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Boosting Algorithms: Regularization,
Prediction and Model Fitting

Peter Biihimann and Torsten Hothorn

Abstract. 'We present a statistical perspective on boosting. Special empha-
sis is given to estimating potentially complex parametric or nonparametric
models, including generalized linear and additive models as well as regres-
sion models for survival analysis. Concepts of degrees of freedom and cor-
responding Akaike or Bayesian information criteria, particularly useful for
regularization and variable selection in high-dimensional covariate spaces,
are discussed as well.

The practical aspects of boosting procedures for fitting statistical mod-
els are illustrated by means of the dedicated open-source software package
mboost. This package implements functions which can be used for model fit-
ting, prediction and variable selection. It is flexible, allowing for the imple-
mentation of new boosting algorithms optimizing user-specified loss func-
tions.

Key words and phrases: Generalized linear models, generalized additive
models, gradient boosting, survival analysis, variable selection, software.

1. INTRODUCTION

Freund and Schapire’s AdaBoost algorithm for clas-
sification [29-31] has attracted much attention in the
machine learning community (cf. [76], and the refer-
ences therein) as well as in related areas in statistics
[15, 16, 33]. Various versions of the AdaBoost algo-
rithm have proven to be very competitive in terms of
prediction accuracy in a variety of applications. Boost-
ing methods have been originally proposed as ensem-
ble methods (see Section 1.1), which rely on the prin-
ciple of generating multiple predictions and majority
voting (averaging) among the individual classifiers.

Later, Breiman [15, 16] made a path-breaking obser-
vation that the AdaBoost algorithm can be viewed as a
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gradient descent algorithm in function space, inspired
by numerical optimization and statistical estimation.
Moreover, Friedman, Hastie and Tibshirani [33] laid
out further important foundations which linked Ada-
Boost and other boosting algorithms to the framework
of statistical estimation and additive basis expansion.
In their terminology, boosting is represented as ‘“stage-
wise, additive modeling”: the word “additive” does not
imply a model fit which is additive in the covariates
(see our Section 4), but refers to the fact that boost-
ing is an additive (in fact, a linear) combination of
“simple” (function) estimators. Also Mason et al. [62]
and Ritsch, Onoda and Miiller [70] developed related
ideas which were mainly acknowledged in the machine
learning community. In Hastie, Tibshirani and Fried-
man [42], additional views on boosting are given; in
particular, the authors first pointed out the relation be-
tween boosting and ¢!-penalized estimation. The in-
sights of Friedman, Hastie and Tibshirani [33] opened
new perspectives, namely to use boosting methods in
many other contexts than classification. We mention
here boosting methods for regression (including gen-
eralized regression) [22, 32, 71], for density estima-
tion [73], for survival analysis [45, 71] or for multi-
variate analysis [33, 59]. In quite a few of these pro-
posals, boosting is not only a black-box prediction tool
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but also an estimation method for models with a spe-
cific structure such as linearity or additivity [18, 22,
45]. Boosting can then be seen as an interesting regu-
larization scheme for estimating a model. This statisti-
cal perspective will drive the focus of our exposition of
boosting.

We present here some coherent explanations and il-
lustrations of concepts about boosting, some deriva-
tions which are novel, and we aim to increase the
understanding of some methods and some selected
known results. Besides giving an overview on theo-
retical concepts of boosting as an algorithm for fitting
statistical models, we look at the methodology from
a practical point of view as well. The dedicated add-
on package mboost (“model-based boosting,” [43]) to
the R system for statistical computing [69] implements
computational tools which enable the data analyst to
compute on the theoretical concepts explained in this
paper as closely as possible. The illustrations presented
throughout the paper focus on three regression prob-
lems with continuous, binary and censored response
variables, some of them having a large number of co-
variates. For each example, we only present the most
important steps of the analysis. The complete analysis
is contained in a vignette as part of the mboost pack-
age (see Appendix A.1) so that every result shown in
this paper is reproducible.

Unless stated differently, we assume that the data are
realizations of random variables

(Xla Y1)9 R} (Xnv Yn)

from a stationary process with p-dimensional predic-
tor variables X; and one-dimensional response vari-
ables Y;; for the case of multivariate responses, some
references are given in Section 9.1. In particular, the
setting above includes independent, identically distrib-
uted (i.i.d.) observations. The generalization to station-
ary processes is fairly straightforward: the methods and
algorithms are the same as in the i.i.d. framework, but
the mathematical theory requires more elaborate tech-
niques. Essentially, one needs to ensure that some (uni-
form) laws of large numbers still hold, for example,
assuming stationary, mixing sequences; some rigorous
results are given in [57] and [59].

1.1 Ensemble Schemes: Multiple Prediction and
Aggregation

Ensemble schemes construct multiple function esti-
mates or predictions from reweighted data and use a
linear (or sometimes convex) combination thereof for
producing the final, aggregated estimator or prediction.

First, we specify a base procedure which constructs a
function estimate g(-) with values in R, based on some
data (X1, Y1), ..., (Xn, Yn):

base procedure .
(leYI)v"'7(Xﬂ’Yﬂ) — g()
For example, a very popular base procedure is a regres-
sion tree.

Then, generating an ensemble from the base proce-
dures, that is, an ensemble of function estimates or pre-
dictions, works generally as follows:

b d .
reweighted data 1 e prosecure LIS
bas d R
reweighted data 2 ase prosecure RIS
. base procedure ~[M]
reweighted data M — M)

M
aggregation: fa0) =X amg™).
m=1

What is termed here as “reweighted data” means that
we assign individual data weights to each of the n
sample points. We have also implicitly assumed that
the base procedure allows to do some weighted fit-
ting, that is, estimation is based on a weighted sam-
ple. Throughout the paper (except in Section 1.2), we
assume that a base procedure estimate g(-) is real-
valued (i.e., a regression procedure), making it more
adequate for the “statistical perspective” on boosting,
in particular for the generic FGD algorithm in Sec-
tion 2.1.

The above description of an ensemble scheme is too
general to be of any direct use. The specification of the
data reweighting mechanism as well as the form of the
linear combination coefficients {oz,,,}f,‘;":1 are crucial,
and various choices characterize different ensemble
schemes. Most boosting methods are special kinds of
sequential ensemble schemes, where the data weights
in iteration m depend on the results from the previous
iteration m — 1 only (memoryless with respect to iter-
ations m — 2, m — 3, ...). Examples of other ensemble
schemes include bagging [14] or random forests [1,
17].

1.2 AdaBoost

The AdaBoost algorithm for binary classification
[31] is the most well-known boosting algorithm. The
base procedure is a classifier with values in {0, 1}
(slightly different from a real-valued function estima-
tor as assumed above), for example, a classification
tree.
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AdaBoost algorithm

1. Initialize some weights for individual sample
points: wl[o] =l/nfori=1,...,n. Setm=0.

2. Increase m by 1. Fit the base procedure to the
weighted data, that is, do a weighted fitting using

the weights wl[m_l], yielding the classifier g/ (.).

3. Compute the weighted in-sample misclassification
rate

n n
err[m] — Z wl_[m—l]I(Yi ” g[m](Xl_))/Z wi[m—l]’
i=1 i=1

1 —errl™
[m] _ _
o™ = log( rlm] >,

and update the weights

Wi = wl[m_l] exp(a™1(v; # 8™ (X)),
n
wi[m] = lz)i/ Z II)J'.
=1

4. Iterate steps 2 and 3 until m = mgyop and build the
aggregated classifier by weighted majority voting:

Mstop
FadaBoosi(x) =argmax Y o™ 1 (3" (x) = y).
ye{0.1} =g
By using the terminology mgp (instead of M as in the
general description of ensemble schemes), we empha-
size here and later that the iteration process should be
stopped to avoid overfitting. It is a tuning parameter
of AdaBoost which may be selected using some cross-
validation scheme.

1.3 Slow Overfitting Behavior

It had been debated until about the year 2000
whether the AdaBoost algorithm is immune to over-
fitting when running more iterations, that is, stopping
would not be necessary. It is clear nowadays that Ada-
Boost and also other boosting algorithms are overfit-
ting eventually, and early stopping [using a value of
msop before convergence of the surrogate loss func-
tion, given in (3.3), takes place] is necessary [7, 51,
64]. We emphasize that this is not in contradiction to
the experimental results by [15] where the test set mis-
classification error still decreases after the training mis-
classification error is zero [because the training error
of the surrogate loss function in (3.3) is not zero before
numerical convergence].

Nevertheless, the AdaBoost algorithm is quite resis-
tant to overfitting (slow overfitting behavior) when in-
creasing the number of iterations mp. This has been

observed empirically, although some cases with clear
overfitting do occur for some datasets [64]. A stream of
work has been devoted to develop VC-type bounds for
the generalization (out-of-sample) error to explain why
boosting is overfitting very slowly only. Schapire et al.
[77] proved a remarkable bound for the generalization
misclassification error for classifiers in the convex hull
of a base procedure. This bound for the misclassifi-
cation error has been improved by Koltchinskii and
Panchenko [53], deriving also a generalization bound
for AdaBoost which depends on the number of boost-
ing iterations.

It has been argued in [33], rejoinder, and [21] that
the overfitting resistance (slow overfitting behavior) is
much stronger for the misclassification error than many
other loss functions such as the (out-of-sample) nega-
tive log-likelihood (e.g., squared error in Gaussian re-
gression). Thus, boosting’s resistance of overfitting is
coupled with a general fact that overfitting is less an
issue for classification (i.e., the 0-1 loss function). Fur-
thermore, it is proved in [6] that the misclassification
risk can be bounded by the risk of the surrogate loss
function: it demonstrates from a different perspective
that the 0-1 loss can exhibit quite a different behavior
than the surrogate loss.

Finally, Section 5.1 develops the variance and bias
for boosting when utilized to fit a one-dimensional
curve. Figure 5 illustrates the difference between the
boosting and the smoothing spline approach, and the
eigen-analysis of the boosting method [see (5.2)] yields
the following: boosting’s variance increases with expo-
nentially small increments while its squared bias de-
creases exponentially fast as the number of iterations
grows. This also explains why boosting’s overfitting
kicks in very slowly.

1.4 Historical Remarks

The idea of boosting as an ensemble method for im-
proving the predictive performance of a base procedure
seems to have its roots in machine learning. Kearns and
Valiant [52] proved that if individual classifiers per-
form at least slightly better than guessing at random,
their predictions can be combined and averaged, yield-
ing much better predictions. Later, Schapire [75] pro-
posed a boosting algorithm with provable polynomial
run-time to construct such a better ensemble of clas-
sifiers. The AdaBoost algorithm [29-31] is considered
as a first path-breaking step toward practically feasible
boosting algorithms.

The results from Breiman [15, 16], showing that
boosting can be interpreted as a functional gradient de-
scent algorithm, uncover older roots of boosting. In the
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context of regression, there is an immediate connec-
tion to the Gauss—Southwell algorithm [79] for solving
a linear system of equations (see Section 4.1) and to
Tukey’s [83] method of “twicing” (see Section 5.1).

2. FUNCTIONAL GRADIENT DESCENT

Breiman [15, 16] showed that the AdaBoost algo-
rithm can be represented as a steepest descent algo-
rithm in function space which we call functional gra-
dient descent (FGD). Friedman, Hastie and Tibshirani
[33] and Friedman [32] then developed a more general,
statistical framework which yields a direct interpreta-
tion of boosting as a method for function estimation.
In their terminology, it is a “stagewise, additive mod-
eling” approach (but the word “additive” does not im-
ply a model fit which is additive in the covariates; see
Section 4). Consider the problem of estimating a real-
valued function

2.1) O] =ar%?;inE[p(Y,f(X))],

where p(-, ) is a loss function which is typically as-
sumed to be differentiable and convex with respect to
the second argument. For example, the squared error
loss p(y, f) = |y — f|? yields the well-known popula-
tion minimizer f*(x) = E[Y|X = x].

2.1 The Generic FGD or Boosting Algorithm

In the sequel, FGD and boosting are used as equiva-
lent terminology for the same method or algorithm.

Estimation of f*(-) in (2.1) with boosting can be
done by considering the empirical risk 7! 1 oY,
f(X;)) and pursuing iterative steepest descent in func-
tion space. The following algorithm has been given by
Friedman [32]:

Generic FGD algorithm

1. Initialize f 1.y with an offset value. Common
choices are

n
) =argminn ™ Y7 p(¥i, o)
¢ i=1
or f[o](-) =0.Setm =0.
2. Increase m by 1. Compute the negative gradient
—ad—fp(Y, f) and evaluate at £~ (X;):

ad .
Ul:_—p(Yl’f)lef[m_l](X,)’ l:l,...,n.

af

3. Fit the negative gradient vector Uj,...,U, to
X1, ..., Xy by the real-valued base procedure (e.g.,
regression)

base procedure
(Xi, Uiy gme).

Thus, "1(-) can be viewed as an approximation of
the negative gradient vector.

4. Update flml() = fIm=H)y4v.glml(.), where 0 <
v < 1is a step-length factor (see below), that is, pro-
ceed along an estimate of the negative gradient vec-
tor.

5. Iterate steps 2 to 4 until m = mgyp for some stop-
ping iteration msop.

The stopping iteration, which is the main tuning
parameter, can be determined via cross-validation or
some information criterion; see Section 5.4. The choice
of the step-length factor v in step 4 is of minor im-
portance, as long as it is “small,” such as v = 0.1.
A smaller value of v typically requires a larger num-
ber of boosting iterations and thus more computing
time, while the predictive accuracy has been empiri-
cally found to be potentially better and almost never
worse when choosing v “sufficiently small” (e.g., v =
0.1) [32]. Friedman [32] suggests to use an additional
line search between steps 3 and 4 (in case of other loss
functions p (-, -) than squared error): it yields a slightly
different algorithm but the additional line search seems
unnecessary for achieving a good estimator f!"swpl,
The latter statement is based on empirical evidence and
some mathematical reasoning as described at the be-
ginning of Section 7.

2.1.1 Alternative formulation in function space. In
steps 2 and 3 of the generic FGD algorithm, we associ-
ated with Uy, ..., U, a negative gradient vector. A rea-
son for this can be seen from the following formulation
in function space which is similar to the exposition in
Mason et al. [62] and to the discussion in Ridgeway
[72].

Consider the empirical risk functional C(f) =
n1 Y p(Y:, f(X;)) and the usual inner product
(f,g)=n""! "_1 f(X;)g(X;). We can then calculate
the negative Gateaux derivative d C(-) of the functional
Cl),

ad
—dC(f)(X)=—£C(f+a8x)la:o,
f:RP >R, x eR?,

where §, denotes the delta- (or indicator-) function at
x € R?. In particular, when evaluating the derivative
—dC at f"=11and X;, we get

—dc(f"Nxn=n""u;,
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with Uy, ..., U, exactly as in steps 2 and 3 of the
generic FGD algorithm. Thus, the negative gradient
vector Uy, ..., U, can be interpreted as a functional
(Gateaux) derivative evaluated at the data points.

We point out that the algorithm in Mason et al.
[62] is different from the generic FGD method above:
while the latter is fitting the negative gradient vector
by the base procedure, typically using (nonparamet-
ric) least squares, Mason et al. [62] fit the base pro-
cedure by maximizing —(U, &) =n~' 31, U;2(X;).
For certain base procedures, the two algorithms coin-
cide. For example, if g(-) is the componentwise lin-
ear least squares base procedure described in (4.1),
it holds that n=!' " (U; — 8(X;))?> = C — (U, 8),
where C =n~! Y_, U? is a constant.

3. SOME LOSS FUNCTIONS AND BOOSTING
ALGORITHMS

Various boosting algorithms can be defined by spec-
ifying different (surrogate) loss functions p(-,-). The
mboost package provides an environment for defining
loss functions via boost_family objects, as exemplified
below.

3.1 Binary Classification

For binary classification, the response variable is ¥ €
{0, 1} with P[Y = 1] = p. Often, it is notationally more
convenient to encode the response by Yy=2Y-1l¢
{—1, +1} (this coding is used in mboost as well). We
consider the negative binomial log-likelihood as loss
function:

—(ylog(p) + (1 — y)log(1 — p)).

monotone
© T ‘e — Po+
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We parametrize p = exp(f)/(exp(f) + exp(—f)) so
that f =log(p/(1 — p))/2 equals half of the log-odds

ratio; the factor 1/2 is a bit unusual but it will enable
that the population minimizer of the loss in (3.1) is the
same as for the exponential loss in (3.3) below. Then,
the negative log-likelihood is

log(1 +exp(—2 f).

By scaling, we prefer to use the equivalent loss func-
tion

(B.1)  plog-tik(¥, f) =logy (1 +exp(=25 f)),

which then becomes an upper bound of the misclas-
sification error; see Figure 1. In mboost, the neg-
ative gradient of this loss function is implemented
in a function Binomial () returning an object of
class boost_family which contains the negative gradi-
ent function as a slot (assuming a binary response vari-
abley € {—1, +1}).

The population minimizer can be shown to be (cf.

[33])
y 1 p(x)
Jiog-ik(¥) =5 log<—1 - p(x)>,
p(x)=P[Y = 1]X = x].

The loss function in (3.1) is a function of y f, the so-
called margin value, where the function f induces the
following classifier for Y:

1, if £(x) >0,
Cx)=10, if f(x) <0,
undetermined, if f(x) =0.
non-monotone
A
© 4 \ — Po1
' -- P
o “ S P
\
< \
_ \ .
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FIG. 1. Losses, as functions of the margin y f = (2y — 1) f, for binary classification. Left panel with monotone loss functions: 0-1 loss,
exponential loss, negative log-likelihood, hinge loss (SVM); right panel with nonmonotone loss functions: squared error (L) and absolute

error (L1) as in (3.5).
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Therefore, a misclassification (including the undeter-
mined case) happens if and only if Y f(X) < 0. Hence,
the misclassification loss is

(3.2) po-1(y, ) = I5r<0),

whose population minimizer is equivalent to the Bayes
classifier (for Y € {—1, +1})

* +1, if p(x) >1/2,
faw={ i
where p(x) = P[Y = 1]X = x]. Note that the 0-1 loss
in (3.2) cannot be used for boosting or FGD: it is non-
differentiable and also nonconvex as a function of the
margin value y f. The negative log-likelihood loss in
(3.1) can be viewed as a convex upper approximation
of the (computationally intractable) nonconvex 0-1
loss; see Figure 1. We will describe in Section 3.3
the BinomialBoosting algorithm (similar to LogitBoost
[33]) which uses the negative log-likelihood as loss
function (i.e., the surrogate loss which is the imple-
menting loss function for the algorithm).
Another upper convex approximation of the 0-1 loss
function in (3.2) is the exponential loss

(3.3) pexp(yv f)=exp(=y[f),

implemented (with notation y € {—1, 4+1}) in mboost
as AdaExp () family.

The population minimizer can be shown to be the
same as for the log-likelihood loss (cf. [33]):

PN | p(x)
Jexp) = 2]°g<1 —p(x))’

p(x) =P[Y = 1|X =x].

Using functional gradient descent with different
(surrogate) loss functions yields different boosting al-
gorithms. When using the log-likelihood loss in (3.1),
we obtain LogitBoost [33] or BinomialBoosting from
Section 3.3; and with the exponential loss in (3.3), we
essentially get AdaBoost [30] from Section 1.2.

We interpret the boosting estimate f"!(-) as an esti-
mate of the population minimizer f*(-). Thus, the out-
put from AdaBoost, Logit- or BinomialBoosting are
estimates of half of the log-odds ratio. In particular, we
define probability estimates via

] exp(f1"(x))
p

~ exp(/1"1(x)) + exp(—f1m(x))”

The reason for constructing these probability estimates
is based on the fact that boosting with a suitable stop-
ping iteration is consistent [7, 51]. Some cautionary re-

marks about this line of argumentation are presented
by Mease, Wyner and Buja [64].

Very popular in machine learning is the hinge func-
tion, the standard loss function for support vector ma-
chines:

psvm(y, ) =[1-yfl+,
where [x]4+ = xI{x~0) denotes the positive part. It is
also an upper convex bound of the misclassification er-
ror; see Figure 1. Its population minimizer is

féym&) =sign(p(x) — 1/2),

which is the Bayes classifier for Y € {—1,+1}. Since
fSym() is a classifier and noninvertible function of
p(x), there is no direct way to obtain conditional class
probability estimates.

3.2 Regression

For regression with response Y € R, we use most of-
ten the squared error loss (scaled by the factor 1/2 such
that the negative gradient vector equals the residuals;
see Section 3.3 below),

(3.4) pry(y, ) =3ly — fI?
with population minimizer
fi, () =E[Y|X = x].

The corresponding boosting algorithm is L,Boosting;
see Friedman [32] and Biihlmann and Yu [22]. It is de-
scribed in more detail in Section 3.3. This loss function
is available in mboost as family GaussReg () .

Alternative loss functions which have some robust-
ness properties (with respect to the error distribution,
i.e., in “Y-space”) include the L- and Huber-loss. The
former is

oL (v, f) =1y = fl
with population minimizer
f*(x) = median(Y|X = x)

and is implemented in mboost as Laplace ().

Although the L-loss is not differentiable at the point
y = f, we can compute partial derivatives since the
single point y = f (usually) has probability zero to be
realized by the data. A compromise between the L-

and L;-loss is the Huber-loss function from robust sta-
tistics:
OHuber (¥, f)
={|y—f|2/2, if [y — 1 <3,
Sy —fl1—298/2), ifly— fI>34,
which is available in mboost as Huber (). A strategy

for choosing (a changing) § adaptively has been pro-
posed by Friedman [32]:

8m = median({|Y; — fI"U(X)|;i=1,...,n)),

where the previous fit f [m=11.) is used.
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3.2.1 Connections to binary classification. Moti-
vated from the population point of view, the L,- or
L1-loss can also be used for binary classification. For
Y € {0, 1}, the population minimizers are

J1, () =E[Y[X =x]
=px)=PlY =1|X =x],
fi,(x) = median(Y | X = x)

L it p(x) >1/2,
_{O, if p(x) <1/2.

Thus, the population minimizer of the Li-loss is the
Bayes classifier.

Moreover, both the L{- and L,-loss functions can be
parametrized as functions of the margin value y f (¥ €
{—=1,+1}):

ly—=fI=11=yfl,
B35 - fP=1-5fP
=(1-25f+G )
The L{- and L;-loss functions are nonmonotone func-
tions of the margin value y f; see Figure 1. A nega-
tive aspect is that they penalize margin values which
are greater than 1: penalizing large margin values can

be seen as a way to encourage solutions f € [—1, 1]
which is the range of the population minimizers fL*1

and fi"z (for Y € {—1, 4+1}), respectively. However, as
discussed below, we prefer to use monotone loss func-
tions.

The Lj-loss for classification (with response
variable y € {—1, +1}) is implemented in Gauss-
Class ().

All loss functions mentioned for binary classification
(displayed in Figure 1) can be viewed and interpreted
from the perspective of proper scoring rules; cf. Buja,
Stuetzle and Shen [24]. We usually prefer the negative
log-likelihood loss in (3.1) because: (i) it yields prob-
ability estimates; (ii) it is a monotone loss function of
the margin value y f; (iii) it grows linearly as the mar-
gin value y f tends to —oo, unlike the exponential loss

in (3.3). The third point reflects a robustness aspect: it
is similar to Huber’s loss function which also penalizes
large values linearly (instead of quadratically as with
the Ly-loss).

3.3 Two Important Boosting Algorithms

Table 1 summarizes the most popular loss functions
and their corresponding boosting algorithms. We now
describe the two algorithms appearing in the last two
rows of Table 1 in more detail.

3.3.1 LyBoosting. LyBoosting is the simplest and
perhaps most instructive boosting algorithm. It is very
useful for regression, in particular in presence of very
many predictor variables. Applying the general de-
scription of the FGD algorithm from Section 2.1 to the
squared error loss function pz, (y, f) = |y — f12/2, we
obtain the following algorithm:

L,Boosting algorithm

1. Initialize £191(-) with an offset value. The default
value is f19() =Y. Setm = 0.

2. Increase m by 1. Compute the residuals U; = Y; —
f[m_”(X,-) fori=1,...,n.

3. Fit the residual vector Uy, ..., U, to X1, ..., X, by
the real-valued base procedure (e.g., regression):

(X, Ui)?=1 base procedure é[m](‘)‘

4. Update fiml(y = flm=1¢y 4. glml() where 0 <
v < 1 is a step-length factor (as in the general FGD
algorithm).

5. Iterate steps 2 to 4 until m = mgp for some stop-
ping iteration mop.

The stopping iteration mgp is the main tuning para-
meter which can be selected using cross-validation or
some information criterion as described in Section 5.4.

The derivation from the generic FGD algorithm
in Section 2.1 is straightforward. Note that the neg-
ative gradient vector becomes the residual vector.
Thus, L;Boosting amounts to refitting residuals mul-
tiple times. Tukey [83] recognized this to be useful

TABLE 1
Various loss functions p(y, f), population minimizers f*(x) and names of corresponding boosting algorithms; p(x) =P[Y = 1|X = x]

Range spaces p(y, f) f*x) Algorithm
ye{0,1}, feR exp(—R2y—1)f) . %log(lf;x&)) AdaBoost
ye{0,1}, feR logy (1 4+ ¢=22y=Df) 3 log(72505) LogitBoost / BinomialBoosting
yeR, feR Ty = £ E[Y|X = x] L,Boosting
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and proposed “twicing,” which is nothing else than
L;Boosting using mgop =2 (and v = 1).

3.3.2 BinomialBoosting: the FGD version of Logit-
Boost. We already gave some reasons at the end of
Section 3.2.1 why the negative log-likelihood loss
function in (3.1) is very useful for binary classifica-
tion problems. Friedman, Hastie and Tibshirani [33]
were first in advocating this, and they proposed Logit-
Boost, which is very similar to the generic FGD al-
gorithm when using the loss from (3.1): the deviation
from FGD is the use of Newton’s method involving the
Hessian matrix (instead of a step-length for the gradi-
ent).

For the sake of coherence with the generic functional
gradient descent algorithm in Section 2.1, we describe
here a version of LogitBoost; to avoid conflicting ter-
minology, we name it BinomialBoosting:

BinomialBoosting algorithm

Apply the generic FGD algorithm from Section 2.1
using the loss function pjog-1ik from (3.1). The default
offset value is f10(.) = log(p/(1 — p))/2, where p is
the relative frequency of ¥ = 1.

With BinomialBoosting, there is no need that the
base procedure is able to do weighted fitting; this con-
stitutes a slight difference to the requirement for Logit-
Boost [33].

3.4 Other Data Structures and Models

Due to the generic nature of boosting or functional
gradient descent, we can use the technique in very
many other settings. For data with univariate responses
and loss functions which are differentiable with respect
to the second argument, the boosting algorithm is de-
scribed in Section 2.1. Survival analysis is an important
area of application with censored observations; we de-
scribe in Section 8 how to deal with it.

4. CHOOSING THE BASE PROCEDURE

Every boosting algorithm requires the specification
of a base procedure. This choice can be driven by the
aim of optimizing the predictive capacity only or by
considering some structural properties of the boosting
estimate in addition. We find the latter usually more
interesting as it allows for better interpretation of the
resulting model.

We recall that the generic boosting estimator is a sum
of base procedure estimates

Fimey=v > M.
k=1

Therefore, structural properties of the boosting func-
tion estimator are induced by a linear combination of
structural characteristics of the base procedure.

The following important examples of base proce-
dures yield useful structures for the boosting estima-
tor f [m1(.). The notation is as follows: g() is an
estimate from a base procedure which is based on
data (X1, Uy),..., (X, U,) where (Uy,...,U,) de-
notes the current negative gradient. In the sequel, the
jth component of a vector ¢ will be denoted by ¢/,

4.1 Componentwise Linear Least Squares for
Linear Models

Boosting can be very useful for fitting potentially
high-dimensional generalized linear models. Consider
the base procedure

g(x) =pBx®),

n n

o . -

@n BV =3x"u [ 3 (x{"),
i=1 i=1

n
8 = argmin > (Ui - B(-f)Xl.(J))Z.
I<j<p i
It selects the best variable in a simple linear model in
the sense of ordinary least squares fitting.

When using L;Boosting with this base procedure,
we select in every iteration one predictor variable, not
necessarily a different one for each iteration, and we
update the function linearly:

Fim ey = Fim=1x) 4 ppGm G,

where §,, denotes the index of the selected predictor
variable in iteration m. Alternatively, the update of the
coefficient estimates is

alm] _ Alm—1] i)
B B +v. g,

The notation should be read that only the fmth com-
ponent of the coefficient estimate ,3[’"] (in iteration m)
has been updated. For every iteration m, we obtain a
linear model fit. As m tends to infinity, f [ml(.y con-
verges to a least squares solution which is unique if the
design matrix has full rank p < n. The method is also
known as matching pursuit in signal processing [60],
weak greedy algorithm in computational mathematics
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[81], and it is a Gauss—Southwell algorithm [79] for
solving a linear system of equations. We will discuss
more properties of LyBoosting with componentwise
linear least squares in Section 5.2.

When using BinomialBoosting with componentwise
linear least squares from (4.1), we obtain a fit, includ-
ing variable selection, of a linear logistic regression
model.

As will be discussed in more detail in Section 5.2,
boosting typically shrinks the (logistic) regression co-
efficients toward zero. Usually, we do not want to
shrink the intercept term. In addition, we advocate
to use boosting on mean centered predictor variables

)~(i(j ) — Xi(j ) _ Y(j ). In case of a linear model, when

centering also the response ?i =Y; — Y, this becomes

P
f’,- = Z ,B(j)f(i(j) ~+ noise;
Jj=1
which forces the regression surface through the cen-
ter GV, ..., %P §)=(0,0,...,0) as with ordinary
least squares. Note that it is not necessary to cen-
ter the response variables when using the default off-
set value f Ol =¥ in L>Boosting. [For Binomial-
Boosting, we would center the predictor variables only
but never the response, and we would use fl0 =
argmincn_1 Yo p(Yi, o)l

lllustration: Prediction of total body fat. Garcia et
al. [34] report on the development of predictive re-
gression equations for body fat content by means of
p =9 common anthropometric measurements which
were obtained for n = 71 healthy German women. In
addition, the women’s body composition was measured
by dual energy X-ray absorptiometry (DXA). This ref-
erence method is very accurate in measuring body fat
but finds little applicability in practical environments,
mainly because of high costs and the methodological
efforts needed. Therefore, a simple regression equa-
tion for predicting DXA measurements of body fat
is of special interest for the practitioner. Backward-
elimination was applied to select important variables
from the available anthropometrical measurements and
Garcia et al. [34] report a final linear model utilizing
hip circumference, knee breadth and a compound co-
variate which is defined as the sum of log chin skin-
fold, log triceps skinfold and log subscapular skin-
fold:

R> bf_1m <- 1lm(DEXfat ~ hipcirc
+ kneebreadth
+ anthro3a,

data = bodyfat)
R> coef (bf_1m)

(Intercept) hipcirc kneebreadth anthro3a
-75.23478 0.51153 1.90199 8.90964

A simple regression formula which is easy to com-
municate, such as a linear combination of only a
few covariates, is of special interest in this appli-
cation: we employ the glmboost function from
package mboost to fit a linear regression model by
means of LyBoosting with componentwise linear least
squares. By default, the function glmboost fits a
linear model (with initial mgop = 100 and shrink-
age parameter v = (0.1) by minimizing squared er-
ror (argument family = GaussReg () is the de-
fault):

R> bf_glm <- glmboost (DEXfat ~ .,
data = bodyfat,
control= boost_control
(center = TRUE))

Note that, by default, the mean of the response vari-
able is used as an offset in the first step of the
boosting algorithm. We center the covariates prior
to model fitting in addition. As mentioned above,
the special form of the base learner, that is, compo-
nentwise linear least squares, allows for a reformu-
lation of the boosting fit in terms of a linear com-
bination of the covariates which can be assessed
via

R> coef (bf_glm)
(Intercept) age waistcirc hipcirc
0.000000 0.013602 0.189716 0.351626
elbowbreadth kneebreadth anthro3a anthro3b

-0.384140 1.736589 3.326860 3.656524
anthro3c anthro4
0.595363 0.000000

attr(,"offset")

[1] 30.783

We notice that most covariates have been used for
fitting and thus no extensive variable selection was
performed in the above model. Thus, we need to in-
vestigate how many boosting iterations are appropri-
ate. Resampling methods such as cross-validation or
the bootstrap can be used to estimate the out-of-sample
error for a varying number of boosting iterations. The
out-of-bootstrap mean squared error for 100 bootstrap
samples is depicted in the upper part of Figure 2. The
plot leads to the impression that approximately mop =
44 would be a sufficient number of boosting iterations.
In Section 5.4, a corrected version of the Akaike infor-
mation criterion (AIC) is proposed for determining the
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FIG. 2. bodyfat data: Out-of-bootstrap squared error for vary-
ing number of boosting iterations msiop (top). The dashed hori-
zontal line depicts the average out-of-bootstrap error of the linear
model for the preselected variables hipcirc, kneebreadth
and anthro3a fitted via ordinary least squares. The lower part
shows the corrected AIC criterion.

optimal number of boosting iterations. This criterion
attains its minimum for

R> mstop(aic <- AIC(bf_glm))
[1] 45

boosting iterations; see the bottom part of Figure 2
in addition. The coefficients of the linear model with
Mmgop = 45 boosting iterations are

R> coef (bf_glm[mstop(aic)])
(Intercept) age waistcirc hipcirc
0.0000000 0.0023271 0.1893046 0.3488781
elbowbreadth kneebreadth anthro3a anthro3b

0.0000000 1.5217686 3.3268603 3.6051548
anthro3c anthro4
0.5043133 0.0000000

attr(, "offset")
[1] 30.783

and thus seven covariates have been selected for the
final model (intercept equal to zero occurs here for
mean centered response and predictors and hence,
n=13" Y, = 30.783 is the intercept in the un-
centered model). Note that the variables hipcirc,
kneebreadth and anthro3a, which we have used
for fitting a linear model at the beginning of this para-
graph, have been selected by the boosting algorithm as
well.

4.2 Componentwise Smoothing Spline for Additive
Models

Additive and generalized additive models, intro-
duced by Hastie and Tibshirani [40] (see also [41]),
have become very popular for adding more flexibil-
ity to the linear structure in generalized linear models.
Such flexibility can also be added in boosting (whose
framework is especially useful for high-dimensional
problems).

We can choose to use a nonparametric base proce-
dure for function estimation. Suppose that

F) is a least squares cubic smoothing
(4.2) spline estimate based on Uj,..., U, against

X ij ), X ,(,j ) with fixed degrees of freedom df.
That is,

O =argmin 3 (U — £(x7))?
fO iz

4.3)
+a / (f" ()2 dx,

where A > 0 is a tuning parameter such that the trace
of the corresponding hat matrix equals df. For further
details, we refer to Green and Silverman [36]. As a note
of caution, we use in the sequel the terminology of “hat
matrix” in a broad sense: it is a linear operator but not
a projection in general.

The base procedure is then

g =fORD),
f G )(-) as above and
n .
8 =argmin Y (U; — fP(x))?,
1<j<p j=1

where the degrees of freedom df are the same for all

FD (.
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L,>Boosting with componentwise smoothing splines
yields an additive model, including variable selection,
that is, a fit which is additive in the predictor variables.
This can be seen immediately since LyBoosting pro-
ceeds additively for updating the function f ml(.y; see
Section 3.3. We can normalize to obtain the following
additive model estimator:

P
f[m](x) =0+ Z f[m]’(J)(x(J)),

j=1

n
n~! Zf[m]’(j)(Xi(")) =0 forallj=1,...,p.
i=1
As with the componentwise linear least squares base
procedure, we can use componentwise smoothing
splines also in BinomialBoosting, yielding an additive
logistic regression fit.

The degrees of freedom in the smoothing spline base
procedure should be chosen “small” such as df = 4.
This yields low variance but typically large bias of the
base procedure. The bias can then be reduced by addi-
tional boosting iterations. This choice of low variance
but high bias has been analyzed in Biithlmann and Yu
[22]; see also Section 4.4.

Componentwise smoothing splines can be general-
ized to pairwise smoothing splines which search for
and fit the best pairs of predictor variables such that
smoothing of Uy, ..., U, against this pair of predic-
tors reduces the residual sum of squares most. With
L,Boosting, this yields a nonparametric model fit with
first-order interaction terms. The procedure has been
empirically demonstrated to be often much better than
fitting with MARS [23].

Hllustration: Prediction of total body fat (cont.). Be-
ing more flexible than the linear model which we fit-
ted to the bodyfat data in Section 4.1, we estimate
an additive model using the gamboost function from
mboost (first with prespecified mgop = 100 boosting
iterations, v = 0.1 and squared error loss):

R> bf_gam
<- gamboost (DEXfat ~ .,
data = bodyfat)

The degrees of freedom in the componentwise smooth-
ing spline base procedure can be defined by the
dfbase argument, defaulting to 4.

We can estimate the number of boosting iterations
mgop using the corrected AIC criterion described in
Section 5.4 via

R> mstop(aic <- AIC(bf_gam))
[1] 46

Similarly to the linear regression model, the partial
contributions of the covariates can be extracted from
the boosting fit. For the most important variables, the
partial fits are given in Figure 3 showing some slight
nonlinearity, mainly for kneebreadth.

4.3 Trees

In the machine learning community, regression trees
are the most popular base procedures. They have the
advantage to be invariant under monotone transforma-
tions of predictor variables, that is, we do not need
to search for good data transformations. Moreover, re-
gression trees handle covariates measured at different
scales (continuous, ordinal or nominal variables) in a
unified way; unbiased split or variable selection in the
context of different scales is proposed in [47].

When using stumps, that is, a tree with two termi-
nal nodes only, the boosting estimate will be an addi-
tive model in the original predictor variables, because
every stump-estimate is a function of a single predictor
variable only. Similarly, boosting trees with (at most)
d terminal nodes result in a nonparametric model hav-
ing at most interactions of order d — 2. Therefore, if
we want to constrain the degree of interactions, we can
easily do this by constraining the (maximal) number of
nodes in the base procedure.

Hllustration: Prediction of total body fat (cont.).
Both the gbm package [74] and the mboost package
are helpful when decision trees are to be used as base
procedures. In mboost, the function blackboost
implements boosting for fitting such classical black-
box models:

R> bf_black
<- blackboost (DEXfat ~ .,
data = bodyfat,
control
= boost_control
(mstop = 500))

Conditional inference trees [47] as available from
the party package [46] are utilized as base proce-
dures. Here, the function boost_control defines
the number of boosting iterations mstop.

Alternatively, we can use the function gbm from the
gbm package which yields roughly the same fit as can
be seen from Figure 4.
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4.4 The Low-Variance Principle

We have seen above that the structural properties of
a boosting estimate are determined by the choice of a
base procedure. In our opinion, the structure specifica-
tion should come first. After having made a choice, the
question becomes how “complex” the base procedure
should be. For example, how should we choose the
degrees of freedom for the componentwise smoothing
spline in (4.2)?7 A general answer is: choose the base
procedure (having the desired structure) with low vari-
ance at the price of larger estimation bias. For the com-
ponentwise smoothing splines, this would imply a low
number of degrees of freedom, for example, df = 4.

We give some reasons for the low-variance princi-
ple in Section 5.1 (Replica 1). Moreover, it has been
demonstrated in Friedman [32] that a small step-size
factor v can be often beneficial and almost never yields
substantially worse predictive performance of boosting
estimates. Note that a small step-size factor can be seen
as a shrinkage of the base procedure by the factor v,
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implying low variance but potentially large estimation
bias.

5. L,BOOSTING

L,Boosting is functional gradient descent using the
squared error loss which amounts to repeated fitting
of ordinary residuals, as described already in Sec-
tion 3.3.1. Here, we aim at increasing the understand-
ing of the simple LyBoosting algorithm. We first start
with a toy problem of curve estimation, and we will
then illustrate concepts and results which are especially
useful for high-dimensional data. These can serve as
heuristics for boosting algorithms with other convex
loss functions for problems in for example, classifica-
tion or survival analysis.

5.1 Nonparametric Curve Estimation: From Basics
to Asymptotic Optimality

Consider the toy problem of estimating a regression
function E[Y|X = x] with one-dimensional predictor
X € R and a continuous response Y € R.

Consider the case with a linear base procedure
having a hat matrix #:R" — R”", mapping the re-
sponse variables Y = (Y1, ..., Y,) ' to their fitted val-
ues (f(Xl), cee f(Xn))T. Examples include nonpara-
metric kernel smoothers or smoothing splines. It is
easy to show that the hat matrix of the L,Boosting
fit (for simplicity, with f (0T = 0 and v = 1) in iteration
m equals

B = Bm—1+HU — o(Bm—l)
5.1)
=1—--3)".

Formula (5.1) allows for several insights. First, if the
base procedure satisfies ||/ — H|| < 1 for a suitable
norm, that is, has a “learning capacity” such that the
residual vector is shorter than the input-response vec-
tor, we see that B,, converges to the identity / as
m — 0o, and B, Y converges to the fully saturated
model Y, interpolating the response variables exactly.
Thus, we see here explicitly that we have to stop early
with the boosting iterations in order to prevent overfit-
ting.

When specializing to the case of a cubic smoothing
spline base procedure [cf. (4.3)], it is useful to invoke
some eigenanalysis. The spectral representation is

H=UDU",
D = dlag()\'l’ M )\'n)5

where A1 > Ay > --- > A, denote the (ordered) eigen-
values of #¢. It then follows with (5.1) that

Bn=UD,U",
Dy, =diag(dim,---,dn.m),
dim=1—00-=1)".
It is well known that a smoothing spline satisfies
M=r=1, 0<i;<1(@=3,...,n).

Therefore, the eigenvalues of the boosting hat operator
(matrix) in iteration m satisfy

(5.2) dim=dym=1 forallm,
O<dipm=1—(0-21)"<1 (i=3,...,n),
(5.3)
dim—>1 (m— 00).

When comparing the spectrum, that is, the set of eigen-
values, of a smoothing spline with its boosted version,
we have the following. For both cases, the largest two
eigenvalues are equal to 1. Moreover, all other eigen-
values can be changed either by varying the degrees
of freedom df = )7, A; in a single smoothing spline,
or by varying the boosting iteration m with some fixed
(low-variance) smoothing spline base procedure hav-
ing fixed (low) values A;. In Figure 5 we demonstrate
the difference between the two approaches for chang-
ing “complexity” of the estimated curve fit by means
of a toy example first shown in [22]. Both methods
have about the same minimum mean squared error, but
L>Boosting overfits much more slowly than a single
smoothing spline.

By careful inspection of the eigenanalysis for this
simple case of boosting a smoothing spline, Biihlmann
and Yu [22] proved an asymptotic minimax rate result:

REPLICA 1 ([22]). When stopping the boosting it-
erations appropriately, that is, mgop = m, =
0¥ E+DY m, — 0o (n — 00) with € > 2 as be-
low, LoBoosting with cubic smoothing splines having
fixed degrees of freedom achieves the minimax conver-
gence rate over Sobolev function classes of smoothness
degree £ > 2, asn — 0.

Two items are interesting. First, minimax rates are
achieved by using a base procedure with fixed degrees
of freedom which means low variance from an as-
ymptotic perspective. Second, LyBoosting with cubic
smoothing splines has the capability to adapt to higher-
order smoothness of the true underlying function; thus,
with the stopping iteration as the one and only tuning
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fixed degrees of freedom df = 4) and using v = 0.1, for varying number of boosting iterations. Right: single smoothing spline with varying

degrees of freedom.

parameter, we can nevertheless adapt to any higher-
order degree of smoothness (without the need of choos-
ing a higher-order spline base procedure).

Recently, asymptotic convergence and minimax rate
results have been established for early-stopped boost-
ing in more general settings [10, 91].

5.1.1 LpBoosting using kernel estimators. As we
have pointed out in Replica 1, LoBoosting of smooth-
ing splines can achieve faster mean squared error con-
vergence rates than the classical O (n~*/?), assuming
that the true underlying function is sufficiently smooth.
We illustrate here a related phenomenon with kernel
estimators.

We consider fixed, univariate design points x; =
i/n (i =1,...,n) and the Nadaraya—Watson kernel
estimator for the nonparametric regression function
E[Y|X =x]:

g = k(S )y,
i=1

n
=n"! ZKh(X —x))Y;,

i=1
where & > 0 is the bandwidth, K(-) is a kernel in
the form of a probability density which is symmetric
around zero and Kj,(x) = h_lK(x/h). It is straight-
forward to derive the form of L,Boosting using m =2
iterations (with f1% =0 and v = 1), that is, twicing
[83], with the Nadaraya—Watson kernel estimator:

FA@) = ah) Y K (x - x)Y;,

i=l

K;Y(u) =2Kp(u) — Kp * K (),

where

Ky Kn() =n"" ) Kn(u —x,)Kn(xr).

r=1

For fixed design points x; = i/n, the kernel K;"(-)
is asymptotically equivalent to a higher-order kernel
(which can take negative values) yielding a squared
bias term of order O(h®), assuming that the true
regression function is four times continuously differ-
entiable. Thus, twicing or L;Boosting with m = 2 it-
erations amounts to a Nadaraya—Watson kernel esti-
mator with a higher-order kernel. This explains from
another angle why boosting is able to improve the
mean squared error rate of the base procedure. More
details including also nonequispaced designs are given
in DiMarzio and Taylor [27].

5.2 L,;Boosting for High-Dimensional Linear
Models

Consider a potentially high-dimensional linear mo-
del

p ;
54 Yi=po+ Y BVX e, i=1,...n,
j=1

where €1, ..., &, are i.i.d. with E[¢;] = 0 and indepen-
dent from all X;’s. We allow for the number of predic-
tors p to be much larger than the sample size n. The
model encompasses the representation of a noisy sig-
nal by an expansion with an overcomplete dictionary
of functions {g():j =1, ..., p}; for example, for
surface modeling with design points in Z; € R?,

Yi = f(Zi) +ei,
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f@=> Y01 (zeR?.

J

Fitting the model (5.4) can be done using
LyBoosting with the componentwise linear least
squares base procedure from Section 4.1 which fits in
every iteration the best predictor variable reducing the
residual sum of squares most. This method has the fol-
lowing basic properties:

1. As the number m of boosting iterations increases,
the L,Boosting estimate f lml(.) converges to a least
squares solution. This solution is unique if the de-
sign matrix has full rank p <n.

2. When stopping early, which is usually needed to
avoid overfitting, the L>Boosting method often does
variable selection.

3. The coefficient estimates A"l are (typically)
shrunken versions of a least squares estimate ,BAOLS,
related to the Lasso as described in Section 5.2.1.

lllustration: Breast cancer subtypes. Variable selec-
tion is especially important in high-dimensional situa-
tions. As an example, we study a binary classification
problem involving p = 7129 gene expression levels in
n = 49 breast cancer tumor samples (data taken from
[90]). For each sample, a binary response variable de-
scribes the lymph node status (25 negative and 24 pos-
itive).

The data are stored in form of an exprSet object
westbc (see [35]) and we first extract the matrix of
expression levels and the response variable:

R> x <- t(exprs(westbc))
R> y <- pData(westbc)$nodal.y

We aim at using L,Boosting for classification (see
Section 3.2.1), with classical AIC based on the bi-
nomial log-likelihood for stopping the boosting itera-
tions. Thus, we first transform the factor y to a numeric
variable with 0/1 coding:

R> yfit <- as.numeric(y) - 1

The general framework implemented in mboost allows
us to specify the negative gradient (the ngradient
argument) corresponding to the surrogate loss func-
tion, here the squared error loss implemented as a
function rho, and a different evaluating loss function
(the 1oss argument), here the negative binomial log-
likelihood, with the Fami 1y function as follows:

R> rho <- function(y, £, w = 1) {
p <- pmax(pmin(l - le-05, f),

le-05)
-y * log(p) - (1 - vy)
* log(l - p)

}
R> ngradient
<- function(y, £, w=1) yv - £
R> offset
<- function(y, w)
weighted.mean(y, w)
R> L2fm <- Family(ngradient =
ngradient,
loss = rho,
offset = offset)

The resulting object (called L2 £m), bundling the nega-
tive gradient, the loss function and a function for com-
puting an offset term (offset), can now be passed
to the glmboost function for boosting with compo-
nentwise linear least squares (here initial mp = 200
iterations are used):

R> ctrl <- boost_control
(mstop = 200,
center = TRUE)

R> west_glm <- glmboost

(x, yfit,
family = L2fm,
control = ctrl)

Fitting such a linear model to p = 7129 covariates
for n = 49 observations takes about 3.6 seconds on a
medium-scale desktop computer (Intel Pentium 4, 2.8
GHz). Thus, this form of estimation and variable selec-
tion is computationally very efficient. As a comparison,
computing all Lasso solutions, using package lars [28,
39] in R (with use.Gram=FALSE), takes about 6.7
seconds.

The question how to choose mgp can be addressed
by the classical AIC criterion as follows:

R> aic <- AIC(west_glm,
method = "classical")

R> mstop (aic)
[1] 100

where the AIC is computed as —2(log-likelihood) +
2(degrees of freedom) =  2(evaluating loss) +
2(degrees of freedom); see (5.8). The notion of degrees
of freedom is discussed in Section 5.3.

Figure 6 shows the AIC curve depending on the
number of boosting iterations. When we stop after



492 P. BUHLMANN AND T. HOTHORN

8
[2) O o
c
K<) _
9O
b5
<
8 o -
ko] o
I o
‘e —
®©
©
c o
T O
—— 3
»n o

10 15 20 25 30
Index

o
<

AIC
35

30
|

25
|

T T f T T
0 50 100 150 200
Number of boosting iterations

FI1G. 6. westbc data: Standardized regression coefficients ﬁ(j),/\/’ja\r(X(j)) (left panel) for msiop = 100 determined from the classical AIC

criterion shown in the right panel.

mstop = 100 boosting iterations, we obtain 33 genes
with nonzero regression coefficients whose standard-

ized values BU),/Var(X()) are depicted in the left
panel of Figure 6.

Of course, we could also use BinomialBoosting for
analyzing the data; the computational CPU time would
be of the same order of magnitude, that is, only a few
seconds.

5.2.1 Connections to the Lasso. Hastie, Tibshirani
and Friedman [42] pointed out first an intriguing con-
nection between L;Boosting with componentwise lin-
ear least squares and the Lasso [82] which is the fol-
lowing ¢!-penalty method:

n p ‘ 2
,BA()») = alrgminn_1 Z(Yi — Bo— Zﬁ(j)Xi(J))
B = ~
(5.5) ) ! j=1
+2.3 Y.
j=1

Efron et al. [28] made the connection rigorous and ex-
plicit: they considered a version of L,Boosting, called
forward stagewise linear regression (FSLR), and they
showed that FSLR with infinitesimally small step-sizes
(i.e., the value v in step 4 of the LyBoosting algorithm
in Section 3.3.1) produces a set of solutions which
is approximately equivalent to the set of Lasso solu-
tions when varying the regularization parameter A in
Lasso [see (5.5)]. The approximate equivalence is de-
rived by representing FSLR and Lasso as two differ-
ent modifications of the computationally efficient least
angle regression (LARS) algorithm from Efron et al.
[28] (see also [68] for generalized linear models). The

latter is very similar to the algorithm proposed ear-
lier by Osborne, Presnell and Turlach [67]. In spe-
cial cases where the design matrix satisfies a “positive
cone condition,” FSLR, Lasso and LARS all coincide
([28], page 425). For more general situations, when
adding some backward steps to boosting, such modi-
fied LpBoosting coincides with the Lasso (Zhao and
Yu [93)).

Despite the fact that L;Boosting and Lasso are not
equivalent methods in general, it may be useful to in-
terpret boosting as being “related” to £!-penalty based
methods.

5.2.2 Asymptotic consistency in high dimensions.
We review here a result establishing asymptotic con-
sistency for very high-dimensional but sparse linear
models as in (5.4). To capture the notion of high-
dimensionality, we equip the model with a dimension-
ality p = p, which is allowed to grow with sample
size n; moreover, the coefficients ,B(j ) = ,3,(,J ) are now
potentially depending on n and the regression function
is denoted by f;,(-).

REPLICA 2 ([18]). Consider the linear model in
(5.4). Assume that p, = O(e:xp(nl_S )) for some 0 <
& <1 (high-dimensionality) and sup,,c Zjll |,8,(ZJ)| <
0o (sparseness of the true regression function w.r.t. the
El-norm); moreover, the variables Xl.(J ) are bounded
and E[|g;|*/¢] < oo. Then: when stopping the boosting
iterations appropriately, that is, m = m, — 0o (n —
oo) sufficiently slowly, L,Boosting with component-
wise linear least squares satisfies

IEXnew[(fn[mn](xnew) - fn(Xnew))z] —0

in probability (n — 00),
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where Xnew denotes new predictor variables, inde-
pendent of and with the same distribution as the
X-component of the data (X;,Y;) (i=1,...,n).

The result holds for almost arbitrary designs and no
assumptions about collinearity or correlations are re-
quired. Replica 2 identifies boosting as a method which
is able to consistently estimate a very high-dimensional
but sparse linear model; for the Lasso in (5.5), a simi-
lar result holds as well [37]. In terms of empirical per-
formance, there seems to be no overall superiority of
L,Boosting over Lasso or vice versa.

5.2.3 Transforming predictor variables. In view of
Replica 2, we may enrich the design matrix in model
(5.4) with many transformed predictors: if the true re-
gression function can be represented as a sparse lin-
ear combination of original or transformed predictors,
consistency is still guaranteed. It should be noted,
though, that the inclusion of noneffective variables in
the design matrix does degrade the finite-sample per-
formance to a certain extent.

For example, higher-order interactions can be speci-
fied in generalized AN(C)OVA models and L,Boosting
with componentwise linear least squares can be used to
select a small number out of potentially many interac-
tion terms.

As an option for continuously measured covariates,
we may utilize a B-spline basis as illustrated in the next
paragraph. We emphasize that during the process of
L>Boosting with componentwise linear least squares,
individual spline basis functions from various predic-
tor variables are selected and fitted one at a time; in
contrast, LoBoosting with componentwise smoothing
splines fits a whole smoothing spline function (for a
selected predictor variable) at a time.

lllustration: Prediction of total body fat (cont.).
Such transformations and estimation of a correspond-
ing linear model can be done with the glmboost
function, where the model formula performs the com-
putations of all transformations by means of the bs (B-
spline basis) function from the package splines. First,
we set up a formula transforming each covariate:

R> bsfm
DEXfat ~ bs(age) + bs(waistcirc) +
bs (hipcirc) + bs(elbowbreadth) +
bs (kneebreadth) + bs(anthro3a) +
bs (anthro3b) + bs(anthro3c) +
bs (anthro4)
and then fit the complex linear model by using the
glmboost function with initial mgep = 5000 boost-

ing iterations:

R> ctrl <- boost_control
(mstop = 5000)
R> bf_bs <- glmboost
(bsfm, data = bodyfat,
control = ctrl)

R> mstop(aic <- AIC(bf_bs))
[1] 2891

The corrected AIC criterion (see Section 5.4) suggests
to stop after mgop = 2891 boosting iterations and the
final model selects 21 (transformed) predictor vari-
ables. Again, the partial contributions of each of the
nine original covariates can be computed easily and are
shown in Figure 7 (for the same variables as in Fig-
ure 3). Note that the depicted functional relationship
derived from the model fitted above (Figure 7) is qual-
itatively the same as the one derived from the additive
model (Figure 3).

5.3 Degrees of Freedom for L,Boosting

A notion of degrees of freedom will be useful for
estimating the stopping iteration of boosting (Sec-
tion 5.4).

5.3.1 Componentwise linear least squares. We con-
sider LBoosting with componentwise linear least
squares. Denote by

Jﬂﬁzxumgpf”muw{ j=1,...,p,

the n x n hat matrix for the linear least squares fit-
ting operator using the jth predictor variable X/) =
(Xij), e X,(ZJ))T only; ||x||2 = x'x denotes the
Euclidean norm for a vector x € R"”. The hat matrix
of the componentwise linear least squares base proce-
dure [see (4.1)] is then

#D W, U~ O, 0,

where 4 is as in (4.1). Similarly to (5.1), we then obtain
the hat matrix of LyBoosting in iteration m:

By =Bp1+v - HU -8, )
(5.6)  =1—(I—vHBm)
(I — Ue;l{(gmfl)) (1 = v%(gl))’

where 3, €{l1,..., p} denotes the component which is
selected in the componentwise least squares base pro-
cedure in the rth boosting iteration. We emphasize that
By, is depending on the response variable Y via the
selected components &, r=1,...,m.Due to this de-
pendence on Y, 8, should be viewed as an approxi-
mate hat matrix only. Neglecting the selection effect of
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/3, (r =1,...,m), we define the degrees of freedom of
the boosting fit in iteration m as

df(m) = trace(B,,).

Even with v = 1, df(m) is very different from counting
the number of variables which have been selected until
iteration m.

Having some notion of degrees of freedom at hand,
we can estimate the error variance %2 = E[eiz] in the
linear model (5.4) by
1 " A 2
Z(Yi — flmseel(x))"

i=1

~2
¢ n— df(mstop)

Moreover, we can represent

p
(5.7) Bu=Y B,
j=1

where 0‘6’,5{ ) is the (approximate) hat matrix which
yields the fitted values for the jth predictor, that is,

fpartial

| | | 1 1
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10

fpartial
0
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anthro3b

bodyfat data: Partial fits for a linear model fitted to transformed covariates using B-splines (without centering of estimated

3;5{)Y = X(j)ﬁj[-m]. Note that the 0‘6’,5{)’5 can be easily
computed in an iterative way by updating as follows:
B = 80 4. G (1 — 8, ),
B8Y) = 3’51111 for all j # &,,.

Thus, we have a decomposition of the total degrees of
freedom into p terms:

p
df(m) = df') (m),
j=1
df (m) = trace(;’(?,s{)).

The individual degrees of freedom dft )(m) are a use-
ful measure to quantify the “complexity” of the indi-
vidual coefficient estimate ,BAJ[m]

5.4 Internal Stopping Criteria for L,Boosting

Having some degrees of freedom at hand, we can
now use information criteria for estimating a good
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stopping iteration, without pursuing some sort of cross-
validation.
We can use the corrected AIC [49]:

14 df(m)/n

_ A2
AlCc(m) =log(@) + 4+ 2 /m'

&2 =n"1Y (Y — (BaY)i)

i=l

In mboost, the corrected AIC criterion can be com-
puted via AIC(x, method = "corrected")
(with x being an object returned by glmboost or
gamboost called with family = GaussReg()).
Alternatively, we may employ the gMDL criterion
(Hansen and Yu [38]):

df(m)
gMDL(m) = log(S) + ——log(F),
n
. né? D Y? —né?
T n—dfm)’  df(m)S

The gMDL criterion bridges the AIC and BIC in a data-
driven way: it is an attempt to adaptively select the bet-
ter among the two.

When using LyBoosting for binary classification
(see also the end of Section 3.2 and the illustration in
Section 5.2), we prefer to work with the binomial log-
likelihood in AIC,

AIC(m) = =2 Yi1og((BxY):)
i=1

(5.8) + (1 —=Yi)log(l — (BnY):)
+ 2df(m),

or for BIC(m) with the penalty term log(n)df(m). (If
(BnY); ¢ [0, 1], we truncate by max(min((B,,Y);,
1 —§),8) for some small § > 0, for example, § =
1073.)

6. BOOSTING FOR VARIABLE SELECTION

We address here the question whether boosting is
a good variable selection scheme. For problems with
many predictor variables, boosting is computationally
much more efficient than classical all subset selection
schemes. The mathematical properties of boosting for
variable selection are still open questions, for exam-
ple, whether it leads to a consistent model selection
method.

6.1 L;Boosting

When borrowing from the analogy of L;Boosting
with the Lasso (see Section 5.2.1), the following is
relevant. Consider a linear model as in (5.4), allow-
ing for p > n but being sparse. Then, there is a suf-
ficient and “almost” necessary neighborhood stability
condition (the word “almost” refers to a strict inequal-
ity “<” whereas “<” suffices for sufficiency) such
that for some suitable penalty parameter A in (5.5),
the Lasso finds the true underlying submodel (the pre-
dictor variables with corresponding regression coeffi-
cients # 0) with probability tending quickly to 1 as
n — oo [65]. It is important to note the role of the suf-
ficient and “almost” necessary condition of the Lasso
for model selection: Zhao and Yu [94] call it the “irrep-
resentable condition” which has (mainly) implications
on the “degree of collinearity” of the design (predic-
tor variables), and they give examples where it holds
and where it fails to be true. A further complication
is the fact that when tuning the Lasso for prediction
optimality, that is, choosing the penalty parameter A
in (5.5) such that the mean squared error is minimal,
the probability for estimating the true submodel con-
verges to a number which is less than 1 or even zero if
the problem is high-dimensional [65]. In fact, the pre-
diction optimal tuned Lasso selects asymptotically too
large models.

The bias of the Lasso mainly causes the difficul-
ties mentioned above. We often would like to con-
struct estimators which are less biased. It is instructive
to look at regression with orthonormal design, that is,
the model (5.4) with ¥7_, X' x® = §;;. Then, the
Lasso and also L;Boosting with componentwise lin-
ear least squares and using very small v (in step 4 of
L,>Boosting; see Section 3.3.1) yield the soft-threshold
estimator [23, 28]; see Figure 8. It exhibits the same
amount of bias regardless by how much the observa-
tion (the variable z in Figure 8) exceeds the threshold.
This is in contrast to the hard-threshold estimator and
the adaptive Lasso in (6.1) which are much better in
terms of bias.

Nevertheless, the (computationally efficient) Lasso
seems to be a very useful method for variable filtering:
for many cases, the prediction optimal tuned Lasso se-
lects a submodel which contains the true model with
high probability. A nice proposal to correct Lasso’s
overestimation behavior is the adaptive Lasso, given
by Zou [96]. It is based on reweighting the penalty
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F1G. 8. Hard-threshold (dotted-dashed), soft-threshold (dotted)
and adaptive Lasso (solid) estimator in a linear model with ortho-
normal design. For this design, the adaptive Lasso coincides with
the nonnegative garrote [13]. The value on the x-abscissa, denoted
by z, is a single component ofXTY.

function. Instead of (5.5), the adaptive Lasso estima-
tor is

n p ) 2
Z(Yi — Bo — Zﬂ(j)xfj))

ﬁ(k) = argminn_1
B

i=1 j=1
(6.1)
— 18]
+22 =
j=1 |lBinit

where Binit is an initial estimator, for example, the
Lasso (from a first stage of Lasso estimation). Con-
sistency of the adaptive Lasso for variable selection
has been proved for the case with fixed predictor-
dimension p [96] and also for the high-dimensional
case with p = p, > n [48].

We do not expect that boosting is free from the diffi-
culties which occur when using the Lasso for variable
selection. The hope is, though, that also boosting would
produce an interesting set of submodels when varying
the number of iterations.

6.2 Twin Boosting

Twin Boosting [19] is the boosting analogue to the
adaptive Lasso. It consists of two stages of boosting:
the first stage is as usual, and the second stage is en-
forced to resemble the first boosting round. For ex-
ample, if a variable has not been selected in the first
round of boosting, it will not be selected in the sec-
ond; this property also holds for the adaptive Lasso

in (6.1), that is, ﬁi(njii = 0 enforces ) = 0. More-
over, Twin Boosting with componentwise linear least
squares is proved to be equivalent to the adaptive
Lasso for the case of an orthonormal linear model
and it is empirically shown, in general and for vari-
ous base procedures and models, that it has much bet-
ter variable selection properties than the corresponding
boosting algorithm [19]. In special settings, similar re-
sults can be obtained with Sparse Boosting [23]; how-
ever, Twin Boosting is much more generically applica-
ble.

7. BOOSTING FOR EXPONENTIAL FAMILY
MODELS

For exponential family models with general loss
functions, we can use the generic FGD algorithm as
described in Section 2.1.

First, we address the issue about omitting a line
search between steps 3 and 4 of the generic FGD al-
gorithm. Consider the empirical risk at iteration m,

'y oY, fM(X))

i=l

(7.1) ~n S p(Yi, (X))

i=I

n
—vn Y Uig™M (X)),

i=1
using a first-order Taylor expansion and the definition
of U;. Consider the case with the componentwise lin-
ear least squares base procedure and without loss of
generality with standardized predictor variables [i.e.,
n~! Z?ZI(XZ.U))2 =1 for all j]. Then,

n A N

gy =n1Y U x P x G,

i=1
and the expression in (7.1) becomes

n Y p(, fIMX)))

i=1

(7.2) ~nt Y (v, fm (X))

i=1

n ) 2
— v(n_l ZUin@’”)> .

i=1
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In case of the squared error loss pr,(y, f) = |y —
£1?/2, we obtain the exact identity:

Y pr, (Y, f(X))

i=1

= n_l ZpLz(Yi’ f[m_l](Xi))

i=1

n N 2
—v(l —v/2) <n_1 3 U,-XF‘””) .

i=1
Comparing this with (7.2), we see that functional gra-
dient descent with a general loss function and with-
out additional line-search behaves very similarly to
L»>Boosting (since v is small) with respect to opti-
mizing the empirical risk; for L;Boosting, the numeri-
cal convergence rate is n=! Y1 or, (¥i, fI™(X;)) =
O (m~Y®) (m — o0) [81]. This completes our reason-
ing why the line-search in the general functional gra-
dient descent algorithm can be omitted, of course at
the price of doing more iterations but not necessarily
more computing time (since the line-search is omitted
in every iteration).

7.1 BinomialBoosting

For binary classification with Y € {0, 1}, Binomi-
alBoosting uses the negative binomial log-likelihood
from (3.1) as loss function. The algorithm is described
in Section 3.3.2. Since the population minimizer is
f*(x) =log[p(x)/(1 — p(x))]/2, estimates from Bi-
nomialBoosting are on half of the logit-scale: the com-
ponentwise linear least squares base procedure yields
a logistic linear model fit while using component-
wise smoothing splines fits a logistic additive model.
Many of the concepts and facts from Section 5 about
L,Boosting become useful heuristics for Binomial-
Boosting.

One principal difference is the derivation of the
boosting hat matrix. Instead of (5.6), a linearization
argument leads to the following recursion [assuming
f [0(.) = 0] for an approximate hat matrix B,,:

B) = vawl0 g0,
By = By + 2w =g g, )
(7.3)
(m=>2),
wiml = diag(pU™ (X;) (1 — pU™(X;); 1 <i <n)).

A derivation is given in Appendix A.2. Degrees of free-
dom are then defined as in Section 5.3,

df(m) = trace(B,),

and they can be used for information criteria, for ex-
ample,

AIC(m) = =2 _[¥; log(p!") (X))
i=1

+ (1 = ¥)log(1 — p"™(Xx))]
+ 2df(m),

or for BIC(m) with the penalty term log(n)df(m).
In mboost, this AIC criterion can be computed via
AIC(x, method = "classical") (with x be-
ing an object returned by glmboost or gamboost
called with family = Binomial ()).

Hllustration: Wisconsin prognostic breast cancer.
Prediction models for recurrence events in breast can-
cer patients based on covariates which have been com-
puted from a digitized image of a fine needle aspirate
of breast tissue (those measurements describe charac-
teristics of the cell nuclei present in the image) have
been studied by Street, Mangasarian and Wolberg [80]
(the data are part of the UCI repository [11]).

We first analyze these data as a binary prediction
problem (recurrence vs. nonrecurrence) and later in
Section 8 by means of survival models. We are faced
with many covariates (p = 32) for a limited number
of observations without missing values (n = 194), and
variable selection is an important issue. We can choose
a classical logistic regression model via AIC in a step-
wise algorithm as follows:

R> cc <- complete.cases (wpbc)
R> wpbc2
<- wpbc|cc,
colnames (wpbc) != "time"]
R> wpbc_step
<- step(glm(status ~ .,
data = wpbc2,
family = binomial()),
trace = 0)

The final model consists of 16 parameters with

R> logLik (wpbc_step)
"log Lik.’ -80.13 (df=16)

R> AIC (wpbc_step)
[1] 192.26

and we want to compare this model to a logistic re-
gression model fitted via gradient boosting. We sim-
ply select the Binomial family [with default offset of
1/21og(p/(1 — p)), where p is the empirical propor-
tion of recurrences] and we initially use mgp = 500
boosting iterations:
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R> ctrl <- boost_control
(mstop = 500,
center = TRUE)
R> wpbc_glm
<- glmboost (status ~ .,
data = wpbc2,
family = Binomial(),
control = ctrl)

The classical AIC criterion (—2log-likelihood + 2df)
suggests to stop after

R> aic <- AIC(wpbc_glm, "classical")

R> aic

[1] 199.54

Optimal number of boosting iterations: 465
Degrees of freedom (for mstop = 465): 9.147

boosting iterations. We now restrict the number of
boosting iterations to mgp = 465 and then obtain the
estimated coefficients via

R> wpbc_glm <- wpbc_glm[mstop(aic) ]
R> coef (wpbc_glm)
[abs (coef (wpbc_glm)) > 0]

(Intercept) mean_radius mean_texture
-1.2511e-01 -5.8453e-03 -2.4505e-02
mean_smoothness mean_symmetry mean_fractaldim
2.8513e+00 -3.9307e+00 -2.8253e+01
SE_texture SE_perimeter SE_compactness
-8.7553e-02 5.4917e-02 1.1463e+01
SE_concavity SE_concavepoints SE_symmetry
-6.9238e+00 -2.0454e+01 5.2125e+00
SE_fractaldim worst_radius worst_perimeter
5.2187e+00 1.3468e-02 1.2108e-03
worst_area worst_smoothness worst_compactness
1.8646e-04 9.9560e+00 -1.9469e-01
tsize pnodes
4.1561e-02 2.4445e-02

(Because of using the offset-value f [0 we have to add
the value f [T to the reported intercept estimate above
for the logistic regression model.)

A generalized additive model adds more flexibility to
the regression function but is still interpretable. We fit
a logistic additive model to the wpbc data as follows:

R> wpbc_gam <- gamboost (status ~ .,
data = wpbc2,
family = Binomial())

R> mopt <- mstop(aic <-
AIC (wpbc_gam, "classical"))

R> aic

[1] 199.76

Optimal number of boosting iterations: 99
Degrees of freedom (for mstop = 99): 14.583

This model selected 16 out of 32 covariates. The partial
contributions of the four most important variables are

depicted in Figure 9 indicating a remarkable degree of
nonlinearity.

7.2 PoissonBoosting

For count data with Y € {0,1,2,...}, we can use
Poisson regression: we assume that Y|X = x has a
Poisson(A(x)) distribution and the goal is to esti-
mate the function f(x) =log(i(x)). The negative log-
likelihood yields then the loss function

oy, f)=—yf +exp(f), f=log(h),

which can be used in the functional gradient descent
algorithm in Section 2.1, and it is implemented in
mboost as Poisson () family.

Similarly to (7.3), the approximate boosting hat ma-
trix is computed by the following recursion:

B = UW[O]e}f(gl),
(74) By =By + oW UgGD_g )
(m=>12),
wlm = diag(A™(X;); 1 <i <n).
7.3 Initialization of Boosting

We have briefly described in Sections 2.1 and 4.1 the
issue of choosing an initial value f [07(.) for boosting.
This can be quite important for applications where we
would like to estimate some parts of a model in an un-
penalized (nonregularized) fashion, with others being
subject to regularization.

For example, we may think of a parametric form of
f [01(.), estimated by maximum likelihood, and devi-
ations from the parametric model would be built in
by pursuing boosting iterations (with a nonparametric
base procedure). A concrete example would be: f 07
is the maximum likelihood estimate in a generalized
linear model and boosting would be done with com-
ponentwise smoothing splines to model additive de-
viations from a generalized linear model. A related
strategy has been used in [4] for modeling multivari-
ate volatility in financial time series.

Another example would be a linear model Y = X8 +
e as in (5.4) where some of the predictor variables,
say the first ¢ predictor variables X W XD, en-
ter the estimated linear model in an unpenalized way.
We propose to do ordinary least squares regression on
XM . XD: consider the projection P, onto the lin-
ear span of XD . XD and use L,Boosting with
componentwise linear least squares on the new re-
sponse (I — P;)Y and the new (p — g)-dimensional
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to mean zero).

predictor (I — P,)X. The final model estimate is then
> Bors. jx) + > ﬁj[-msmp]i(j ), where the lat-
ter part is from LyBoosting and /) is the resid-
ual when linearly regressing x¢) to x( ... x@,
A special case which is used in most applications is
with ¢ = 1 and X = 1 encoding for an intercept.
Then, (I — P))Y=Y —Y and (I — P))X¥) =X —
n~! X l.(j ). This is exactly the proposal at the end
of Section 4.1. For generalized linear models, analo-
gous concepts can be used.

8. SURVIVAL ANALYSIS

The negative gradient of Cox’s partial likelihood can
be used to fit proportional hazards models to censored
response variables with boosting algorithms [71]. Of
course, all types of base procedures can be utilized; for
example, componentwise linear least squares fits a Cox
model with a linear predictor.

Alternatively, we can use the weighted least squares
framework with weights arising from inverse probabil-
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wpbc data: Partial contributions of four selected covariates in an additive logistic model (without centering of estimated functions

ity censoring. We sketch this approach in the sequel;
details are given in [45]. We assume complete data
of the following form: survival times 7; € R™ (some
of them right-censored) and predictors X; € R?, i =
1,...,n. We transform the survival times to the log-
scale, but this step is not crucial for what follows:
Y; =log(7;). What we observe is

0 = (Y, Xi, Ap),
Y; = log(T}),
T; = min(T;, C;),

where A; = I(T; < C;) is a censoring indicator and
C; is the censoring time. Here, we make a restrictive
assumption that C; is conditionally independent of 7;
given X; (and we assume independence among differ-
ent indices i); this implies that the coarsening at ran-
dom assumption holds [89].

We consider the squared error loss for the complete
data, p(y, f) = |y — f|* (without the irrelevant fac-
tor 1/2). For the observed data, the following weighted
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version turns out to be useful:
~ 2
(0, =(y— A——m—,
Pobs(0, [) = — f) G

G(clx) =P[C > c|X = x].

Thus, the observed data loss function is weighted by
the inverse probability for censoring AG(f Ix)"" (the
weights are inverse probabilities of censoring; IPC).
Under the coarsening at random assumption, it then
holds that

Eyx[(Y — £(X))*] =Eolpobs(O, f(X))];

see van der Laan and Robins [89].

The strategy is then to estimate G(-|x), for exam-
ple, by the Kaplan—Meier estimator, and do weighted
L,Boosting using the weighted squared error loss:

n

>A

i=l

(¥ — £(X)*,
i G(Ti|Xi)( i — f(XD)
where the weights are of the form Aié(ﬁ | X )~ (the
specification of the estimator é(t|x) may play a sub-
stantial role in the whole procedure). As demonstrated
in the previous sections, we can use various base proce-
dures as long as they allow for weighted least squares
fitting. Furthermore, the concepts of degrees of free-
dom and information criteria are analogous to Sec-
tions 5.3 and 5.4. Details are given in [45].

lllustration: Wisconsin prognostic breast cancer
(cont.). Instead of the binary response variable de-
scribing the recurrence status, we make use of the ad-
ditionally available time information for modeling the
time to recurrence; that is, all observations with nonre-
currence are censored. First, we calculate IPC weights:

R> censored <- wpbc$Sstatus == "R"
R> iw <- IPCweights (Surv (wpbc$Stime,
censored))
R> wpbc3 <- wpbc[, names (wpbc) !=
"status"]

and fit a weighted linear model by boosting with com-
ponentwise linear weighted least squares as base pro-
cedure:

R> ctrl <- boost_control (

mstop = 500, center = TRUE)
R> wpbc_surv <- glmboost (

log(time) ~ ., data = wpbc3,

control = ctrl, weights = iw)

R> mstop(aic <- AIC (wpbc_surv))
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Time to recurrence (log—scale)

F1G. 10. wpbc data: Fitted values of an IPC-weighted linear
model, taking both time to recurrence and censoring information
into account. The radius of the circles is proportional to the IPC
weight of the corresponding observation; censored observations
with IPC weight zero are not plotted.

[1] 122
R> wpbc_surv <- wpbc_surv]|

mstop (aic) ]
The following variables have been selected for fitting:

R> names (coef (wpbc_surv)
[abs (coef (wpbc_surv)) > 0])

[1] "mean_radius" "mean_texture"

[3] "mean_perimeter" "mean_smoothness"
[5] "mean_symmetry" "SE_texture"
[7] "SE_smoothness" "SE_concavepoints"

[9] "SE_symmetry" "worst_concavepoints"

and the fitted values are depicted in Figure 10, showing
a reasonable model fit.

Alternatively, a Cox model with linear predictor can
be fitted using L,Boosting by implementing the nega-
tive gradient of the partial likelihood (see [71]) via

R> ctrl <- boost_control
(center = TRUE)
R> glmboost
(Surv (wpbcStime,
wpbc$status == "N") ~ .,
data = wpbc,
family = CoxPH(),
control = ctrl)

For more examples, such as fitting an additive Cox
model using mboost, see [44].
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9. OTHER WORKS

We briefly summarize here some other works which
have not been mentioned in the earlier sections. A very
different exposition than ours is the overview of boost-
ing by Meir and Ritsch [66].

9.1 Methodology and Applications

Boosting methodology has been used for various
other statistical models than what we have discussed
in the previous sections. Models for multivariate re-
sponses are studied in [20, 59]; some multiclass boost-
ing methods are discussed in [33, 95]. Other works
deal with boosting approaches for generalized linear
and nonparametric models [55, 56, 85, 86], for flexi-
ble semiparametric mixed models [88] or for nonpara-
metric models with quality constraints [54, 87]. Boost-
ing methods for estimating propensity scores, a special
weighting scheme for modeling observational data, are
proposed in [63].

There are numerous applications of boosting meth-
ods to real data problems. We mention here classifi-
cation of tumor types from gene expressions [25, 26],
multivariate financial time series [2—4], text classifica-
tion [78], document routing [50] or survival analysis
[8] (different from the approach in Section 8).

9.2 Asymptotic Theory

The asymptotic analysis of boosting algorithms in-
cludes consistency and minimax rate results. The first
consistency result for AdaBoost has been given by
Jiang [51], and a different constructive proof with a
range for the stopping value mgiop = Mgiop,n 1S given
in [7]. Later, Zhang and Yu [92] generalized the re-
sults for a functional gradient descent with an addi-
tional relaxation scheme, and their theory covers also
more general loss functions than the exponential loss
in AdaBoost. For LyBoosting, the first minimax rate
result has been established by Biihlmann and Yu [22].
This has been extended to much more general settings
by Yao, Rosasco and Caponnetto [91] and Bissantz et
al. [10].

In the machine learning community, there has been
a substantial focus on estimation in the convex hull of
function classes (cf. [5, 6, 58]). For example, one may
want to estimate a regression or probability function by
using

o o
Yo wg®le), dk=0, D=1,
k=1 k=1

where the §[k](-)’s belong to a function class such as
stumps or trees with a fixed number of terminal nodes.

The estimator above is a convex combination of in-
dividual functions, in contrast to boosting which pur-
sues a linear combination. By scaling, which is nec-
essary in practice and theory (cf. [58]), one can actu-
ally look at this as a linear combination of functions
whose coefficients satisfy > ; wx = A. This then rep-
resents an £!-constraint as in Lasso, a relation which
we have already seen from another perspective in Sec-
tion 5.2.1. Consistency of such convex combination or
¢!-regularized “boosting” methods has been given by
Lugosi and Vayatis [58]. Mannor, Meir and Zhang [61]
and Blanchard, Lugosi and Vayatis [12] derived results
for rates of convergence of (versions of) convex com-
bination schemes.

APPENDIX A.1: SOFTWARE

The data analyses presented in this paper have been
performed using the mboost add-on package to the R
system of statistical computing. The theoretical ingre-
dients of boosting algorithms, such as loss functions
and their negative gradients, base learners and internal
stopping criteria, find their computational counterparts
in the mboost package. Its implementation and user-
interface reflect our statistical perspective of boosting
as a tool for estimation in structured models. For ex-
ample, and extending the reference implementation of
tree-based gradient boosting from the ghbm package
[74], mboost allows to fit potentially high-dimensional
linear or smooth additive models, and it has meth-
ods to compute degrees of freedom which in turn al-
low for the use of information criteria such as AIC or
BIC or for estimation of variance. Moreover, for high-
dimensional (generalized) linear models, our imple-
mentation is very fast to fit models even when the di-
mension of the predictor space is in the ten-thousands.

The Fami 1y function in mboost can be used to cre-
ate an object of class boost_family implementing the
negative gradient for general surrogate loss functions.
Such an object can later be fed into the fitting proce-
dure of a linear or additive model which optimizes the
corresponding empirical risk (an example is given in
Section 5.2). Therefore, we are not limited to already
implemented boosting algorithms, but can easily set up
our own boosting procedure by implementing the neg-
ative gradient of the surrogate loss function of interest.

Both the source version as well as binaries for
several operating systems of the mboost [43] pack-
age are freely available from the Comprehensive R
Archive Network (http://CRAN.R-project.org). The
reader can install our package directly from the R
prompt via


http://CRAN.R-project.org
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R> install.packages ("mboost",
dependencies =
TRUE)

R> library ("mboost")

All analyses presented in this paper are contained in a
package vignette. The rendered output of the analyses
is available by the R-command

R> vignette("mboost_illustrations",
package = "mboost")

whereas the R code for reproducibility of our analyses
can be assessed by

R> edit (vignette
("mboost_illustrations",
package = "mboost"))

There are several alternative implementations of
boosting techniques available as R add-on packages.
The reference implementation for tree-based gradient
boosting is gbm [74]. Boosting for additive models
based on penalized B-splines is implemented in GAM-
Boost [9, 84].

APPENDIX A.2: DERIVATION OF BOOSTING HAT
MATRICES

Derivation of (7.3). The negative gradient is
a
—ZP(y. ) =20y — p),

of
po xRl
exp(f) +exp(—f)’

Next, we linearize pI™: we denote pl™ = (pl"l(Xx ),
..., p"™(X,)) T and analogously for ). Then,

(]?[m] _ f[m—l])

ap

Alm] o Alm—1]

A~ + £ .
P P af lf=ym-1

(A.1)

= plm=11 o lm=11y, geGmo(y — plm=11)
where WMl = diag(p(X;))(1 — p(X)); 1 < i < n).
Since for the hat matrix, B,,Y = ﬁ[m], we obtain from
(A.1)
B ~ 4wl ged
By ~ By AW (L~ B, ) (m=2),
which shows that (7.3) is approximately true.

Derivation of formula (7.4). The arguments are anal-
ogous to those for the binomial case above. Here, the

negative gradient is
d
—ﬁp(y, fH=y—4,
When linearizing A" = Qm(xy), ..., Alm(x,)T
we get, analogously to (A.1),
oA
ﬁ‘f:f’“*‘

)= exp(f).

alml o 3 m=1] (f[m] _ f[m—ll)

= Alm=11 p ylm=11y, 3o (y — 3Im=11),

where Wlml = diag()AL(Xl-)); 1 <i <n. We then com-
plete the derivation of (7.4) as in the binomial case
above.
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