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Abstract

From observational data alone, a causal DAG is in general only identifiable up to Markov
equivalence. Interventional data generally improves identifiability; however, the gain of
an intervention strongly depends on the intervention target, i.e., the intervened variables.
We present active learning strategies calculating optimal interventions for two different
learning goals. The first one is a greedy approach using single-vertex interventions that
maximizes the number of edges that can be oriented after each intervention. The second
one yields in polynomial time a minimum set of targets of arbitrary size that guarantees full
identifiability. This second approach proves a conjecture of Eberhardt (2008) indicating
the number of unbounded intervention targets which is sufficient and in the worst case
necessary for full identifiability. We compare our two active learning approaches to random
interventions in a simulation study.

1 Introduction

Causal relationships between random variables
are usually modeled by directed acyclic graphs
(DAGs), where an arrow between two random
variables, X Y , reveals the former (X) as a di-
rect cause of the latter (Y ). From observational
data alone (i.e. passively observed data from the
undisturbed system), directed graphical mod-
els are only identifiable up to Markov equiva-
lence, and arrow directions (which are crucial
for the causal interpretation) are in general not
identifiable. Without the assumption of specific
functional model classes and error distributions
(Peters et al., 2011), the only way to improve
identifiability is to use interventional data for
estimation, i.e. data produced under a pertur-
bation of the system in which one or several
random variables are forced to specific values,
irrespective of the original causal parents.

The investigation of observational Markov
equivalence classes has a long tradition in the
literature (Verma and Pearl, 1990; Andersson
et al., 1997; Spirtes et al., 2000). In a recent
paper, Hauser and Bühlmann (2012) presented
a graph-theoretic characterization of interven-

tional Markov equivalence classes for a given
set of interventions (possibly affecting several
variables simultaneously). In this paper, we
present two active learning strategies for find-
ing valuable interventions: one that greedily
optimizes the number of orientable edges with
single-vertex interventions, and one that mini-
mizes the number of interventions at arbitrarily
many vertices to attain full identifiability.

Several approaches for actively learning
causal models have been proposed during the
last decade. Our method for finding interven-
tion targets of unbounded size is closely related
to the approach of Eberhardt (2008). In con-
trast to his procedure, our algorithm has a poly-
nomial time complexity; furthermore, we prove
his conjecture on the number of intervention
experiments sufficient and in the worst case
necessary for fully identifying a causal model.
He and Geng (2008) presented a method to find
a (nearly) minimal set of single-vertex interven-
tions which guarantee the orientability of all
undirected edges of an observational Markov
equivalence class. In contrast to their ap-
proach, we proceed in a greedy way which
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results in a smaller or at most equal num-
ber of single-vertex interventions to be per-
formed. Tong and Koller (2001) finally pro-
posed a Bayesian active learning strategy that
minimizes an expected loss, in contrast to our
frequentist methods.

This paper is organized as follows: in Sect. 2,
we specify our notation of causal models and
formalize our learning goals. In Sect. 3, we
summarize graph-theoretic background mate-
rial upon which our active learning algorithms,
presented in Sect. 4, are based. In Sect. 5, we
evaluate our algorithms in a simulation study.

2 Model

2.1 Causal Calculus

We consider a causal model on p random vari-
ables (X1, . . . , Xp) described by a DAG D.
Formally, a causal model is a pair (D, f),
where D is a DAG on the vertex set [p] :=
{1, . . . , p} which encodes the Markov prop-
erty of the (observational) density f : f(x) =∏p
i=1 f(xi | xpaD(i)); paD(i) denotes the parent

set of vertex i (see also Sect. 3). Unless stated
otherwise, all graphs in this paper are assumed
to have the vertex set [p].

Beside the conditional independence relations
of the observational density implied by the
Markov property, a causal model also makes
statements about effects of interventions. We
consider stochastic interventions (Korb et
al., 2004) modeling the effect of setting or forc-
ing one or several random variables XI :=
(Xi)i∈I , where I ⊂ [p] is called the interven-
tion target, to the value of independent ran-
dom variables UI . Extending the do() operator
(Pearl, 1995) to stochastic interventions, we de-
note the interventional density of X under
such an intervention by

f(x|doD(XI =UI)) :=
∏
i/∈I
f(xi|xpaD(i))

∏
i∈I
f̃(xi),

where f̃ is the density of UI on XI . By de-
noting with I = ∅ and using the convention
f(x| do(X∅ = U∅)) = f(x), we also encompass
the observational case as an intervention target.
The interventional density f(x|doD(XI = UI))

has the Markov property of the intervention
graph D(I), the DAG that we get from D by
removing all arrows pointing to vertices in I.

We consider experiments based on datasets
originating from multiple interventions. The
family of targets I ⊂ P([p]), where P([p])
denotes the power set of [p], lists all (distinct)
intervention targets used in an experiment. A
family of targets I = {∅, {3}, {1, 4}} e.g. char-
acterizes an experiment in which observational
data as well as data originating from an inter-
vention at X3 and data originating from a (si-
multaneous) intervention atX1 andX4 are mea-
sured. In the whole paper, I always stands for
a family of targets with the property that for
each vertex a ∈ [p], there is some target I ∈ I
in which a is not intervened (a /∈ I). This is
e.g. the case when observational data is avail-
able (∅ ∈ I). Two DAGs D1 and D2 are called
I-Markov equivalent (D1 ∼I D2) if they are
statistically indistinguishable under an experi-
ment consisting of interventions at the targets
in I; we refer to Hauser and Bühlmann (2012)
for a more formal treatment.

Theorem 1 (Hauser and Bühlmann (2012)).
Two DAGs D1 and D2 are I-Markov equivalent
if and only if
(i) D1 and D2 have the same skeleton and the
same v-structures (that is, induced subgraphs of
the form a b c), and
(ii) D(I)

1 and D
(I)
2 have the same skeleton for

all I ∈ I.

An I-Markov equivalence class of a DAG D is
uniquely represented by its I-essential graph
EI(D) (Hauser and Bühlmann, 2012). This
partially directed graph has the same skeleton
as D; a directed edge in EI(D) represents I-
essential arrows, i.e. arrows that have the same
orientation in all DAGs of the equivalence class;
an undirected edge represents arrows that have
different orientations in different DAGs of the
equivalence class. The concept of I-essential
graphs generalizes the one of CPDAGs which is
well-known in the observational case (Spirtes et
al., 2000; Andersson et al., 1997). We denote
the I-Markov equivalence class corresponding
to an I-essential graph G by D(G).
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124



2.2 Active Learning

Assume G is an I-essential graph estimated
from interventional data produced under the
different interventions in I. We consider two
different greedy active learning approaches. In
one step, the first one computes a single-vertex
intervention that maximizes the number of ori-
entable edges, while the second one computes an
intervention target of arbitrary size that max-
imally reduces the clique number, i.e. the size
of the largest clique of undirected edges (see
Sect. 3). The motivation for the first approach
is the attempt to quickly improve the identifi-
ability of causal models with interventions at
few variables; the motivation for the second ap-
proach is the conjecture of Eberhardt (2008)
(which we prove in Cor. 2) stating that max-
imally reducing the clique number after each
intervention yields full identifiability of causal
models with a minimal number of interventions.

Formally, our two algorithms yield a solution
to the following problems. The first one, called
OptSingle, computes a vertex

v = arg min
v′∈[p]

max
D∈D(G)

ξ
(EI∪{{v′}}(D)

)
, (1)

where ξ(H) denotes the number of undirected
edges in a graph H. The second algorithm,
called OptUnb, computes a set

I = arg min
I′⊂[p]

max
D∈D(G)

ω
(EI∪{I′}(D)

)
, (2)

where ω(H) denotes the clique number of H
(see also Sect. 3). The key ingredients for the
efficiency of OptSingle (Alg. 2) and OptUnb
(Alg. 3) are implementations that minimize the
objective functions of Eq. (1) and (2), resp.,
without enumerating all DAGs in the equiv-
alence class represented by G. Graph theo-
retic results upon which our implementations
are based are summarized in the next section.

3 Graph Theoretic Background

A graph is a pair G = (V,E), where V is a
set of vertices and E ⊂ (V × V ) \ {(a, a)|a ∈
V } is a set of edges. We always assume V =
[p] := {1, 2, . . . , p} and let the vertices of a graph
represent the p random variables X1, . . . , Xp.

An edge (a, b) ∈ E with (b, a) ∈ E is called
undirected and denoted by a b, whereas an
edge (a, b) ∈ E with (b, a) /∈ E is called di-
rected and denoted by a b. G is called di-
rected if all its edges are directed (or undirected,
resp.). A cycle of length k ≥ 2 is a sequence of k
distinct vertices of the form (a0, a1, . . . , ak = a0)
such that (ai−1, ai) ∈ E for i ∈ {1, . . . , k}; the
cycle is directed if at least one edge is directed.

For a subset A ⊂ V of the vertices of G, the
induced subgraph on A is G[A] := (A,E[A]),
where E[A] := E∩(A×A). A v-structure is an
induced subgraph of G of the form a b c.
The skeleton of a graph G is the undirected
graph Gu := (V,Eu), Eu := E∪{(a, b) | (b, a) ∈
E}. The parents of a vertex a ∈ V are the ver-
tices paG(a) := {b ∈ V | b a ∈ G}, its neigh-
bors are the vertices neG(a) := {b ∈ V | a b ∈
G}; the degree of a is defined as deg(a) :=
|{b ∈ V | (a, b) ∈ E ∨ (b, a) ∈ E}|, the maxi-
mum degree of G is ∆(G) := maxa∈V deg(a).

An undirected graph G = (V,E) is complete
if all pairs of vertices are neighbors. A clique
is a subset of vertices C ⊂ V such that G[C]
is complete. The clique number ω(G) of G is
the size of the largest clique in G. G is chordal
if every cycle of length k ≥ 4 contains a chord,
i.e. two nonconsecutive adjacent vertices.

A directed acyclic graph or DAG is a
directed graph without cycles. A partially di-
rected graph G = (V,E) is a chain graph if
it contains no directed cycle; undirected graphs
and DAGs are special cases of chain graphs. Let
G′ be the undirected graph we get by removing
all directed edges from a chain graph G. The
chain component TG(a) of a vertex a is the
set of all vertices that are connected to a in G′.
The set of all chain components of G is denoted
by T(G); they form a partition of V . We ex-
tend the clique number to chain graphs G by
the definition ω(G) := maxT∈T(G) ω(G[T ]).

An ordering of a graph G, i.e. a permu-
tation σ : [p] → [p], induces a total order
on V by the definition a ≤σ b :⇔ σ−1(a) ≤
σ−1(b). An ordering σ = (v1, . . . , vp) is a per-
fect elimination ordering or PEO if for all i,
neGu ∩{v1, . . . , vi−1} is a clique in Gu. A topo-
logical ordering or TO of a DAG D is an
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Input : G = ([p], E): undirected graph;
σ = (v1, . . . , vp): ordering of G.

Output: A proper coloring c : [p]→ N
c(v1)← 1;
for i = 2 to p do

c(vi)← min{k ∈ N | k 6= c(u) ∀ u ∈
{v1, . . . , vi−1} ∩ ne(vi)};

return c;

Algorithm 1: GreedyColoring(G, σ).
Greedy algorithm that yields a proper
coloring of G along an ordering σ.

ordering σ such that a ≤σ b for each arrow
a b ∈ D; we then say that D is oriented
according to σ.

For the rest of this section, let G = (V,E)
be an undirected graph. We consider a variant
of the breadth-first search (BFS) called lexico-
graphic BFS or LexBFS (Rose, 1970) that
takes an ordering (v1, . . . , vp) of V and the edge
set E as input and that outputs an ordering
σ = LexBFS((v1, . . . , vp), E) listing the ver-
tices of V in the visited order. If {v1, . . . , vk}
is a clique, σ also starts with v1, . . . , vk; we
refer to Hauser and Bühlmann (2012) for de-
tails of such an implementation. For a set
A = {a1, . . . , ak} ⊂ V and an additional ver-
tex v ∈ V \ A, e.g., we use the notation
LexBFS((A, v, . . .), E) to denote a LexBFS-
ordering produced from a start order of the form
(a1, . . . , ak, v, . . .), without specifying the order-
ings of A and V \ (A ∪ {v}).
Proposition 1 (Rose et al. (1976)). Let G =
(V,E) be an undirected chordal graph with a
LexBFS-ordering σ. Then σ is also a PEO
on G. By orienting the edges of G according to
σ, we get a DAG without v-structures.

Alg. 3 is strongly based on graph colorings. A
k-coloring of G is a map c : V → [k]; the col-
oring c is proper if c(u) 6= c(v) for every edge
u v ∈ G. We say that G is k-colorable if
it admits a proper k-coloring; the chromatic
number χ(G) of G is the smallest integer k
such that G is k-colorable. By greedily color-
ing the vertices of the graph (see Alg. 1), one
gets a proper k-coloring with k ≤ ∆(G) + 1 in
polynomial time (Chvátal, 1984).

For any undirected graph G, the bounds

ω(G) ≤ χ(G) ≤ ∆(G) + 1 hold. G is perfect
if ω(H) = χ(H) holds for every induced sub-
graph H of G. An ordering σ of G is perfect
if for any induced subgraph H of G, greedy col-
oring along the ordering induced by σ yields an
optimal coloring of H (i.e., a χ(H)-coloring).

Proposition 2 (Chvátal (1984)). An ordering
σ of an undirected graph G is perfect if and only
if G has no induced subgraph of the form a
b c d with a <σ b and d <σ c.

It can easily be seen that a PEO fulfills the
requirement of Prop. 2; hence we get, together
with Prop. 1, the following corollary.

Corollary 1. (i) A perfect elimination order-
ing on some graph G is perfect.
(ii) Any chordal graph has a perfect ordering.

Proposition 3 (Chvátal (1984)). A graph with
a perfect ordering is perfect.

4 Optimal Intervention Targets

An I-essential graph is a chain graph with
chordal chain components. Their edges are ori-
ented according to a PEO in the DAGs of the
corresponding equivalence class; edge orienta-
tions of different chain components do not in-
fluence (i.e., additionally restrict) each other
(Hauser and Bühlmann (2012), Thm. 18 and
Prop. 16). We can thus restrict our search
for optimal intervention targets to single chain
components. We can even treat each chain com-
ponent as an observational essential graph, as
the following lemma shows; we skip a formal
proof which is rather simple, but technical.

Lemma 1. Consider an I-essential graph
EI(D) of some DAG D, and let T ∈ T(EI(D)).
Furthermore, let I ⊂ [p], I /∈ I, be an (addi-
tional) intervention target. Then we have

EI∪{I}(D)[T ] = E{∅,I∩T}(D[T ]) .

4.1 Single-vertex Interventions

We start with the treatment of the first active
learning approach mentioned in Sect. 2.2. By
virtue of the following lemma, the maximum in
Eq. (1) can be calculated without enumerating
all representative DAGs. The lemma easily fol-
lows from Thm. 1; we skip the proof.
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Lemma 2. Let G be an I-essential graph, and
let v ∈ [p]. Assume D1 and D2 ∈ D(G)
such that {a ∈ neG(v) | a v ∈ D1} =
{a ∈ neG(v) | a v ∈ D2} = C. Then we
have D1 ∼I′ D2 under the family of targets
I ′ = I ∪ {{v}}.

The next proposition states that every clique
in neG(v) is an admissible set C in the sense
of Lem. 2 and vice versa. Algorithmically, a
DAG D as described in Prop. 4 can be con-
structed with LexBFS; this motivates Alg. 2
which yields a solution of Eq. (1).

Proposition 4 (Andersson et al. (1997)). Let
G be an undirected chordal graph, a ∈ [p] and
C ⊂ neG(a). There is a DAG D ⊂ G with
Du = G and {b ∈ ne(a) | b a ∈ D} = C which
is oriented according to a PEO if and only if C
is a clique.

4.2 Interventions at Targets of
Arbitrary Size

We now proceed to the solution of Eq. (2). The
following proposition, which was already con-
jectured by Eberhardt (2008), shows that the
minimum in Eq. (2) only depends on the clique
number of G:

min
I′⊂[p]

max
D∈D(G)

ω
(EI∪{I′}(D)

)
= dω(G)/2e.

Input : G = ([p], E): I-essential graph.
Output: An optimal intervention vertex v ∈ [p], or

∅ if G only has directed edges.
vopt ← 0; ηopt ← 0;
for v = 1 to p do

ηmin ← p2;
foreach clique C ⊂ neG(v) do

σ ← LexBFS((C, v, . . .)), E[TG(v)]);
D ← DAG with skeleton G, topological
ordering σ;
G′ ← E{∅,{v}}(D);
η ← number of arrows in G′;
if η < ηmin then ηmin ← η;

if p2 > ηmin > ηopt then
(vopt, ηopt)← (vopt, ηmin);

if vopt 6= 0 then return vopt;
else return ∅;

Algorithm 2: OptSingle(G): yields a solu-
tion of Eq. (1).

Proposition 5. Let G be an undirected, con-
nected, chordal graph on the vertex set V = [p];
such a graph is an observational essential graph.
(i) There is an intervention target I ⊂ V such
that for every DAG D ∈ D(G), we have

ω(E{∅,I}(D)) ≤ dω(G)/2e .
(ii) For every intervention target I ⊂ [p] there
is a DAG D ∈ D(G) such that

ω(E{∅,I}(D)) ≥ dω(G)/2e .
Proof. (i) Since G is chordal, we have χ(G) =
ω(G) by Cor. 1(ii) and Prop. 3. Let c : V →
[ω(G)] be a proper coloring of G. Define I :=
c−1([h]) for h := dω(G)/2e. With an interven-
tion at the target I, at most the edges of G[I]
and G[V \ I] are unorientable for any causal
structure D ∈ D(G) under the family of tar-
gets I := {∅, I}. Therefore the bound

ω(EI(D)) ≤ max{ω(G[I]), ω(G[V \ I])}
holds for every D ∈ D(G). It remains to show
that both of these terms are bounded by h.

The induced subgraph G[I] is also perfect,
and c|I is a proper h-coloring of G[I]. Hence
we have ω(G[I]) = χ(G[I]) ≤ h. Analogously,
c|V \I is a proper (ω(G)−h)-coloring of G[V \I],
hence we have ω(G[V \ I]) = χ(G[V \ I]) ≤
ω(G)− h ≤ h by definition of h.
(ii) Let C be a maximum clique in G, and
define C ∩ I =: {v1, . . . , vk} and C \ I =:
{vk+1, . . . , vω}. The LexBFS-ordering σ :=
LexBFS((v1, . . . , vω, . . .), E) starts with the
vertices v1, . . . , vω. Set I := {∅, I} and let
D ∈ D(G) be oriented according to σ.

We claim that the arrows in D[C ∩ I]
and in D[C \ I] are not I-essential in D. For
vi, vj ∈ C∩I (i < j), consider the ordering σ′ :=
LexBFS((v1, . . . , vj , . . . , vi, . . . , vω, . . .), E),
and D′ ∈ D(G) which is obtained by orienting
the edges of G according to σ′. We then have
D′ ∼I D:
• D and D′ obviously have the same skeleton,

and both have no v-structures.
• D(I) and D′(I) have the same skeleton be-

cause all arrows between a vertex a ∈ I and
another one b /∈ I point away from a.
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Input : G = ([p], E): essential graph.
Output: An optimal intervention target I ⊂ [p].
I ← ∅;
foreach T ∈ T(G) do

σ ← LexBFS(T,E[T ]);
c← GreedyColoring(G[T ], σ);
ω ← maxv∈[p] c(v); h← dω/2e;
I ← I ∪ c−1([h]);

return I;

Algorithm 3: OptUnb(G): yields a solution
of Eq. (2); time complexity is O(p+ |E|).

For vi, vj ∈ C \ I, the argument is analogous,
which proves the claim.
EI(D) contains the cliques C ∩ I and C \ I

of size k and ω(G) − k though. The fact that
max{k, ω(G) − k} ≥ dω(G)/2e completes the
proof.

The constructive proof shows that a mini-
mizer I of Eq. (2) can be generated by means of
an optimal coloring which we can get by greedy
coloring along a LexBFS-ordering (see Prop. 1
and Cor. 1); this justifies Alg. 3.

Since an I-essential graph has only one rep-
resentative DAG if and only if its clique num-
ber is 1, a direct consequence of Prop. 5 is a
(sharp) upper bound on the number of interven-
tions necessary to fully identify a causal model,
as it was conjectured by Eberhardt (2008).

Corollary 2. Let G be the an I-essential graph.
There is a set of k = dlog2(ω(G))e intervention
targets I1, . . . , Ik which are sufficient and in the
worst case necessary to make the causal struc-
ture fully identifiable:

EI∪{I1,...,Ik}(D) = D ∀ D ∈ D(G).

The intervention targets I1, . . . , Ik of Cor. 2
can be constructed by iteratively running Alg. 3
on G = EI(D), EI∪{I1}(D), EI∪{I1,I2}(D) etc.
However, they could also be constructed at once
by a modification of Alg. 3. Let c : [p]→ [ω(G)]
be a function such that for each chain com-
ponent T ∈ T(G), c|T is a proper coloring of
G[T ]. By defining Ij as the set of all vertices
whose color has a 1 in the jth position of its bi-
nary representation, we make sure that for ev-
ery pair of neighboring vertices u and v, there

(a)

1 2 3

4

5 6

7
8

9
10

(b)

1 2 3

4

5 6

7
8

9
10

Figure 1: Observational essential graph (a) and
a representative (b).

is at least one j such that |{u, v} ∩ Ij | = 1;
hence the edge between u and v is orientable
in EI∪{I1,...,Ik}(D). Since the binary representa-
tion of ω(G), the largest color in c, has length
k = dlog2(ω(G))e, this procedure creates a set
of k intervention targets that fulfill the require-
ments of Cor. 2.

The problem of finding intervention targets
to fully identify a causal model is related to
the problem of finding separating systems of
the chain components of essential graphs (Eber-
hardt, 2007). A separating system of an
undirected graphG = (V,E) is a subset F of the
powerset of V such that for each edge a b ∈ G,
there is a set F ∈ F with |F ∩ {a, b}| = 1.
Cai (1984) has shown that the minimum sep-
arating system of a graph G has cardinality
dlog2(χ(G))e; this also proves Cor. 2. The
proof of Cai (1984) uses arguments similar to
ours given in the paragraph above for the non-
iterative determination of the targets I1, . . . , Ik
of Cor. 2.

4.3 Discussion

LexBFS and GreedyColoring have a time
complexity of O(p + |E|) when executed on a
graph G = ([p], E). Thus, OptUnb (Alg. 3)
also has a linear complexity.1 The time com-
plexity of OptSingle (Alg. 2) on the other
hand depends on the size of the largest clique
in the I-essential graph G. By restrict-
ing OptSingle to I-essential graphs with a
bounded degree, its complexity is polynomial in
p; otherwise, it is in the worst case exponential.

We emphasize that our two active learning
algorithms do not optimize the same objective;
OptUnb does not guarantee maximal identifi-
ability after each intervention, and OptSingle

1In contrast, finding a minimum separating set on
non-chordal graphs is NP-complete (Cai, 1984).
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does not guarantee a minimal number of single-
vertex interventions to full identifiability. Con-
sider e.g. the (observational) essential graph in
Fig. 1(a). It is not hard to see that all its rep-
resentatives are fully identifiable after at most
two single-vertex interventions: the first inter-
vention should be performed at vertex 3, the
second one either at vertex 2 or 6. If the DAG
in Fig. 1(b) represents the true causal model,
however, OptSingle will need three steps to
full identifiability; it will iteratively propose in-
terventions at targets 6, 3 and 2.

In general, OptUnb does not yield an in-
tervention target of minimal size. With two
straightforward improvements, we could reduce
the number of intervened vertices: first, we
could take h ← bω/2c instead of h ← dω/2e
in Alg. 3; the proof of Prop. 5 is also valid with
this choice. Second, we could permute the col-
ors produced by the greedy coloring such that
|c−1({1})| ≤ |c−1({2})| ≤ . . .. However, since
an optimal coloring of a graph is not unique, not
even up to permutation of colors, these heuristic
improvements would still not guarantee a min-
imal intervention target with the properties re-
quired in Prop. 5.

5 Experimental evaluation

We evaluated Alg. 2 and 3 in a simulation study
on 4000 randomly generated causal models with
vertex numbers p ∈ {10, 20, 30, 40}.
5.1 Methods

We compared four active learning approaches:
our two algorithms OptSingle and OptUnb,
a purely random proposition of single-vertex in-
terventions (denoted by Rand), and a slightly
advanced random approach that randomly
chooses any vertex which has at least one inci-
dent undirected edge (denoted by RandAdv).
To measure the quality of the proposed inter-
ventions, we evaluated the algorithms together
with an “oracle estimator”, that is, an algorithm
that yields the true I-essential graph of some
DAG. This corresponds to model estimation in
the limit of infinite sample sizes.

For each vertex number p = {10, 20, 30, 40},
we randomly generated 1000 DAGs with a bi-

nomial distribution of vertex degrees, having an
expected degree of 3. Starting from the obser-
vational essential graph, we iteratively included
the intervention targets proposed by the active
learning algorithms. We defined the “survival
time” of a DAG as the number of active learning
steps needed for full identifiability, measured in
intervention targets (T ) or intervened variables
(V ). If a DAG was fully identifiable e.g. un-
der the family I = {∅, {1, 4}, {3}}, we counted
T = 2 (non-empty) targets and V = 3 variables.
For each vertex number and algorithm, we es-
timated the “survival function”, i.e. the proba-
bility ST (t) := P [T > t] or SV (v) := P [V > v],
resp., with a Kaplan-Meier estimator (Kaplan
and Meier, 1958).

5.2 Results

Fig. 2 shows the estimated survival functions
of the active learning algorithms. Rand
was clearly beaten by all competitors, and
OptUnb dominated all other strategies in
terms of intervention targets. However, if
we measure the number of intervened ver-
tices, OptUnb was even slightly worse than
RandAdv. OptSingle gave a significant im-
provement over RandAdv; however, the step
from Rand to RandAdv is much larger than
from Rand to OptSingle.

When essential graphs are not given by an
oracle, but estimated from finite samples with
e.g. Greedy Interventional Equivalence Search
(Hauser and Bühlmann, 2012), the convergence
to the true model is slower due to estimation
errors. Performance differences e.g. between
RandAdv and OptSingle vanish for small
sample sizes (data not shown).

6 Conclusion

We developed two algorithms which propose op-
timal intervention targets: one that finds the
single-vertex intervention which maximally in-
creases the number of orientable edges (called
OptSingle), and one that maximally reduces
the clique number of the non-orientable edges
with an intervention at arbitrarily many vari-
ables (called OptUnb). We proved a conjecture
of Eberhardt (2008) concerning the number of

PGM’12: Two optimal strategies for active learning of causal models from interventions
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Figure 2: Number of intervention steps needed for full identifiability of DAGs, measured in targets
(T ) or intervened variables (V ); for algorithms proposing only single-vertex interventions, both
numbers are the same. Thin lines: Kaplan-Meier estimates; colored bands: 95% confidence region.

interventions sufficient and in the worst case
necessary for fully identifying a causal model
by showing that the OptUnb yields, when ap-
plied iteratively, a minimum set of intervention
targets that guarantee full identifiability.

In a simulation study, we showed that both
algorithms lead significantly faster to full iden-
tifiability than randomly chosen interventions.
If we count the total number of intervened
variables, however, OptUnb performed slightly
worse than a random approach. This illus-
trates the fact that sequentially intervening sin-
gle variables yields in general more identifiabil-
ity that intervening those variables simultane-
ously.
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