
Statistical Science
2020, Vol. 35, No. 3, 434–436
https://doi.org/10.1214/20-STS797
Main article: https://doi.org/10.1214/19-STS721
© Institute of Mathematical Statistics, 2020
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Abstract. We sincerely thank Vanessa Didelez and Stefan Wager for their
insightful and inspiring comments. Their views and thoughts on the topic
of my article are of great value and truly contribute to put it into greater
perspective.
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Vanessa Didelez’s comments largely focus on Anchor
regression and causal regularization, except at the end
where she expresses her nice philosophical thoughts on
the definition of causality; Stefan Wager raises fundamen-
tal issues on heterogeneity, stability and external validity.
According to the alphabetical order of the discussants, we
first respond to Didelez and then to Wager.

1. CHOOSING THE AMOUNT OF CAUSAL
REGULARIZATION, AMPLIFICATION BIAS AND

SPECIFICATION OF ANCHORS

Didelez explains in a very clear way what Anchor re-
gression (Rothenhäusler et al., 2018) does and what it
doesn’t. I am repeating: she starts by considering the
problem whether one should adjust for anchors A (ordi-
nary least squares including A, OLS+A) or whether one
should project onto the linear span of A (two-stage least
squares, 2SLS); the other standard option is ordinary least
squares versus X only (OLS) and discarding the anchor
variables, perhaps most prevalent if the anchor A encodes
different sub-populations or environments but one treats
the data as homogeneous. Anchor regression includes all
of these options for different amount of causal regulariza-
tion: OLS+A with γ = 0, 2SLS with γ = ∞ and OLS
with γ = 1. Didelez nicely points out that there could
be amplification bias with OLS+A (γ = 0) depending
whether A is an instrument or a “not too severely invalid”
instrument.

An additional and often chosen approach is as follows.
The variables A would encode the first few principal com-
ponents of X, and hence A would not be exogenous:
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then OLS+A (γ = 0) is adjusting for these first princi-
pal components and aims to remove hidden confounding
bias in estimating the causal parameter β . This common
practice in applied statistics (e.g., Novembre et al., 2008)
can be justified under the assumption of “dense con-
founding” where the hidden variables H affect most of
the X components (Ćevid, Bühlmann and Meinshausen,
2018); see also closely related work by, for example,
Chandrasekaran, Parrilo and Willsky (2012), Shah et al.
(2018), Guo, Ćevid and Bühlmann (2020). The theoreti-
cal and methodological arguments are different since A is
now a proxy for the hidden latent confounder H , very dif-
ferent from a valid instrument and not exogenous. In ad-
dition, the data consists only of X and Y and there are no
heterogeneities. However, from an operational view point,
Anchor regression includes this procedure as well.

The nice exposition of Didelez and the example above
about adjustment with the few first principal components
illustrates that choosing the amount of causal regulariza-
tion, the parameter γ , depends very much on the under-
lying scenarios, namely the nature of the anchors and the
structure and quantitative relations among the underlying
variables. We have no fully satisfactory proposal yet for
choosing γ . As of today, we suggest the following:

(i) If the anchors are assumed to be exogenous, that
is we would have additional external information: then γ

is the strength of future perturbations we want to insure
against, in terms of prediction (see Theorem 4.1 in the
main article; essentially, γ is the factor of strength of fu-
ture perturbations relative to the observed heterogeneity
in the data).

(ii) If interested in prediction for new environments,
one may rely on leave environment out cross-validation
and optimize the worst-case prediction error on left-out
environments. This strategy implicitly assumes that the
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new unseen environment is “within the range of environ-
ments” we have observed in the data.

Both of these proposals rely on predictive aspects.

Reducing Variance

By good reasons, Didelez mentions issues with bias.
But even in well posed situations with valid instruments,
the 2SLS estimator has a very large or even infinite vari-
ance. In such a situation, Anchor regression with rela-
tively large values of γ will substantially reduce variance
at the expense of a (typically slight) increase of bias for
estimating the causal parameter β . Thus, even with valid
instruments, it pays off to do causal regularization for im-
proving the MSE of estimating the causal parameter β .
In fact, Anchor regression exactly corresponds to the K-
class estimators (Theil, 1958) which generalize and im-
prove over 2SLS; in fact, the latter has been an inven-
tion by the same scientist Theil (1953) a few years ear-
lier. Jakobsen and Peters (2020) provide new strategies
to choose the amount of causal regularization γ from the
perspective to optimize the MSE for estimating the causal
parameter β .

2. DIFFERENT INTERVENTION MODELS

Didelez nicely points out that the type of intervention
matters in terms of predictive aspects. Anchor regression
considers shift interventions: they are very different from
do-interventions. The former is perhaps better described
as a perturbation: it does not change the structural parts
of the system (the graph remains the same) but is shifting
the involved random variables. The latter is an interven-
tion which also changes the structure (the graph) accord-
ing to the truncation principle: it is a model with a rather
strong “decoupling” effect. The choice of the intervention
model matters, not only mathematically: one should ask
also here for what kind of application a certain model is a
reasonable approximation.

In contrast to Anchor regression, Invariant Causal Pre-
diction (Peters, Bühlmann and Meinshausen, 2016) works
for a large class of intervention models, but makes more
stringent assumptions that Y is not allowed to be directly
intervened on. There is a large territory for further exploit-
ing the characteristics and properties of different interven-
tion models.

3. EXTERNAL VALIDITY AND TRANSFER LEARNING

Wager provides very insightful comments on the poten-
tial outcomes framework. Indeed, it has many advantages:
for example, it does not require an i.i.d. sampling assump-
tion in general and each unit i may exhibit a probabilisti-
cally different treatment effect Y

(1)
i − Y

(0)
i on a response

of interest. As Wager points out, the potential outcomes

framework becomes cumbersome in the multivariate case
with many (treatment) variables.

Wager nicely phrases that the potential outcomes frame-
work strives for “well-defined weighted in-sample in-
study average treatment effects under minimal assump-
tions”. The invariance paradigm on the other hand nat-
urally leads to transfer learning and external validity as
discussed in the main article and also in other work
(Rojas-Carulla et al., 2018, Pfister et al., 2019). Under
some (strong) assumptions, the concepts of potential out-
comes, causality in structural equation models or also
the approach based on invariance or stability coincide
(Dawid and Didelez, 2010, Richardson and Robins, 2013,
Peters, Bühlmann and Meinshausen, 2016, Dawid, 2020).

Increased Replicability

Stability and invariance lead to better replicability and
external validity. Eventually, a scientific study is only
interesting if it generalizes to a new individual or unit
which was not included in the study. It is important to
improve the degree of replicability for new individu-
als arising from somewhat different (sub-) populations.
Such increased replicability, due to invariance or stabil-
ity, can be mathematically described and exploited on
real data: the diluted causal parameter β(γ → ∞) (Sec-
tion 4.3.2 in the main article) has such a replicability prop-
erty when the new population arises from shift perturba-
tions on the training population. The details are given in
Rothenhäusler et al. (2018), Section 3.1, Section 5.1, Fig-
ure 11. Of course, the direct causal parameter in a struc-
tural equation model is also replicable if the perturbation
generating the new environment does not affect the re-
sponse Y directly.

3.1 Heterogeneous Treatment Effects and the
California GAIN Study

Wager provides a very nice empirical illustration wit
the California GAIN study. The average treatment effects
(from the population outcomes framework) are not stable
over the different environments, which are in this context
the different counties. But when considering conditional
treatment effects, they appear to be stable. The conditional
treatment effect formulation can be brought into the per-
spective of the invariance framework as follows (and in-
deed, we haven’t highlighted this so far).

Consider an anchor regression type model:

Y ← T τ(X) + (1 − T )μ(X) + MY A + BY,HH + εY ,

X ← MXA + BX,HH + εX,

H ← MHA + εH ,

where T ∈ {0,1} is a binary treatment variable, τ(·) is
the direct conditional treatment effect function of the co-
variates, μ(·) is the conditional mean function of the co-
variates for the control (nontreated) cases, and A is an



436 P. BÜHLMANN

exogenous anchor, say encoding different environments.
This is the analogous model to the nonlinear anchor re-
gression model in equation (5.1) in the main article. We
could then use nonlinear Anchor regression to estimate a
“stabilized version” of τ(·) and μ(·), for example, with
a boosting-type optimization scheme and using causal
forests as weak learner (Wager and Athey, 2018). Such
an anchor regression approach would not rely on the as-
sumption that the treatment is randomized conditional
on the covariates. Instead, it uses the anchors to stabi-
lize and robustify against shift perturbations in order to
improve external validity; in the special case where A

is a valid instrument, a nonlinear IV technique leads to
the true causal conditional treatment effect function τ(·)
(when conditioning on X), even in presence of potential
unobserved confounding. We agree with Wager that much
more should be done to bring the notions of heterogene-
ity of covariates and invariance together in a fruitful way:
of course, as Didelez has pointed out, the issue of distin-
guishing anchors and covariates is very relevant here as
well, perhaps even more so.

4. WHAT IS CAUSALITY?

Didelez’ comments on “A Definition of Causality?” are
very well-thoughtout and inspiring, also from a philo-
sophical point of view! Highly recommended to read.
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