Bagging, Subagging and Bragging for Improving some Prediction
Algorithms

Peter Biihlmann
Seminar fiir Statistik, ETH Ziirich, CH-8092 Ziirich, Switzerland

Bagging (bootstrap aggregating), proposed by Breiman [1], is a method to improve the
predictive power of some special estimators or algorithms such as regression or classifica-
tion trees. First, we review a recently developed theory explaining why bagging decision
trees, or also the subagging (subsample aggregating) variant, yields smooth decisions,
reducing the variance and mean squared error. We then propose bragging (bootstrap
robust aggregating) as a new version of bagging which, in contrast to bagging, is em-
pirically demonstrated to improve also the MARS algorithm which itself already yields
continuous function estimates. Finally, bagging is demonstrated as a “module” in con-
junction with boosting for an example about tumor classification using microarray gene
expressions.

1. Introduction

Bagging [1], a sobriquet for bootstrap aggregating, is a method for improving unstable
estimation or classification schemes. It is very useful for large, high dimensional data set
problems where finding a good model or classifier is difficult.

Breiman [1] motivated bagging as a variance reduction technique for a given basis algo-
rithm (i.e. an estimator) such as decision trees or a method that does variable selection
and fitting in a linear model. It has attracted much attention and is quite frequently
applied, although theoretical insights have been lacking until very recently [4-6]. We
present here parts of a theory from Biithlmann and Yu [4], indicating that bagging is a
smoothing operation which turns out to be advantageous when aiming to improve the
predictive performance of regression or classification trees. In case of regression trees, this
theory confirms Breiman’s intuition that bagging is a variance reduction technique, reduc-
ing also the mean squared error (MSE). The same also holds for subagging (subsample
aggregating) which is a computationally cheaper version than bagging. However, for
other “complex” basis algorithms, the variance and MSE reduction effect of bagging is
not necessarily true; this has also been shown by Buja and Stuetzle [5] in the simpler case
where the estimator is a U-statistics.

Moreover, we propose bragging (bootstrap robust aggregating) as a simple, yet new
modification which improves an estimation procedure not necessarily because of its smooth-
ing effects but also due to averaging over unstable selection of variables or terms in complex
models or algorithms; empirical examples are given for bragging MARS, where bagging
is often not a useful device, whereas bragging turns out to be effective.



Bagging can also be useful as a “module” in other algorithms: BagBoosting [3] is a
boosting algorithm [8] with a bagged learner, often a bagged regression tree. From our
theory it will become evident that BagBoosting using bagged regression trees, which have
smaller MSEs than trees, is better than boosting with regression trees. We demonstrate
improvements of BagBoosting over boosting for a problem about tumor classification
using microarray gene expression predictors.

2. Bagging and Subagging

Consider the regression or classification setting. The data is given as i.i.d. pairs
(X;,Y;) (i =1,...,n), where X; € R? denotes the d-dimensional predictor variable and
Y; € R (regression) or Y; € {0,1,...,J — 1} (classification with J classes). The goal is
function estimation and the target function is usually E[Y|X = z| for regression or the
multivariate function P[Y = j|X =z] (j =1,...,J — 1) for classification. We denote in
the sequel a function estimator, which is the outcome from a given basis algorithm, by

0,(-) = hn((X1, Y1), ..., (X0, Y))() : R =R,

defined by the function A, (-). Examples of such estimators include linear regression with
variable selection, regression trees such as CART [2] or MARS [9].

Definition 1 (Bagging). Theoretically, bagging is defined as follows.

(I) Construct a bootstrap sample (X7,Y7),..., (X, Y) by random drawing n times

n>-n

with replacement from the data (X1,Y1), ..., (X, Ys).

(1) Compute the bootstrapped estimator é;';() by the plug-in principle:
0;() = hn((Xik’ Yl*)> SRR (X;:, er))()

(II1) The bagged estimator is Op.pay(-) = E*[0%(-)].

In practice, the bootstrap expectation in (III) is implemented by Monte Carlo: for every
bootstrap simulation b € {1, ..., B} from (I), we compute 6:°(-) (b=1,..., B) as in (II)
to approximate

A~

On;Bag (") ~ B~ Z é:zb() (1)

The number B is often chosen as 50 or 100, depending on sample size and on the computa-
tional cost to evaluate the estimator 6,(-). The theoretical quantity in (IIT) corresponds
to B = oo: the finite number B in practice governs the accuracy of the Monte Carlo
approximation but otherwise, it shouldn’t be viewed as a tuning parameter for bagging.

This is exactly Breiman’s [1] definition for bagging regression estimators 8, (-). For
classification, we propose to average the bootstrapped probabilities HA;;”]() = ]f’*[Y*b =
jIX=:1(@G=0,...,J —1) yielding an estimator for IP[Y" = j|X = -] , whereas Breiman
[1] proposed to vote among classifiers for constructing the bagged classifier.



A trivial equality indicates the somewhat unusual approach of using the bootstrap
methodology:

Busag () = 0 () + (E7[0;,()] = 0u(-)) = 0a(-) + Bias}, (),

where Bias®(-) is the usual bootstrap bias estimate of 6,(-). Instead of the usual bias
correction with a negative sign, bagging comes along with the wrong sign and adds the
bootstrap bias estimate. Thus, we would expect that bagging has a higher bias than 9n(),
which we will argue to be true in some sense. But according to the usual interplay between
bias and variance in nonparametric statistics, the hope is to gain more by reducing the
variance than increasing the bias so that overall, bagging would pay-off in terms of the
MSE. Again, this hope turns out to be true for some basis algorithms (or estimation
methods). In fact, Breiman [1] describes heuristically the performance of bagging as
follows. The variance of the bagged estimator én; Bag(+) is equal or smaller than that for
the original estimator én(), and there can be a drastic variance reduction if the original
estimator is “unstable”.

Breiman [1] only gives a heuristic definition of instability. Biihlmann and Yu [4] define
the following asymptotic notion of instability.

Definition 2 (Stability of an estimator). An estimator 0, () is called stable at = if
On(x) = 0(z) + op(1) (n — o0) for some fized value 6(z).

Although this definition resembles very much the one for consistency, it is different in
spirit since the value (z) here is only a stable limit and not necessarily the parameter
of interest. Instability thus takes place whenever the procedure 9n() is not converging to
a fixed value: other realizations from the data generating distribution (even for infinite
sample size) would produce a different value of the procedure, with positive probability.

2.1. Unstable estimators with hard decision indicator

Instability often occurs when hard decisions with indicator functions are involved as in
regression or classification trees. One of the main underlying ideas why bagging works
can be demonstrated with a simple example.

2.1.1. Toy example: a simple, instructive analysis
Consider the estimator

where Y,, = n 1 Y, Y; (no predictor variables X; are used for this example). The target
we have in mind is 0(z) = lim,_,o E[f, (z)]. If we take the view of fixed z, after a proper
scaling, a simple yet precise analysis below shows that bagging is a smoothing operation.
Due to the central limit theorem we have

n'2(Vy — 1) =p N(0,0%) (n = ) (3)
with u = E[Y;] and 02 = Var(Y}). Then, for z in a n~'/2-neighborhood of ,

z = z,(c) = p+ con” 2, (4)



we have the distributional approximation
b (2,(c)) =D 9(Z) = Liz<g (n — o0), Z ~ N(0,1). (5)

Obviously, for a fixed ¢, this is a hard decision function of Z. Denoting by ®(-) the c.d.f.
of a standard normal distribution, it follows that

E[f,(z,(c))] = P[Z < ¢] = ®(c) (n — ),
Var(f, (zn(c))) = ®(c)(1 — B(c)) (n — o). (6)
Since the variance does not converge to zero, 6, (z,(c)) is unstable in the sense of Definition

2: the predictor takes the values 0 and 1 with a positive probability, even as n tends to
infinity. On the other hand, averaging for the bagged estimator looks as follows:

én;Bag(fn(C)) = E*[l[?’;qn(c)]] =E*[1[n1/2(?;_7n)/agn1/2(zn(c)—?n)/a]]
= ®(n'"?(za(c) = Yn)) +op(1)
—p GBag(Z) = P®(c— Z) (n — o0), Z ~N(0,1), (7)

where the first approximation (second line) follows because the bootstrap works for the
arithmetic mean Y, i.e.,

sup [P*[n'(Y,, — Y,,) < a] = P[n'?(Y, — p) < 2] = 0p(1) (n — o0), (8)
T€ER

and the second approximation (third line in (7)) holds, because of (3) and the definition
of z,,(c) in (4). Comparing with (5), bagging produces a soft decision function of Z: it is
a shifted inverse probit, similar to a sigmoid-type function. Figure 1 illustrates the two
functions g(-) and gpe,(-). We see that bagging is a smoothing operation. The amount
of smoothing is determined “automatically” and turns out to be very reasonable (we
are not claiming any optimality here). The effect of smoothing is that bagging reduces

plug-in with indicator
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Figure 1. Indicator estimator from (2) at = ,(0) as in (4). Function g(z) = 1<

(solid line) and gp,q(2) (dotted line) defining the asymptotics of the estimator in (5) nd
its bagged version in (7).



variance due to a soft- instead of a hard-thresholding operation. An instructive case is

with z = z,(0) = py, i.e., x is exactly at the most unstable location, where Var(6,(z)) is
maximal. Formula (7) gives

On:5(2,(0)) =p ®(—Z) = U, U ~ Uniform([0, 1]).

Thus,

E[0,.5(2,(0))] = E[U] = 1/2 (n — o)

A

Var(0,,.5(2,(0))) = Var(U) = 1/12 (n — o0).

Comparing with (6), bagging is asymptotically unbiased (for the asymptotic parameter
limy, o0 [0, (2,,(0))] = ®(0) = 1/2), but the asymptotic variance is reduced by a factor 3!

More generally, we can compute the first two asymptotic moments in the unstable region
with z = x,,(c). Denote the convolution of g; and g, by g1 * g2(-) = [ 01(- — ¥)g2(y)dy,
and the standard normal density by ¢(-).

variance squared bias
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Figure 2. Indicator estimator from (2) at x = z,(c) as in (4). Asymptotic variance,
squared bias and mean squared error (AMSE) (the target is lim,_,.,E[f,(z)]) for the
estimator 6, (z,(c)) from (2) (solid line) and for the bagged estimator f,,.(z,(c)) (dotted
line) as a function of c.

Corollary 1 For the estimator in (2) with x = x,(c) as in formula (4),

(i) limn%wE[én(fnn(c))] = ®(c),
lim,, o, Var(6,(z,(c))) = ®(c)(1 — ®(c)).



(i6) limy oo B[ (20 (c))] = @ * (c),
limy, 00 Var(On.5(xn(c))) = ®2 * p(c) — (@ * p(c))?.

Proof: Assertion (i) is restating (6). Assertion (ii) follows by (7) together with the
boundedness of the function gp,,(-) therein. O

Numerical evaluations of these first two asymptotic moments and the mean squared
error (MSE) are given in Figure 2. We see that in the approximate range where |c| < 2.3,
bagging improves the asymptotic MSE. The biggest gain is at the most unstable point
z = p = E[Y]], corresponding to ¢ = 0. The squared bias with bagging has only a
negligible effect on the MSE (note the different scales in Figure 2). Note that we always
give an a-priori advantage to the original estimator which is asymptotically unbiased for
the target as defined.

In [4], this kind of analysis has been given for more general estimators than Y, in (2)
and also for estimation in linear models after testing. Hard decision indicator functions are
involved there as well and bagging reduces variance due to its smoothing effect. The key
to derive this property is always the fact that the bootstrap is asymptotically consistent
as in (8).

2.1.2. Regression trees

We address here the effect of bagging in the case of decision trees which are most com-
monly used in practice in conjunction with bagging. Decision trees consist of piecewise
constant fitted functions whose supports (for the piecewise constants) are given by indi-
cator functions similar to (2). Hence we expect bagging to bring a significant variance
reduction as in section 2.1.1.

For simplicity of exposition, we consider first a one-dimensional predictor space and
a so-called regression stump which is a regression tree with one split and two terminal
nodes. The stump estimator (or algorithm) is then defined as the decision tree,

én(l') = BZ]-[IQM + Bu]-[mzfin] = BZ + (ﬂu ﬂf) [dn<z]’ (9)

where the estimates are obtained by least squares as

(Be, Bm Czn) = argmingl,gu,d Z(Yz - ﬂﬁl[Xi<d Bl [X; >d) .

i=1

These values are estimates for the best projected parameters defined by

(87, Be,d°) = argming, 5. 4 E[(Y — Belix<q) — Bulix>a)’]. (10)

The main mathematical difference of the stump in (9) to the toy estimator in (2) is
the behavior of d,, in comparison to the behavior of Y, (and not the constants Bg and Bu
involved in the stump). It is shown in [4] that d,, has convergence rate n~*/® (in case of a
smooth regression function) and a limiting distribution which is non-Gaussian. This also
explains that the bootstrap is not consistent, but consistency as in (8) turned out to be
crucial in our analysis in section 2.1.1. Summarizing, the asymptotic analysis of bagging
a stump is difficult and still unsolved. However, a computationally attractive version of
bagging, which has been found as good as bagging, turns out to be more tractable from
a theoretical point of view.



2.2. Subagging

Subagging is a sobriquet for subsample aggregating where subsampling is used instead
of the bootstrap for the aggregation. An estimator 8,(-) = hn((X1, Y1), ..., (Xn, ¥2))(-)
is aggregated as follows:

én;smm)(-):(”) S b (X Vi), (X Vi)

m
(315e-stm ) ET

where Z is the set of m-tuples whose elements in {1,...,n} are all distinct. This aggre-
gation can be approximated by a stochastic computation. The subagging algorithm is as
follows.

(I) Forb=1,...,B (B =50 or 100) do:

(i) Generate a random subsample (X}°, Y;*?),.. (X:,f’,Y;,“Lb) by random drawing

m times without replacement from the data (X 1, Y1), .., (X,,Y,) (instead of
resampling with replacement in bagging).

(ii) Compute the subsampled estimator 022(-) = h,, (X7, ¥7?), .. (X*b Y0 ().

(I1) Average the subsampled estimators to approximate 6, .sB(m)(-) &~ B~ S8 6().

As indicated in the notation, subagging depends on the subsample size m which is a
tuning parameter (in contrast to B).

An interesting case is half subagging with m = [n/2]. More generally, we could also use

= [an] with 0 < a < 1 (i.e. m a fraction of n) and we will argue why the usual choice
m = o(n) in subsampling for distribution estimation [12] is a bad choice. Half subagging
with m = [n/2] has been studied also by Buja and Stuetzle [5]: they showed that in
case where 0, is a U-statistic, half subagging is exactly equivalent to bagging. Moreover,
they observe, consistently with our experience, that half subagging yields very similar
empirical results to bagging when the estimator 6,,(-) is a decision tree. Thus, if we don’t
want to optimize over the tuning parameter m, very often a good choice in practice is

= [n/2]. Consequently, half subagging typically saves more than half of the computing
time because the computational order of an estimator 0, is usually at least linear in n.

2.2.1. Subagging regression trees

We describe here in a non-technical way the main mathematical result from [4] about
subagging regression trees.

The underlying assumptions for our mathematical theory are as follows. The data
generating regression model is

Y= f(Xi) + &,

where Xy,...,X,, and €,...,¢, are i.i.d. variables, independent from each other, and
E[e;] = 0, E|e1|? < oo. The regression function f(-) is assumed to be smooth and the
distribution of X; and ¢; are assumed to have suitably regular densities.

It is then shown in [4] that for m = [an] (0 < a < 1),

lim supE[(én;SAB(m) (z) — 0(2))’] <1
nooo E[(6n(z) — 0(x))?]

I’



for z in suitable neighborhoods (depending on the fraction a) around the best projected
split points of a regression tree (e.g. the parameter d° in (10) for a stump), and where
0(z) = lim,_,eE[f,(z)]. That is, subagging asymptotically reduces the MSE for z in
neighborhoods around the unstable split points, a fact which we may also compare with
Figure 2. Moreover, one can argue that globally,

approx.

E[(0ns550m) (X) — 0(X))?] < E[(0n(X) — 0(X))?]

for n large and where the expectations are taken also over (new) predictors X.

For subagging with small order m = o(n), such a result is no longer true: the reason
is that small order subagging will then be dominated by a large bias (while variance
reduction is even better than for fraction subagging with m = [an], 0 < a < 1).

Similarly as for the toy example in section 2.1.1, subagging smoothes the hard decisions
in a regression tree resulting in reduced variance and MSE.

2.3. Bagging basis functions in MARS

We discuss here the effect of bagging on the basic ingredient in MARS [9]. For a one-
dimensional predictor variable, the basis function in MARS is a piecewise linear spline
function [z — d]; = (z — d)1j4<4). Its estimated version takes the form

0, (x) = Bolz — dy]4, = €R, (11)

with the least squares estimates

(Bn» dn) = argming , Y "(V; — B[X; — d]..)?

=1

for the best projected values (3%, d°) = argming ; E[(Y — B[X — d];)?]. It is possible to

basis function for MARS
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Figure 3. MARS basis function from (11) at z = z,(0) = d° as in (12). Function g(z)
and gpqe(2) (dotted line) from (13), defining the asymptotics of 6,(x,(0)) and its bagged
version, respectively.



derive the asymptotic behavior of this MARS basis function for x in a neighborhood of
the best projected knot d°, i.e. for

z=2,(c) = d® + cogn /2, (12)

where o2 is the asymptotic variance of d,. The smoothing effect of bagging with the
MARS basis function can be described as follows, assuming some regularity conditions:

nl/ng_lein(xn(c)) —D g(Z) = ﬂo(c - Z)l[ch]a
nl/QJd_lgn;Bag(Zn(C)) =D 9Bag(Z) = ﬂo{(c —Z)®(c— Z)+ p(c— Z)}, (13)

where Z ~ N(0,1), see [4]. The functions g(-) and gpa,(-) are displayed in Figure 3. We
see that already the original MARS basis function estimator corresponds to a continuous
limiting function g¢(-), in contrast to regression stumps in (9). Also, the smoothing effect
of bagging, described by the asymptotic function gpge,(+), turns out to have a small effect
only. The MSEs for the MARS basis function estimator and its bagged version, which
can be computed from (13), are displayed in Figure 4. We clearly see that the bagging
improvement is at most only very marginal.

variance squared bias
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Figure 4. MARS estimator 6, (z,(c)) from (11) with z,(c) from (12). Asymptotic variance,
squared bias and mean squared error (AMSE) (the target is 0(z) = lim,_,oE[d,(z)]),
standardized by the factor noy2, for the estimator 0, (z,(c)) in (11) (solid line) and for
the bagged estimator 6,5 (2, (c)) (dotted line), as a function of c.

2.3.1. Effect of unstable variable selection
The analysis in section 2.3 only covers the case with one-dimensional predictor variables
and one linear piecewise function. It can be viewed as an analogue for regression stumps
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with one predictor. While for the latter, (su-)bagging does improve the MSE substantially
(in theory and also in simulated finite sample cases [4]), we see no relevant asymptotic
gain for bagging with one MARS basis function. With higher dimensional predictors
or more basis functions per predictor, there could be another effect of bagging, besides
the smoothing effect which is very dominant in regression trees, but negligible for spline
functions in MARS. We will demonstrate empirically in section 3, that bagging can be very
unstable for MARS (in terms of choosing basis functions) with more than one predictor
variable and has a chance to perform very poorly; this is in sharp contrast to bagging
decision trees which we have found to be always better in terms of MSE compared to
original trees. But a version of bagging based on robust aggregation, see section 3.1, is
found to be effective for MARS, yielding better MSE performance than the original MARS.
This better performance is not due to bagging-type smoothing (at least not asymptotically
as argued above); it rather seems to help reducing the negative effect of unstable variable
selection in MARS.

3. Numerical results and Bragging

We show here the bagging procedure in action for synthetic data from three different
models:

(M1) X = (XD ..., X00) ~ Unif([0,1]*°), £ ~ N(0,6),

Y = 10sin(z XM XP) £ 20(X® — 5)2 + 10XW +5X6G) 4 ¢,
(M2) X = (XWX~ N5(0,1), & ~ N(0,4),

YV =XW 4 5X@ 4 8x6G) 4 5x@ 4 3x6) 1 oaxWx® L 3XxDxG) 1 ¢
(M3) W X®@ iid. ~ Unif({0,1}), X®, X® iid. ~ Unif({0,1, 2, 3}),

x @

X6 ~ Unif({0,1,2,3,4,5,6,7}),

XU, Xx® . X6 independent, £ ~ N(0,4),

Y = 1[X(1):0] — 31[X(1):1] + -51[X(2):0] + 21[X(2):1] + '81[X(3):0] — 21[X(3):1]
+ 21 x@og — 1 xeg + 5l xa—g + 121 (xw_y) — 9L xw—g + 1.81 x)_y)
+ '31[X(5):0] — .61[X(5):1] + '91[X(5):2] — 1-2]—[)((5):3] + 1-51[X(5):4] — 1.81[X(5):5]
+ 2'11[X(5):6} - 2.41[X(5):7] + 21[X(1):0,X(2):1] + 31[X(2):O,X(3):1] + €.

Sample size is always chosen as n = 300. Model (M1)also known as Friedman #1, has
5 ineffective predictor variables is; in (M2), all predictor variables are effective and some
of them occur also as strong interactions; in (M3), all predictor variables are factors and
effective, some of them also occurring as strong interactions. The signal to noise ratios
Var(f(X))/ Var(e), where f(-) = E[Y|X = -], are 3.97 for (M1), 3.77 for (M2) and 3.08
for (M3) : thus, all models have similar orders of signal to noise ratio. All our numerical
results are based on 100 independent model simulations and we always use 100 bootstrap
replications for bagging.

We report the MSEE[(A(X) — f(X))?], where the expectation is also over new predictors

A

X ; sometimes, we also consider the random variable of the (test set) squared error (0(X)—
F(X))2.

In case of trees, we never lose with bagging in terms of MSE (and also in terms of the
test set squared error; this cannot be seen from Table 1). The model (M3) with discrete
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predictors (factors) is beyond what has been treated in theory. Nevertheless, we also see
here that bagging “works well”. Bagging MARS is highly unstable: the MSE is worse
with bagging while the median squared error performance is better.

As pointed out in section 2.3, bagging a piecewise linear spline does not reduce the
MSE asymptotically in case of a one-dimensional predictor variable. Also, it is expected
that from an asymptotic point of view with fixed number of predictors d < oo, the same
predictor variables will be selected for the original and the bootstrap samples. However,
the asymptotic stability of variable selection may be misleading for practical applications:
when running MARS on a bootstrap sample, we will often see that the terms selected by
MARS are different from the ones selected from the original sample. In particular, the
chance that this happens increases when more terms in the MARS algorithm are allowed.
Bagging MARS has a potential to reduce the test set squared error, due to averaging
over unstable variable selection, for some individual datasets. But there is also a chance
for extremely bad performance on some data: overall (on average), the MSE of MARS
becomes large. But there is a simple trick to improve the highly unstable behavior of
bagging MARS, as described next.

Table 1

Mean squared error (MSE) and quantiles of squared error in models (M1)-(M3) for various
methods. “tree” indicates the default regression tree in R using the function rpart;
“MARS (deg=2)” indicates MARS constraining the interaction terms to be at most of
order 2 (function mars in R with “degree” parameter set to 2). Number of bootstrap
replications in bagging is 100. Number of simulations is 100.

model & method ‘ MSE ‘ (0, 0.25, 0.5, 0.75, 1)-quantiles of squared error
(ML), tree 10.56 | (8.66, 9.84, 10.52, 11.12, 14.22)
(M1), bagged tree 5.81 | (4.55, 5.42, 5.68, 6.09, 7.22)
(M1), bragged tree 6.13 | (4.86, 5.78, 6.07, 6.47, 7.77)
(M1), MARS (deg=2) 1.60 | (0.77, 1.25, 1.47, 1.82, 5.71)
(M1), bagged MARS (deg=2) 1.83 | (0.45, 0.68, 0.85, 1.05, 71.09)
(M1), bragged MARS (deg=2) | 0.81 | (0.41, 0.64, 0.79, 0.92, 1.55)
(M2), tree 11.30 | (7.07, 8.67, 10.91, 13.14, 19.84)
(M2), bagged tree 7.61 | (4.52, 6.48, 7.50, 8.56, 11.52)
(M2), bragged tree 7.32 | (4.29, 5.95, 7.09, 8.26,11.13)
(M2), MARS (deg=2) 440 | (0.18, 0.69, 1.01, 1.30, 217.79)
(M2), bagged MARS (deg=2) | 22.33 | (0.27, 0.50, 0.67, 1.43, 1193.73)
(M2), bragged MARS (deg=2) | 0.43 | (0.18, 0.32, 0.39, 0.54,  1.35)
(M3), tree 3.04 | (2.23, 2.75, 3.00, 3.33, 4.03)
(M3), bagged tree 1.70 | (1.17, 1.53, 1.68, 1.82, 2.29)
(M3), bragged tree 1.90 | (1.40, 1.69, 1.88, 2.05, 2.61)
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3.1. Bragging

Bragging is a sobriquet for bootstrap robust aggregating. Instead of the sample mean
in (1) in the bagging algorithm (see Definition 1), we use a robust location estimator for
the realized bootstrapped estimators é;”(-), b=1,...B. We propose to use

Op.Brag = median({0:°(-);b=1,..., B}).

We also looked at other robust location estimators for aggregating the bootstrapped
estimates HA;“L”(-)’S such as Huber’s estimator and Hampel’s redescending M-estimator, but
aggregation with the sample median was found to be slightly better.

We show the results for bragging in Table 1 as well. We see that bragging MARS
brings a substantial improvement over bagging MARS and over original MARS. The
bootstrapped MARS estimates can be very poor resulting in a bad bagged estimator;
since aggregation with the sample median is highly robust, bragging MARS does not
suffer from such instabilities. In case of trees, bagging is stable (“always” reducing MSE),
and bragging and bagging have about the same performance.

3.1.1. Some further experiments with the Friedman #1 model
We consider a version of model (M1), including also dimensionality d = 20, and with
Var(e) = 1:

M4,d) X = (XD ..., XDy~ Unif([0,1]%), d € {10,20}, ¢ ~ N(0,1),
Y = 10sin(r XD X®) +20(X® — 5)2 + 10X@ + 5X6) 1 ¢.

We consider three different sample sizes n € {50,300, 1000}. Particularly for d = 20 and
n = 50, the data is very high-dimensional relative to sample size.

As basis algorithms, we consider regression trees, MARS (deg=1) which has no inter-
action terms (i.e. an additive model with forward variable selection) and MARS (deg=2)
which allows up to second order interaction terms.

Figure 5 displays the performance of the MSEs for the basis algorithms and their bagged
and bragged versions. We see that bagging or bragging trees pays-off even asymptotically:
the explanation for this is given in section 2. For MARS, bagging or bragging becomes
more ineffective for larger sample size: this is again consistent with theory (for d < 00),
because the selection of predictor variables is asymptotically stable and bagging is not
inducing any smoothing effect (see section 2.3) which would help to reduce the MSE. For
MARS allowing second order effects (deg=2), we need a larger sample size than n = 1000
to make the selection among the d(d + 1)/2 terms stable (instead of the d terms when no
interaction terms are allowed).

Our little demonstration should help to point out that from an asymptotic point of view,
bagging or bragging MARS is not yielding much gain in terms of MSE. The reason is that
bagging MARS is not inducing any relevant smoothing effect as for trees, which would
be beneficial in terms of MSE. With trees, we exploit again empirically, that bagging is
paying off even when n is large.

From a more practical point of view, when sample size is large, we would typically allow
interaction terms of order 3 or 4 or higher (or more terms per predictor); this would then
put us back to the case where predictor terms selection would be unstable. Thus, for
many applications in practice, bragging MARS will be very useful; and bagging MARS
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Figure 5. Mean squared error (MSE) in model (M4,d=10) with sample sizes n €
{50, 300,1000}. MARS (deg=1) is MARS without interaction terms, MARS (deg=2)
is MARS with interactions up to degree 2 (function mars in R), and regression tree is with
at least 5 observations in every terminal node (function rpart in R with “minbucket”
parameter set to 5).

can be dangerous as indicated in Table 1. To support the last point, we also looked at
the MSE in model (M4,d=20) for sample size n = 50, i.e. for a very high-dimensional
problem relative to sample size:

(M4,d=20) | MARS (deg=2) | bagged MARS (deg=2) | bragged MARS (deg=2)
MSE 7.10 27.95 4.64

4. BagBoosting and an application for tumor classification using microarray
gene expression data with very large d

BagBoosting is using bagging as a “module” in a boosting algorithm. Boosting, origi-
nally proposed by Freund and Schapire [8] is an algorithm which builds a linear combi-
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nation of estimators,

ZO!J ],XU —12,

where «; > 0 are adaptively chosen weights and éj;X,U(-) are function estimates based
on current generalized residuals Uy, ..., U, and the available predictors (Xi,..., X,). In
boosting terminology, the function estimator is called a “learner”. For example, the
learner could be a regression tree, yielding function estimates 6;.x /() based on the pre-
dictor variables and current generalized residuals (X;,U;), ¢ = 1,...,n. The linear combi-
nation weights o; are from a one-dimensional line search in a gradient descent algorithm,
and the number of iterations m is a tuning parameter of boosting, describing when to
stop the algorithm. For more details, see for example [11].

BagBoosting. BagBoosting, proposed in Biihlmann and Yu [3], is a boosting algorithm
where the learner is a bagged function estimator. For example, the learner could be a
bagged stump, i.e. a bagged two-node regression tree.

Our BagBoosting algorithm is different from stochastic gradient descent (Friedman
[10]) who uses a regression tree learner based on one subsample, randomly chosen in
every boosting iteration, whereas BagBoosting uses an aggregated (su-)bagged tree in
every boosting iteration.

We consider here a dataset consisting of microarray gene expression levels of 40 tu-
mor and 22 normal colon tissues: for each tissue 6’500 human genes are measured
using the Affymetrix technology. A selection of 2’000 genes with highest minimal in-
tensity across the samples has been made, and these data are publicly available at
http://microarray.princeton.edu/oncology. We pre-processed the data by carrying
out a base 10 logarithmic transformation and standardizing each tissue sample to zero
mean and unit variance across the gene expressions. Summarizing, we have data (X;,Y;)
with ¥; € {0,1} (cancerous and normal type) and X; € R?% (2°000 gene expression
levels) with Y20 X = 0, 220 (X)2/1999 =1 (i = 1,...,n = 62).

The entire class1ﬁcat10n method is then a two-step scheme where first the 200 most
significant genes are selected according to a two-sample Wilcoxon test, followed by Logit-
Boost (Friedman et al. [11]) with stumps, or BagBoosting using LogitBoost with bagged
stumps, or a (single) classification tree (these three latter methods are run on the 200
selected genes only). We emphasize that the selection of the 200 genes is part of the
classification method and based on training data only (in cross-validation experiments).
The theory in section 2 tells us that a bagged stump is better (in terms of MSE) than
a stump, and it is then heuristically clear that BagBoosting with a bagged stump is
better than boosting with original stumps. In the context of microarray gene expres-
sion data, this has been generally confirmed in [7]. Figure 6 exhibits an advantage of
BagBoosting over LogitBoost, and both are much better than a single classification tree.
Our cross-validated misclassification rates become even smaller when using leave-one-out
cross-validation and are then very competitive with other published results [7]; but we
think that the 2/3 training 1/3 test set cross-validation yields more reliable estimates for
the unknown misclassification error.
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Figure 6. Misclassification errors for classifying cancerous versus normal colon tissue from
200 pre-selected microarray gene expressions, based on cross-validation with 50 random
divisions into 2/3 training and 1/3 test sets. LogitBoost with stumps, BagBoosting is
LogitBoost with bagged stumps, and classification tree with default settings for function
rpart from R.

5. Conclusions

The theory and heuristics in section 2 describes that bagging is a smoothing operation
in cases where the original estimator involves hard-decision indicator functions. The
smoothing implies a variance and MSE reduction. The same applies also to subagging
which is based on subsampling m data-points instead of resampling n points: the choice
m = [n/2] is in many cases almost equivalent to bagging, see also [5].

It has been empirically demonstrated in [4] that smoothing due to bagging and its
corresponding variance and MSE reduction can be well seen in finite sample problems,
even in low-dimensional settings with stumps for one predictor variable; see also section 3.
It has been long “believed” that bagging would only help for high-dimensional, complex
algorithms.

For smoother estimators than decision trees, bagging doesn’t yield a first order smooth-
ing effect: Buja and Stuetzle [5] have made this rigorous by showing that bagging a U-
statistic has only second-order asymptotic effects on the MSE and bagging a U-statistics
sometimes even increases MSE compared to the original U-statistics. A similar behavior
also applies for linear spline functions which are used in MARS, as described in section
2.3: bagging MARS is likely not to be as effective as bagging decision trees and can
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sometimes even result in very poor performance, as empirically shown in section 3.
Bragging based on robust aggregation, which is a new version of bagging proposed here,
seems to have the ability to achieve another effect than smoothing. We showed empirically
that bragging MARS often improves upon the original MARS algorithm. The probable
reason which renders bragging MARS successful is that it averages (in a robust way) the
instabilities of selected terms in MARS which then helps for variance reduction.
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