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Abstract

In this contribution, we review boosting, one of most effective ma-
chine learning methods for classification and regression. Most of the
article takes the gradient descent point of view, even though we do
include the margin point of view as well. In particular, AdaBoost in
classification and various versions of L2boosting in regression are cov-
ered. Advice on how to choose base (weak) learners and loss functions
and pointers to software are also given for practitioners.
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1 Introduction

Boosting is a modern statistical methodology for classification or regression
that originated from machine learning in the mid 90’s and has seen much
progress in recent years in terms of its understanding and effectiveness in
modeling real world data. Its successful applications widely vary and include
text mining, image segmentation, language translation, bioinformatics, neu-
roscience, and finance, just to name a few. Boosting has many distinctive
characteristics. First, it is an ensemble method through linear combination
of so-called weak learners. Second, it is closely connected to optimization (of-
ten convex) gradient descent (iterative) algorithms. The first trait is shared
by other statistical machine learning methods such as bagging and random
forests, and the second by various programming methods for optimization.
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A third characteristic of boosting is its early stopping rule to achieve reg-
ularization. This trait couples regularization with numerical optimization
and makes boosting very special. A fourth characteristic is the re-weighting
of data examples (units) based on the outcome of the previous iteration.
This trait is a consequence of the form of the gradient of the loss function
in the optimization and hence not shared by all variants of boosting as we
know now. It is, however, an important feature of the original AdaBoost
algorithm (Freund and Schapire, 1996).

Kearns and Valiant (1989) postulated the boosting conjecture in the
framework of PAC learning that a weak classifier (with success probability
just a bit over 50 %) can be “boosted” into a strong one in the sense that the
training error of the new one would go to zero and with a polynomial-time
run time. In his award-wining MIT thesis in Computer Science, Schapire
(1990) answered the question in its affirmative, and Freund and Schapire
(1996) devised the first practical boosting algorithm, AdaBoost, in binary
classification.

Breiman (1998, 1999) made the crucial connection of AdaBoost to opti-
mization by re-deriving AdaBoost from a gradient descent point of view on
an exponential loss function of the margin (which is the product yf of the
true label y ∈ {−1, 1} and the prediction f). This connection was further
developed by Friedman et al. (2000) and Mason et al. (2000). Many vari-
ants of Boosting followed in the statistics community by generalizations of
AdaBoost to different loss functions and through different gradient descent
methods. The most prominent ones are LogitBoost (Friedman et al., 2000)
in classification and L2Boosting (Friedman, 2001) in regression. A separate
line of research on AdaBoost has concentrated on the margin view point
mainly by the machine learning community (Schapire et al., 1998; Rätsch
et al., 2001; Rosset et al., 2004; Rätsch and Warmuth, 2005; Rudin et al.,
2007) and recent developments there are emphasizing AdaBoost’s ensemble
and re-weighting aspects (Warmuth et al., 2008b) and references therein).

Theoretical analyses of boosting have also been developed by both the
theoretical statistics and theoretical machine learning communities. The
former community studied, for example, the Bayes and model selection con-
sistency property and minimax rates of convergence of various Boosting
procedures (when stopped early) (Bühlmann and Yu, 2003; Jiang, 2004; Lu-
gosi and Vayatis, 2004; Zhang and Yu, 2005; Bühlmann, 2006; Bartlett and
Traskin, 2007); while the latter community studied algorithmic convergence
of boosting (Rätsch et al., 2001) and upper bounds on the generalization
error of AdaBoost via distributions of margins and complexity measures of
the model class and the sample size (Schapire et al., 1998). One insight from
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these theoretical analyses is that the complexity of the boosting procedure
is not simply a linear function of the number of iterations. In a simple re-
gression case studied in Bühlmann and Yu (2003), the complexity increases
with the number of iteration in an exponentially diminishing manner – the
complexity is upper bounded by the noise variance and the amount of com-
plexity added is exponentially small when the iteration number increases.
This partially explains the overfitting resistance of AdaBoost. Eventually,
AdaBoost and all other boosting methods will overfit, but it could take a
long time especially in classification due to the robustness property of the
evaluating 0-1 loss function in addition to the slow increase of the complex-
ity of boosting. Most of the theoretical studies so far have been carried
out under the i.i.d. assumption although some generalizations to stationary
data sources have been analyzed (Lutz and Bühlmann, 2006; Lozano et al.,
2006).

In this contribution, we review the general boosting algorithm mainly
from the gradient descent point of view. In particular, we cover the Ad-
aBoost, LogitBoost and L2Boosting algorithms. After a short section on
the margin view point, we end with a discussion on the choices of loss func-
tions, base learners and stopping rules.

2 The gradient descent point of view

We describe here the general boosting algorithm from the gradient descent
point of view (Breiman, 1998, 1999; Friedman et al., 2000; Mason et al.,
2000; Friedman, 2001). In particular, we review AdaBoost and LogitBoost
for classification (corresponding to different loss functions L) and various
versions of L2Boosting for regression (corresponding to the L2-loss function).
Finally, we mention briefly the generalization of boosting from empirical loss
to penalized empirical loss such as Lasso (Tibshirani, 1996) in regression.

Suppose that we observe

(X1, Y1), . . . , (Xn, Yn),

whereXi ∈ Rp denotes a p-dimensional predictor variable and Yi a univariate
response, for example taking values in R as in regression or in {−1,+1} as
in binary classification. In the sequel, we denote by X(j) the jth component
of a vector X ∈ Rp. We usually assume that the pairs (Xi, Yi) are i.i.d. or
from a stationary process. The goal is to estimate the regression function
F (x) = E[Y |X = x] or to find a classifier sign(F (x)) where F (x) : Rp → R.
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The estimation performance is evaluated via a real-valued loss function
in the sense that we want to minimize the expected loss or risk:

EL(Y, F (X)),

based on data (Xi, Yi)(i = 1, ..., n). The loss function L is assumed to be
smooth and convex in the second argument so that the gradient method can
be applied. Boosting algorithms are obtainable by minimizing the empirical
loss function

n−1
n∑
i=1

L(Yi, F (Xi)),

over an additive expansion of base learners for F via functional gradient
descent. The base learners take the form of h(x, θ̂) (x ∈ Rp) where θ̂ is an
estimated parameter of finite or infinite dimension. For example, the base
learners could be stumps with θ̂ describing the axis to split, the split points
and the fitted values for the two terminal nodes. Fitting the base learner
based on data is part of the base learner.

The boosting methodology in general builds on a user-determined base
procedure or weak learner and uses it repeatedly on modified data which
are typically outputs from the previous iterations. The final boosted proce-
dure takes the form of linear combinations of the base procedures. Precisely,
given a base learner h(x, θ), boosting is derivable as functional gradient de-
scent on the loss function L.

Boosting (gradient descent view)

1. Start with F0(x) = 0.

2. Given Fm−1(x), let

(βm, h(x, θ̂m))) = argminβ∈R,θ

n∑
i=1

L(Yi, Fm−1(Xi) + βh(x, θ)).

3. Set
Fm(x) = Fm−1(x) + βmh(x, θ̂m).

4. Stop when m = M .

The AdaBoost classifier is sign(FM (x)).
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2.1 Classification

In binary classification, y ∈ {−1,+1} and the most commonly used loss is
the 0-1 loss. That is, for a classifier sign(F (x)) ∈ {−1,+1} if the label of
x is y ∈ {−1,+1}, the 0-1 loss can be written as a function of the margin
yF (x):

L01(y, F (x)) = I{yF (x) < 0}.

It is easy to see that the exponential loss function

Lexp(y, F (x)) = exp (−yF (x))

is an upper bound on L01 and its population minimizer is half of the log
odds ratio

F (x) =
1
2

log
P(Y = 1|X = x)

P(Y = −1|X = x)
. (1)

For e.g. AdaBoost, the weak or base learner is a procedure that maps
from a given training data set to a classifier with a training error better than
a random guess, or less than 50%. Often used are tree-based classifiers. Ad-
aBoost improves upon the current fit in an additive way to minimize the
empirical exponential loss function over the base learner (acting on a modi-
fied data set) and a multiplier.

AdaBoost

1. Start with F0(x) = 0;

2. Given Fm−1(x), let

w
(m)
i = exp(−YiFm−1(Xi)),

h(x, θ̂m)) = argminθ

n∑
i=1

w
(m)
i I(Yi 6= h(Xi, θ)),

and denote h(·, θ̂m)’s associated error by

errm =
∑n

i=1w
(m)
i I(Yi 6= h(Xi, θ̂m))∑n

i=1w
(m)
i

.

Furthermore let
βm =

1
2

log
1− errm
errm

.
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3. Set
Fm(x) = Fm−1(x) + βmh(x, θ̂m).

4. Stop when m = M .

5. The AdaBoost classifier is y = sign(FM (x)).

Clearly, two key inputs to the AdaBoost algorithm are the choices of
base learner h(·, θ) and the stopping rule for M . Relatively simple tree
classifiers such as stumps or 8-node trees have been used effectively as the
base learners in many empirical studies. The stopping iteration M acts as
a regularization parameter. A test data set, when the data set is large, or
cross-validation can be used to find such an M . When M tends to infinity,
the AdaBoost estimator has been shown to converge to the minimizer of
the empirical exponential loss over the set of linear combinations of base
learners (Zhang and Yu (2005); Bickel et al. (2006); Bartlett and Traskin
(2007)).

We defer further discussions on the choices of the base procedure and
some stopping rules for M to Section 4.

LogitBoost
If the loss function is the negative log likelihood function from a logistic

model with a logit link function, we get the loss function

log(1 + exp−yF ),

or equivalently
Llogit(y, F ) = log2(1 + exp−yF ),

which is an upper bound on the 0-1 loss function L01 as a function of the
margin yF . Moreover, the expected loss of Llogit is minimized by the same
function as in (1), as for the exponential loss function.

In multi-class situations, a log-likelihood function in multinomial models
can be used to apply the gradient descent algorithm to arrive at a multi-class
boosting algorithm. However, often in practice, the one-against-all approach
is used to turn a multi-class problem into many binary classification problem
such that AdaBoost or LogitBoost can be applied.
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2.2 Regression: Boosting with the squared error loss

In regression, a natural loss function is the squared error loss. With this
loss function, we get L2Boosting (Friedman, 2001). When applying the gra-
dient descent Boosting algorithm with the squared loss, we end up with a
repeated fitting of residuals with the base learner. Analogously as before,
L2Boosting is a “constrained” minimization of the empirical squared error
risk n−1

∑n
i=1(Yi−F (Xi))2 (with respect to F (·)) which yields an estimator

F̂ (·). The regularization of the empirical risk minimization comes in again
implicitly by the choice of a base procedure and by algorithmical constraints
such as early stopping or some penalty barriers.

L2Boosting (with base procedure h(·, θ))

1. Start with F0 = 0.

2. Given Fm−1(x), Compute residuals Ui = Yi−Fm−1(Xi) (i = 1, . . . , n).
Fit the base procedure to the current residuals:

h(x, θ̂m) = argminθ

n∑
i=1

(Ui − h(Xi, θ))2,

3.

Fm(x) = Fm−1(x) + βmh(x, θ̂m),

where the line search turns out to give βm ≡ 1.

4. Stop when m = M and FM (x) is the final estimator of the regression
function.

As before, the number of iterations M is the main tuning parameter
for L2Boosting in addition to the base learner B. The number of boosting
iterations may be estimated by cross-validation. As an alternative, one
may use some model selection criteria to bypass cross-validation and bring
computation savings.

When the base procedure selects just one predictor (feature) among all of
the p variables, gradient descent becomes coordinatewise gradient descent.
For example, for the componentwise smoothing spline base procedure which
fits a smoothing spline to the predictor variable reducing residual sum of
squares most, the boosting estimator yields an additive model fit (Bühlmann
and Yu, 2003). Another widely used procedure is componentwise linear least
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squares yielding a linear model fit.

L2Boosting: coordinatewise descent for linear models

1. Start with F0 = 0.

2. Given Fm−1(x), Compute residuals Ui = Yi−Fm−1(Xi) (i = 1, . . . , n).
Let X(j)

i be the jth component of Xi ∈ Rp,

ĵm = argminj=1,...,p

n∑
i=1

(Ui − β̂mX(j)
i ))2,

β̂m = argminβ

n∑
i=1

(Ui − βX(jm)
i )2,

3.

Fm(x) = Fm−1(x) + β̂mX
(ĵm),

4. Stop when m = M and FM (x) is the final estimator of the linear
regression function.

Friedman (2001) introduced shrinkage to L2Boosting by shrinking the
base learner using ν ·h(·, θ) with 0 < ν ≤ 1. Empirical evidence suggests that
the choice for the step-size ν isn’t crucial as long as ν is small; we usually
use ν = 0.1. A related version of L2Boosting has been termed e-L2Boosting
in the literature (Hastie et al. (2001); Efron et al. (2004)):

e-L2Boosting Normalize all predictors to the same scale and use β̂m ≡
ν > 0, a fixed “step-size”.

With m = 2 and ν = 1, L2Boosting has already been proposed by
Tukey (1977) under the name “twicing”. e-L2Boosting is also called Forward
Stagewise Fitting in Efron et al. (2004). It is shown there to be connected
to the L1-penalized least squares method Lasso (Tibshirani, 1996) and often
shares the sparsity property of Lasso. In fact, Lasso and e-L2Boosting are
connected through the Blasso algorithm (Zhao and Yu, 2007) that consists
of e-L2boosting steps (forward steps) and appropriately chosen backward
steps where predictors could be removed from the fitted function.

Instead of L1-penalized least squares one can take L0-penalized least
squares, although the latter is computationally awkward and infeasible to
solve. This is related to SparseBoosting (Bühlmann and Yu, 2006) which
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employs some information criteria such as AIC, BIC or gMDL, while gMDL
was recommended by Bühlmann and Yu (2006) for overall performance of
prediction and sparsity. Recently, Zhang (2008) combines forward and back-
ward steps to minimize L0-penalized LS and Friedman and Popescu (2005)
devise a gradient direction regularization algorithm which does not neces-
sarily come from an explicit penalty function.

3 The margin point of view in classification

Schapire et al. (1998) suggest a new explanation for the effectiveness of Ad-
aBoost via boosting the margin distribution. Note that the margin is a key
concept in the methodology and theory of support vector machines. This
work started a separate trend of generalizations of AdaBoost in the ma-
chine learning community through maximizing various versions of the mar-
gin, leading to e.g. LPBoost (Demiriz et al., 2002), SoftBoost (Warmuth
et al., 2008a) and Entropy regularized LPBoost (Warmuth et al., 2008b).
Among these margin-based algorithms, some are seen to be only “correc-
tive” in the sense that they base the re-weighting on only the outcomes
of the previous iteration, and some are “totally corrective” because the re-
weighting takes into account the outcomes of all previous iterations. Some
studies (with C4.5 or radial functions as base learners) indicate that these
margin based methods have similar or slightly better classification accuracy
than AdaBoost (and possibly than LogitBoost as well). In a computational
speed comparison study in Warmuth et al. (2008b), LPBoost is found to
be the fastest, Entropy regularized LPBoost slightly slower while SoftBoost
is much slower. These algorithms rely on primal-dual formulations in con-
vex optimization from which some convergence rate analyses are known for
SoftBoost and Entropy regularized LPBoost.

4 Practical issues in applying Boosting

The boosting methodology as we know now has three ingredients: loss func-
tion, base learner and stopping rule. To apply boosting in practice, choices
have to be made for these three components. Similar to applying any other
methodology in practice, these choices are often subjective, depending on
the familiarity of the practitioner, the availability of software or the time
for computational implementation. Nevertheless, we give here some rule of
thumb advice on these choices based on our and others experience of using
boosting in various problems.
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Loss function
In classification, AdaBoost and LogitBoost are the most popular choices

of loss functions with LogitBoost’s performance slightly better than that
of AdaBoost. Among margin-based generalizations of AdaBoost, LPBoost
seems to be a good choice (Warmuth et al. (2008b)).

In regression, L2Boosting and often also its shrunken version e-L2Boosting
is used. Arguably, more robust loss functions and base procedures should
be used (Lutz et al., 2008), but in practice, they are not in common use
perhaps because of available software.

Base learner
At a high level, the conventional wisdom on the choice of base learner

is that one should used a “weak” learner or a simple procedure in terms of
complexity. This allows the boosting methodology to adaptively build up
the complexity of the boosting procedure tailored to the particular problem
through the iterative fitting recipe. For example, in L2Boosting, if one starts
with a strong learner such as projection pursuit, things can get worse even
at the second step because boosting can not correct the earlier iterations of
overfitting.

The most used base learner with boosting (AdaBoost or its generaliza-
tions) in classification is CART or C4.5 (i.e. tree-based classifiers). Stumps
have been used in many problems and slightly stronger learners are trees
with a moderate number of nodes, say 8-node trees.

In regression, the coordinatewise descent version of L2Boosting with
small steps and e-L2boosting have become popular for high-dimensional lin-
ear and additive modeling.

Early stopping rule
Performance on a test set or cross-validation is usually the choice of early

stopping if the goal is prediction. If the sample size is large (relative to the
complexity of the fitting), a single test-set is often sufficient. Alternatively, if
the sample size is small (relative to the complexity of the fitting), the single
test-set idea is not accurate and cross-validation should be used. However,
cross-validated prediction errors incur large variances and hence may not
be reliable. A few alternatives exist based on model selection criteria such
as AIC (or AICc), BIC or gMDL. The idea is to use a possibly biased es-
timated prediction error with a smaller variance than the cross-validation
error. Moreover, the computation cost may be many fold reduced in compar-
ison to cross-validation and thus, for very large data sets, these model-based
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prediction error estimates are also desirable due to computational savings.

Software in R
The R-package mboost provides many specific versions of the gradient

descent Boosting algorithm, including choices for stopping rules. In addition,
mboost allows to fit boosting with a user-specific loss function L. A review
of Boosting including examples using mboost is given in Bühlmann and
Hothorn (2007).
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Lutz, R. and Bühlmann, P. (2006). Boosting for high-multivariate re-
sponses in high-dimensional linear regression. Statistica Sinica 16 471–
494.
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