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Invariance, Causality and Robustness1

2018 Neyman Lecture2

Peter Bühlmann

Abstract. We discuss recent work for causal inference and predictive ro-
bustness in a unifying way. The key idea relies on a notion of probabilistic
invariance or stability: it opens up new insights for formulating causality as
a certain risk minimization problem with a corresponding notion of robust-
ness. The invariance itself can be estimated from general heterogeneous or
perturbation data which frequently occur with nowadays data collection. The
novel methodology is potentially useful in many applications, offering more
robustness and better “causal-oriented” interpretation than machine learning
or estimation in standard regression or classification frameworks.
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1. INTRODUCTION

Understanding the causal relationships in a system or
application of interest is perhaps the most desirable goal
in terms of understanding and interpretability. There is
a rich history of developments from various disciplines,
dating back to ancient times: “Felix, qui potuit rerum
cognoscere causas”—Fortunate who was able to know the
causes of things (Georgics, Virgil, 29 BC). One might
think that for pure prediction tasks, without any ambi-
tion of interpretability, knowing the causes or the causal
structure is not important. We will explain here how these
problems are related and as a consequence: (i) one can
obtain “better” predictions when incorporating causal as-
pects and (ii) one can infer causal structure from a certain
predictive perspective.

Inferring causal structure and effects from data is a
rapidly growing area. When having access to data from
fully randomized studies, Jerzy Neyman (see Figure 1)
made a pioneering contribution using a potential outcome
model (Splawa-Neyman, 1990).

Randomized studies serve as the gold standard and the
corresponding inference of causal effects can be viewed
as “confirmatory” due to the fact that the underlying
model assumptions are not substantially more restric-
tive than for, say, a standard regression type problem;
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see, for example, Holland (1986), Dawid (2000), Pearl
(2009), Hernán and Robins (2010), Imbens and Rubin
(2015), VanderWeele (2015). Often though, the data at
hand does not come from a (fully) randomized study:
the question is now whether one can still infer causal
effects and under what kind of assumptions this is pos-
sible. A range of different approaches have been sug-
gested, see for example Greenland, Pearl and Robins
(1999), Robins, Hernán and Brumback (2000), Spirtes,
Glymour and Scheines (2000), Richardson and Spirtes
(2002), Hernán and Robins (2006), Tchetgen Tchetgen
and VanderWeele (2012), Chickering (2003), Kalisch
and Bühlmann (2007), Maathuis, Kalisch and Bühlmann
(2009), Hauser and Bühlmann (2015), exhibiting differ-
ent degrees of “confirmatory” nature for inferring causal
effects. Since causal inference is very ambitious, these
techniques should be thought as “geared towards causal-
ity” but not necessarily able to infer the underlying true
causal effects. Also recent work on semi- or nonparamet-
ric causal inference when taking adjustment variables into
the methods or algorithms belong to this category (Ernest
and Bühlmann, 2015, Kennedy et al., 2017, Wager and
Athey, 2018, Künzel et al., 2019, Ni and Wager, 2017,
Chernozhukov et al., 2018). The point is that all these ap-
proaches do something “more intelligent towards causal-
ity” than an analysis based on a standard potentially non-
linear regression or classification framework. We believe
that this is an important area in statistics and machine
learning: in particular, these techniques often have a more
“causal-type” and thus more interesting interpretation
than standard machine learning methods and therefore,
this topic is important in the advent of “interpretable ma-
chine learning”.
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FIG. 1. Jerzy Neyman (1894–1981). Besides other pioneer-
ing work, he has also made fundamental early contributions to
causality in 1923, in terms of mathematical formulation with the
potential outcome model (Splawa-Neyman, 1990). Left: taken from
http://www.learn-math.info/history/photos/Neyman_3.jpeg. Right:
taken from https://errorstatistics.com/2017/04/16/a-spanos-jerzy-
neyman-and-his-enduring-legacy-3/ by A. Spanos. The photograph is
hanging on the wall in the coffee room of the Department of Statistics
at UC Berkeley.

1.1 A Framework Based on Invariance Properties

We will focus here on a particular framework with cor-
responding methods which are “geared towards” causal
solutions: with stronger assumptions (but less strong than
for some competitor methods) they infer causal effects
while under more relaxed and perhaps more realistic as-
sumptions, they are still providing solutions for a “di-
luted form of causality”2 which are often more meaning-
ful than what is provided by regression or classification
techniques. This can be made mathematically more rigor-
ous, in terms of a novel form of robustness.

The construction of methods relies on exploiting in-
variance from heterogeneous data. The heterogeneity can
be unspecific perturbations and in this sense, the current
work adds to the still yet quite small literature on statistics
for perturbation data.

1.2 Our Contribution

The first part of the manuscript is a review of our
own work in Peters, Bühlmann and Meinshausen (2016)
and Rothenhäusler, Meinshausen, Bühlmann and Peters
(2018) but putting the contributions into a broader per-
spective. We also add some novel methodology on non-
linear anchor regression and present some corresponding
illustrations in Section 5.

2. PREDICTING POTENTIAL OUTCOMES,
HETEROGENEITY AND WORST-CASE RISK

OPTIMIZATION

Predicting potential outcomes is a relevant problem in
many application areas. Causality deals with a quantita-
tive answer (a prediction) to a “What if I do question” or
a “What if I perturb question”.

2I am grateful to Ed George who suggested this term.

2.1 Two Examples for Prediction of Potential
Outcomes

The first example is from genomics (Stekhoven et al.,
2012). The response variable of interest is the flowering
time of the Arabidopsis thaliana plant (the time it takes
until the plant is flowering) and the covariates are gene
expressions from 21’326 genes, that is from a large part
of the genome. The problem is to predict the flowering
time of the plant when making single gene interventions,
that is, when single genes are “knocked out”. The data is
from the observational state of the system only without
any interventions. Therefore, this is a problem of predict-
ing a potential outcome which has never been observed
in the data. Even if one fails to infer the true underlying
causal effects when making interventions, our viewpoint
is that a prediction being better than from a state-to-the art
regression method is still very useful for see, for example,
prioritizing experiments which can be done subsequently
in a biology lab; see, for example, Maathuis et al. (2010)
and the Editorial (2010).

The second example is about predicting behavior of
individuals when being treated by advertisement cam-
paigns. Such an advertisement could happen on social me-
dia for political campaigns or various commercial prod-
ucts. Consider the latter, namely an advertisement for
commercial products on social media. The response of in-
terest is how deep an individual user clicks on the adver-
tisement and the subsequent web-pages, the covariates are
attributes of the user. The task is to predict the response
if one would intervene and show to a certain user “X” a
certain advertisement “A”: but there is no data for user
“X” or similar users as “X” being exposed (or treated)
with advertisement “A”. Thus, it is a problem of predict-
ing a potential outcome which has never been observed
in the data. As mentioned in the genomic example above,
even if we cannot infer the underlying true causal effect
of treatment with an advertisement, it is still informative
and valuable to come up with a good prediction for the
response under an intervention which we have never seen
in the data. See, for example, Bottou et al. (2013) or also
Brodersen et al. (2015).

2.2 The Heterogeneous Setting with Different
Environments

We consider data from different observed (known) en-
vironments, and we sometimes refer to them also as ex-
perimental settings or subpopulations or perturbations:

(2.1)
(
Ye,Xe), e ∈ E

with ne × 1 response vectors Ye, ne × p covariate design
matrices Xe and e denotes an environment from the space
E of observed environments. Here, ne denotes the sample
size in environment e. We assume that the ne samples in
environment e are i.i.d. realizations of a univariate random
variable Y e and a p-dimensional random vector Xe.
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EXAMPLES. As a first example, consider data from
10 different countries where we know the correspondence
of each data point to one of the 10 countries. Then the
space of observed (known) environments can be encoded
by the labels from E = {1,2, . . . ,10}. As a second ex-
ample, consider economical data which is collected over
time. Different environments or subpopulations then cor-
respond to different blocks of consecutive time points. As-
suming that these blocks are known and given, the space E
then contains the labels for these different blocks of sub-
populations.

Heterogeneity can also occur outside the observed data.
Thus, we consider a space of unobserved environments

(2.2) F ⊃ E
which is typically much larger than the space of observed
environments E .

EXAMPLES (CONT.). In the examples from above,
the space F could be: the 10 countries which are observed
in the data and all other countries in the world; or the sub-
populations of economical scenarios which we have ob-
served in the data until today and all subpopulations of
future scenarios which we have not seen in the data.

A main task is to make predictions for new unseen en-
vironments e ∈ F as discussed next.

2.3 A Prediction Problem and Worst-Case Risk
Optimization

We consider the following prediction problem.

Predict Y e given Xe such that the prediction “works
well” or is “robust” for all e ∈ F based on data from
much fewer environments e ∈ E .

Note that F \ E is nonobserved. The meaning of the aim
above is that one is given in the future new covariates Xe

from e ∈ F \E and the goal is to predict the corresponding
Y e. The terminology “works well” or is “robust” is under-
stood here in the sense of performing well in worst-case
scenarios. We note that the problem above is also related
to transfer learning (Pratt, 1993, Pan and Yang, 2010,
Rojas-Carulla et al., 2018).

In a linear model setting, this prediction task exhibits a
relation to the following worst-case L2-risk optimization:

(2.3) argmin
b

max
e∈F E

[∣∣Y e − Xeb
∣∣2]

.

This problem has an interesting connection to causality.
Before giving a more rigorous formulation, we describe
the connection in a more loose sense, for the purpose of
easier understanding. We consider the class F which in-
cludes all heterogeneities or perturbations e fulfilling two
main assumptions:

ad-hoc condition 1: e does not act directly on Y e.

FIG. 2. Graphical illustration of the ad-hoc conditions 1, 2 and the
ad-hoc aim. There could be also hidden confounding variables; see
Section 4.

ad-hoc condition 2: e does not change the mechanism
between Xe and Y e.

ad-hoc aim: ideally, e should change the distribution
of Xe.

The ad-hoc conditions 1 and 2 are formulated precisely in
assumption (B(F)) in Section 3.1. Regarding the ad-hoc
aim: if there are many e which change the distribution
of Xe, this introduces more observed heterogeneities in
E which in term is favorable for better identification of
causal effects.

Figure 2 is a graphical illustration of the ad-hoc condi-
tions and aim above. For this purpose, we may think that
the environments e are generated from a random variable
E. We remark that there could be also hidden confound-
ing variables between X and Y : more details are given in
Section 4.

An interesting connection to causality is then as fol-
lows:

argmin
b

max
e∈F E

[∣∣Y e − Xeb
∣∣2]

= causal parameter,
(2.4)

where F = {e; e satisfies the ad-hoc conditions 1 and 2}.
The definition of the causal parameter and the precise de-
scription of the result is given later in Section 3.1. The
point here is to emphasize that the causal parameter or
the causal solution is optimizing a certain worst-case risk.
This opens the door to think about causality in terms of
optimizing a certain (worst-case) risk. We believe that this
is a very useful way which might ease some of the more
complicated issues on structure search for causal graphs
and structural equation models.

3. INVARIANCE OF CONDITIONAL DISTRIBUTIONS

A key assumption for inferring causality from hetero-
geneous data as in (2.1) is an invariance assumption. It
reads as follows:

(A(E)): There exists a subset S∗ ⊆ {1, . . . , p} of the
covariate indices (including the empty set) such that

L
(
Y e|Xe

S∗
)

is the same for all e ∈ E .

That is, when conditioning on the covariates from S∗ (de-
noted by Xe

S∗), the conditional distribution is invariant
across all environments from E .
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(A(F)): Analogous but now for the much larger set of
environments F .

In a linear model setting, the invariance assumption
translates as follows. There exists a subset S∗ and a re-
gression coefficient vector β∗ with supp(β∗) = {j ;β∗

j �=
0} = S∗ such that

for all e ∈ E : Y e = Xeβ∗ + εe,

εe independent of Xe
S∗, εe ∼ Fε,

where Fε denotes the same distribution for all εe. That
is, when conditioning (regressing) on Xe

S∗ , the resulting
regression parameter and error term distribution are the
same for all environments e ∈ E . From a practical point
of view, this is an interesting invariance or stability prop-
erty and the set of covariates S∗ plays a key component in
“stabilizing across the environments”; see also Figure 12
in Section 6.

If the invariance assumption holds, we are sometimes
interested in describing the sets S∗ which fulfill invari-
ance. We then denote by

(AS(E)): The subset S fulfills invariance saying that

L
(
Y e|Xe

S

)
is the same for all e ∈ E .

(AS(F)): analogous but now for the set of environ-
ments F .

When considering the invariance assumption for the
set of unknown (future) environments F , the sets S∗ for
which (AS∗(F)) holds are particularly interesting as they
lead to invariance and stability for new, future environ-
ments which are not observed in the data. This is a key
for solving worst-case risk optimization with respect to a
class of perturbations which can be arbitrarily strong as in
(2.4).

3.1 Invariance and Causality

A main question is whether there are sets S for which
(AS(F)) holds and if so, whether there are many such sets
and how one can describe them. Obviously, this depends
on F and the problem then becomes as follows: under
what model F can we have an interesting description of
sets S which satisfy the invariance assumption (AS(F)).

To address this at least in part, we consider structural
equation models (SEMs):

Y ← fY (Xpa(Y ), εY ),

εY independent of Xpa(Y ),

X ∼ FX,

(3.1)

where pa(Y ) denotes the parental set of the response vari-
able Y in the corresponding causal influence diagram, and

the distribution FX of X can be arbitrary but assuming fi-
nite second moments and positive definite covariance ma-
trix. Often in the literature, a SEM is considered for all
the variables:

Y ← fY (Xpa(Y ), εY ),

Xj ← fj (Xpa(Xj ), εj ),
(3.2)

with εY , ε1, . . . , εp mutually independent. The model in
(3.2) is a special case of the SEM in (3.1), the former now
assuming a structural equation part for the X-variables.
Furthermore, the formulation in (3.1) also allows other
hidden variables which may act on X but do not have a
confounding effect on Y . The case of hidden confounders
will be discussed later in Section 4.

The (direct) causal variables for Y are defined to be

Scausal = pa(Y ).

The environments or perturbations e change the distri-
butions of Y and X in model (3.1) and we denote the cor-
responding random variables by Xe and Y e. The ad-hoc
conditions 1 and 2 from Sections 2.3 are now formulated
as follows:

(B(E)) The structural equation in (3.1) remains the
same, that is, for all e ∈ E

Y e ← fY

(
Xe

pa(Y ), ε
e
Y

)
, εe

Y independent of Xe
pa(Y ),

εe
Y has the same distribution as εY .

(B(F)) analogous but now for the set of environ-
ments F .

We note that the distributions of Xe are allowed to change.
The following simple result describes the special role

of causality with respect to invariance.

PROPOSITION 3.1. Assume a partial structural equa-
tion model as in (3.1). Consider the set of environments F
such that (B(F)) holds. Then, the set of causal variables
Scausal = pa(Y ) satisfies the invariance assumption with
respect to F , that is (AScausal(F)) holds.

The proof is trivial. The conditional distribution of Y e

given Xe
pa(Y ) is given by fY and the distribution Fε of εY ,

and these quantities do not depend on e.
In presence of hidden confounder variables, invariance

and causal structures can still be linked under certain as-
sumptions: this will be discussed in Section 4. Propo-
sition 3.1 says that causal variables lead to invariance:
this has been known since a long time, dating back to
Haavelmo (1943); see Figure 3. The result in Proposi-
tion 3.1 does not say anything about other sets of variables
which satisfy the invariance assumption.
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FIG. 3. Trygve Haavelmo, Norwegian economist who received
the Nobel Prize in Economic Sciences in 1989. Photo from
https://en.wikipedia.org/wiki/Trygve_Haavelmo.

3.2 Invariant Causal Prediction

Roughly speaking, Haavelmo (1943) already realized
that

causal variables =⇒ Invariance.

The reverse relation

(3.3) causal structures ⇐= Invariance

has not been considered until recently (Peters, Bühlmann
and Meinshausen, 2016). This might be due to the fact
that with nowadays large-scale data, it is much easier to
infer invariance from data and thus, the implication from
invariance to causal structures becomes much more inter-
esting and useful.

The problem with the reverse implication (3.3) is the
well-known identifiability issue in causal inference. We
typically cannot identify the causal variables Scausal, un-
less we have very many environments (or perturbations)
or making specific assumptions on nonlinearities (Hoyer
et al., 2009, Bühlmann, Peters and Ernest, 2014), non-
Gaussian distributions (Shimizu et al., 2006) or error vari-
ances (Peters and Bühlmann, 2014). We will address the
identifiability issue, which is often complicated in prac-
tice, in a fully “automatic” way as discussed next.

The starting point is to perform a statistical test whether
a subset of covariates S satisfies the invariance as-
sumption for the observed environments in E . The null-
hypothesis for testing is

H0,S(E) : assumption
(
AS(E)

)
holds

and the alternative is the logical complement, namely that
assumption (AS(E)) does not hold. It is worthwhile to
point out that we only test with respect to the environ-
ments E which are observed in the data. To address the
identifiability issue, we intersect all subsets of covariates
S which lead to invariance, that is,

Ŝ(E) = ⋂
S

{
S;H0,S(E) not rejected by test

at significance level α
}
.

(3.4)

The specification of a particular test is discussed be-
low in Section 3.2.2. The procedure in (3.4) is called
Invariant Causal Prediction (ICP). The method is im-
plemented in the R-package InvariantCausalPre-
diction for linear models (Meinshausen, 2018b) and
nonlinearICP for nonlinear models (Heinze-Deml
and Peters, 2017); see also Section 3.2.2 below.

The computation of ICP in (3.4) can be expensive.
There is an algorithm which provably computes ICP
without necessarily going through all subsets (Peters,
Bühlmann and Meinshausen, 2016): in the worst-case
though, this cannot be avoided. If the dimension p is
large, we advocate some preliminary variable screen-
ing procedure based on regression for the data pooled
over all environments; see also Section 3.2.2 for the case
with linear models below. Such regression-type variable
screening procedures are valid when assuming a faith-
fulness condition: it ensures that the causal variables
must be a subset of the relevant regression variables
{j ;Xj conditionally dependent of Y given {XK;k �= j}};
see, for example, Spirtes, Glymour and Scheines (2000).

We first highlight the property of controlling against
false positive causal selections.

THEOREM 3.1 (Peters, Bühlmann and Meinshausen,
2016). Assume a structural equation model for the re-
sponse Y as in (3.1) and that the environments or pertur-
bations in E satisfy the assumption (B(E)). Furthermore,
assume that the tests used in (3.4) are valid, controlling
the type I error. Then, for α ∈ (0,1) we have that

P
[
Ŝ(E) ⊆ pa(Y )

] ≥ 1 − α.

The interesting fact is that one does not need to care
about identifiability: it is addressed automatically in the
sense that if a variable is in Ŝ(E), it must be identifiable as
causal variable for Y , at least with controllable probability
1 − α (see, e.g., being equal to 0.95). For example, even
if the environments in E correspond to ineffective hetero-
geneities (see, e.g., no actual perturbations), the statement
is still valid.

Theorem 3.1 does not say anything about power. The
power depends on the observed environments E , besides
sample size and the choice of a test. Roughly speaking,
the power increases as E becomes larger: the more het-
erogeneities or perturbations, the better we can identify
causal effects and this is also true for the procedure in
(3.4). In fact, Peters, Bühlmann and Meinshausen (2016),
Theorem 2, discuss cases where the ICP method in (3.4) is
able to identify the all the causal variables, that is, where
Ŝ(E) = pa(Y ) asymptotically as sample size tends to in-
finity. These special cases, where essentially all the vari-
ables are perturbed, are far from a complete understanding
of necessary and sufficient conditions for identifiability of
the causal variables. Furthermore, the construction with
the intersection in (3.4) might be often conservative. In

https://en.wikipedia.org/wiki/Trygve_Haavelmo
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terms of power, one wants to reject as many sets of covari-
ates which are violating invariance. This seems awkward
at first sight but the fact that the tests are highly dependent
helps to increase the probability that all sets S which do
not fulfill the invariance hypothesis are rejected. A more
quantitative statement of the latter and of power properties
for ICP in general is difficult.

3.2.1 Some robustness properties. The ICP procedure
exhibits two robustness properties (and a third one is men-
tioned in Section 3.2.2 below).

Hidden confounding variables. Even in presence of
hidden confounding variables (as in the scenario of Fig-
ure 5), we have the following: assuming a faithfulness
condition (cf. Spirtes, Glymour and Scheines, 2000),

P
[
Ŝ(E) ⊆ an(Y )

] ≥ 1 − α,

where an(Y ) denotes the ancestor variables of Y . The
details are given in Peters, Bühlmann and Meinshausen
(2016), Prop. 5. In practice, this is interesting as we would
still pick up some variables which indirectly have a total
causal effect on Y .

Direct effects of environments on Y . The ad-hoc con-
ditions 1 and 2 in Section 2.3 or the condition (B(E))
are violated if the environments directly affect Y . With a
faithfulness condition (cf. Spirtes, Glymour and Scheines,
2000), we would then always infer that no set S would
fulfill the invariance assumption and therefore, as sample
size gets sufficiently large, rejecting H0,S(E) for all S, we
would obtain that Ŝ(E) = ∅. Therefore, even under vio-
lation of the assumption that the environments or pertur-
bations should not act directly on Y , the ICP procedure
gives a conservative answer and claims no variable to be
causal. In the literature, this scenario is also known under
the name of so-called invalid instrumental variables (cf.
Guo et al., 2018).

3.2.2 Concrete tests. We first assume that the struc-
tural equation for Y in (3.1) is linear with Gaussian error:

Y = ∑
j∈pa(Y )

βjXj + εY , εY ∼ N
(
0, σ 2

Y

)

and εY is independent of Xpa(Y ). The invariance hypothe-
ses in H0,S(E) then becomes

H0,S(E)lin-Gauss: for all e ∈ E its holds that,

Y e = Xe
SβS + εe

S,

εe
S independent of Xe

S

(the same βS for all e ∈ E),

εe
S ∼ FεS

(the same for all e ∈ E).

Thanks to the Gaussian assumption, exact tests for this
null-hypothesis exist, for example, with the Chow test
(Chow, 1960). This is implemented in the R-package

InvariantCausalPrediction (Meinshausen,
(Meinshausen, 2018b)).

The variable pre-screening methods, mentioned above
after the introduction of the ICP estimator (3.4), become
also much simpler in linear models. One can use, for ex-
ample, the Lasso (Tibshirani, 1996) on the data pooled
over all observed environments and then employ the ICP
estimator for all subsets of ŜLasso = {j ; β̂Lasso,j �= 0}. To
justify this, one needs to establish that, under H lin-Gauss

0,S ,

P[S ⊆ ŜLasso] → 1 asymptotically: sufficient conditions
for this are given in, for example, Bühlmann and van de
Geer (2011).

When the true underlying model for the response in
(3.1) is sufficiently nonlinear but if one uses ICP in (3.4)
with invariance tests based on a misspecified Gaussian
linear model, it typically happens that no set S satisfies the
invariance assumption resulting in Ŝ(E) = ∅. One could
use instead a testing methodology for nonlinear and non-
Gaussian models to infer whether a subset of variables
fulfills the invariance assumption. A corresponding pro-
posal is given in Heinze-Deml, Peters and Meinshausen
(2018) with the accompanying R-package nonlinICP
(Heinze-Deml and Peters, 2017).

3.2.3 Application: Single gene knock-out experiments.
We briefly summarize here the results from an applica-
tion to predict single gene interventions in yeast (Saccha-
romyces cerevisiae); for details, we refer to Meinshausen
et al. (2016). The data consists of mRNA expression mea-
surements of 6170 genes in yeast. We have 160 obser-
vational measurements from wild-type yeast and 1479
interventional data arising from single gene perturba-
tion, where a single gene has been deleted from a strain
(Kemmeren et al., 2014). The goal is to predict the ex-
pression level of a new unseen gene perturbation, that is,
the potential outcome of a new unseen perturbation.

More specifically, and using the terminology of the
framework outlined before, we aim to infer some of the
(direct) causal variables of a target gene. Denote the gene
expression measurements by G1, . . . ,G6170. We consider
as a response variable Y the expression of the j th gene
and the corresponding covariates X the expressions of all
other genes:

Y = Gj,

X = (G1, . . . ,Gj−1,Gj+1, . . . ,Gp).

The index j ∈ {1, . . . ,6170} and the covariate dimension
is p = 6169. The aim is now to infer pa(Y ), assuming a
linear structural equation model as in (3.2) but now with
functions fY and fX being linear.

We construct the environments in a crude way: E =
{1,2} where the labels “1” and “2” denote the 160 ob-
servational and the 1479 interventional sample points, re-
spectively. Thus, we pool all the interventional samples
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FIG. 4. Prediction of strong intervention effects in single gene dele-
tion experiments in Saccharomyces cerevisiae (yeast). x-axis: number
of predictions made by a method; y-axis: number of predictions being
true strong intervention effects.. Invariant causal prediction (ICP) in
red: the first 5 predictions are all true (and 7 among the first 9 predic-
tions are true). Orange: the Causal Dantzig Selector (Rothenhäusler,
Bühlmann and Meinshausen, 2019), an algorithm based on an invari-
ance property which includes hidden variables. All other methods are
not distinguishable from random guessing (gray bars). Figure is taken
from Meinshausen et al. (2016).

into one environment since we have no replicates of sin-
gle gene perturbations. Other pooling schemes could be
used as well: it is typically only an issue of power how
to create good environments while the type I error control
against false positive causal selections (Theorem 3.1) is
still guaranteed; see also Section 3.2.4 below.

For validation, we do a training-test data splitting with
a K-fold validation scheme of the interventional data: that
is, we use all observational and (K − 1)/K of the inter-
ventional data with K = 3 or 5. We only consider true
strong intervention effects (SIEs) where an expression Xk

has a strong effect on Y (the perturbed value Xk are out-
side of the observed data range).

The predictions are based on ICP (with Bonferroni cor-
rection due to using the ICP procedure many times, once
for each gene being the response variable). One then finds
that 8 significant genes at corrected significance level
α = 0.05 and 6 of them are true positive strong interven-
tion effects (Peters, Bühlmann and Meinshausen, 2016).
What sticks out is that only very few causal genes have
been found. When prioritizing the most promising causal
genes, Figure 4 describes ROC-type curves: here ICP is
supplemented with stability selection (Meinshausen and
Bühlmann, 2010) on top of it for creating a “stabilized”
ranking.

3.2.4 Unknown environments. If the environments e ∈
E are not known, one can try to estimate them from data.

The type I error control against false positive causal se-
lections holds as long as the estimated partition Ê does
not involve descendant variables of the response Y : for
example, one could use some clustering algorithm based
on nondescendants of Y .

In practice, it is sometimes reasonable to assume that
certain variables are nondescendants of Y . A canonical
case is with time-sequential data: then, the environments
can be estimated as different blocks of data at consecutive
time points: this is some kind of a change point problem
but now aimed for most powerful discovery with ICP. The
methodology with time-sequential data is developed and
analyzed in Pfister, Bühlmann and Peters (2018) and im-
plemented in the R-package seqICP (Pfister and Peters,
2017).

4. ANCHOR REGRESSION: RELAXING CONDITIONS

The main concern with ICP in (3.4) and the underlying
invariance principle is the violation of the assumption in
(B(E)), and thus also of the ad-conditions 1 and 2 from
Section 2.3. Such a violation can happen under various
scenarios and we mention a few in the following.

It could happen that only approximate instead of ex-
act invariance holds. This would imply that we should
only search for approximate invariance, something which
we will incorporate in the anchor regression methodol-
ogy described below in Section 4.2. Another scenario, say
in a linear model, is that invariance occurs in the null-
hypothesis H0,S(E)lin-Gauss for the parameter βe

S ≡ βS but
with residual distributions εe

S which change for varying e;
or vice-versa with invariant residual distribution but dif-
ferent regression parameters for varying e. This could be
addressed in ICP by testing only either the parameter- or
residual-part, where invariance is assumed to hold for the
causal variables.

Perhaps the most prominent violation is in terms of
hidden confounding variables H . The influence diagram
from Figure 2 can then be extended to the situation of
an instrumental variables (IV) regression model (Bowden
and Turkington, 1990, Angrist, Imbens and Rubin, 1996,
Imbens and Rubin, 2015), illustrated in Figure 5. We re-
fer also to Imbens (2014) for a survey on IV regression.
Now, it is more convenient to think of the environments
(or instruments) as random variables and we also model

FIG. 5. Graphical illustration with hidden confounding variables H .
It corresponds to the instrumental variables regression model, where
the instruments are now the environments.
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all random variables in the system in terms of a structural
equation model (unlike as in (3.1), where we have only
one structural equation for Y ): instead of (3.2), we con-
sider now the IV regression model

Y ← fY (XpaX(Y ),H, εY ),

Xj ← fj (XpaX(Xj ),H,E, εj ),

where H,E, εY , ε1, . . . , εp are mutually independent of
each other. The variable H ∈ R

r is hidden (not observed)
and possibly confounding between X and Y (if some
components of H are descendants of X or Y , these are
not relevant for inferring the effect from X to Y and hence
w.l.o.g. H is a source node). Here, paX(•) denotes the
parental variables X-variables (variables which are par-
ents of • and from the set {X1, . . . ,Xp}). The main as-
sumption in the IV regression model requires that the in-
struments or environments do not directly influence the
response variable Y nor the hidden confounders H (this
is an extension of the ad-hoc conditions 1 and 2 from
Section 2.3); and ideally, they would influence or change
the X variables in a sufficiently strong way (as with the
ad-hoc aim in Section 2.3). We are not going into more
details from the vast literature on IV models with for ex-
ample, weak instruments, invalid instruments or partially
identifiable parameters; see, for example, Stock, Wright
and Yogo (2002), Murray (2006), Kang et al. (2016), Guo
et al. (2018). Instead, we will relax this main assumption
for an instrument as discussed next.

4.1 The Anchor Regression Model

We will allow now that the environments can act di-
rectly also on H and Y , relaxing a main assumption in IV
regression models. In the terminology of IV regression,
we thus consider the case with so-called invalid instru-
ments (cf. Guo et al., 2018). This is an ill-posed situation
for causal inference (from X to Y ), yet it is still possible
to obtain more meaningful results than what is obtained
from standard regression methodology; see Section 4.3.2.

Instead of using the terminology “environment” we
now us the word “anchor” (or anchor variable), for rea-
sons which become more clear below. The structure of an
anchor regression model is given by the graph in Figure 6.
The anchor regression model, for simplicity here only in

FIG. 6. Graphical structure of the anchor regression model in (4.1),
where A denotes the anchors which have been referred to as environ-
ments before. Note that the anchor variables are source nodes in the
graph.

linear form, is defined as follows: it is a structural equa-
tion model of the form

(4.1)

⎛
⎝X

Y

H

⎞
⎠ = B

⎛
⎝X

Y

H

⎞
⎠ + ε + MA,

where (all the components of) A, ε are jointly indepen-
dent. We assume that all the variables are centered with
mean zero. There could be feedback cycles and the graph
of the structure could have cycles. In the latter case, we
assume that I − B is invertible (which always holds if
the graph is acyclic). The main assumption is that A is a
source node and thus, the contribution of A enters as an
additional linear term MA. Because of this, we use the
terminology “anchor”: it is the anchor which is not influ-
enced by other variables in the system and thus, it remains
as the “static pole”.

As mentioned above, one cannot identify the causal pa-
rameter BY,X , the row and columns corresponding to Y

and X in the matrix B . However, we we will discuss in
Section 4.3, that we can still get an interesting solution
which optimizes a worst case risk over a class of scenar-
ios or perturbations F , using the terminology and spirit of
(2.3).

4.2 Causal Regularization and the Anchor
Regression Estimator

We are particularly interested in the structural equation
for Y in the model (4.1) which we write as

Y = XT β + HT α + AT ξ + εY ,

with X ∈ R
p , H ∈R

q and A ∈ R
r .

In the instrumental variables regression model where A

would directly influence X only, it holds that H , εY , A are
mutually independent (but not so in the anchor regression
model) and this then implies that

Y − XT β is uncorrelated of A.

Actually, we could substitute uncorrelatedness with inde-
pendence in the IV model.

In cases where the causal parameter is nonidentifiable,
one could look for the solution

argmin
b

E
[(

Y − XT b
)2]

such that

Corr
(
A,Y − XT b

) = 0.

(4.2)

This leads to a unique parameter (assuming that Cov(X)

is positive definite), and there is a simple pragmatic prin-
ciple behind it. This principle and the property of uncor-
relatedness of the residual term with the anchor variables
A also plays a key role in the anchor regression model for
a class of so-called shift perturbations.

Similar to the idea in (4.2), we define the anchor regres-
sion estimator by using a regularization term, referred to
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as causal regularization, which encourages orthogonality
or uncorrelatedness of the residuals with the anchor vari-
ables A. We denote the data quantities by the n × 1 re-
sponse vector Y, the n × p covariate design matrix X and
the n × q matrix A of the observed anchor variables. Let
�A the projection in R

n onto the column space of A. In
practice, if the columns of X and Y are not centered, we
would include an intercept column in A. We then define

β̂(γ ) = argmin
b

(∥∥(I − �A)(Y − Xb)
∥∥2

2/n

+ γ
∥∥�A(Y − Xb)

∥∥2
2/n

)
.

(4.3)

We implicitly assume here that rank(A) = r < n. For
γ = 1, β̂(1) equals the ordinary least squares estimator,
for γ → ∞ we obtain the two-stage least squares proce-
dure from IV regression and for γ → 0 we adjust for the
anchor variables in A. The properties of the anchor re-
gression estimator in (4.3) are discussed next and make
the role of the tuning parameter more clear.

The criterion function on the right-hand side of (4.3) is
a convex function in b; for high-dimensional scenarios,
we can add an 	1-norm penalty, or any other sparsity in-
ducing penalty:

β̂(γ ) = argmin
b

(∥∥(I − �A)(Y − Xb)
∥∥2

2/n

+ γ
∥∥�A(Y − Xb)

∥∥2
2/n + λ‖b‖1

)
.

(4.4)

The computation of the anchor regression estimator is
trivial. We simply transform the variables Y and X,

Ỹ = Wγ Y, X̃ = Wγ X,

Wγ = I − (1 − √
γ )�A.

The anchor regression estimator in (4.3) or (4.4) is then
given by ordinary least squares or Lasso for the regression
of Ỹ versus X̃.

4.3 Shift Perturbations and Robustness of the
Anchor Regression Estimator

The anchor regression estimator solves a worst case risk
optimization problem over a class of shift perturbations.

We define the system under shift perturbations v by the
same equations as in (4.1) but replacing the term MA

from the contributions of the anchor variables by a deter-
ministic or stochastic perturbation vector v. That is, the
system under shift perturbations satisfies

⎛
⎝Xv

Yv

Hv

⎞
⎠ = B

⎛
⎝Xv

Yv

Hv

⎞
⎠ + ε + v = (I − B)−1(ε + v).

The shift vector v is assumed to be in the span of M , that
is, v = Mδ for some vector δ. The class of considered
perturbations, denoted earlier as F ∈ (2.2), are shift per-

turbations as follows:

Cγ = {
v;v = Mδ for random or deterministic δ,

uncorrelated with ε(4.5)

and E
[
δδT ] � γE

[
AAT ]}

.

Thus, Cγ contains shift perturbations whose length ‖v‖2
2

is typically O(γ ) as γ → ∞.
For the case with γ → ∞ one can characterize shift-

invariance of residuals as follows.

PROPOSITION 4.1 (Rothenhäusler, Meinshausen, Bühl-
mann and Peters, 2018, Theorem 3). Assume that E[AAT ]
is positive definite. Consider

I = {
b ∈ R

p;E[
A

(
Y − XT b

)] = 0
}
.

Since Y and X have mean zero it follows also that E[Y −
Xb] = 0 and hence E[A(Y − XT b)] = Corr(A,Y − Xb).
Then,

b ∈ I ⇐⇒ Yv − (
Xv)T

b

has the same distribution for all v ∈ span(M).

With the goal to make the residuals invariant (for the
class of shift perturbations), we aim to estimate the re-
gression parameter β such that the residuals are encour-
aged to be fairly uncorrelated with A. This leads to the
construction of the anchor regression estimator in (4.3) or
(4.4).

A more general result than Proposition 4.1 is possible,
uncovering a robustness property of the anchor regression
estimator. We focus first on the population case. We de-
note by PA(·) the projection operator, namely PA(Z) =
E[Z|A]. In the anchor regression model (4.1) with (I −B)

being invertible, PA(Y ) and PA(X) are linear functions in
A. The population version of the anchor regression esti-
mator is

β(γ ) = argmin
b

(
E

[(
(I − PA)

(
Y − XT b

))2]

+ γE
[(

PA

(
Y − XT b

))2])
.

(4.6)

Then, the following fundamental result holds.

THEOREM 4.1 (Rothenhäusler, Meinshausen, Bühl-
mann and Peters, 2018, Theorem 1). For any b ∈ R

p it
holds that

sup
v∈Cγ

E
[(

Y v − (
Xv)T

b
)2] = E

[(
(I − PA)

(
Y − XT b

))2]

+ γE
[(

PA

(
Y − XT b

))2]
.

Thus, Theorem 4.1 establishes an exact duality between
the causal regularized risk (which is the population ver-
sion of the objective function for the estimator in (4.3))
and worst-case risk over the class of shift perturbations.
The regularization parameter equals the “strength” of the
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shift, as defined in (4.5): regarding its choice; see Sec-
tion 4.3.1. A useful interpretation of the theorem is as
follows. The worst-case risk over shift perturbations can
be considered as the one corresponding to future unseen
data: this risk for future unseen data can be represented
as a regularized risk for the data which we observe in the
training sample. We further note that Theorem 4.1 holds
for any b, and thus it also holds when taking the “argmin”
on both sides of the equation. We then obtain that the
population version β(γ ) in (4.6) is the minimizer of the
worst-case risk:

β(γ ) = argmin
b

sup
v∈Cγ

E
[(

Y v − (
Xv)T

b
)2]

.

One can argue that also in the finite sample high-
dimensional sparse scenario, the anchor regression esti-
mator in (4.3) or (4.4) are asymptotically optimizing the
worst-case risk:

sup
v∈Cγ

E
[(

Y v − (
Xv)T

β̂(γ )
)2]

≤ min
b

sup
v∈Cγ

E
[(

Y v − (
Xv)T

b
)2] + �,

where, under suitable conditions, � → 0 as n → ∞, or
p ≥ n → ∞ in the high-dimensional scenario. The details
are given in Rothenhäusler, Meinshausen, Bühlmann and
Peters (2018), Section 4.

4.3.1 Choosing the amount of causal regularization.
The value of γ in the estimator (4.3) or (4.4) relates to
the class of shift perturbations over which we achieve the
best protection against the worst case; see Theorem 4.1.
Thus, we could decide a-priori how much protection we
wish to have or how much perturbation we expect to have
in new test data.

Alternatively, we could do some sort of cross-valida-
tion. If the anchor variable encodes discrete environments,
we could leave out data from one or several environments
and predict on the left-out test-data optimizing the worst-
case error. If the anchor variables are continuous, the fol-
lowing characterization is useful.

The value γ in the causal regularization has also an in-
terpretation as a quantile. Assuming a joint Gaussian dis-
tribution of the variables Y , X and A in the model (4.1),
it holds that

α − quantile of E
[(

Y − XT b
)2|A]

= E
[(

(I − PA)
(
Y − XT β

))2]
+ γE

[(
PA

(
Y − XT β

))2]
,

for γ = α − quantile of χ2
1 .

(4.7)

The right-hand side also equals a worst-case risk over
shift perturbations, as stated in Theorem 4.1. Therefore,
the relation above links the in-sample (for the nonper-

turbed data) quantiles to the out-sample (for the perturbed
data) worst-case risk. The exact correspondence of α and
γ might not hold for more general situations. However,
the qualitative correspondence is that a large α (high
quantile) corresponds to a high value γ for the regular-
ization term. Thus, one could choose a quantile value α,
for example, α = 0.95, for the quantile of the conditional
expectation of the squared error E[(Y − XT b)2|A] and
then calculate the γ which optimizes this quantile. Under
a Gaussian assumption, we can estimate the quantities re-
placing expectations by mean squared test samples. This
result also indicates that anchor regression with a large
value of γ should result in good values for the high quan-
tile of the squared prediction error (unconditional on A).

4.3.2 Diluted form of causality. In the anchor regres-
sion model in general, it is impossible to infer the di-
rect causal parameter β from X to Y . If the assumptions
for instrumental variables regression are fulfilled, that is,
no direct effects from A to H and to Y and rank(A) ≥
dim(X) = p, then the anchor regression estimator with
γ → ∞ equals the unique two stage least squares estima-
tor and consistently infers β; in particular, we also have
that β(γ → ∞) = β .

If the IV assumptions do not hold, for example, in pres-
ence of invalid instruments where the anchor variables di-
rectly affect Y or H , the parameter β(γ ) with γ → ∞ or
γ being large is often a more meaningful quantity than the
standard regression parameter (with γ = 1). For large val-
ues of γ , the corresponding β(γ ) is minimizing a worst-
case risk over a class of large shift perturbations. This
parameter and its entries with large values corresponding
to important variables is interesting in many applications:
the variables (with corresponding large parameter com-
ponents of β̂(γ )) are “key drivers” in a system of interest
to explain the response Y in a stable manner over many
strong shift perturbations. In fact, for γ → ∞, we can de-
fine

supp
(
β(γ → ∞)

)
to be the set of variables which are called “diluted causal”
for the response Y (the variables which are relevant for Y

in a stable way across many strong shift perturbations).

4.4 Some Empirical Illustrations

We illustrate the performance and behavior of the es-
timator (4.3) in the linear anchor regression model (4.1).
We consider the case where the anchors are invalid in-
struments and low-dimensional and hence, inferring the
causal effects from X to Y is impossible. The model for
the variables A, H and X is as in model (M3) described
later in Section 5.4, with dim(A) = r = 2, dim(H) = q =
1 and dim(X) = p = 10. The structural equation for the
response is

Y ← 3X2 + 3X3 + H − 2A1

+ εY , εY ∼ N
(
0,0.252)

.
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FIG. 7. Left: empirical α-quantiles of |Yout,i − Ŷout,i | for i = 1, . . . , nout = 2000, averaged over 100 independent simulation runs. Right: estimated

in-sample α-quantile of E[(Y − XT β̂(γ ))2|A] in (4.7) with α = 0.9918 corresponding to γ = 7 (left boxplot) and out-sample (with perturbation)
mean squared prediction error (right boxplot), for the 100 independent simulation runs.

The training sample size is chosen as n = 300. The test
sample is constructed with the same structure but now the
anchor variables A are multiplied by the factor

√
10 and

the test sample size is chosen as nout = 2000. It is instruc-
tive to describe here how the anchor variables A act on X:
the model is

Xj ← A1γ1 + A2γ2 + H + εXj
, εXj

∼N (0,1),

where γ1, γ2 are coefficients which have been sampled
i.i.d. from N (0,1). The equation above changes in the
test sample where we multiply A1 and A2 with the fac-
tor

√
10 which results in perturbations for the Xj vari-

ables. Figure 7 describes the quantiles of the absolute out-
sample prediction error |Yout,i −XT

out,i β̂(γ )| where γ = 7
has been prespecified. We also show the empirical rela-
tion between the in-sample quantile in (4.7) and the out-
sample mean squared prediction error 1

2000
∑2000

i=1 (Yout,i −
XT

out,i β̂(γ ))2. We conclude from the left panel of Fig-
ure 7 that the anchor regression estimator exhibits a sub-
stantially better prediction performance under perturba-
tion out-sample scenarios than the ordinary least squares
estimator. If the out-sample data would be generated as
the in-sample training data, that is, without new perturba-
tions in the test data, there would be no gain, or actually a
slight loss, of anchor regression over OLS (empirical re-
sults not shown here). Anchor regression only pays-off for
prediction if some perturbations happen in new future data
points which amplify the effect of heterogeneity (gener-
ated from the anchor variables A) in the future test data.
This is briefly discussed next.

4.5 Distributional Robustness

Anchor regression and causality can be viewed from
the angle of distributional robustness (Heinze-Deml and
Meinshausen, 2017, Meinshausen, 2018a). Distributional

robustness refers to optimizing a worst-case risk over a
class of distributions:

argmin
θ

max
P∈P E

[
	(Z; θ)

]
,

where 	(·; ·) denotes a loss function, Z is the random vari-
able generating a data point (e.g., Z = (Y,X)), θ is an un-
known (potentially high- or infinite-dimensional) param-
eter and P is a class of probability distributions.

A typical choice for the class of distributions is

P = {
P ;d(P,P0) ≤ ρ

}
,

where P0 is the reference distribution, for example being
the empirical measure, d(·, ·) is a metric, for example, the
Wasserstein distance, and ρ is a pre-specified radius; see,
for example, Sinha, Namkoong and Duchi (2017), Gao,
Chen and Kleywegt (2017).

For causality and anchor regression, the class of distri-
butions P is given by a causal or “anchor-type” model
consisting of perturbation distributions. Theorem 4.1 de-
scribes the connection more explicitly: the class P con-
sists of amplifications of the observed heterogeneity in
the data. This, because the perturbation distributions arise
from shifts v ∈ span(M), thus being shifts in the direction
of the effects from the observed anchor variable contribu-
tion which equals the term MA in the model (4.1); and the
strength of the shifts in the perturbations is given by the
parameter γ which has an analogous role as the radius ρ

in the definition of P above. Thus, with anchor regression,
the class of distributions is not pre-defined via a metric
d(·, ·) and a radius ρ but rather through the observed het-
erogeneities in span(M) and a strength of perturbations or
“radius” γ .

We also note that the distributional robustness above is
in a different spirit from classical statistical robustness (cf.
Huber, 1964, Hampel et al., 1986). Unlike as in the latter,
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distributional robustness mentioned above is mostly con-
cerned about protection on new test data which is allowed
to come from a different distribution that the training data.

5. NONLINEAR ANCHOR REGRESSION

We present here a methodology for anchor regression
generalizing the linear case. A core motivation is to design
an algorithm for which any “machine learning” technol-
ogy for regression can be plugged-in, including for exam-
ple Random Forests or even Deep Neural Nets. We will
argue that in presence of heterogeneity, essentially “any”
of these machine learning methods can be improved using
additional causal regularization.

We consider a nonlinear anchor regression structural
equation model where the dependence of Y on X is a non-
linear function:

X ← MXA + BX,HH + εX,

Y ← f (X) + MY A + BY,HH + εY ,(5.1)

H ← MHA + εH ,

where (all the components of) A, εX , εY , εH are jointly
independent. We consider more general nonlinear models
in (5.10), although a too high degree of nonlinearity can
become more difficult with the anchor regression algo-
rithm presented below. The issue is discussed after Corol-
lary 5.1. We note that with MY and MH being equal to
zero we have a nonlinear instrumental variables regres-
sion model with linear dependences on the instruments
(or the anchors) A and the hidden variables H .

5.1 The Objective Function and the Algorithm

Consider a nonlinear regression function f , defined as

f (x) = E[Y |X = x]
which is a map from X to Y , where X and Y are the do-
mains of X and Y , respectively. Given data (Y (1),X(1)),

. . . , (Y (n),X(n)), many estimation methods or algorithms
for f can be written in the form

f̂ = argmin
f ∈C

1

2n

n∑
i=1

(
Y (i) − f

(
X(i)))2

= argmin
f ∈C

1

2n
‖Y − f ‖2

2,

(5.2)

where C denotes a suitable subclass which incorporates
certain restrictions such as smoothness or sparsity. On the
right-hand side we have used a slight abuse of notation
where f = (f (X(1)), . . . , f (X(n)))T denotes the vector
of function values at the observed X(1), . . . ,X(n). As will
be seen below, the estimation algorithm is not necessarily
of the form as in (5.2) but we use this formulation for the
sake of simplicity.

Using the abbreviated notation with f mentioned
above, the nonlinear anchor regression estimator is de-
fined as

f̂anchor = argmin
f ∈C

G(f ),

G(f ) = Gγ (f ) = 1

2

(∥∥(I − �A)(Y − f )
∥∥2

2/n(5.3)

+ γ
∥∥�A(Y − f )

∥∥2
2/n

)
.

As in (4.3), �A denotes the linear projection onto the col-
umn space of the observed anchor variable matrix A. If
the anchor variables A have a linear effect onto X, Y and
the hidden confounders H , it is reasonable to consider the
estimator with the linear projection operator �A. We will
give some justification for it in Section 5.5.

It is straightforward to see that the objective function
can be represented as

G(f ) = ∥∥W(Y − f )
∥∥2

2/(2n),

W = Wγ = I − (1 − √
γ )�A.

5.2 Anchor Boosting: A “Regularized”
Approximation of the Estimator

The question is how to compute or approximate the esti-
mator in (5.3). We aim here for a solution where standard
existing software can be used.

Our proposal is to use boosting. For this, we consider
the negative gradient

− ∂

∂f
G(f ) = W 2(Y − f )/n

and pursue iterative fitting of the negative gradient. The
negative gradient fitting is done with a prespecified base
learner (or “weak learner”): it is a regression estima-
tor f̂U,X based on input data (U,X) with U denoting
a response vector (e.g., U = Y corresponds to the esti-
mator applied to the original data). This is the standard
recipe of gradient boosting (Breiman, 1999, Friedman,
2001, Bühlmann and Yu, 2003, Bühlmann and Hothorn,
2007) and the method is summarized in Algorithm 1. The
choice of the stopping iteration mstop is discussed in Sec-
tion 5.2.1. The stopping iteration is a regularization pa-
rameter: it is governing a bias-variance trade-off, on top
of the regularization of causal regularization from anchor
regression which is encoded in the matrix W = Wγ .

From another view point for regularization, we can
think of the regression estimator f̂

Ỹ ,X
as an operator B

(when evaluated at the observed X; it is a “hat” operator):

B : (Ỹ ,X) �→ f̂
Ỹ ,X

(·).
Then, it is straightforward to see that

f [m](X1), . . . , f
[m](Xn) = (

I − (
I − W 2B

)m)
Y,
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Algorithm 1 Anchor Boosting algorithm

1: Initialize with f [0] ≡ 0. Set m = 0.
2: Increase m by 1: m ← m + 1.
3: Compute the pseudo-response Ỹ = W 2(Y −

f [m−1])/n which equals the negative gradient vector
evaluated at f [m−1].

4: Compute the regression function estimator f̂
Ỹ ,X

from
the base learner and up-date

f [m] = f [m−1] + ν · f̂
Ỹ ,X

,

where 0 < ν < 1 is a pre-specified parameter. The de-
fault value is ν = 0.1.

5: Repeat steps 2–4 until reaching a stopping iteration
mstop.

that is, the boosting operator at iteration m is equal to
(I − (I − W 2B)m). If W 2B has a suitable norm being
strictly < 1, then there is geometrical convergence to the
identity which would fit the data Y perfectly. This in-
dicates, that we should stop the boosting procedure to
avoid overfitting. However, especially for large values of
γ in W = Wγ , the norm of W 2B will be larger than one
and geometrical contraction, that is, overfitting, to the re-
sponse vector Y will not happen.

5.2.1 Some criteria for choosing the stopping iteration.
In connection with a Random Forests (Breiman, 2001)
learner for the estimator f̂

Ỹ ,X
in step 5 of Algorithm 1, we

found that we can choose the stopping iteration m such as
to minimize the objective function ‖Wγ (Y − f [m])‖2

2 or
even overshooting the minimum by say 10%. Formally,
the two stopping rules are

mstop = argmin
m

∥∥Wγ

(
Y − f [m])∥∥2

2,(5.4)

mstop = argmax
m

∥∥Wγ

(
Y − f [m])∥∥2

2

such that
∥∥Wγ

(
Y − f [m])∥∥2

2(5.5)

≤ 1.1 min
m

∥∥Wγ

(
Y − f [m])∥∥2

2.

In general, we propose a rule based on the following
observation. Consider the population version of W = Wγ

and denote it by

Rγ = Id − (1 − √
γ )PA,

where PA(·) denotes the best linear projection onto A.
That is,

PA(Z) = (
α0)T

A,

α0 = argmin
α

E
[(

Z − αT A
)2]

= Cov(A)−1 Cov(A,Z).

Thus, Rγ is a function of A and random.

The population version of the optimization is

argmin
f ∈CX

E
[(

Rγ

(
Y − f (X)

))2]

= argmin
f ∈CX

E
[(

Rγ Y − Rγ f (X)
)2]

,

due to linearity of Rγ ; here CX denotes the class of mea-
surable functions of X. We decompose this problem into
two parts:

E
[(

Rγ Y − Rγ f (X)
)2]

= E
[(

Rγ Y − gopt(X,A)
)2]

+E
[(

gopt(X,A) − Rγ f (X)
)2]

,

gopt = E[Rγ Y |X,A].
This motivates a finite sample criterion guarding against
overfitting. Whenever we estimate f (·) by f̂ (·) with
boosting as in Algorithm 1, the residual sum of squares
‖Wγ (Y − f̂ (X))‖2

2 should be at least as large as the resid-
ual sum of squares of ‖Wγ Y − ĝopt(X,A)‖2

2 of any good
and reasonably tuned machine learning estimator ĝopt.
That is, we should choose the number of boosting iter-
ations such that it minimizes the objective function under
the given constraint:

mstop = min
m

∥∥Wγ

(
Y − f [m](X)

)∥∥2
2

such that
∥∥Wγ

(
Y − f [m](X)

)∥∥2
2(5.6)

≥ ∥∥Wγ Y − ĝopt(X,A)
∥∥2

2.

This guards against overfitting and avoids choosing a too
large boosting iteration. We could also modify the rule to
choose m as in (5.5) under the constraint that ‖Wγ (Y −
f [m](X))‖2

2 ≥ ‖Wγ Y − ĝopt(X,A)‖2
2.

5.2.2 Random Forests learner with a linear model com-
ponent. Besides using Random Forests as a base learner
f̂U,X in the Anchor-Boosting Algorithm 1, we consider
also a modification which fits a linear model first and
applies Random Forests on the resulting residuals. This
modification is denoted by “LM+RF”, standing for Lin-
ear Models+Random Forests. The LM+RF procedure is
built on the idea that the linear model part is the “primary
part” and the remaining nonlinearities are then estimated
by Random Forests. This base leaner is able to cope well
with estimating partial linear functions.

The “LM+RF” algorithm is defined as follows. Given
a response variable Y and some covariates X:

(1) Fit a linear model of Y versus X, by default includ-
ing an intercept. The fitted (linear) regression function is
denoted by f̂1.

(2) Compute the residuals from step 1, denoted by R.
Fit a Random Forests of R (being now the response vari-
able) versus X: the fitted regression function is denoted
by f̂2.

(3) The final estimator is f̂1 + f̂2.
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The LM+RF base learner is typically outperforming plain
Random Forests if the underlying regression function is
an additive combination of a linear and a nonlinear func-
tion. Related and more refined is the idea of local linear
forests (Friedberg, Tibshirani, Athey and Wager, 2018)
which are reported to perform better than a (perhaps con-
servative) sample splitting version of “LM+RF”.

5.2.3 Plug-in of any “machine learning” algorithm.
Obviously, any “machine learning” regression technique
can be used as base learner in the Anchor Boosting Algo-
rithm 1. In addition, also the stopping rule in (5.6) involv-
ing an estimator ĝopt(X,A) can be used with any reason-
able regression algorithm.

5.3 Some Empirical Results

We consider the following structural equation model for
the in-sample data used for training with sample size n =
300:

A ∼ N2(0, I),

H ∼ N1(0,1),

Xj = A1 + A2 + 2H + εX,j (j = 1 . . . , p),
(5.7)

εX ∼ N10
(
0,0.52 · I

)
,

Y = f (X2,X3) − 2A1 + 3H + εY ,

εY ∼ N1
(
0,0.252)

,

where A, H , εX , εY are jointly independent. The di-
mensions of the variables are dim(A) = 2, dim(H) = 1,
dim(X) = 10 and dim(Y ) = 1. For the function f (·), we
consider the following two models:

(M1) I (X2 ≤ 0) + I (X2 ≤ −0.5)I (X3 ≤ 1),
(M2) X2 + X3 + I (X2 ≤ 0) + I (X2 ≤ −0.5) ×

I (X3 ≤ 1).

The model (M1) has no linear term while (M2) does have
one; for both models, the number of active variables is
2. The out-of-sample data is generated according to the
same structural equation model as in (5.7) but with two
different perturbations for the anchor variables, denoted
by Aout. We consider the following:

(i) moderate shift perturbation:

μ ∼ Nnout
(
1,22I

)
,

Aout ∼ Nnout(μ, I),

where nout = 2000 denotes the number of out-of-sample
observations.

(ii) strong shift perturbation:

μ ∼ Nnout(10, I),

Aout ∼ Nnout(μ, I),

where nout = 2000 denotes the number of out-of-sample
observations.

We report some performances of Anchor Boosting with
Random Forests, Anchor Boosting with the LM+RF
learner from Section 5.2.2 and plain Random Forests in
Figures 8–9. We do not tune the parameter γ and con-
sider only the choice γ = 7. The performance measures
are empirical α-quantiles of the out-of-sample predictions
|Yout,i − Ŷout,i | for a range of different α-values. In terms
of quantitative numbers, the relative performance gain
of Anchor Boosting with stopping as in (5.5) (“stop2”)
over the corresponding plain Random Forests algorithm
is given in Table 1.

The performance gain with Anchor Boosting is sub-
stantial, with the only exception of the case (M2) with
strong shift perturbations (ii) and the Random Forest
base learner (RF). This is a situation where a RF learner
is “misspecified” since it cannot capture well the lin-
ear function part in model (M2): it is particularly harm-
ful with strong shift perturbations where a strong shift
in the anchor variables Aout results in strong shifts
of the covariates and through the linear function also
in Y . The RF learner cannot capture such strong shifts
well; when using the much better Linear Model + Ran-
dom Forests (LM+RF) learner, the performance gain of
Anchor Boosting is massive. When comparing Anchor
Boosting with LM+RF to plain Random Forests (RF),
the relative gain over plain RF at α ∈ {0.5,0.8,1} in the
model (M2) with strong strong shift perturbations is

15.2%,19.2%,23.6%

which is again in clear favor of Anchor Boosting with the
LM+RF learner.

Even if the model has no linear function (as in model
(M1)), it seems to pay-off to use the LM+RF learner in
presence of strong shift interventions. A possible reason is
that extrapolation for large X-values is not easily possible
with Random Forests.

5.4 Variable Importance

Of particular interest is the notion of variable impor-
tance: in connection with (nonlinear) anchor regression, it
is a more causally oriented measure than a plain variable
importance measure in standard (nonlinear) regression.
See also the term of “diluted causality” in Section 4.3.2.

We suggest a variable importance measure based on
permutation, following Breiman’s proposal for Random
Forests (Breiman, 2001). Unlike Breiman’s original pro-
posal which involves the out-of-bag observations occur-
ring in Random Forests, we work with the training data
only. It seems to work as long as the estimated anchor re-
gression function is reasonably regularized and does not
overfit.

Consider an estimated anchor regression function
f̂anchor(·) : X → Y . For j ∈ {1, . . . , p}, permute the j th
covariate Xj (permute the sample indices) and denote this
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FIG. 8. Empirical α-quantiles of |Yout,i − Ŷout,i | for i = 1, . . . , nout = 2000, averaged over 100 independent simulation runs. Model (M1) and
moderate shift perturbations (i) for Aout (top) and strong shift perturbations (ii) for Aout (bottom). The Anchor Boosting algorithm is always used
with γ = 7, with Random Forests (left) and with Linear Model + Random Forests (right), and with the two stopping criteria from (5.4) (stop1) and
(5.5) (stop2).

permuted variable by Xperm(j). We define the variable, for
j ∈ {1, . . . , p}

X̃
(i)
perm(j) = (

X
(i)
1 , . . . ,X

(i)
j−1,X

(i)
perm(j),

X
(i)
j+1, . . . ,X

(i)
p

)T
, i = 1, . . . , n,

where the j th component is permuted relative to the ob-
served variable X(i). We then compute the residual sum
of squares

RSSj = n−1
n∑

i=1

(
Y (i) − f̂anchor

(
X̃

(i)
perm(j)

))2
.

The importance measure is the relative increase in of
RSSj in comparison to the standard RSS = n−1 ×∑n

i=1(Y
(i) − f̂anchor(X

(i)))2:

(5.8) Impj = RSSj − RSS

RSS
.

As an alternative, we also consider the median absolute
loss instead of the residual sum of squares:

Impmed,j = hj − h

h
,

hj = sample median
{∣∣Y (i) − f̂

(
X̃

(i)
perm(j)

)∣∣;
i = 1, . . . , n

}
,(5.9)

h = sample median
{∣∣Y (i) − f̂

(
X(i))∣∣;

i = 1, . . . , n
}
.

For empirical results we note that the models (M1) and
(M2) from Section 5.3 are very difficult in terms of iden-
tifying important variables. In fact, with the latter mod-
els, the correlation among the covariates X is extremely
strong: the average absolute value of the off-diagonal el-
ements of the empirical (in-sample) correlation matrix is
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FIG. 9. Empirical α-quantiles of |Yout,i − Ŷout,i | for i = 1, . . . , nout = 2000, averaged over 100 independent simulation runs. Model (M2) and
moderate shift perturbations (i) for Aout (top) and strong shift perturbations (ii) for Aout (bottom). The Anchor Boosting algorithm is always used
with γ = 7, with Random Forests (left) and with Linear Model + Random Forests (right), and with the two stopping criteria from (5.4) (stop1) and
(5.5) (stop2).

TABLE 1
Relative performance gain of empirical α-quantiles of absolute out-of-sample prediction errors (see also captions in Figures 8–9) of Anchor

Boosting with γ = 7 and stopping from (5.5) over the corresponding plain base learner. The base learners are Random Forests (RF) and Linear
Model + Random Forests (LM+RF)

Model & learner Performance gains at α ∈ {0.5,0.8,1}

(M1); moderate shift & RF 23.2%, 22.3%, 16.7%
(M1); moderate shift & LM+RF 23.5%, 22.7%, 18.3%
(M1); strong shift & RF 28.6%, 25.0%, 18.0%
(M1); strong shift & LM+RF 65.6%, 57.1%, 39.5%
(M2); moderate shift & RF 12.5%, 11.1%, −3.7%
(M2); moderate shift & LM+RF 19.5%, 18.9%, 12.6%
(M2); strong shift & RF −100.8%, −73.9%, −30.1%
(M2); strong shift & LM+RF 83.3%, 73.4%, 47.6%
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TABLE 2
Relative performance gain of Anchor Boosting, analogous as in Table 1

Model & learner Performance gains at α ∈ {0.5,0.8,1}

(M3); strong shift & RF 9.6%, 8.4%, 6.3%
(M3); strong shift & LM+RF 28.5%, 18.5%, 1.5%

found to be

1

p(p − 1)

∑
j �=k

∣∣Ĉorr(Xj ,Xk)
∣∣ = 0.97

for a representative sample. We modify to the following
model:

(M3) The structural equation model is:

A ∼ N2(0, I),

H ∼ N1(0,1),

� a 2 × 10 matrix with i.i.d. N (0,1) entries,

Xj = AT �•j + H + εX,j

(j = 1 . . . , p), εX ∼ N10(0, I),

Y = f (X2,X3) − 2A1 + 3H + εY ,

εY ∼ N1
(
0,0.252)

,

where A, H , εX , εY , � are jointly independent and

f (x2, x3) = x2 + x3 + I (x2 ≤ 0)

+ I (x2 ≤ −0.5)I (x3 ≤ 1).

The dimensions of the variables are dim(A) = 2,
dim(H) = 1, dim(X) = 10 and dim(Y ) = 1.

We consider again sample size n = 300 and out-of-sample
size nout = 2000 (for variable importance, we do not need
this). In terms of the empirical performance for predic-
tion, the analogue of Table 1 is given in Table 2.

For variable importance, the measures Impj and
Impmed,j are displayed in Figure 10. Since the vari-
ables X2 and X3 are the only active variables in the true
function f (X) in model (M3) we conclude that Anchor
Boosting with LM+RF does a substantially better job for
quantifying variable importance than standard Random
Forests. Note that, as in Section 5.3, there was no tuning
for the parameter γ which was set to the value γ = 7.

5.5 Some Arguments Why a Simple Linear Projection
�A Is Sufficient

We present here some arguments under what conditions
a linear projection �A in the estimator in (5.3) is reason-
able even in presence of a nonlinear function f (·) and a
potentially more nonlinear model than in (5.1), namely:

X ← hX(A,H, εX),

Y ← f (X) + g(A,H, εY ),(5.10)

H ← hH (A, εH ),

where (all the components of) A, εX , εY , εH are jointly
independent.

We consider the situation when the regularization pa-
rameter γ → ∞. Then, in the population version, the
regularization enforces a solution f (·) with Corr(A,Y −
f (X)) = 0. We thus consider the set

I = {
f (·);E[

A
(
Y − f (X)

)] = 0 and

E
[
Y − f (X)

] = 0
}
.

Assuming that E[Y − f (X)|A] is a linear function in A,
which naturally holds for discrete anchor variables as dis-
cussed in Section 5.5.1, we then have the following result.

PROPOSITION 5.1. Consider a nonlinear anchor re-
gression model as in (5.10). We assume that Cov(A)

is positive definite and I �= ∅. Assume that E[Y −
f (X)|A] = μf + αT

f A is a linear function of A with
μf ∈ R and αf a r × 1 vector. Then, for any f ∈ I and
every do-perturbation on A with do(A = a) (cf. Pearl,
2009), where the value a is deterministic:

E
[
Ya − f

(
Xa)] = μf = constant w.r.t. a.

Here, Ya and Xa denote the random variables corre-
sponding to the do-perturbation do(A = a).

A proof is given at the end of the section. Proposi-
tion 5.1 leads to invariance of the first moment of the
residuals Ya −f (Xa) but is not saying anything on higher
moments or the invariance of the distribution as in Propo-
sition 4.1.

5.5.1 Discrete anchor variables. For nonlinear f (·),
the conditional expectation E[Y − f (X)|A] in the model
(5.10) is typically nonlinear in A, thus violating the as-
sumption of Proposition 5.1; the same statement holds
for the model (5.1) due to the nonlinearity of the func-
tion f (·). There is one very notable and relevant exception
though: for discrete anchor variables A ∈ A = {1, . . . ,m}
with labels 1, . . . ,m, we can always write

E
[
Y − f (X)|A = a

] = μf + αT
f A,

where A is now with dummy-encoding having an r =
(m − 1)-dimensional representation (and implicitly as-
suming that this conditional distribution exists). Posi-
tive definiteness of Cov(A) is ensured by assuming 0 <
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FIG. 10. Boxplots of the ranks of variable importance (rank 1 lowest priority for variable importance, rank 10 highest priority), based on 100
independent simulations of model (M3) with the only active variables {X2,X3} in the nonlinear structural equation for Y . The different boxes
correspond to the different variable indices j ∈ {1, . . . ,10}. Anchor Boosting with LM+RF and γ = 7: measure (5.8) (top), measure (5.9) (middle);
variable importance of standard Random Forests measuring the increase in residual sum of squares based on out-of-bag observations (bottom).

P[A = k] < 1 for all k. Then, we have the following re-
sult.

COROLLARY 5.1. Consider a nonlinear anchor re-
gression model as in (5.10). Assume discrete anchor vari-
ables A with dummy encoding. We further assume that
0 < P[A = k] < 1 for all k, and I �= ∅. Then, for any
f ∈ I and every do-perturbation on A with do(A = a)

(cf. Pearl, 2009), where the value a is deterministic:

E
[
Ya − f

(
Xa)] = μf = constant w.r.t. a.

We note that a do-perturbation on A would simply
change the value of the dummy-encoding: say do(Aj = 5)

would imply a 5-fold effect of the variable Aj if the ob-
served Aj = 1.

We point out that the model in (5.10) is very general.
However, Corollary 5.1 is only making a statement if the
set I is nonempty. This is ensured for example, for a broad
class of nonlinear instrumental variables regression of the
form:

Y ← f (X) + g(H, εY ),

X ← h(A,H, εX),

where (all components of) A, H , εX , εY are jointly inde-
pendent. Obviously, Y − f (X) is then independent of A

and therefore f ∈ I . We do not elaborate more under what
conditions I is nonempty: in the case of linear structural
equations we note the result in Proposition 4.1.

For nondiscrete anchor variables and where the con-
ditional expectation E[Y − f (X)|A] = μf + αT

f A +
AT βf A + · · · , with βf a r × r matrix, is nonlinear in
A, the nonlinear anchor boosting algorithm leads to in-
variance of the linearized part:

E
[
Ya − f

(
Xa)] ≈ μf + aT βf a + · · · ,

where the expression does not involve dependence on A

through the linear part αT
f a. A linear approximation is

more likely to be good if A has only a linear influence
on X, H and Y , as in the model (5.1), and if f (·) is not
too far away from a linear function. Thus, we would con-
clude that the nonlinear anchor boosting estimator leads
to good predictive robustness if the direct effects of A are
linear and the nonlinearity enters via a nonlinear function
f (·) in the structural equation for Y . If the conditional ex-
pectation E[Y − f (X)|A] becomes highly nonlinear, one
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would need a different penalization which could be of the
form such as

max
g∈G E

[
g(A)

(
Y − f (X)

)]
,

where G is a suitable class of functions.

PROOF OF PROPOSITION 5.1. Since A is a source
node, the do-perturbation on A is the same as the condi-
tional expectation:

E
[
Y − f (X)|A = a

] = E
[
Y − f (X)|do(A = a)

]
= E

[
Ya − f

(
Xa)]

,

where the last equality is just a definition.
We have for f ∈ I that

E
[
A

(
Y − f (X)

)] = 0.

Therefore, by linearity of the conditional expectation we
obtain

0 = ∥∥E[
A

(
Y − f (X)

)]∥∥2
2

= ∥∥E[
AE

[
Y − f (X)|A]]∣∣2

2

= ∥∥E[
A

(
μf + αT

f A
)‖2

2

= ∥∥E[
AαT

f

(
A −E[A])]∥∥2

2

= ∥∥E[(
A −E[A])αT

f

(
A −E[A])]∥∥2

2

= ∥∥E[(
A −E[A])(AT −E

[
AT ])]

αf

]∥∥2
2

= ‖�αf ‖2
2 = αT

f �T �αf ,

where � = Cov(A) is positive definite. This implies that
αf ≡ 0. Note that we have exploited above that μf =
−αT

f E[A] since E[(Y − f (X))] = 0 for all f (·) in I .
Therefore, we have that

E
[
Ya − f

(
Xa)] = E

[
Y − f (X)|do(A = a)

]
= E

[
Y − f (X)|A = a

] ≡ μf ,

and thus being constant w.r.t. a. �
5.5.2 Some empirical results. To investigate the nature

of discrete anchor variables, we consider a model similar
to (M2) and sample sizes n = 300 and nout = 2000 as be-
fore. The structural equation model is as for model (M2),
except that the anchor variables and the structural equa-
tion for X are as follows:

(M2-discr)

A1 = (1,1, . . . ,1,0,0, . . . ,0)T

where the first 150 entries are all 1 and then 0,

A2 = (0,0, . . . ,0,1,1, . . . ,1)T

where the first 150 entries are all 0 and then 1.

The structural equation for X is

X
(i)
j = 2A

(i)
2 − 2A

(i)
2 + 2H(i) + εX, j(i),

εX ∼ N10
(
0,0.52I

)
,

where i = 1, . . . , n. The out-of-sample values of Aout are
three times amplified:

A1 = (3,3, . . . ,3,0,0, . . . ,0)T

where the first 150 entries are all 3 and then 0,

A2 = (0,0, . . . ,0,3,3, . . . ,3)T

where the first 150 entries are all 0 and then 3.

The results are displayed in Figure 11 and are consistent
with the earlier results in Figures 8–9.

6. TURNING AROUND THE VIEWPOINT

One can switch to an alternative view and, although per-
haps thought-provoking, define a (diluted) form of causal-
ity via the invariance assumption.

Consider a class of perturbations F . Invariance (of vari-
ables) with respect to the class of perturbations F is then
defined as any set of covariates such that the invariance
assumption in Section 3 holds, that is,

L
(
Y e|Xe

S

)
is the same for all e ∈ F .

When F is sufficiently rich and fulfills the ad-hoc condi-
tions 1 and 2 in Section 2 or the assumption (B(F)) from
Section 3.1, then the F invariance corresponds to a defini-
tion of causality in the literature, for example, as in Pearl
(2009). This is just another version of the worst-case risk
optimization viewpoint in (2.4). If F is not sufficiently
rich, F -invariance does not coincide with the set of causal
variables; see also Figure 12 for a “typical” situation.

If F violates the ad-hoc conditions, then invariance as
above does not hold in general and is too demanding: but
when restricting to shift perturbations v in an anchor re-
gression model we still obtain invariance of the residuals

L
(
Y v − Xvβ

)
is the same for all v ∈ F,

where F is a subclass of shift perturbations; see Propo-
sition 4.1 and formula (4.2). We referred to this as the
F diluted causality (see Section 4.3.2) but we emphasize
here that it is a certain shift invariance.

Such invariances have interesting implications in terms
of interpretability and may lead to better insights in real
applications. Thus, even for cases where inferring causal-
ity is ill-posed and nonidentifiable, the invariance or di-
luted form of causality can provide more meaningful re-
sults and potentially contributes to an important aspect of
“interpretable machine learning”. We illustrate this point
also in Figure 12 but need to expand a bit more the fol-
lowing informal discussion.
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FIG. 11. Empirical α-quantiles of |Yout,i − Ŷout,i | for i = 1, . . . , nout = 2000, averaged over 100 independent simulation runs. Model (M2-discr)
with 3-fold amplification for Aout. The Anchor Boosting algorithm is always with γ = 7, with Random Forests (left) and with Linear Model +
Random Forests (right), and with the two stopping criteria from (5.4) (stop1) and (5.5) (stop2).

6.1 Stabilizing and Following up on Tukey (1954)

Our attempts with invariant prediction and anchor re-
gression can be seen in the light of stabilizing results
across perturbations. As Tukey (1954) writes:

“One of the major arguments for regression in-
stead of correlation is potential stability. We
are very sure that the correlation cannot re-
main the same over a wide range of situations,
but it is possible that the regression coefficient
might. We are seeking stability of our coeffi-

cients so that we can hope to give them theo-
retical significance.”

We go a step beyond and stabilize the notion of regression
association across perturbations, resulting in a further hi-
erarchical step from regression association to invariance
and eventually to causality as indicated in Figure 12. The
hierarchy is not strict and the figure only indicates a “typ-
ical” behavior and does not claim that invariance would
capture all useful definitions of causality. If we restrict
ourselves to a certain mathematical definition of causal-
ity in terms of for example, parents in directed acyclic

FIG. 12. Stabilizing associations between covariates X and a response Y . Marginal correlation of components of X with the response Y is a weak
notion; collecting all variables with a nonzero regression coefficient is often more informative as it measures the partial correlation of components
of X with Y . Under a faithfulness assumption, the causal* variables are a subset of the relevant regression variables (for the notation “causal*”, see
below). In between is the notion of invariance and the diluted form of causality: even when inferring causality is impossible, obtaining the variables
which satisfy invariance is often useful in many applications. The notation “causal*” emphasizes that not all notions of causality are included. As
written in the text, the figure is not valid in general but should serve as a line of thinking for stabilizing, related to the quotation above from Tukey
(1954).
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graphs from a structural equation model, then for a certain
class of perturbations with an autonomy property, and as-
suming a faithfulness property, the hierarchy in Figure 12
can be mathematically derived. But in general, the pic-
ture is not valid (not even for the step from correlation
to regression). In particular, not all notions of causality
are captured by invariance, especially when it comes to
heterogeneous, changing treatment effects where a form
of invariance might only be realistic under strong as-
sumptions. Nevertheless, we find it useful as a line of
thinking “geared towards causality” for stabilizing asso-
ciations across perturbations, including unseen manipula-
tions which might occur in new future data.

7. CONCLUSIONS

Causality can be phrased in terms of worst-case predic-
tion risk, see Section 2.3, showing that causal inference is
linked to a form of predictive robustness. The notion of (a
certain) invariance can be beneficially exploited for pre-
dictive robustness and hence also for causality. The invari-
ances themselves can be estimated from heterogeneous
data: heterogeneity is important and informative for in-
ferring invariances. The paper includes a review of recent
results, points to the R-packages InvariantCausal-
Prediction (Meinshausen, 2018b), nonlinearICP
(Heinze-Deml and Peters, 2017) and seqICP (Pfister and
Peters, 2017), and contributes some new developments for
nonlinear problems in Section 5.

Our contribution can be seen as dealing with “statis-
tics for perturbation (or heterogeneous) data”. Even when
causal inference is ill-posed, we show here some attempts
to obtain predictive robustness and more meaningful ap-
proaches than what is provided by standard regression or
curve fitting methodology.
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