2.2 Variable selection with other methods

There are many other proposals in the literature for inferring the active set S0 in a high-dimensional
generalized linear model [7, 31, 30, 17, 32, 28]. Some of them diminish the bias problems of the
Lasso causing the necessity of the restrictive irrepresentable condition on the design. We will not
go into details about this. All of them, nevertheless, require a “beta-min” condition as in (2.5)
which seems almost necessary for any method. In practice, it may be often unlikely to believe
that most of the coefficients are exactly zero and all the relevant variables have large coefficients
satisfying (2.5). In view of uncheckable conditions on the design and the signal strength as in
(2.5), we discuss next some methods for obtaining more reliable results in statistical practice.

3 Stability and p-values in high-dimensional regression

We illustrate here that a result as in (2.7) needs to be interpreted with care. Violation of certain
conditions on the design or of the “beta-min” condition in (2.5) can easily lead to failure of (2.7).

3.1 Example about motif regression: subsampling and stability

We use the Lasso on a motif regression problem [5] for finding the binding sites in DNA sequences
of the so-called HIF1α transcription factor. Such transcription factor binding sites, also called
motifs, are short “words” of DNA letters denoted by {A,C,G, T}, typically 6-15 base pairs long.
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The data consists of a univariate response variable Y measuring the binding intensity of the
HIF1α transcription factor on coarse DNA segments which are a few thousands base pairs long.
This data is collected using CHIP-chip experiments. In order to get to the exact short DNA
“words” or motifs, short candidate DNA “words” of length 6–15 base pairs are generated and
their abundance scores are measured within coarse DNA regions. This can be done using com-
putational biology algorithms based on DNA sequence data only, and we use a variant of the
MDScan algorithm [14]. In our particular application, we have the following data:

Yi measures the binding intensity of HIF1α in coarse DNA segment i,

X
(j)
i measures the abundance score of candidate motif j in DNA segment i,

i = 1, . . . , n = 287; j = 1, . . . , p = 195.

A linear model fits reasonably well (see below) for relating the response to the covariates:

Yi = µ+
195∑
j=1

βjX
(j)
i + εi (i = 1, . . . , n = 287).

The main goal in this application is variable selection to infer the relevant covariates and hence
the relevant motifs (short DNA “words”). Having scaled the covariates to the same empirical
variance, we use the Lasso with regularization parameter λ̂CV from 10-fold cross-validation. The
fitted model has a (OLS re-fitted) R2 ≈ 50% which is rather high for this kind of application.
There are |Ŝ(λ̂CV)| = 26 non-zero coefficient estimates β̂j(λ̂CV) which are plotted in the upper-
left panel of Figure 1.

Next, we pursue subsampling to informally check stability of the estimated set of variables.
We denote by Ŝλ(I) the estimated active set based on regularization parameter λ and a subsample
I ⊂ {1, . . . , n} (note the slight switch in notation). Let I∗ be a random subsample of {1, . . . , n}
of size bn/2c, drawn without replacement. For every set K ⊆ {1, . . . , p}, the subsampling-
probability of being in the selected set Ŝλ(·) is

Π̂K(λ) = P∗[K ⊆ Ŝλ(I∗)]. (3.1)

Most often, we use single variables as sets K, i.e., |K| = 1. The probability P∗ in (3.1) is with
respect to the random subsampling and it equals the relative frequency for K ⊆ Ŝλ(Ib) over all(
n
m

)
subsets Ib (b = 1 . . . ,

(
n
m

)
) of size m = bn/2c. The expression in (3.1) can be approximated

by B random subsamples I∗1, . . . , I∗B (B large): B−1
∑B

b=1 l(K ⊆ Ŝλ(I∗b)). The subsample
size of bn/2c is chosen as it resembles most closely the bootstrap [8, 4].

Figure 1 illustrates three summary statistics of the subsampled estimator. Besides the subsam-
pling probabilities Π̂j(λ̂CV) for j = 1, . . . , p, we also show the mean and median of {β̂λCV;j(I

∗b);
b = 1, . . . , B}. The mean and median aggregation qualitatively look rather similar to the original,
non-subsampled estimated coefficients. However, the subsampled probabilities Π̂j yield a rather
different picture. We will argue in Section 3.2 that using Π̂j leads to interesting methodology and
theory.

3.2 Stability selection

The example in Section 3.1 illustrates that we should develop measures quantifying uncertainty
and reliability regarding the selection of variables.

In the following, we consider any variable selection, denoted by

Ŝ(λ) = Ŝλ(I) ⊆ {1, . . . , p}

based on a sample I ⊆ {1, . . . , n} (I may be the full sample with all n data) and with a tuning
parameter λ ∈ Λ ⊆ R+. (Note the slight change of notation where we emphasize at some places
with Ŝλ(I) the dependence on the sample I). A prime example is the Lasso as in (2.4).
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Figure 1: Motif regression example. Upper-left panel: Estimated regression parameters with
ŝ = 26 non-zero coefficients, based on original data. Upper-right and lower-left panels: mean
and median aggregated subsampled coefficient estimates. Lower-right panel: subsampled selec-
tion probabilities Π̂j . All estimates based on the Lasso with λ̂CV from 10-fold CV; number of
subsampling runs is B = 100.

For a cutoff πthr with 0 < πthr < 1 and a set of regularization parameters Λ, the set of stable
variables is defined as

Ŝstable = {j; max
λ∈Λ

Π̂j(λ) ≥ πthr}, (3.2)

where Π̂ is as defined in (3.1). The procedure using (3.2) is called stability selection [19]. Of
course, the problem of choosing an appropriate amount of regularization has now shifted to choose
a good cutoff value 0 < πthr < 1. We will discuss its choice below in Section 3.2.1. It is
worthwhile to emphasize that empirical results do not depend very much on the choice of the
initial regularization λ (if Λ = {λ} is a singleton) or the region Λ for the regularization parameter:
loosely speaking, as long as λ or Λ contain values leading to overestimation of the true active set
of variables S0, the results after the stability selection procedure are often useful.

3.2.1 Choice of regularization and error control

We focus here on the problem how to choose the regularization parameter πthr in the stability
selection procedure in (3.2). We address it by controlling the expected number of false positives
(false selections), i.e., type I error control.

For such an error control, we introduce some additional notation. Let ŜΛ = ∪λ∈ΛŜ(λ) be
the set of selected variables when varying the regularization parameter λ ∈ Λ. Let qΛ be the
expected number of selected variables qΛ = E|ŜΛ(I)|. Define V to be the number of falsely
selected variables (false positives) with stability selection,

V =
∣∣Sc0 ∩ Ŝstable

∣∣.
The goal is to achieve control or an upper bound for E[V ], the expected number of false positives.

Since the distribution of the underlying estimator Ŝ(λ) depends on many unknown quantities,
exact finite-sample control of E[V ] is difficult in general. We provide an answer under some
simplifying assumptions.
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Theorem 1. [19] Consider data Z1, . . . , Zn i.i.d., where Zi = (Xi, Yi). Assume that the distri-
bution of {l(j ∈ Ŝ(λ)), j ∈ Sc0} is exchangeable for all λ ∈ Λ. Furthermore, assume that the
original selection procedure is not worse than random guessing, i.e.,

E(|S0 ∩ ŜΛ|)
E(|Sc0 ∩ ŜΛ|)

≥ |S0|
|Sc0|

. (3.3)

Then, the expected number V of falsely selected variables is bounded for πthr ∈ (1/2, 1] by

E[V ] ≤ 1

2πthr − 1

q2
Λ

p
. (3.4)

The exchangeability condition is a restrictive assumption, see for example [3, Ch.10]. The
expected number of falsely selected variables is sometimes called the per-family error rate (PFER)
or, if divided by p, E[V ]/p is the per-comparison error rate (PCER) in multiple testing. Note that
Theorem 1 does not require a “beta-min condition” as in (2.5) because the theorem only makes
a statement about false positive selections (while a “beta-min” condition is needed to avoid false
negatives).

For fixed Λ, the threshold value πthr is the tuning parameter for stability selection. We propose
to fix this value via the PFER control E[V ] ≤ ν where ν is specified a-priori. Note that this fits
into the commonly used framework of fixing type-I error control beforehand. Given ν, we can
then solve for the tuning parameter:

if q2
Λ ≤ pν : πthr = (1 +

q2
Λ

pν
)/2, (3.5)

and if q2
Λ > pν, we cannot control the error E[V ] ≤ ν, with an upper bound ν, based on the

formula appearing in Theorem 1 (due to the restriction πthr ∈ (1/2, 1]). For such cases where
q2

Λ > pν, we could consider another range Λ′ of regularization parameters leading to a smaller
value qΛ′ or using a larger upper bound ν ′ for E[V ] such that q2

Λ′ ≤ pν ′. To use (3.5), we need
knowledge about qΛ.

Trivially, qΛ is known for variable selection procedures which select q variables: then qΛ = q.
We describe now examples of procedures which select q variables. Consider the Lasso in (2.3)
for a range Λ = [λmin, λmax] of regularization parameters. Define the Lasso-based procedure
Ŝq selecting the q variables which enter first in the regularization path when varying from the
maximal value λmax to the minimal value λmin. Note that if there would be less than q active
variables in the regularization path over the range Λ, we would select all active variables and this
number is bounded by q which is sufficient for the error control in Theorem 1. Alternatively,
consider the Lasso in (2.3) for a singleton Λ = {λ}. We then have an estimated active set Ŝ(λ).
Define Ŝq as the procedure selecting the q variables from Ŝ(λ) whose regression coefficients are
largest in absolute values. Typically, we would choose λ such that |Ŝ(λ)| ≥ q. If there would
be less than q active variables in Ŝ(λ), we would select all active variables and this number is
bounded by q which again is sufficient for the error control in Theorem 1. Other methods like
forward selection or L2Boosting [1] lead to selectors Ŝq which include the first q variables arising
during the computational iterations.

Theorem 1 can be applied to any structure estimation method with a corresponding estimator
Ŝ(λ): e.g. the method is used in [19] for estimating the edge set in a high-dimensional Gaussian
graphical model, among other applications. The price to pay for this great generality is the restric-
tive exchangeability condition. However, it is empirically shown in [19] that the error rate E[V ]
is well under (conservative) control in situations, with real data design, where the exchangeability
condition is likely to fail. Figure 2 is illustrating this fact. The number of falsely chosen variables
is remarkably well controlled at the desired level, giving empirical evidence that the derived error
control is useful beyond the discussed setting of exchangeability. Stability selection thus helps to
select an appropriate amount of regularization such that false positive selections are under control.
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Figure 2: Comparison of stability selection with cross-validation for 64 linear models with dif-
ferent signal to noise ratios, sparsity and real data design matrices. The cross-validated solution
(for standard Lasso) is indicated by a dot and the corresponding stability selection by a red trian-
gle, showing the average proportion of correctly identified relevant variables versus the average
number of falsely selected variables. Each pair consisting of a dot and triangle corresponds to one
simulation setting. The broken vertical line indicates the value at which the number of wrongly
selected variables is nominally controlled with stability selection, namely E(V ) ≤ 2.5. Looking
at stability selection, the error control holds up very well and the proportion of correctly identified
relevant variables is very close to the CV-solution while the number of falsely selected variables is
reduced dramatically. The figure is taken from [19]. A more detailed description of the simulation
models is given in Appendix B.

Motif regression example
For the motif regression example in Section 3.1 we find two stable variables (motifs) when using
stability selection with the Lasso and using the control E[V ] ≤ 1. These variables are plotted
with additional circles in Figure 1: one of them, with the second highest selection probability
(lower-right panel of the figure), corresponds to a true, biologically known motif.

3.3 P-values

In many applications, particularly in the medical and health sciences, we want to assign p-values
to individual tests from a generalized linear model. Furthermore, although the error control in
Theorem 1 is useful, it doesn’t easily translate to established measures from multiple testing like
the familywise error or the false discovery rate. We will discuss in this section how this can be
achieved, assuming also weaker conditions than the exchangeability condition from Theorem 1.

For ease of exposition, we consider the case of a linear model as in (2.2); the extension to
generalized linear models is briefly mentioned at the end of the section. Our goal is to assign
p-values for the null- and alternative hypotheses

H0,j : βj = 0; HA,j : βj 6= 0,

for all j = 1, . . . , p (we could use one-sided alternatives instead).

3.3.1 Sample-splitting

An approach proposed by [26] is to split the data into two parts, reducing the dimensionality to
a manageable size of predictors (keeping the important variables with high probability) using the
first half of the data, and then to assign p-values and making a final selection using classical least
squares estimation based on the second part of the data. Clearly, such a sample-splitting approach
is related to subsampling with subsample size bn/2c used in Section 3.2.

The data are split randomly into two disjoint sets I1, I2 ⊂ {1, . . . , n} with |I1| = bn/2c,
I2 = n − bn/2c, I1 ∩ I2 = ∅ and hence I1 ∪ I2 = {1, . . . , n}. Thus, the corresponding
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data sub-samples are (XI1 ,YI1) and (XI2 ,YI2). Let Ŝ be a variable selection or screening
procedure. We denote by Ŝ(I1) the set of selected predictors based on (XI1 ,YI1) which may
include the choice of potential tuning or regularization parameters. A prime example for variable
selection or screening is the Lasso in (2.3). The regression coefficients and the corresponding
p-values P̃1, . . . , P̃p of the selected predictors are determined based on the other half of the data
(XI2 ,YI2) by using ordinary least squares estimation and the corresponding t-tests on the set of
variables from Ŝ(I1), i.e.,

P̃j =

{
Praw,j based on YI2 ,XI2,Ŝ(I1) , if j ∈ Ŝ(I1),

1 , if j /∈ Ŝ(I1),
(3.6)

where Praw,j is the p-value from the two-sided t-test, using least squares estimation, for H0,j

(based on the second half of the data I2 and using only the variables in Ŝ(I1)). If the selected
set of variables contains the true model S0, i.e., Ŝ(I1) ⊇ S0, the p-values P̃j are controlling the
(single testing) type I error, assuming Gaussian errors εi and rank(XI2,Ŝ(I1)) = |Ŝ(I1)|, where
XI2,Ŝ(I1) is the design sub-matrix with rows corresponding to I2 and columns corresponding to

Ŝ(I1). The assumption on the rank is most often fulfilled if |Ŝ(I1)| < n/2. Finally, each p-value
P̃j is adjusted by a factor |Ŝ(I1)| to correct for the multiplicity of the testing problem:

P̃corr,j = min(P̃j · |Ŝ(I1)|, 1) (j = 1, . . . p). (3.7)

We make the following assumptions:

lim
n→∞

P[Ŝbn/2c ⊇ S0] = 1. (3.8)

Furthermore, we assume

lim
n→∞

P[|Ŝbn/2c| < n/2] = 1. (3.9)

Here, Ŝm denotes any variable selection procedure based on m observations. For any subset
I(m) ⊂ {1, . . . , n}with |I(m)| = m = n−bn/2c, let Σ̂(I(m)) = m−1XT

I(m)
XI(m)

and Σ̂(I(m))S,S

be the |S|× |S| sub-matrix corresponding to rows and columns of the subset S ⊂ {1, . . . , p}. We
assume:

Λ2
min(Σ̂(I(m))S,S) > 0 for all S with |S| < n/2, for all I(m), (3.10)

where Λ2
min(A) denotes the minimal eigenvalue of a symmetric matrixA. Under conditions (3.8),

(3.9) and (3.10), one can easily show that the p-values in (3.7) control the familywise error rate
(FWER) which is defined as P[V > 0], the probability of making at least one false rejection
where V denotes the number of false selections (i.e. false positives). Such a result is implicitly
contained in [26]. Some discussion about the conditions used is given below.

The single data-splitting method for the p-values in (3.7) is easy to implement. It relies,
however, on an arbitrary split of the data into I1 and I2. Results, at least for finite samples, can
change drastically if this split is chosen differently. This in itself is unsatisfactory since results
are not reproducible, as illustrated in Figure 3.

3.3.2 Multi sample-splitting and familywise error control

An obvious alternative and improvement to a single arbitrary sample split is to divide the sample
repeatedly [20]. In contrast to the “p-value lottery” phenomenon illustrated in Figure 3, the multi
sample split method makes results reproducible, at least approximately if the number of random
splits is chosen to be sufficiently large. Moreover, we will show empirically that, maybe unsur-
prisingly, the resulting procedure is more powerful than the single-split method, see Section 3.3.4.
The multi sample split method is defined as follows.

For b = 1, . . . , B:
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Figure 3: Histogram of adjusted p-values P̃corr,j for a single variable in the motif regression
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random splits of the data into I1 and I2. Due to the high variability, we call the phenomenon a
“p-value lottery”. The figure is taken from [20].

1. Randomly split the original data into two disjoint groups I [b]
1 and I [b]

2 of (almost) equal size.

2. Using only I [b]
1 , estimate the set of active predictors Ŝ[b] = Ŝ(I

[b]
1 ).

3. Compute the adjusted (non-aggregated) p-values as in (3.7), i.e.,

P̃
[b]
corr,j = min(P̃

[b]
j · |Ŝ

[b]|, 1) (j = 1, . . . , p)

where P̃ [b]
j is based on the two-sided t-test, as in (3.6), based on I [b]

2 and Ŝ[b] = Ŝ(I
[b]
1 ).

Finally, we aggregate over the B p-values P̃ [b]
corr,j , as discussed next.

3.3.3 Aggregation over multiple p-values

The procedure described above leads to a total of B p-values for each covariate j = 1, . . . , p. For
each j = 1, . . . , p, aggregation of the p-values P̃ [b]

corr,j over the indices b = 1, . . . , B can be done
using empirical quantiles. For γ ∈ (0, 1) define

Qj(γ) = min
{
qγ
(
{P̃ [b]

corr,j/γ; b = 1, . . . , B}
)
, 1
}
, (3.11)

where qγ(·) is the empirical γ-quantile function.
A p-value for each variable j = 1, . . . , p is then given by Qj(γ), for any fixed 0 < γ < 1.

We will describe in Section 3.3.4 that this is an asymptotically correct p-value for controlling the
familywise error rate.

A proper selection of γ may be difficult. Error control is not guaranteed anymore if we search
for the best value of γ. But we can use instead an adaptive version which selects a suitable value
of the quantile based on the data. Let γmin ∈ (0, 1) be a lower bound for γ, typically 0.05, and
define

Pj = min

{(
1− log γmin

)
inf

γ∈(γmin,1)
Qj(γ), 1

}
(j = 1, . . . , p). (3.12)

The extra correction factor 1− log γmin ensures that the familywise error rate remains controlled
despite of the adaptive search for the best quantile, as described in Theorem 2 in Section 3.3.4.
For the recommended choice of γmin = 0.05, this factor equals 1− log(0.05) ≈ 3.996.
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3.3.4 Control of familywise error

The resulting adjusted p-values Pj (j = 1, . . . , p) from (3.12) can be used for both familywise
error (FWER) and false discovery rate (FDR) control. For FWER control at level α ∈ (0, 1),
simply all p-values below α are rejected and the selected subset is

Ŝmulti−split FWER(α) = {j : Pj ≤ α}. (3.13)

Denote by Vmulti−split FWER(α) = |Ŝmulti−split FWER(α) ∩ Sc0| the number of false positive
selections.

Theorem 2. [20] Consider a linear model as in (2.2) with fixed design and Gaussian errors and
assume that (3.8), (3.9) and (3.10) hold. Furthermore, the number B of random splits in the
multi-split method is fixed. Then, for any γmin ∈ (0, 1) (see (3.12)),

lim sup
n→∞

P[Vmulti−split FWER(α) > 0] ≤ α.

For the Lasso, the screening property in (3.8) and (3.9) hold assuming sparsity, a compati-
bility or restricted eigenvalue condition on the design (which is weaker than the irrepresentable
condition, cf. [25]), and a “beta-min” condition as in (2.5). More details can be found in [3,
Cor.7.6,Chs.6-7&11]. Furthermore, (3.10) is a very weak assumption on the design. It is worth
pointing out that for assigning p-values controlling the FWER, we require (much) weaker as-
sumptions than the exchangeability condition in Theorem 1; the reason is due to the fact that we
focus here on a specific model, i.e., a linear model, whereas Theorem 1 applies to much more
general settings.

Simulation study [20]
We simulate data from 16 different linear models as in (2.2) with n = 100 and p = 1000. A more
detailed description is given in Appendix B. As initial variable selection or screening method
Ŝ we use three approaches which are all based on the Lasso. The first one, denoted by Ŝfixed,
uses the Lasso and selects those bn/6c variables which appear most often in the regularization
path when varying the penalty parameter. The constant number of bn/6c variables is chosen,
somewhat arbitrarily, to ensure a reasonably large set of selected coefficients on the one hand and
to ensure, on the other hand, that least squares estimation will work reasonably well on the second
half of the data with sample size n−bn/2c. The second method ŜCV is more data-driven: it uses
the Lasso with penalty parameter chosen by 10-fold cross-validation and selecting the variables
whose corresponding estimated regression coefficients are different from zero. The third method,
Ŝadapt is the adaptive Lasso [30], with the Lasso solution used as initial estimator for the adaptive
Lasso, and where the regularization parameters are chosen based on 10-fold cross-validation.
The selected variables are again the ones whose corresponding estimated regression parameters
are different from zero. The number of random splits in the multi sample split method is always
chosen as B = 100.

Results are shown in Figure 4 with the default value γmin = 0.05 in (3.12). Using the multi
sample split method, the average number of true positives (the variables in S0 which are selected)
is typically slightly increased while the FWER (the probability of selecting variables in Sc0) is
reduced sharply. The asymptotic control seems to give a good control in finite sample settings
with the multi sample split method. The single sample split method, in contrast, selects in nearly
all cases too many noise variables, exceeding the desired FWER sometimes substantially. This
suggests that the error control for finite sample sizes works much better for the multi sample
split method yet with a larger number of true discoveries. Furthermore, the multi sample split
p-value in (3.12) typically leads to conservative error control: this fact has to do with the p-value
aggregation in (3.11) and (3.12) which asymptotically guarantees that the FWER is bounded by
(but typically not equal to) a pre-specified level α.

Motif regression example
We apply the multi sample split method to the real data example in Section 3.1. We use the multi
sample split method with the adaptive Lasso Ŝadapt as described above. The multi sample split
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Figure 4: Simulation results for 16 linear models with n = 100 and p = 1000 (see Appendix B).
Average number of true positives vs. the familywise error rate (FWER) for the single split method
(“S”) against the multi-split version (“M”). FWER is controlled (asymptotically) at α = 0.05 for
both methods and this value is indicated by a broken vertical line. From left to right are results
for Ŝfixed, ŜCV and Ŝadapt. Results of a single scenario are joined by a line, which is solid if the
regression coefficients follow the “uniform” sampling and broken otherwise (see Appendix B).
Increasing signal to noise ratio is indicated by increasing symbol size. The figure is taken from
[20].

method identifies one variable at the 5% significance level with an adjusted p-value of 0.0059.
The single sample split method is not able to identify a single significant predictor. In view of the
asymptotic error control in Theorem 2, and empirical results shown in Figure 4, there is substantial
evidence that the single selected variable is a truly relevant variable. The significant variable is the
one with second largest absolute value for the estimated regression coefficient (upper-left panel
in Figure 1) and second largest value of the subsampling probability (lower-right panel in Figure
1). Interestingly, the variable corresponding to the largest values did not turn out to be significant:
this may be due to the fact that the proposed p-value method is conservative. For this specific
application though, it seems desirable to pursue a conservative approach with stringent FWER
control as biological follow-up experiments are laborious and expensive.

3.3.5 Complementary remarks

The multi sample split method for p-values can be adapted to control the false discovery rate
instead of the FWER. Details and empirical results are given in [20]. Finally, the conceptual
methodology can be extended for constructing p-values in generalized linear models: the p-values
based on the second half of the data I2 then rely on classical (e.g. likelihood ratio) tests applied
to the selected submodel.

4 Causal effects: a different target for variable selection

The set of active variables S0 in a linear or generalized linear model describes the variables with
corresponding non-zero parameters in the model: thus, in a (generalized) regression model, these
are the variables which have an association with the response variables Y . For many applications,
we would like to infer the variables which have a causal effect on the response variable Y , based
on observational data. This is the topic of this section.

4.1 A brief introduction to causal analysis

We consider the setting where we have a continuous response variable Y and p continuous co-
variates X = (X(1), . . . , X(p)). The model is

X,Y ∼ P 0 = Np+1(µ0,Σ0),

P 0 is faithful with respect to a causal DAG G0. (4.1)
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In words, the assumption means that the variables X(1), . . . , X(p), Y are related to each other
with a true underlying “causal influence diagram” which is here formalized as a directed acyclic
graph (DAG) G0. Furthermore, these variables have a joint Gaussian distribution which satisfies
the Markov property with respect to the DAGG0 and all marginal and conditional independencies
can be read-off from the graph G0: the latter is the faithfulness assumption, cf. [23]. We assume
that the observational data are realizations

(X1, Y1), . . . , (Xn, Yn) i.i.d. from model (4.1). (4.2)

The notion of intervention is useful to describe and define causal effects. We can think of
doing an intervention at a variable, say X(j), by setting it to a (deterministic) value u: using
the notation and calculus developed by [21], we then write do(X(j) = u). We are interested in
the distribution of the response Y when doing an intervention at a single variable (for simplicity,
we only consider here single variable interventions): P (Y |do(X(j) = u)). When emphasizing
the true intervention distribution, we write P 0(Y |do(X(j) = u)). Using the so-called truncated
factorization, such an intervention distribution can be computed from the distribution P 0 and
knowledge of the true graph G0, that is

P 0(Y |do(X(j) = u)) = P 0
G0(Y |do(X(j) = u))

is a function of the true underlying P 0 and G0. For details, we refer to [21].
The causal effect, or intervention effect, is then defined as

∂

∂u
EP 0,G0 [Y |do(X(j) = u)] ≡ θ0

j (j = 1, . . . , p),

where we used the fact that in the Gaussian case, the derivative is constant and hence, the causal
effect is a real-valued parameter.

The following characterization of the causal effect is useful. In the true underlying causal
DAG G0, denote by pa(j) the parental set of the vertex j which corresponds to the variable X(j),
i.e., pa(j) = {k; there is a directed edge from k → j, k = 1, . . . , p + 1 \ j}. Here and in the
sequel, the response variable Y corresponds to the index p + 1. Then, the causal effect of X(j)

on Y can be characterized as a regression coefficient when conditioning on the right variables.
Consider the linear regression

Y = µj + βjX
(j) +

∑
k∈pa(j)

βkX
(k) + Vj (j = 1, . . . , p)

with intercept µj and error term E[Vj ] = 0. Then,

θ0
j =

{
βj , if p+ 1 /∈ pa(j)

0 , if p+ 1 ∈ pa(j)
(j = 1, . . . , p). (4.3)

That is, the causal effect equals the regression parameter when conditioning on X(pa(j)). We see
explicitly from (4.3) that the causal effect θ0

j depends on P 0 and the underlying DAG G0; the
dependence on the latter arises since the parental set pa(j) is a function of the DAG G0.

4.1.1 Identifiability from observational data

Observational data as in (4.2) do not involve any interventions. It is well known that it is impos-
sible to infer the true underlying DAG G0 from observational data. Instead, one can only identify
the Markov equivalence class,

M(G0) =M(P 0) = {G; G a DAG which is Markov equivalent to G0}.

The notationM(G0) = M(P 0) indicates that the Markov equivalence class depends on either
G0 or P 0 only, assuming faithfulness of P 0 w.r.t. G0 (the set of conditional (in-)dependencies
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among the variables is then described by G0 or by P 0), cf. [21, 23]. This equivalence class can
be encoded by a partially directed graph, the so-called CPDAG, which we denote by E(G0) =
E(P 0); the letter “E” indicates that the CPDAG is sometimes also referred to as essential graph.
Consequently, one cannot infer in general all causal effects θ0

j (j = 1, . . . , p) from observational
data.

However, it is possible to identify good lower bounds for causal effects from observational
data. Suppose that M(G0) = M(P 0) consists of m0 different DAG members G1, . . . , Gm0 :
M(G0) = M(P 0) = {G1, . . . , Gm0} (m0 depends on G0 or P 0). Consider the set of potential
causal effects among all members inM(G0) =M(P 0):

{θ0
Gr;j ; θ

0
Gr;j a causal effect of X(j) on Y in the DAG Gr, r = 1, . . . ,m0, j = 1, . . . , p}.

We denote the whole set by

Θ0 = {θ0
Gr;j ; r = 1, . . . ,m0, j = 1, . . . , p} (4.4)

which can be written as a function of the observational distribution P 0 only (using the Markov
equivalence class M(P 0) and P 0 for regression coefficients). A lower bound for the absolute
value of the true causal effect is then given by

`0j = min
r=1,...,m0

|θ0
Gr,j | (j = 1, . . . , p). (4.5)

Again, these lower bounds are identifiable from observational data, i.e., from the distribution
P 0. In addition, if the true graph G0 is sparse with many so-called protected edges, many of the
θ0
Gr;j (r = 1, . . . ,m) are the same and the bound in (4.5) is rather tight and good. We will show in

Section 4.3 a real data example where the estimated version of (4.5) leads to clearly better results
than using regression techniques.

4.2 Estimation from data

A procedure for consistently estimating the lower bound values `0j in (4.5) based on observational
data only is given in [16]. The method is called IDA, standing for Intervention-calculus when the
DAG is Absent [15] which reflects that we do the estimation without knowledge of the underlying
causal DAG G0. It consists of two main steps: first, estimating the CPDAG E(G0) = E(P 0)
which encodes the Markov equivalence class, and it then proceeds to estimate the lower bounds.

4.2.1 The PC-algorithm for the CPDAG

The PC-algorithm is named after its inventors Peter Spirtes and Clarke Glymour [23]. It is a clever
hierarchical scheme for testing conditional independencies among variables X(j), X(k) (all j 6=
k) and amongX(j), Y (all j) in the DAG. The first level in the hierarchy are marginal correlations,
then partial correlations of low and then higher order are tested to be zero or not. Due to the
faithfulness assumption in model (4.1) and assuming sparsity of the DAG (in terms of maximal
neighborhood size of the nodes), the algorithm is computationally feasible for problems where
p is in the thousands. It is interesting to note that we can use a simplified version of the PC-
algorithm for estimating the active set S0 in a linear model (2.2) and that this estimator is quite
comparable in accuracy with the Lasso and versions of it [2]. Furthermore, [27] presents another
variant looking only at marginal and partial correlations of order one.

The PC-algorithm involves one tuning parameter, denoted by α, which can be interpreted
as the significance level of a single partial correlation test. The output of the algorithm is an
estimated CPDAG, denoted by Ên(α). The following result holds.

Theorem 3. [12] Consider data as in (4.2) from model (4.1) where the dimension p = pn is
allowed to grow much faster than sample size as n → ∞. Under some assumptions described
in Appendix A on sparsity, on incoherence of partial correlations and a “beta-min” analogue for
the size of non-zero partial correlations,

P[Ên(αn) = E(G0) = E(P 0)]→ 1 (n→∞),
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where αn → 0 at a suitable rate.

The rate of αn → 0 in Theorem 3 depends on unknown quantities like the sparsity and the
lower bound in the “beta-min” condition. And thus, choosing an appropriate value for α is not
straightforward at all (since e.g. cross-validation with the Gaussian log-likelihood is primarily
tailored for estimating the distribution P 0 and not for inferring the structure of the CPDAG).

4.2.2 The local algorithm for the lower bound values

Once we have an estimate Ê(α) of the CPDAG, we can in principle enumerate all its DAG mem-
bers Ĝ1, . . . , Ĝm̂ and then estimate the values θ0

Ĝr;j
in (4.4) using estimated coefficients from

linear regression as in (4.3). In short, we obtain estimates

Θ̂ = {θ̂Ĝr,j
; r = 1, . . . , m̂, j = 1, . . . , p}, (4.6)

and on the event Ê(α) = E(G0) = E(P 0) (see Theorem 3), these estimates are for the true values
Θ0 in (4.4). In general, the set Θ0 in (4.4) and Θ̂ in (4.6) are multi-sets, where some elements
may take exactly the same values. We denote the set of distinct values in such multi-sets by setΘ0

and setΘ̂, respectively.
It can be a computationally horrendous and infeasible task to enumerate all DAG members in

Ê(α). An algorithm is presented in [16] which works on local aspects of Ê(α), exploiting also the
fact that a causal effect is only a function of the parental set instead of the whole graph, see (4.3).
Such a procedure is computationally feasible to obtain all the estimated potential causal effects
in Θ̂, and one can then obtain estimated lower bounds ˆ̀

j . As we show in Theorem 4, the local
algorithm asymptotically finds the correct set setΘ0. Of course, setΘ̂ = setΘ̂(α) and ˆ̀

j = ˆ̀
j(α)

depend on the tuning parameter α used in the PC-algorithm for an estimate of the CPDAG Ê(α).
We note that θ̂Ĝr,j

and ˆ̀
j may be zero, if the second case in (4.3) applies (for the estimated DAG

Ĝr).

Theorem 4. [16] Consider data as in (4.2) from model (4.1) where the dimension p = pn is
allowed to grow much faster than sample size as n → ∞. Under some assumptions described
in Appendix A on sparsity, on incoherence of partial correlations and a “beta-min” analogue for
the size of non-zero partial correlations,

P[setΘ̂(αn) = setΘ0]→ 1 (n→∞),

where αn → 0 at a suitable rate. Furthermore, we also have

sup
j=1,...,p

|ˆ̀j(αn)− `0j | = oP (1) (n→∞).

4.3 Effects of single gene knock-downs on all other genes in yeast

The example described in this section has been presented in [15]. We consider a data set from
[11] on gene expressions from yeast. There are 5360 genes and there is a set of n = 63 ob-
servational gene expression data. Furthermore, there are 234 gene knock down experiments,
each of them involving an intervention at a single gene and measuring the expression of all the
genes. This fits into the framework presented above: we can think of responses where Y = X(1)

with covariates (X(2), . . . , X(5360)), and then of another response Y = X(2) and covariates
(X(1), X(3), . . . , X(5360)), and so on. Thus, p = 5359 and we have 5360 different response
settings. For all these response settings, we can quantify the intervention effect of a covariate j
(gene j) to the response under consideration. We simply use the estimated lower bounds ˆ̀

Y=k;j

(of the covariate X(j) for response Y = X(k)). For comparison, we use high-dimensional regres-
sion techniques: although conceptually wrong, one can try them to “quantify the importance” of
variables. Thanks to the available 234 intervention experiments, which play the role of a test set,
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we know in good approximation the true intervention effects of 234 variables (genes) on all other
genes: with a threshold, we can assign whether the variable has an effect or not. And therefore,
we can measure the performance of the methods with an ROC curve, presented in Figure 5. We
see that the IDA method described above is substantially better than the (conceptually wrong)
Lasso or elastic net [31] regression method. Furthermore, the regression methods do hardly better
than random guessing. Thus, we see for this example, that regression doesn’t extract any useful
information for selecting variables which have an intervention or causal effect; and on the other
hand, the strong effects can be much better estimated with IDA (i.e. in the lower left corner of the
ROC plot).
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Figure 5: Intervention effects among 5360 genes in yeast. ROC-type curve with false positives
(x-axis) and true positives (y-axis). IDA graphical modeling based method (black solid line),
Lasso (dashed red line), elastic net (dash-dotted light blue line) and random guessing (fine dotted
dark blue line). Observational data used for training has sample size n = 63, and there are 234
intervention experiments to validate the methods. The figure is taken from [15].

4.4 Stability selection and p-values for bounds of causal effects

As discussed above, we can identify the lower bound parameters `0j from the observational distri-
bution P 0. Our goal is to infer stable causal variables and assign p-values.

4.4.1 Stability selection for causal variables

We consider the IDA algorithm yielding the estimated values ˆ̀
j(α) (j = 1, . . . , p). Then, define

the top q variables as

ŜIDA(q, α) = {j; ˆ̀
j(α) is among the largest q from all {ˆ̀1(α), . . . , ˆ̀

p(α)}}.

Thus ŜIDA(q, α) is a variable selection procedure, targeted for causal variables. The set of stable
variables is then defined as in (3.2), using subsampling and the selection method ŜIDA(q, α). We
can apply Theorem 1, implicitly assuming that ŜIDA(q, α) is better than random guessing and that
the exchangeability condition holds (which is a very restrictive assumption, but see the discussion
in Section 3.2.1).

4.4.2 P-values for causal variables

Here, we are interested in assigning p-values for the null- and alternative hypotheses

H0,j : `0j = 0; HA,j : `0j > 0.
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The strategy is analogous to Section 3.3 using sample splitting. For a single sample split, we
have the first and second half-samples I1 and I2. Based on I1, we use the PC-algorithm to esti-
mate the CPDAG Êα(I1) with its corresponding Markov equivalence class containing the DAGs
{Ĝ1(I1), . . . , Ĝm̂(I1)}. Using the local algorithm on the estimated DAG structures Ĝr(I1), we
obtain estimates θ̂α,Ĝr,j

(I2) and corresponding p-values Praw;r,j from two-sided t-tests in Gaus-
sian least squares regressions, see (4.3), for the null-hypotheses that θ0

G0
r,j

= 0 (on the event where

Êα(I1) = E(G0) = E(P 0)). From these, we obtain raw p-values Praw;j for the null-hypotheses
that `0j = minr |θ0

G0,r,j | = 0: we simply take

Praw;j = max
r
Praw;r,j .

As described in (4.3) and before Theorem 4, the lower bound estimates ˆ̀
j(α) (which depend on

I1 due to the estimated CPDAG Êα(I1) and on I2 due to estimated regression coefficients) can be
exactly zero: the zeroes depend on I1, the structure of the estimated CPDAG Êα(I1), only. We
define the set

Ŝ(I1) = Ŝα(I1) = {j; Y /∈ p̂a(j)} = {j; ˆ̀
j(I1, I2) 6= 0}.

Now, we can proceed as in Section 3.3. Define, analogously as in (3.6),

P̃j =

{
Praw,j , if j ∈ Ŝ(I1),

1 , if j /∈ Ŝ(I1).

As in (3.7), we build

P̃corr,j = min(P̃j · |Ŝ(I1)|, 1) (j = 1, . . . p).

And then, we can use multi sample-splitting and aggregation of p-values for deriving final p-
values Pj (j = 1, . . . , p), exactly as described in Section 3.3.

From an asymptotic point of view, assuming the conditions in Theorem 4 (for sample size
bn/2c), these p-values control the familywise error rate. However, we point out that such a rough
analysis assumes substantially more than for regression: the estimated CPDAG Êα(I1) should
be equal to the true E(G0) = E(P 0) which is a very ambitious task with finite data. This is in
contrast to generalized regression, where the structure estimation (based on the first half-sample)
only needs to satisfy the screening property (3.8) where the estimated active set Ŝ ⊇ S0 contains
the true relevant variables. Such a requirement is much more realistic to hold (approximately)
with finite data.

4.5 Empirical results

In the sequel, we evaluate the performance of methods with respect to the true causal effects
of a covariate X(j) on a response Y , denoted by θ0

j . Although the true causal effects are not
identifiable from the observational distribution P 0, it is interesting to see how well we can infer
the true effects (but we cannot separate any more the effect of a method for error control and
power from the effect of non-identifiability of a causal effect). As a consequence, the number of
positives |{θ0

j 6= 0; j}| will be smaller than for the lower bounds |{`0j 6= 0; j}| and hence, the
number of false and true positives w.r.t. to the θ0

j ’s will be smaller than for the lower bounds.

4.5.1 Simulations

We simulate Gaussian data according to a DAG: the corresponding structural linear equations are

X(1) = ε(1) ∼ N (0, 1), (4.7)

X(j) =

j−1∑
r=1

BjrX
(r) + ε(j) (j = 2, . . . , d),
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where ε(1), . . . , ε(d) i.i.d. ∼ N (0, 1), independent of {X(r); r ≤ i − 1} and B is a matrix
generated with non-zero elements according to a DAG with (fixed) values from realizations of a
Uniform([0.5, 0.6]) distribution. We consider sparse and fairly dense graphs, as shown in Figures
10 and 11 in Appendix B, and we vary n and d as follows:

(LD) Data simulated according to the DAGs in Figure 10 with d = 10 and n = 500.

(HD) Data simulated according to the DAGs in Figure 11 with d = 50 and n = 50.

Stability selection for control of expected number of false positives
For the model in (4.7), every variable X(k) (k = 1, . . . , d) serves once as a response variable
and all others {X(j); j 6= k} as covariates (and hence p = d − 1). We consider the entire
estimation for the causal effect θ0

Y=k,j of X(j) on Y = X(k). The active set is defined as S0 =

{(j, k); θ0
Y=k,j 6= 0, j 6= k} and a false positive selection is defined with respect to this S0 (i.e.

selecting a causal effect which is an element of Sc0). The estimated active set is ŜIDA(q, α) =

{(j 6= k); ˆ̀
Y=k,j(α) is among the largest q from all {ˆ̀Y=k′,j′(α); j′ 6= k′}}, analogous as in

Section 4.4.1. We choose q = b
√

0.8d(d− 1)c and α = 0.05; furthermore, we use as stability
threshold πthr = 0.7 and πthr = 0.7, see (3.2), resulting in bounds for the expected number
of false positive selections E[V ] ≤ 1.7 (for low-dimensional case) and E[V ] ≤ 4.0 (for high-
dimensional case), respectively.

Results are displayed in Figure 6. We see that stability selection works well for conserva-
tively controlling the expected number of false positives. This finding is consistent with Theorem
1, although the exchangeability condition presumably does not hold for the model in (4.7). In
terms of power for detecting true positives, stability selection is rather poor, especially for the
high-dimensional case where stable selections occur only rarely (but if there is a stably selected
variable, it is “almost surely” a true positive in the considered high-dimensional scenarios).
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Figure 6: Stability selection for true causal effects (with active set S0 as described in the text).
The dashed vertical line indicates the bound for E[V ]. The different model specifications in the
legend are specified in Appendix B, Figures 10 and 11.

P-values for familywise error control
Here, we consider the problem of assigning p-values for every setting where Y = X(k) and the
covariates are {X(j); j 6= k}, k = 1, . . . , d, see above. Note that for stability selection above, we
used a “global” view among all these p different settings. We then use the approach described in
Section 4.4.2 with α = 0.05 for the PC-algorithm.

Results about FWER control are summarized in Figure 7. They represent a rather negative
result. Only if the graph is sparse and d = 10, the method works. Although one can prove that
the p-values are asymptotically controlling the FWER, under assumptions which are fulfilled by
the simulation model, the considered sample sizes are much too small: when pushing sample size
to n ≥ 5′000 for the cases with d = 10, the method is reliably controlling the FWER (not shown
here).
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Figure 7: P-values for true causal effects {θ0
Y=k,j ; j 6= k}, for every k = 1, . . . d. The different

model specifications in the legend are specified in Appendix B, Figures 10 and 11.

Reasons for markedly different reliability of error control
Apparently, stability selection works much more reliable for type I error control than the p-values
constructed from sample splitting. Reasons for such findings include the following. From a
theory point of view, stability selection is justified using a weak “better than random guessing”
assumption and a restrictive exchangeability condition, see Theorem 1. The latter seems rather far
from necessary, as discussed also in Section 3.2.1. On the other hand, the p-value method relies
on the fact that the true underlying CPDAG E(G0) = E(P 0) is estimated correctly using the first
half of the sample, which seems far from approximately true. If the estimator Êα(I1) is different
from E(G0) = E(P 0), the resulting lower bounds and p-values are affected. This is very different
from regression: there, instead of exact recovery of the active set, we only need the screening
property (3.8) for constructing p-values which control the familywise error rate.

Besides these aspects from theory, control of the familywise error rate seems a more ambitious
task than the less stringent control of the expected number of false positive.
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Figure 8: Accuracy of ranking. Rank-correlation between true rank among {θ0
Y=k,j ; (j 6= k)}

and estimated rank. The different ranking methods are based on p-values (P-value), raw esti-
mates from IDA (IDA), mean aggregation from bootstrapping (IDA.boot) and selection frequen-
cies from subsampling (IDA.stab). The different model specifications in the legend are specified
in Appendix B, Figures 10 and 11.
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Ranking using p-values and subsampling
Since control of the familywise error rate (or the false discovery rate) seems to be unreliable for
finite data, we wondered whether the p-values exhibit at least a better behavior for ranking. We
rank the importance of the variables (in terms of their causal effects) by p-values, where the best
variable with rank one has the smallest p-value. We do this over all settings where Y = X(k) and
covariates {X(j); j 6= k}. We then compare such a p-value based ranking with bootstrapping
and mean aggregation over the bootstrapped lower bound estimates, and also with the selection
frequencies π̂Y=k,j from stability selection (using the top q = b

√
0.8d(d− 1)c largest lower

bound estimates as selection method). Furthermore, we rank according to the (non-subsampled)
estimated lower bound values ˆ̀

Y=k,j , where the best variable has largest value. The parameter in
the PC-algorithm is chosen as α = 0.05.

The results are summarized in Figure 8. We see that the p-values provide the most power-
ful ranking scheme, followed by mean-aggregated bootstrapping and selection frequencies from
subsampling. All of them improve upon the non-subsampled lower bound estimates. Although
familywise error control is very unreliable using the p-values described in Section 4.4.2, they are
improving the ranking.

4.5.2 Gene interactions in yeast

We consider here the problem about inferring intervention or causal effects among many genes
in yeast, see Section 4.3. Mainly for computational reasons, we look at a subset of 1000 true
intervention effects (from 234 intervention experiments): we choose the 100 largest and 900
smallest true intervention effects, and we then assign them as true (100 in total) and false (900
in total). Figure 9 shows an ROC-type curve where the curves arise according to the rankings
from the p-values, the mean-aggregated subsampling and the lower bound estimates obtained
directly from the original data (we do not compare with the ranking based on subsampled selection
frequencies as this was inferior than mean aggregation in the simulation study).

We see that the p-value based ranking improves the ROC-type curve while here, mean aggre-
gation from subsampling doesn’t improve upon the non-subsampled estimated lower bounds. We
note that the latter is not better than random guessing, in contrast to the result shown in Figure 5
where we consider the whole and much larger set of intervention effects from 234 intervened to
all other genes.
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Figure 9: Gene interactions in yeast (focusing on 1000 interactions). Different methods for rank-
ing with abbreviations as in Figure 8.

5 Conclusions

We have reviewed stability selection and construction of p-values for high-dimensional (general-
ized) regression. They work reliably for conservatively controlling the expected number of false
positive or familywise error rate, respectively.
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We then adapted these techniques to the much more challenging problem of high-dimensional
variable selection for causal or interventional targets based on observational data. We have found
that stability selection continues to reliably control the expected number of false positive selec-
tions although the power to detect true positives can be poor (which seems mainly due to the
complexity and difficulty of the problem). This is in contrast to assigning p-values: unless the
underlying causal influence diagram is very sparse, controlling the familywise error is far from
being trustworthy. Potential reasons for such different findings are briefly discussed (Section
4.5.1). In terms of ranking different variables according to their strength for causal influence, p-
values and also re-/subsampling-based methods are found again to improve the non-subsampled
estimates. Overall, re-/subsampling and sample splitting hold premise to yield more accurate esti-
mates, and to some extent also for type I error control, in the challenging area of inferring (bounds
of) intervention or causal effects based on observational data.

5.1 Software

For all computations the statistical programming language R was used [22]. Methods for stability
selection and sample splitting were implemented by ourselves. For the Lasso or Elastic Net we
used the R-package glmnet [9]. For estimating causal structures using the PC-algorithm or
estimating causal effects using IDA the R-package pcalg is available [13].
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[2] P. Bühlmann, M. Kalisch, and M.H. Maathuis. Variable selection in high-dimensional linear
models: partially faithful distributions and the PC-simple algorithm. Biometrika, 97:261–
278, 2010.
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[12] M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the
PC-algorithm. Journal of Machine Learning Research, 8:613–636, 2007.
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Appendix A

We describe here the assumptions used for the theorems in Section 4.

Assumptions for Theorem 3.
We consider a triangular scheme of observations from model (4.2):

Xn,1, . . . , Xn,n i.i.d. ∼ P (n), n = 1, 2, 3, . . . ,

where Xn = (X
(1)
n , . . . X

(pn)
n , X

(pn+1)
n ) with X(pn+1)

n = Yn. Our assumptions are as follows.

(A1) The distribution P (n) is multivariate Gaussian and faithful to a DAG G(n) for all n ∈ N.

(A2) The dimension pn = O(na) for some 0 ≤ a <∞.

(A3) The maximal number of neighbors in the undirected graph G(n), denoted by
qn = max1≤j≤pn+1 |adj(Gn, j)|, satisfies qn = O(n1−b) for some 0 < b ≤ 1.

(A4) The partial correlations satisfy:

inf{|ρjk|C |; ρjk|C 6= 0,

j, k = 1, . . . , pn + 1 (j 6= k), C ⊆ {1, . . . , pn + 1} \ {j, k}, |C| ≤ qn} ≥ cn,

where c−1
n = O(nd) (n→∞) for some 0 < d < b/2 and 0 < b ≤ 1 as in (A3);

sup
n
{|ρjk|C |;

j, k = 1, . . . , pn + 1 (j 6= k), C ⊆ {1, . . . , pn + 1} \ {j, k}, |C| ≤ qn} ≤M < 1.

Assumptions for Theorem 4.
We consider the same setting as above. We assume (A1)-(A4) and in addition:

(A5) The conditional variances satisfy the following bound:

inf

{
Var(X

(j)
n |X(S)

n )

Var(X
(pn+1)
n |X(j)

n , X
(S)
n )

; S ⊆ adj(Gn, j), j = 1, . . . , pn

}
≥ v2,

for some v > 0.

Appendix B

We describe here the details of the simulation models used.

Simulation in Section 3.2.1 underlying Figure 2.
We consider semi-synthetic data from a linear model as in (2.2) having designs from real data-sets,
one with p = 660 and n = 2587 and another one with p = 4088 and n = 158. Sparse regression
coefficients β0

j i.i.d. Uniform([0, 1]) are generated and the size of the active set is varied with s0
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taking 16 different values between 4 and 50. We choose Gaussian errors with variances σ2 to
achieve signal to noise ratios (SNRs) in {0.5, 2}. In total, there are 64 scenarios and we run each
of them 100 times.

We then test how well the error control of Theorem 1 holds up for these semi-synthetic data-
sets. We are interested in the comparison between the 10-fold cross-validated solution for the
Lasso (without stability selection) and stability selection using the Lasso. For stability selection,
we chose q = b

√
0.8pc (the first q variables entering the regularization path) and a threshold of

πthr = 0.6, corresponding to a control of E[V ] ≤ 2.5, where V is the number of wrongly selected
variables. The control is mathematically derived under the assumption of exchangeability as
described in Theorem 1. This assumption is most likely not fulfilled for the given real data designs
and it is of interest to see how well the error bound holds up for our semi-synthetic data-sets. The
results are shown in Figure 2.

Simulation in Section 3.3.4 underlying Figure 4.
We simulate data from 16 different linear models as in (2.2) with n = 100 and p = 1000. The
design matrix is obtained from realizations of X1, . . . , Xn i.i.d Np(0,Σ), Σj,k = 0.5|j−k|, and
we use sparse β0-vectors with active set S0 and s0 = |S0|. In each simulation run, a new param-
eter vector β0 is created by either “uniform” or “varying-strength” sampling. Under “uniform”
sampling, s0 randomly chosen components of β are set to 1 and the remaining p − s0 compo-
nents to 0. Under “varying-strength” sampling, s0 randomly chosen components of β are set
to values 1, . . . , s0. The error variance σ2 is adjusted such that the signal to noise ratio (SNR)
∈ {0.25, 1, 4, 16} and the number s0 of active variables is either 5 or 10.Thus, we consider 16 dif-
ferent scenarios (4 different SNRs, 2 different sparsity values s0 and 2 different sampling schemes
for β). We perform 50 simulations for each scenario.

Simulation in Section 4.5.1 underlying Figures 6, 7 and 8.
The DAGs underlying the simulation model in Section 4.5.1 are given below in Figures 10 and
11.
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Figure 10: Low-dimensional DAGs.
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Figure 11: High-dimensional DAGs.
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