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Summary
This article is part of a For-Discussion-Section 
of Methods of Information in Medicine about 
the papers “The Evolution of Boosting Algo-
rithms – From Machine Learning to Statistical 

Modelling” [1] and “Extending Statistical 
Boosting – An Overview of Recent Methodo-
logical Developments” [2], written by An-
dreas Mayr and co-authors. It is introduced 
by an editorial. This article contains the com-
bined commentaries invited to independently 
comment on the Mayr et al. papers. In sub -
sequent issues the discussion can continue 
through letters to the editor.

Correspondence to:
See list of authors´ adresses at the end of the article.

Methods Inf Med 2014; 53: 436–445
doi: 10.3414/13100122
epub ahead of print: November14, 2014

With these comments on the papers “The 
Evolution of Boosting Algorithms – From 
Machine Learning to Statistical Modelling” 
[1] and “Extending Statistical Boosting – An 
Overview of Recent Methodological Devel-
opments” [2], written by Andreas Mayr and 
co-authors, the journal seeks to stimulate a 
broad discussion on boosting. An inter-
national group of experts has been invited 
by the editor of Methods to comment on the 
paper. Each of the invited commentaries 
forms one section of this paper. 

1. Comment by P. Bühlmann

We congratulate the authors for two 
thoughtful and stimulating papers on 
boosting methods. They present an in-

formative overview, with applications from 
biomedical research in mind: it is very use-
ful, provides valuable guidance and can 
serve as a basis for further developments.

1 .1 Additional Thoughts on 
 Boosting

Much has happened since the inception of 
the first boosting algorithm which goes 
back to Schapire [3] and Freund and 
 Schapire [4]. My understanding is that 
Breiman [5] was first to point out that 
 AdaBoost is a functional gradient descent 
scheme: with this explanation, he con-
tributed in a pioneering way to clarify and 
increase our understanding of AdaBoost, 
and to pave the road to “statistical” boost-
ing. Friedman et al. [6] and Friedman [7] 

have further built on this gradient descent 
idea and brought in many additional “sta -
tistical” views, and Tutz and Binder [8] in-
troduced the related nice concept of likeli-
hood-based boosting. More theoretical re-
sults were established in the machine learn-
ing community considering the margin’s 
point of view [9], and Bühlmann and Yu 
[10] proved a first statistical minimax rate 
result for L2 Boosting in the context of non-
parametric function estimation. All these 
developments are mentioned in the papers 
by the authors as well.

Componentwise L2 Boosting is known 
in the signal processing literature as match-
ing pursuit [11]. A major motivation for 
such an algorithm was its computational 
runtime: matching pursuit, or component-
wise L2 Boosting, is only evaluating inner 
products and scales very well for large 
 datasets. The statistical motivation of 
further bias reduction by refitting residuals, 
exactly as in L2 Boosting, has been recog-
nized  already by Tukey [12] who proposed 
 “twicing”. While twicing consists of two 
 iterations only (hence the name “twice-
ing”), L2 Boosting is a generalization to a 
 finite number of iterations.

Another worthwhile connection can be 
made to numerical analysis. Breiman [5] 
also pointed out that boosting is a Gauss-
Southwell algorithm, and it was realized 
later that L2 Boosting amounts to the 
scheme of Landweber iterations for solving 
e.g. inverse problems, see for example Bis-
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santz et al. [13]. Another relation which has 
never been much explored is when moving 
from gradient to conjugate gradient meth-
ods, see for example Lutz and Bühlmann 
[14]: since partial least squares can be seen 
as a conjugate gradient descent method 
[15, cf.], this view might open a new con-
nection between boosting and partial least 
squares.

1.1.1 The Importance of Software

The “statistical” boosting algorithms are 
implemented in various R-packages, nicely 
described by the authors who made im -
portant contributions themselves to open 
source software. I emphasize the import-
ance of software for statistical methodolo-
gy and applications (a major motivation of 
our paper Bühlmann and Hothorn [16] 
was to provide good software): the R-
 packages mentioned by the authors are role 
models for excellent software which is 
user-friendly and at the same time flexible 
enough to allow for incorporation of user-
specific features. The R-software environ-
ment together with Bioconductor are great 
resources for further development of ex -
cellent (boosting) software, e.g. for new 
problems with large-scale data.

1.2  Boosting and l1-norm 
 Penalization

The Lasso [17] has become extremely 
popular for estimation in high-dimen-
sional models. It was a big surprise when 
Efron et al. [18] presented arguments for 
showing the strikingly close similarity of 
Lasso and componentwise L2 Boosting in 
linear models. Bühlmann and Yu [19] 
prove exact equivalence of componentwise 
L2 Boosting and the Lasso in an orthonor-
mal linear model, and they also introduce 
“Sparse Boosting” which is equivalent to 
the adaptive Lasso [20] in an orthonormal 
linear model. Thus, componentwise boost-
ing and sparse boosting, which are ob-
viously sparse estimation techniques, can 
be viewed as some “sort of l1-norm sparse” 
methods: although the connection is vague 
in general, I believe it allows for a useful 
 interpretation.

The Lasso and l1-norm regularization 
dominate nowadays the landscape in high-

dimensional statistics: there are algorithms 
available which are mathematically justi-
fied, and there is a lot of detailed statistical 
theory [21, cf.]. Yet, boosting has ad -
vantages in terms of computational speed 
as well as adaptations to include additional 
constraints, e.g., monotonicity, by simple 
algorithmic adaptations. The statistical the-
ory is much harder to derive though as one 
needs to analyze an algorithm [22, cf.] 
rather than the solution of a convex opti-
mization problem.

1.3  Open Issues

When doing variable or feature selection in 
high-dimensional settings, a major obstacle 
is the high correlation or near linear de-
pendence of a group of predictor variables. 
To cope with such a situation, Tutz and 
 Ulbricht [23] propose a block-wise up-date 
in each boosting iteration. This is an inter-
esting proposal but I wonder whether one 
needs more radical approaches, say when 
analyzing SNP data with p ≈ 106 predictor 
variables. One idea would be to do the fit-
ting on different levels of resolution [24, 
cf.]: here, the resolution is the size of a 
group of correlated variables and the 
groups could be constructed from hier-
archical clustering. Bühlmann et al. [25] in-
vestigate some possible directions for esti-
mation with groups of correlated variables, 
but further work is needed. In the context 
of boosting, the question arises whether 
one can construct a boosting algorithm in a 
suitable hierarchical fashion.

Another emerging theme is the analysis 
of large-scale (“big”) data. Boosting algo-
rithms, with their good computational 
scaling properties, are certainly interesting 
tools: however, I believe that one needs to 
account for potentially substantial het-
erogeneity in such large-scale data, see for 
example Meinshausen and Bühlmann [26].

As final words: addressing new impor-
tant issues will help keeping boosting algo-
rithms up to date.

2. Comment by J. Gertheiss

First of all, I would like to congratulate the 
authors on these two very well written 
papers illustrating the applicability and 

flexibility of the boosting concept when 
building statistical models. Hopefully these 
papers will stimulate the broader use of 
boosting for answering important research 
questions, for instance, but not only, in bio-
medicine. From my point of view this is the 
decisive next step boosting has to make to 
be broadly recognized as a substantially 
useful (statistical) method for data analysis. 
At the moment, however, boosting has not 
reached this stage, but is rather in danger of 
being left behind by alternative methods 
such as L1-regularization.

To make one thing clear, I am not saying 
that L1-regularization is the generally su-
perior concept in terms of statistical meth-
odology. Indeed, there are cases where one 
method is clearly preferable to the other. In 
[27], for example, L1 would hardly be able 
to perform model selection, as is possible 
with boosting. By contrast, boosting can-
not be used for fusion of categories of nom-
inal predictors [28, 29]. In most situations, 
however, boosting and L1-regularization 
are both applicable and closely related. In 
the high-dimensional linear model, for in-
stance, there is the original lasso [17] and 
component-wise L2-boosting [22]. In high-
dimensional additive models, we can use 
mboost [16, 30 –32] or L1-regularization as 
proposed by [33]. With ordinal predictors, 
boosting and a grouped lasso-variant are 
both valuable approaches (see [34]); and 
for feature selection in signal regression we 
can use both block-wise boosting [35] and 
a structured elastic net [36], just to name a 
few. Nevertheless, when it comes to model 
and/or variable selection, most people 
seem to prefer the lasso or variants thereof. 
When looking at two of the most impor-
tant, more recent papers about statistical 
boosting, [16] and [8], we see that these 
papers have been cited (according to the 
Web of Science on July 7, 2014) 134 and 46 
times, respectively. Though these are re-
markable numbers, two L1-papers from the 
same years, [37] and [20], have been cited 
substantially more (600 and 801 times, re-
spectively).

Apart from these pure numbers, which, 
as we all know, should not be overrated, 
there is another important aspect with re-
spect to boosting that we should be aware 
of. There is a very active group of boosting 
enthusiasts contributing to the methodo-
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logical development of boosting. This 
boosting community, as I will refer to them, 
has many members who know each other 
personally. Though this can be seen posi-
tively and is definitely a reason for the suc-
cess of boosting in terms of methodological 
development, we have to keep it in mind 
when judging the “success” of boosting as a 
tool for practical data analysis. First, when 
we look at the more recent publications on 
boosting and citing articles, it has been my 
impression that many (or even most?) of 
these articles are written by authors that are 
part of the boosting community. Second, 
applied papers using boosting methods to 
answer research questions very often have 
coauthors from the boosting community. 
For instance, three out of the four applied 
papers [38 – 41] cited in the Conclusions of 
[2] even have coauthors that are also coau-
thors of [2].

My explanation for this is not that 
people outside the boosting community do 
not like boosting, but simply that they do 
not know enough about it. I have even met 
a number of statisticians who had never 
heard about boosting – but everyone 
knows the lasso (not everyone likes it but 
everyone knows it).

I am not saying that all this is bad news. 
It is perfectly normal for a relatively new 
method. But now it is time for boosting to 
make the next step, to spread beyond the 
core boosting community, and to become a 
“standard” tool for statistical model build-
ing and selection. Applied researchers 
should know that boosting is not so com-
plicated to need boosting experts on board 
to be able to apply it. There is plenty of 
easy-to-use boosting software available, 
such as mboost.

To conclude, hopefully papers like the 
ones presented will drive more and more 
applied researchers to use boosting meth-
ods to answer their research questions. 
Only this will make it a successful statistical 
method. And you deserve it, boosting, you 
deserve it.

3. Comment by S. Hieke 
and M. Schumacher

In this issue of Methods, Mayr et al. [1, 2] 
provide comprehensive overviews on the 

evolution of boosting algorithms as well as 
on extending statistical boosting. The first 
addresses the fact that the roots of boosting 
can be located within the machine learning 
community. The current Wikipedia entry 
[42] starts with the following statement:

“Boosting is a machine learning meta-
algorithm for reducing bias in supervised 
learning. Boosting is based on the question 
posed by Kearns [43]: Can a set of weak 
learners create a single strong learner? A 
weak learner is defined to be a classifier 
which is only slightly correlated with the 
true classification (it can label examples 
better than random guessing). In contrast, 
a strong learner is a classifier that is arbi -
trarily well-correlated with the true classifi-
cation. Schapire’s affirmative answer [3] to 
Kearn’s question has had significant ramifi-
cations in machine learning and statistics, 
most notably leading to the development of 
boosting.”

The early applications of boosting were 
thus focused on classification problems. 
One example published in this journal was 
a comparative investigation, improvement 
and evaluation of record linkage methods 
by Sariyar et al. [44]. Another example by 
Stollhoff et al. [45] aimed to evaluate vari-
ous boosting variants in comparison to 
standard logistic regression for differentiat-
ing between benign and malignant breast 
tumors [46]. In a recently published article, 
Liu et al. [47] use adaptive boosting for im-
proving the classification of elderly patients 
at high risk for drug-to-drug interactions. 
With the extension of boosting towards re-
gression problems, a realm of statistical 
modelling, the potential field of appli-
cations is now much wider, and it is some-
times not straightforward – at least not for 
the non-expert – to recognize the original 
boosting idea as the core of a sophisticated 
regularized regression modelling approach, 
e.g. for high-dimensional data. 

Insofar, the two papers [1, 2] in this 
issue are most welcome; they nicely com-
plement the contributions to the focus 
theme “Recent development in boosting 
methodology” published about three years 
ago [48].

With the many faces of various boosting 
approaches the range of applications be-
came multifaceted as well. In the following, 
we briefly describe a successful but rather 

unusual application for estimating the 
comprehensiveness of literature searches 
for systematic reviews [41]. In systematic 
reviews of clinical trials it is crucial that all 
relevant studies are identified through sys-
tematic literature searches in order to be 
included into the systematic review [49]. 
Therefore current advice is to base the 
search strategy on a number of relevant 
 databases. For estimating the number of 
missing references, so-called capture-
 recapture techniques have been proposed. 
Most readers will know these techniques 
from the task to estimate the number of 
fish in a pond. For doing so, a first sample 
of fish is drawn and marked before re-
turned into the pond. Afterwards, a second 
independent sample is drawn and from the 
relation of marked fish to all sampled fish 
the total number is inferred. This tech-
nique has been further extended to the 
search in different databases where from 
the relation of articles found in different 
databases to all articles found, the number 
of missing articles is estimated. In doing so 
the crucial point is that the statistical 
model used for estimation involves a large 
number of high-order interaction terms 
and it is unclear how to select the relevant 
interaction terms best without running the 
risk of overfitting. In contrast to manual se-
lection, application of GAM Boost [8, 50] 
proved to be able to create an appropriate 
model for inference where a reliable esti-
mate of the number of missing studies 
could be based on.

This example underlines that boosting 
is not only valuable in classification prob-
lems and in regression models with high-
dimensional predictor variables but also in 
statistical models with a few predictors but 
with many additional structural parame-
ters, in this case higher-order interaction 
terms that have to be taken into account. 

The review papers [1, 2] also discuss 
different versions of boosting techniques 
(statistical boosting), e.g. gradient boosting 
and likelihood-based boosting sharing 
similar structures. Both statistical boosting 
algorithms can deal with “large p, small n“ 
situations, which is specific in high-dimen-
sional settings. Recently, a lot of effort was 
invested in the extension of the boosting 
concept from the machine learning com-
munity, i.e. AdaBoost algorithm for clas-
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sification problems, towards almost any 
type of regression problems including 
time-to-event data. In addition to the 
 relevant property of statistical boosting 
 regarding variable selection, the develop-
ments concerning automated model 
choice, i.e. different types of predictor ef-
fects allowing linear and non-linear predic-
tor effects on response, provide a flexible 
framework for statistical boosting. Given 
these methodological extensions and the 
implementation of statistical boosting algo-
rithms in freely available open source R 
add-on packages together with the possi-
bility of parallel computing reducing the 
computational burden, the concept of 
boosting becomes a flexible tool in bio-
medical research. Therefore, statistical 
boosting has been made available for a 
wide area of applications including appli-
cation in high-dimensional molecular data 
settings where there are more predictor 
variables than observations. Besides the 
practical feasibility of statistical boosting 
for molecular data, it can be expected that 
statistical boosting algorithms can be used 
not only for single high-dimensional mo-
lecular data, but also for more complex 
situations such as the integration of differ-
ent data sets from various molecular levels 
into a risk prediction model including 
clinical predictors as mandatory where the 
outcome variable can be continuous or 
 represent time-to-event.

4.   Comment by T. Kneib
4.1  Introduction

I really enjoyed reading this excellent over-
view on the evolution of statistical boosting 
from the machine learning origins and the 
current state of the art in statistical boost-
ing. Hopefully, both papers will be helpful 
in convincing many interested scientists 
working on medical applications that 
boosting can be a useful tool for their re-
search. In particular, presenting both likeli-
hood-based boosting and functional gradi-
ent descent boosting jointly is certainly 
useful and allows to fully appreciate the ad-
vantages of boosting. Most notably, and as 
highlighted in the papers under discussion, 
boosting provides seamless integration of 
model choice and variable selection within 

the estimation of complex regression rela-
tionships.

While automated variable selection and 
model choice are provided by both func-
tional gradient descent boosting and likeli-
hood-based boosting, several open prob-
lems deserve further attention in future 
 research (as acknowledged in the papers 
under discussion). I will comment on some 
issues that I consider to be of particular 
 relevance below.

4.2  Modularity of Boosting

In addition to the automated variable selec-
tion, the main advantage of boosting is its 
modularity. While not reaching the same 
level as for instance Markov Chain Monte 
Carlo simulation techniques where com-
plex, hierarchical models can be split into 
small pieces in a divide and conquer strat-
egy, functional gradient descent boosting 
allows for a clear separation between the 
loss criterion describing the estimation 
problems (and therefore determining the 
working observations) on the one hand 
and the construction of suitable base-
learners to implement a certain model 
structure on the other hand. This also 
allows for a very modular implementation 
as provided by the R add-on package 
mboost where new loss types can easily be 
implemented (and the same is true for 
baselearners although the internal struc-
ture is somewhat more complex in this 
case). This seems to be much more challen-
ging in likelihood-based boosting. As an 
example, consider quantile boosting where 
a new optimisation procedure would have 
to be considered to minimize the check 
function. Even if standard optimizers are 
available, their combination with a new 
type of (e.g. monotonicity constrained) 
baselearner requires redeveloping major 
parts of the methodology and implemen-
tation.

4.3  Model Complexity and 
 Variable Importance

For a proper evaluation of a model ob-
tained with boosting, it is useful to provide 
additional information concerning the 
complexity and importance of the additive 
model components corresponding to the 

different baselearners. While the papers 
under discussion provide several com-
ments in this direction, this point still 
seems to be largely unsolved or the pro-
posed procedures are of a relatively large 
computational cost. Simply including any 
covariate in the final model that has been 
selected at least once until the optimal 
stopping iteration typically leads to many 
false positive detections and many base-
learners with a rather weak contribution to 
the overall predictor. The frequency of se-
lections is unfortunately not a suitable cri-
terion since the importance of a predictor 
component also crucially depends on the 
iteration index when it has been included 
with early inclusions usually inducing more 
important contributions. Two potentially 
useful measures could be i) the norm of the 
contributions of a baselearner to the overall 
predictor, e.g.

  (1)

where rarely selected effects should show 
up only with minor contributions and  
ii) the accumulated reduction in the model 
fit criterion provided by one baselearner 

   (2)

where j*
m denotes the best fitting base-

learner in iteration m. One issue with the 
norm (1) is that the total variability of the 
predictor unfortunately does not additively 
decompose into the sum of the individual 
contributions. For the baselearner import-
ance measure (2), it would have to be en-
sured that indeed the fit criterion monot-
onically decreases with the boosting iter-
ations such that

 

4.4  Unbiased Model Selection

For the comparison of baselearners with 
different flexibility, it is highlighted in the 
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papers under consideration that it is im-
portant to make them comparably in terms 
of their degrees of freedom. While it is not 
much of a surprise that I agree, I would still 
consider this to be a partially unsolved 
issue. In particular, comparing baselearners 
corresponding to a very high-dimensional 
effect (such as individual-specific or spatial 
effects) with a single parametric coefficient 
seems problematic since, albeit the com-
parable degrees of freedom, the complexity 
of the effect is distributed across many pa-
rameters in one case and completely as-
signed to one parameter in the other case. 
In my experience, boosting then tends to 
select the high-dimensional effect too 
rarely. This may be related to the fact that 
Hofner et al. [51] only studied the expected 
reduction in L2-loss and not the complete 
distribution or other types of loss functions 
(which admittedly will be much more diffi-
cult). An issue also related to the selection 
and comparison of effects is given when 
baselearners are highly colinear. This may, 
for example, be the case for spatial effects 
and spatially varying covariates. In some 
cases, constructing orthogonal base-
learners may partially resolve this issue but 
this will only be possible if effects have 
some kind of natural ordering. This works 
for example in case of a polynomial model 
where orthonormal polynomials can be 
used to define orthogonal baselearners for 
the separate coefficients of the polynomial. 
These make the l-th order polynomial or-
thogonal to the (l – 1) baselearners for the 
lower order polynomial contributions. This 
is in contrast to spatial effects and spatially 
varying covariates where it is not automati-
cally clear whether the covariates should be 
orthogonalized with respect to the spatial 
effect or vice versa.

4.5  Boosting for Low-dimensional 
Models

My final question concerns the suitability 
of boosting for determining low-dimen-
sional models. While formally the auto-
mated variable selection property should 
still hold in such models, my experience 
seems to suggest that boosting tends to 
 select too many (if not all) covariates in 
such situations.
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5. Comment by S. Ma

In two consecutive papers [1, 2], the au-
thors, Drs. Mayr, Binder, Gefeller, and 
Schmid, provided a comprehensive and 
timely review of the history, new develop-
ments, and applications of boosting meth-
ods. In the literature, there have been a 
large number of methodology, application, 
and review papers and books on boosting, 
many of which are referred in these two re-
view papers. Yet, the present papers distin-
guish themselves and advance from the 
 literature in many different ways. The au-
thors should be applauded for their work.

The authors first provided a brief but 
still comprehensive review of the history of 
boosting. The evolvement of boosting can 
shed light on the directions of future devel-
opment. Different from many published 
studies, the present review provides the in-
tuition and rationale beneath the develop-
ment of Adaboost and the more recent 
statistical boosting. Another major con-
tribution that must be highlighted is a clear 
description of the distinction and connec-
tion between gradient boosting and likeli-
hood-based boosting. The boundary be-
tween gradient boosting and likelihood-
based boosting gets blurred in recent 
studies. Yet I believe the present review is 
among the first to unify them under the 
same statistical framework. Another fea-
ture, which makes this review especially 
suitable for the readers of MIM and 
beyond, is the emphasis on biomedical ap-
plications. The analysis of “classic” low-di-
mensional biomedical data using boosting 
has been extensively discussed in the litera-
ture. In comparison, the fast-moving high-
dimensional field deserves more attention. 
The present review provides a comprehen-
sive list of recent high-dimensional data 
analysis using boosting. With limited 
space, some details are missing. But the 
readers should have no trouble locating the 
original studies if needed.

In multiple occasions, the authors made 
direct connections between the boosting 
and penalization techniques. Under special 
settings (see for example those in [19]), the 
boosting and penalization estimates co-
incide. Under more general settings, al-
though both boosting and penalization 
have the shrinkage estimation and selec-
tion properties, a comprehensive numerical 
and methodological comparison is still 
lacking. It was reviewed by the authors and 
is worth emphasizing that the boosting 
technique has also been used to compute 
penalized estimates (especially Lasso 
based) and played an important role before 
the coordinate/gradient descent techniques 
became popular [52]. Our limited numeri-
cal experience suggests that, in comparison 
to coordinate and gradient descent, the 
boosting-based algorithms for penalization 
can “get close” to the optimizer faster in the 
initial iterations, however, may take much 
longer to “get closer” (converge). Studies 
such as [52] provided some justification on 
the validity of boosting algorithms.

As partly reflected in the present review, 
it is interesting to try to “match” the history 
of boosting with that of penalization. Indi-
vidual-variable-based penalization, group 
penalization, and hierarchical penalization 
can all easily find their boosting counter-
parts. For the analysis of high-dimensional 
biomedical – for example genetic – data, 
boosting methods have been developed to 
account for the pathway structure and con-
nections between variables. The intuition 
behind such methods and corresponding 
references have been provided in this re-
view. Under the penalization framework, 
methods with a smoothing effect, such as 
the fused Lasso and the more recent Lapla-
cian penalization [53], have been proposed 
to accommodate finer data structure. The 
intuition is to promote the similarity in re-
gression coefficients of physically (or statis-
tically, biologically) adjacent variables. It 
will be of interest to further develop boost-
ing methods that have a similar function.

As has been reviewed, boosting is be-
lieved to be “less susceptible” to over-fit-
ting. Thus an old wisdom is to run boost-
ing for a large number of iterations. How-
ever, under the high-dimensional setting 
where variable selection can be as impor-
tant as estimation, one needs to be more 
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careful with the stopping rule. Bühlmann 
and Yu [19] and others recognized the pos-
sible over-selection of regular boosting and 
developed the sparse boosting and other 
methods. The over-selection problem is at 
least partly caused by how a variable is de-
fined as “selected”. Under the most exten-
sively adopted estimation-based selection, 
a variable is selected as long as its estimate 
is nonzero, no matter how small or insig-
nificant it is. In addition, with the connec-
tion between boosting and penalization, it 
is suspected that correlation among vari-
ables may also contribute to the over-selec-
tion. As has been reviewed, stability- and 
inference-based selection have been devel-
oped as generic ways of selection, have 
been applied to penalization and other 
techniques, and are potentially applicable 
to the existing boosting methods to tackle 
the over-selection problem. It is interesting 
to take another look at sparse boosting. 
With a step size less than one, the standard 
boosting technique already has a shrinkage 
property. With sparse boosting, a penalty is 
explicitly added in the selection of weak 
learners and stopping. There are multiple 
choices for this penalty, including not only 
AIC/BIC but also penalties that more 
heavily depend on the magnitudes of coef-
ficients (such as Lasso type). It is unclear, at 
least to me, whether sparse boosting has a 
double-shrinkage problem, and whether a 
relaxation technique (in a similar spirit as 
twin boosting) can be applied to further 
improve selection and estimation.

As the authors pointed out, boosting has 
demonstrated significant merit for high-
 dimensional biomedical data in terms of 
selection, estimation, and prediction. It has 
been applied to the analysis of continuous 
traits, categorical disease status, and prog-
nosis outcomes under various statistical 
models. The authors suggested, which I 
fully agree, that the popularity of boosting 
in data analysis is due to its intuitive for-
mulation, simplicity in programming, easy 
adaption to different models, and availabil-
ity of public software packages. We have 
applied boosting to integrative analysis, 
which has one more dimension than 
“stand ard” high-dimensional data analysis. 
In [54], we developed an integrative sparse 
boosting method, which as can be seen 
from the name is built on [19], and collec-

tively analyzed multiple independent data-
sets. We showed that integrative sparse 
boosting can be more effective than “indi-
vidual-dataset boosting + meta-analysis”. 
Another type of integrative analysis, which 
has gained a lot of attention in the recent 
literature, is on data with multiple types of 
high-dimensional measurements on the 
same subjects. To the best of our knowl -
edge, boosting methods for such data re-
main to be developed.

Boosting has played an important role 
in “classic” machine learning. It keeps at-
tracting attention in recent machine learn-
ing and statistics research, as partly re-
flected in the present review and a recent 
issue of MIM dedicated to boosting. Its 
value for biomedical data analysis cannot 
be over-emphasized. The authors have 
conducted an outstanding review and also 
paved road for future development. I ex-
pect that this review will sparkle more in-
terest and discussions among the readers of 
MIM and beyond, for methodological de-
velopment and biomedical applications. 
Once again, I congratulate the authors for 
their effort and contribution.

6. Comment by G. Tutz

The authors are to be congratulated to a 
lucid presentation of the evolution of 
boosting concepts and current boosting 
methodology. The methods considered 
range from the early AdaBoost algorithm 
to the statistically motivated steepest gradi-
ent descent methods and likelihood-based 
boosting algorithms. When presenting the 
methods the authors focus on the (general-
ized) additive model with selection refer-
ring to the additive components. They also 
refer to extensions to other settings like 
survival models but the algorithms given 
are restricted to the selection of additive 
components. Therefore, in the first com-
ment we aim at giving a more general 
framework for boosting.

6.1 Boosting for a General Class 
of Models

Boosting can be seen as a very general 
regularization method for structured re-
gression that is able to simultaneously esti-

mate and select interesting features in the 
predictor space. The features can be com-
ponents in an additive model but also in-
teraction terms, varying coefficients or 
whole vectors of dummy variables. It seems 
worthwhile to give a more generic form of 
the algorithm that covers more interesting 
cases. In the following we consider a more 
general boosting algorithm in the spirit of 
likelihood boosting but not restricted to 
classical likelihood based boosting for ad-
ditive models.

Let us consider data (yi , xi), i = 1, . . . , n, 
where yi is the response and xi

T =  
(xi1, . . . , xip) is a vector of explanatory vari-
ables. A general class of models specifies 
that the mean µi = E(yi | xi) is determined by 
µi = h(ηi ), where h(.) is a known response 
function and ηi contains the explanatory 
variables in a structured form. In addition, 
one assumes that yi|xi follows a specific dis-
tribution, often a distribution from the 
simple exponential family. This class of 
models includes univariate generalized 
 linear models (GLMs) with univariate re-
sponse yi and mean µi = h(ηi ), where ηi = 
xi

Tβ, but also generalized additive models 
(GAMs), which assume xi = h1(xi1) + . . . + 
hp (xip ). Also models with effect modifiers 
can be given in this form. A general boost-
ing algorithm for this class of models is the 
following.

Structured Regression Boosting

Step 1 (Initialization)
 For given data (yi , xi), i = 1, . . . , n, fit an 

initial model, typically the intercept 
model µ(0)(x) = h(β0 ) to obtain an esti-
mate η ˆ (0) = β ˆ0 .

 Define parametrically structured terms , 
ηj (x, yj) = 1, . . . , m that serve as base 
learners. Typically starting values are  
γ ˆj 

(0) = 0
Step 2 (Iteration) For l = 0, 1, 2,...
1. Estimation step: Fit the models 

 
 ,  
 
j = 1, . . ., m to data (yi , xi), i = 1, . . . , n, 
where η ˆ(l)(xi) is treated as an offset and 
the predictor is estimated by fitting  
the parametrically structured term 
ηj (xi , yj ), obtaining γ ˆj .
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2. Selection step: Select the structured term 
ηj* (xi , y ˆj*) that showed the best perform-
ance

3. Update: The improved fit is obtained by 
η ˆ(l + 1) = η ˆ(l)(xi) + ηj* (xi , y ˆj*), 

 μ ˆi
(l + 1) = h(η ˆ(l + 1)(xi))

 The improved parameters are obtained 
by

  .

The strength of the algorithm is in the defi-
nition of the base learners, which can be 
chosen with reference to the structure that 
is interesting and to be selected and fitted. 
In particular the base learner can contain a 
set of explanatory variables yielding block-
wise boosting methods. Some examples are 
• η (xi , y) = xi ryr which specifies the linear 

effect of the r th covariate;
• η (xi , y) = y0 + xi ryr , which specifies the 

intercept and the linear effect of the r th 
covariate;

• η (xi , y) = xT
i ryr , where xi r is a vector of 

dummy variables corresponding to a 
categorical variable (blockwise boost-
ing);

• η (xi , y) = xi r xi syrs , representing an inter-
action between the rth and the sth co-
variates;

• η (xi , y) = xi r xT
is yrs , representing an in-

teraction between the r th variable and 
the sth categorical variable given by a 
vector of dummy variables;

• η (xi , y) =  , where B1(.),
  B2(.), ... are basis functions, for example, 

B-splines; the base learner represents a 
smooth function of the rth variable

• η (xi , y) =  represent-

 ing that the  effect of variable xis varies 
smoothly over variable xir .

Thus the set of chosen base learners de-
fines the possible structures or combi-
nation of structures that are fitted. The fit 
itself can be obtained by maximization of a 
(possibly penalized) likelihood or by using 
weighted least squares estimates motivated 
by gradient descent as in L2 boosting. The 
crucial point is that the estimate im- 
proves the fit only slightly to obtain a weak 
learner.

6.1 Extensions to Multivariate 
Settings

The same basic algorithm can be used for 
multivariate responses. Then data have the 
form (yi , xi), i = 1, ..., n, where yi is a q-
 dimensional vector-valued response and 
the mean is a vector µi = E(yi | xi) deter-
mined by µi = h(ηi), where h(.) is a q-
 dimensional response function and also ηi 
is a vector. In particular, multivariate 
GLMs for multinomially distributed yi fit 
into this framework, see Fahrmeir and Tutz 
[55] or Tutz [56]. Boosting methods for the 
multinomial logit model and for ordinal re-
sponse models, which use this form have 
been proposed by Zahid and Tutz [57] and 
Zahid and Tutz [58]. The additional chal-
lenge in multinomial models is that the ef-
fect of each explanatory variable is given by 
a set of parameters because one needs one 
parameter for each response category. 
Therefore, to obtain variable selection one 
has to collect the whole set of parameters in 
the base learner such that they are simul -
taneously included or not. This is a form of 
blockwise boosting tailored to multinomial 
responses. The other multivariate structure 
that is interesting are generalized mixed 
model for clustered data, which can also  
be embedded into this framework by let-
ting yi contain the repeated measure- 
ments on the i th cluster (see Groll and  
Tutz [59]).

6.2 Boosting versus 
 Regularization by Penalties

Selection of relevant features in structured 
regression can be obtained by structured 
boosting methods or, alternatively, by pe-
nalized maximum likelihood estimation. 
With the seminal paper of Tibshirani [17] 
the lasso and its various extensions have 
become intensively used regularization 
methods in a wide range of areas. It is 
known that for the selection of variables in 
simple linear models boosting with very 
weak learners yields similar results as the 
lasso. We found, considering more general 
settings, that when selecting ordinal pre-
dictors boosting selects fewer variables 
than methods based on fusion penalties 
(Gertheiss et al. [34]). But a thorough com-
parison of boosting and penalty methods 

and an evaluation of the pros and cons 
seems to be missing. It would be interesting 
to compare the methods more systemati-
cally because they are competitors in many 
selection problems but are quite different 
in their construction. While boosting is an 
algorithmic regularization technique that 
obtains selection by early stopping penalty 
methods use an explicit penalty term. It 
shows which parameters or features are 
 penalized and therefore shrunk toward a 
specific value, which may be seen as an ad -
vantage of the method. In some cases it 
seems to be simpler to define a penalty 
than to find a corresponding boosting 
method. For example, in discrete struc-
tures, if one wants to find clusters of a cat-
egorical variable fusion penalties as con-
sidered by Tutz and Gertheiss [60] are an 
effective tool to identify categories that 
share the same effect. Corresponding 
boosting methods seem not to be available 
because weak learners that find clusters are 
hard to construct.

7. Comment by Z. Wang 
and C.-Y. Wang

We congratulate the authors (MBGS) for 
presenting a rather comprehensive review 
on the boosting technology. They nicely 
summarize broad applications of boosting 
methodology in many statistical problems. 
The illustrations of open source R packages 
can help other researchers in their own 
works. 

In this discussion we would like to com-
ment on loss function, gradient boosting vs 
likelihood gradient, significance level and 
boosting, and applications of boosting in 
missing data. 

7.1 Loss Function

MBGS state that “The gradient boosting 
approach can be used to optimize any loss 
function that is at least convex and differ-
entiable”. Most of the loss functions de-
scribed in MBGS are convex and differenti-
able. However, several loss functions de-
serve special consideration since they are 
not convex and differentiable everywhere 
but still applicable with boosting. Consider 
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the hinge loss for a classification rule f 
given binary outcome y Î {–1, 1}: 

(1 – yf )+ ,

where z+ = max(0, z). The hinge loss is not 
differentiable at f = y , however, this event 
has probability 0 to be realized by the data. 
HingeBoost was developed based on the 
hinge loss [61]. Similar examples include 
the multi-class hinge loss [62], the absolute 
loss [16] and additive quantile regression 
[27]. 

7.2 Gradient Boosting vs 
 Likelihood Boosting

MBGS suggest a unified framework for 
gradient boosting and likelihood-based 
boosting. We believe the gradient boosting 
is more general, not only because it can be 
applied in problems for which likelihood is 
not defined, but there are significant differ-
ences between the two algorithms. The 
likelihood-based boosting requires com-
puting the largest log-likelihood in step (4) 
for a given distribution. Therefore, one 
may have to rely on some well developed 
algorithms for this task. This is not a prob-
lem for some well studied models, such as 
the exponential family distributions. How-
ever, the gradient boosting is a stand-alone 
algorithm, and can innovatively solve new 
problems. For instance, to make Hinge-
Boost in the framework of likelihood-
based boosting, it seems one may have to 
rely on HingeBoost itself or its cousin sup-
port vector machine [63]. 

7.3 p-Values for Boosting

As demonstrated in MBGS, boosting is a 
powerful tool for variable selection in a 
wild range of data. However, results from 
applying boosting may still contain noise 
variables, particularly in high-dimensional 
regression. In biomedical research, it is im-
portant to distinguish between effective 
and non-effective variables and applied 
medical researchers are customized with 
the notion of “p-value”. While significance 
level in high-dimensional regression is still 
an active research topic, the multi-split 
method has been proposed for methods in-
cluding boosting [64]. In this method, the 

data are randomly and disjointedly split to 
equally sized selection and p-value sets. We 
apply the boosting algorithm to the selec-
tion data set to determine effective predic-
tor variables. The traditional regression is 
then applied to the p-value data set with 
only those effective variables. Hence we 
 obtain p-values for the selected variables. 
On the other hand, the p-values are 1s for 
the non-selected variables. Next, the 
p-values are adjusted, for instance, with 
Bonferroni technique. The above pro-
cedure is repeated for B times and we have 
a total of B  p- values Pj, b for each predictor j 
= 1, . . . , p, b = 1, . . . , B. For each j = 1, . . . , p, 
the  following summary statistics can be 
used: 

Qj (γ) = min{qγ (Pj, b  /γ; b = 1, . . . , B ), 1},

where γ Î (0, 1) and qγ ( · ) is the empirical 
γ-quantile function. A p-value is given by 
Qj (γ) for each predictor variable j = 1, . . . , p, 
for any fixed 0 < γ  < 1. This value is an 
asymptotically correct p-value for control-
ling the familywise error rate for the L2 
boosting under appropriate conditions. 
Furthermore, an optimal value of γ can be 
obtained as in [64]. We illustrate how to 
compute p-values with two examples in the 
online supplementary material. 

7.4 Imputation for Missing 
 Predictors in Boosting

Imputation for missing predictors in boost-
ing is an important research topic in medi-
cal research. To this problem, Wang and 
Zeng [65] proposed imputation methods 
in boosting. In general, if the purpose is 
prediction, then the conditional mean im-
putation methods in [65] would be valid. 
However, if we are interested in confidence 
interval estimation of the prediction when 
predictors may be missing, then additional 
work is required to take into account 
 uncertainty due to imputation. Multiple 
imputation may be a valid approach to 
 address confidence interval estimation 
with missing predictors. However, com -
plications may arise due to high dimen-
sional data with multiple imputations. 
Further investigation in this research is 
warranted. 
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8.  Comment by A. Ziegler

Mayr et al. [1, 2] have to be congratulated 
for their excellent articles in which they ex-
plained boosting in a very simple way. The 
first paper [1] thereby closes an important 
gap in the literature. It starts with the clas-
sical AdaBoost, which is known to many 
researchers, then moves to the statistical 
way of boosting, i.e., gradient boosting and 
the more recent likelihood-based boosting. 
The authors establish the links between 
these approaches in clever ways. However, 
with more pages available, it would have 
been great to see even more links with 
other work related to boosting. For 
example, a step in-between AdaBoost and 
gradient boosting is Tukey’s twicing [66]. 
In detail, Tukey proposed to run a linear 
regression twice. The first run was on the 
original data, the second one used the ordi-
nary residuals obtained from the initial re-
gression. The parallel here with boosting is 
that in a linear model the residuals form a 
weighted version of the original data.

Despite the excellent treatment of the 
boosting methods by the authors, several 
questions have not been addressed in the 
two review articles. One important aspect 
of any learning machine is whether the 
learning machine is consistent. A consist-
ent estimator is defined to be any estimator 
for which the estimated quantity converges 
in probability to the true quantity [67]. In 
the classification context of boosting, an es-
timator is consistent if the classification 
rule converges in probability to the Bayes 
rule. As discussed by Mease and Wyner 
[67], AdaBoost is most likely not consistent 
as long as no regularization is employed. 
Another important question is the rate of 
convergence of the learning machine. A 
final important aspect which the authors 
discussed in detail is the optimal stopping 
iteration mstop of the boosting algorithm. 
The authors criticized the use of standard 
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information criteria [1], such as Akaike’s 
information criterion. They furthermore 
considered the use of resampling or cross-
validation for tuning mstop . This tuning of 
the optimal stopping rule performs well 
only in those cases where the model is 
 generalized to data with the same structure, 
and one example, where this strategy might 
fail is the prediction of endpoints in  
stroke [68].

Boosting stumps was compared with 
bootstrap averaging of stumps or even 
larger classification trees in the literature 
several times, and a brief discussion can be 
found in Mayr et al. [1], Section 2.2. Brei-
man [69] extended bagging trees to ran-
dom forests, and the most interesting com-
ponent of this random forests is the ran-
dom selection of features at each split in a 
tree. This random feature selection does 
not only integrate additional variability to a 
tree. It also is a way to cope with collinear-
ity. With the additional property of random 
forests that the importance of a variable 
can be determined, e.g., through permu-
tation, even two highly correlated features 
can both be identified as being important 
[70]. The random feature selection compo-
nent in the tree building stage of random 
forests has another positive aspect. De-
pending on the proportion of features 
available at a split, generally denoted by 
mtry, the features are most likely uncorre-
lated. Currently, this random feature com-
ponent can only be integrated through an 
external bootstrap loop in boosting. Such 
an extra resampling step has been nicely 
described by Mayr et al. [1] in their supple-
ment. It would be great if these beneficial 
properties of random forests could be inte-
grated into boosting algorithms.
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