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Abstract We propose a residual and wild bootstrap methodology for individ-
ual and simultaneous inference in high-dimensional linear models with possibly
non-Gaussian and heteroscedastic errors. We establish asymptotic consistency for
simultaneous inference for parameters in groups G, where p � n, s0 =
o(n1/2/{log(p) log(|G|)1/2}) and log(|G|) = o(n1/7), with p the number of vari-
ables, n the sample size and s0 the sparsity. The theory is complemented by many
empirical results. Our proposed procedures are implemented in the R-package hdi
(Meier et al. hdi: high-dimensional inference. R package version 0.1-6, 2016).
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1 Introduction

Recently, there has been growing interest for statistical inference, hypothesis tests and
confidence regions in high-dimensional models. In fact, many applications nowadays
involve high-dimensional models, and thus, accurate statistical inference methods and
tools are very important. For general models and high-dimensional settings, sample
splitting procedures (Wasserman and Roeder 2009; Meinshausen et al. 2009) and
stability selection (Meinshausen and Bühlmann 2010; Shah and Samworth 2013) pro-
vide some statistical error control and significance. For the case of a linear model with
homoscedastic and Gaussian errors, more recent and powerful techniques have been
proposed (Bühlmann 2013; Zhang and Zhang 2014; van de Geer et al. 2014; Javan-
mard and Montanari 2014; Meinshausen 2015; Foygel Barber and Candès 2015) and
some of these extend to generalized linear models. For a recent overview, see also
Dezeure et al. (2015).

We focus in this paper on a linear model

Y = Xβ0 + ε,

where we use the notation Y for the n × 1 response variable, X for the n × p design
matrix, β0 for the vector of unknown true regression coefficients, and ε for the errors;
for more assumptions, see (1). One goal is to construct confidence intervals for indi-
vidual coefficients β0

j , for j ∈ {1, . . . , p}, or corresponding statistical hypothesis tests
of the form

H0, j : β0
j = 0 versus the alternative HA, j : β0

j �= 0 ( j = 1, . . . , p).

More generally, for groups G ⊆ {1, . . . , p} of variables, we consider

H0,G : β0
j = 0 versus the alternative HA,G : β0

j �= 0 for some j ∈ G,

and of particular interest is also multiple testing adjustment when testing many indi-
vidual or group hypotheses.

In this work we will argue that the bootstrap is very useful for individual and espe-
cially for simultaneous inference in high-dimensional linear models, that is for testing
individual or group hypotheses H0, j or H0,G , and for corresponding individual or
simultaneous confidence regions. We thereby also demonstrate its usefulness to deal
with potentially heteroscedastic or non-Gaussian errors. Instead of bootstrapping the
Lasso estimator directly (see also the comment in Sect. 1.1), we propose to boot-
strap the de-biased (Zhang and Zhang 2014) or de-sparsified Lasso which is a regular
non-sparse estimator achieving asymptotic efficiency under certain assumptions (van
de Geer et al. 2014). The idea of bootstrapping an estimator like the de-sparsified
Lasso has been proposed in Belloni et al. (2015b), building on the fundamental work
of Chernozhukov et al. (2013) for bootstrapping approximately linear estimators in
high-dimensional problems: the relation of our work with existing results is described
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High-dimensional simultaneous inference with the bootstrap 687

in more detail at the end of Sect. 1.1. We discuss several advantages of bootstrapping
the de-sparsified Lasso, including the issue of simultaneous inference for large groups
of variables and statistically efficient multiple testing adjustment. These make our
bootstrap approach a “state-of-the-art tool” for reliable inference in high-dimensional
linear models with potentially heteroscedastic and strongly non-Gaussian errors. The
resampling nature in general should further contribute additional stability and robust-
ness to statistical results and conclusions, cf. Breiman (1996).

From a computational point of view, the bootstrap scheme is feasible and not
substantially more expensive than the de-sparsified Lasso itself; especially when the
number of variables is large, the extra cost of bootstrapping is not very severe. The
bootstrap procedures which we propose and discuss are implemented and added to
the R-package hdi (Meier et al. 2016). This supports their use for practical analysis
of high-dimensional data.

1.1 Related work and our contribution

Besides the growing literature in assessing uncertainty in high-dimensional statisti-
cal inference mentioned at the beginning of the introductory section, the use of the
bootstrap has been advocated in other works. In particular, the contributions by Bel-
loni et al. (2015a, b) and Zhang and Cheng (2016) are closely related to ours: More
details are given below. From a theoretical perspective, the results fromChernozhukov
et al. (2013) are important for deriving results for simultaneous inference based on the
bootstrap.

Bootstrapping the adaptive Lasso in high-dimensional linear models has been put
forward and analyzed by Chatterjee and Lahiri (2011, 2013). A main difference to our
proposal is that their approach is for a sparse Lasso-type estimator and they require a
“beta-min” condition (saying that all nonzero regression coefficients are sufficiently
large in absolute value) to ensure that the bootstrap captures the correct limiting dis-
tribution for the nonzero parameters. A related approach has been proposed by Liu
and Yu (2013). Instead of the adaptive Lasso, a two-stage and sparse estimator based
on Lasso selection (stage 1) and least squares or Ridge estimation using the selected
variables (stage 2) is considered. A residual bootstrap (based on the two-stage pro-
cedure) is then employed to bootstrap this two-stage sparse estimator. We avoid a
“beta-min” assumption because it is a main purpose of the inference method itself to
find out which of the underlying regression coefficients are sufficiently large or not.
Furthermore, from a practical perspective, bootstrapping a Lasso-type or other sparse
(e.g., as in Liu and Yu 2013) estimator can be severely exposed to the super-efficiency
phenomenon. It has been reported in numerical simulation studies, saying that infer-
ence for nonzero regression coefficients can be very poor (Dezeure et al. 2015). The
bootstrap has also been used and studied in settings which are vaguely related to ours:
Zhou (2014) presents an MCMC sampler for the distribution of an augmented Lasso
estimator which allows for some inferential tasks,McKeague and Qian (2015) analyze
the bootstrap for marginal correlation screening for high-dimensional linear models,
and Shah and Bühlmann (2015) consider the use a bootstrap scheme for obtaining the
exact distribution of scaled residuals in a high-dimensional linear model with Gaus-
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688 R. Dezeure et al.

sian errors, which in turn enables inference about the distribution for any estimator or
function based on the scaled residuals.

We use the following abbreviations: work by Belloni et al. (2015b) (BCK), Belloni
et al. (2015a) (BCCW) andZhang and Cheng (2016) (ZC). These papers have analyzed
the bootstrap for the linearized part of similar estimators like the de-sparsified Lasso.
BCK (Belloni et al. 2015b) has been the first paper which considered this problem for
a Gaussian multiplier bootstrap using results from Chernozhukov et al. (2013) for the
Gaussian multiplier bootstrap for approximate means of random variables. The latter
results have been improved in CCK (Chernozhukov et al. 2014), establishing faster
rates and encompassing also the classical bootstrap based on the empirical distribution.
The paper by BCCW (Belloni et al. 2015a) using a Gaussian multiplier bootstrap
can be seen as an extension of BCK to many functional “Z-problems” (i.e., moment
condition model), and software implementation is available from the R-package hdm
(Chernozhukov et al. 2016). Thework by ZC (Zhang and Cheng 2016) is rather similar
to BCK. We provide here some bootstrap approaches for the more general case with
heteroscedastic errors and exhibiting better finite sample performance, as explained
next.

We discuss three different bootstrapmethods: a residual bootstrap, a multiplier wild
bootstrap and a special versionof a pairedbootstrapmethod,whereasBCK,BCCWand
ZC consider a Gaussian multiplier wild bootstrap only. Our different procedures are
motivated and carefully discussed from the viewpoint of dealing with heteroscedastic
errors, while all other works consider homoscedastic errors only. We also allow for
non-Gaussian multipliers in the wild bootstrap and develop the corresponding theory,
motivated by potential advantages in performance (Mammen 1993) [although we
could not find substantial empirical improvements in the setting of high-dimensional
regression, in contrast to high-dimensional means (Deng and Zhang 2017)]. This is in
contrast to BCK, BCCW and ZC who consider Gaussian multipliers only and directly
rely on results from Chernozhukov et al. (2013) for the Gaussian multiplier bootstrap.
(Extensions to the classical bootstrap might be rather straightforward using the results
from Chernozhukov et al. 2014.)

As a methodological difference, we advocate to bootstrap the entire de-sparsified
Lasso estimator, using the plug-in rule, whereas BCK, BCCW and ZC only boot-
strap the linearized part of the estimator. As mentioned above, there is essentially no
additional computational cost when bootstrapping the entire instead of only the lin-
earized part of the estimator. In the presented theories, there is no need to bootstrap
the nonlinear, asymptotically negligible, part of the estimator: Finite sample results
though speak much in favor to bootstrap the entire estimator (as we propose here),
see Sect. 5. Bootstrapping the entire procedure also makes unnecessary the version
“RLDPE” (restricted low-dimensional projection estimator) of the de-sparsified esti-
mator which was introduced by Zhang and Zhang (2014) to improve coverage of
nominal confidence while paying a price for efficiency; see Sects. 5.1.1 and 5.1.2.

Regarding theory, our condition on the sparsity of the design is much weaker than
in ZC. We require an �1-norm condition for the rows of the inverse covariance matrix,
while they require a much more stringent �0-sparsity condition. The details are as
follows: We require an �1-norm condition in the second part of (B2) which is implied
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by the �0-sparsity condition s j = o(n/ log(p)), where s j = ∑

k �= j
I
((

Σ−1
X

)
jk �= 0

)
,

due to ‖γ j‖1 ≤ O(1)
√
s j when λmin(Σ) > c > 0. In contrast, ZC require s j =

o(
√
n/ log(p)). For details of notation, see Sect. 3.3.

Our contribution here can be seen as a very general development of bootstrap meth-
ods for the de-biased or de-sparsified Lasso for confidence intervals and hypotheses
testing in high-dimensional linear models with potentially heteroscedastic and non-
Gaussian errors, with a particular emphasis on simultaneous inference and multiple
testing adjustment.Our aim is to establish, by theory and empirical results, the practical
usefulness and reliability of the bootstrap for high-dimensional inference.

2 High-dimensional linear model and the de-sparsified Lasso

We consider in this work a high-dimensional linear model

Y = Xβ0 + ε, (1)

with n×1 response vector Y , n× p fixed design matrix X, p×1 vector β0 of the true
underlying unknown regression parameters, and n×1 vector of error terms. The n×1
column vectors of X are denoted by X j ( j = 1, . . . , p). The errors are assumed to
be independent with mean E[εi ] = 0, but potentially heteroscedastic with variances
E[ε2i ] = σ 2

i . We note that the case of fixed design arises when conditioning on the
covariables. We focus on the high-dimensional regime where the dimension p � n
is much larger than sample size n. Then, the linearity itself is not a real restriction, as
discussed in Sect. 6.1. The goal in this paper is inference for the unknown parameter
vector β0, in particular in terms of statistical hypothesis tests and confidence intervals.

We propose to do such inference based on non-sparse estimators. The non-sparsity
of an estimator typically induces “regularity” and avoids the phenomenon of super-
efficiency: We believe that this classical viewpoint (cf. Bickel et al. 1998) is actually
important and leads to much better performance for constructing confidence intervals
for nonzero parameters. Regularity typically enables asymptotic normality and effi-
ciency, and it is also advantageous for consistency of the bootstrap due to fundamental
results by Giné and Zinn (1989) and Giné and Zinn (1990).

2.1 The de-sparsified Lasso

The de-biased Lasso (Zhang and Zhang 2014), also called the de-sparsified Lasso (van
de Geer et al. 2014), can be considered as a generalization of the ordinary least squares
approach to the high-dimensional setting.

In the low-dimensional p < n setting with X having full rank p, denote by Vj the
residual vector when doing an ordinary least squares regression of X j versus X− j :
Here X− j is the n × (p − 1) sub-matrix of XX without the j th column. Then, the
ordinary least squares estimator for β0 can be written as

β̂OLS
j = V T

j Y

V T
j X j

.
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When p > n, the Vj ’s are zero vectors and we cannot use such a construction.
Instead, we consider the residuals Z j from a Lasso regression of X j versus all other
variables in X− j :

γ̂ j = γ̂ j (λX ) = argminγ j

(
‖X j − X− jγ j‖22/n + λX‖γ j‖1

)
,

Z j = X j − X− j γ̂ j .

We then project on these regularized residuals while introducing a bias:

β̂
′
j = ZT

j Y

ZT
j X j

= β0
j +

∑

k �= j

ZT
j Xk

ZT
j X j

β0
k + ZT

j ε

ZT
j X j

.

The introduced bias
∑

k �= j
ZT
j Xk

ZT
j X j

β0
k can be estimated and corrected for by plugging in

the Lasso from a regression of Y versus X:

β̂ = β̂(λ) = argminβ

(
‖Y − Xβ‖22/n + λ‖β‖1

)
.

This gives us the de-biased or de-sparsified Lasso:

b̂ j = β̂
′
j −

∑

k �= j

ZT
j Xk

ZT
j X j

β̂k = β0
j +

∑

k �= j

ZT
j Xk

ZT
j X j

(
β0
k − β̂k

)
+ ZT

j ε

ZT
j X j

. (2)

The estimator b̂ j is not sparse anymore, and hence the name de-sparsified Lasso (van
de Geer et al. 2014); we can also write it as

b̂ j = β̂ j + ZT
j (Y − Xβ̂)

ZT
j X j

,

which means that it equals the Lasso plus a one-step bias correction, and hence the
alternative name de-biased Lasso (Zhang and Zhang 2014). In the sequel, we use the
terminology de-sparsified Lasso.

When interested in all j = 1, . . . , p, the procedure requires one to run the Lasso
with tuning parameter λ for the regression of Y versus X, and the nodewise Lasso
(Meinshausen and Bühlmann 2006) which means the Lasso for every regression of
X j versus X− j ( j = 1, . . . , p) with tuning parameter λX (the same for all j). The
total computational requirement is thus to run p + 1 Lasso regressions which can
be substantial if p is large. Luckily, parallel computation can be done very easily, as
implemented in hdi (Meier et al. 2016; Dezeure et al. 2015).

It has been shown first by Zhang and Zhang (2014), for homoscedastic errors, that
under some conditions,

(
b̂ j − β0

j

)
/s.e. j ⇒ N (0, 1) ( j = 1, . . . , p), (3)
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with the approximate standard error given in Theorem 1 or Theorem 2 for the case of
homoscedastic or heteroscedastic errors, respectively. The convergence is understood
as both p ≥ n → ∞. For the homoscedastic case, the asymptotic variance reaches
the semiparametric information bound (van de Geer et al. 2014).

Estimation of the standard error is discussed below in Sect. 2.2. With an approx-
imate pivot at hand, we can construct confidence intervals and hypothesis tests: For
homoscedastic errors, this has been pursued by various authors and Dezeure et al.
(2015) present a review and description of how inference based on such pivots can be
done with the R-package hdi (Meier et al. 2016).

In this work we will argue that bootstrapping the de-sparsified Lasso b̂ will bring
additional benefits over the asymptotic inference based on a Gaussian limiting distri-
bution arising in (3).

2.2 Estimation of the standard error and robustness for heteroscedastic errors

Basedon the developed theoretical results inSect. 3.3, one can show that the asymptotic
standard error of the de-sparsified estimator behaves like

s.e. j = n−1/2

√
Var(n−1/2

∑n
i=1 Z j;iεi )

|ZT
j X j/n| .

For the case of homoscedastic i.i.d. errors with Var(εi ) = σ 2
ε , the inverse of the

standard error is then asymptotically behaving like

s.e. j = n−1/2 σε‖Z j‖2/√n

|ZT
j X j/n| .

This suggests to use as an estimate

ŝ.e. j = n−1/2 σ̂ε‖Z j‖2/√n

|ZT
j X j/n| ,

σ̂ 2
ε = 1

n − ŝ
‖Y − Xβ̂‖22, (4)

with ŝ the number of nonzero coefficients in the estimate β̂. This choice of σ̂ 2
ε is based

on the recommendation of Reid et al. (2016) and supported by our own empirical expe-
rience with different variance estimators. This standard error estimate is implemented
in the R-package hdi (Meier et al. 2016).

For heteroscedastic but independent errors with Var(εi ) = σ 2
i , the asymptotic

standard error behaves as

s.e.robust, j = n−1/2 ω j

|ZT
j X j/n| ,
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692 R. Dezeure et al.

ω2
j = n−1

n∑

i=1

Z2
j;iσ

2
i .

We then propose the robust estimator

ŝ.e.robust, j = n−1/2 ω̂ j

|ZT
j X j/n| ,

ω̂2
j = 1

n − ŝ

n∑

i=1

(

ε̂i Z j;i − n−1
n∑

r=1

ε̂r Z j;r

)2

, ε̂ = Y − X β̂, (5)

which has been used in Bühlmann and van de Geer (2015) for the different contexts
of misspecified linear models with random design. We prove that under some con-
ditions, ŝ.e. j/Var(b̂ j )

1/2 = 1 + oP (1) (Theorem 1 for the homoscedastic case) and
ŝ.e.robust, j/Var(b̂ j )

1/2 = 1+ oP (1) (Theorem 2 for the heteroscedastic case). In fact,
the robust standard error estimator is consistent for both the homo- and heteroscedas-
tic cases for the error terms: Therefore, it is robust against heteroscedasticity which
explains its name. The phenomenon is closely related to the robust sandwich estimator
for the standard error of the MLE in low-dimensional models (Eicker 1967; Huber
1967; White 1980; Freedman 1981).

We point out that the result

(
b̂ j − β0

j

)
/ŝ.e.robust, j �⇒ N (0, 1),

presented later in Theorem 2, is a new extension which covers the case with het-
eroscedastic errors. All that is conceptually needed is the robust standard error estimate
ŝ.e.robust, j .

3 Bootstrapping the de-sparsified Lasso

Weconsider first a residual bootstrap procedure. Two alternative bootstrapmethods are
discussed in Sects. 4.1 and 4.2. We use the Lasso for computing residuals ε̂ = Y −Xβ̂

and centered residuals ε̂cent,i = ε̂i − ε̂ (i = 1, . . . , n), where ε̂ = n−1 ∑
ε̂i . The

bootstrapped errors are then constructed from the

Residual bootstrap:

ε∗
1, . . . , ε

∗
n i.i.d. (re-)sampled from the centered residuals ε̂cent,i (i = 1, . . . , n).

We then construct the bootstrapped response variables as

Y ∗ = Xβ̂ + ε∗, (6)

and the bootstrap sample is {(Xi ,Y ∗
i )}ni=1, reflecting the fact of fixed (non-random)

design. Here and in the sequel Xi denotes the p × 1 row vectors of X (i = 1, . . . , n).
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High-dimensional simultaneous inference with the bootstrap 693

3.1 Individual inference

We aim to estimate the distribution of the asymptotic pivot (see Theorems 1 and 2)

Tj = b̂ j − β0
j

ŝ.e.robust, j
, (7)

where b̂ j is the de-sparsified estimator and ŝ.e.robust, j is the robust standard error in (5).
We propose to always use this robust standard error in practice because it automatically
provides protection (robustness) against heteroscedastic errors. At some places, we
also discuss the use of the more usual standard error formula ŝ.e. j from (4) for the
casewith homoscedastic errors: But this servesmainly for explaining some conceptual
differences. For estimating the distribution in (7), we use the bootstrap distribution of

T ∗
j = b̂∗

j − β̂ j

ŝ.e.∗robust, j
, (8)

where b̂∗
j and ŝ.e.∗robust, j are computed by plugging in the bootstrap sample instead

of the original data points. (Alternatively, when using the non-robust standard error,
we would also use the bootstrap for the non-robust version.) Denote by q∗

j;ν the ν-
quantile of the bootstrap distribution of T ∗

j . We then construct two-sided 100(1−α)%

confidence intervals for the j th coefficient β0
j as

CI j =
[
b̂ j − q∗

j;1−α/2 ŝ.e.robust, j , b̂ j − q∗
j;α/2 ŝ.e.robust, j

]
. (9)

Corresponding p values for the null hypothesis H0, j versus the two-sided alter-
native HA, j can then be computed by duality. Bootstrapping pivots in classical
low-dimensional settings are known to improve the level of accuracy of confidence
intervals and hypothesis tests (Hall and Wilson 1991).

3.2 Simultaneous confidence regions, intervals and p values for groups

We can construct simultaneous confidence regions over a group of variablesG. Rather
than using the sup-norm, we build the region

C(1 − α) =
{

b ∈ R
p;max

j∈G

√
n(b̂ j − b j )

ŝ.e.robust, j

≤ q∗
max;G(1 − α/2) and min

j∈G

√
n(b̂ j − b j )

ŝ.e.robust, j
≥ q∗

min;G(α/2)

}

,

where q∗
max;G(ν) is the ν-quantile of the bootstrap distribution of max j∈G T ∗

j and
q∗
min;G(ν) the ν-quantile of the bootstrap distribution of min j∈G T ∗

j , respectively (with
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T ∗
j as in (8)). If the group G is large, a more informative view is to take the compo-

nentwise version of C(1−α): For each component j ∈ G we consider the confidence
interval for β0

j of the form

CIsimult, j =
[
b̂ j − ŝ.e.robust, j q

∗
max;G(1 − α/2), b̂ j − ŝ.e.robust, j q

∗
min;G(α/2)

]
. (10)

We may also replace q∗
max;G(1 − α/2) and q∗

min;G(α/2) by ±q∗
abs;G(1 − α), where

q∗
abs;G(ν) is the ν-quantile of the bootstrap distribution of max j∈G |T ∗

j |. In contrast to
the confidence intervals in (9), the intervals in (10) are simultaneous and hence wider,
providing approximate coverage in the form of

P[β0
j ∈ CIsimult, j for all j ∈ G] ≈ 1 − α.

Of particular interest is the casewithG = {1, . . . , p}. This construction often provides
shorter intervals than using a Bonferroni correction, especially in the presence of
positive dependence. See also the empirical results in Sect. 5.2 for the related problem
of adjustment for multiple testing.

We might also be interested in p values for testing the null hypothesis

H0,G : β0
j = 0 for all j ∈ G,

against the alternative HA,G : β0
j �= 0 for some j ∈ G. We consider the max-type

statistics max j∈G |Tj | which should be powerful for detecting sparse alternatives. We
can use the bootstrap under H0,G , or alternatively under the complete null hypothesis,
H0,complete : β0

j = 0 ∀ j = 1, . . . , p, by exploiting (asymptotic) restricted subset
pivotality. The details are given in Sect. 4.3. Resampling under H0,complete is compu-
tationally much more attractive when considering many groups since we can use the
same bootstrap distribution to compute the p values for many groups. The p value is
then given by

PG = P
∗0

[

max
j∈G |T ∗0

j | > max
j∈G |t j |

]

,

where the asterisk “∗0” emphasizes that the bootstrap is constructed under the complete
null hypothesis H0,complete and t j is the observed realized value of the studentized
statistics Tj .

In the presence of heteroscedasticity, the residual bootstrap is inconsistent for simul-
taneous inference, and the wild bootstrap or a paired bootstrap scheme described in
Sects. 4.1 and 4.2 should be used instead.

3.3 Consistency of the residual bootstrap

For deriving the asymptotic consistency of the bootstrap, we make the following
assumptions.
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(A1) ‖β̂ − β0‖1 = oP (1/
√
log(p) log(1 + |G|)).

(A2) λX � √
log(p)/n, ‖Z j‖22/n ≥ LZ , ‖Z j‖2+δ

2+δ = o(‖Z j‖2+δ
2 ), j ∈ G.

(A3) ε1, . . . , εn independent, E[ε] = 0, E‖ε‖22/n = σ 2
ε , L ≤ E|εi |2 = σ 2

i ,
E|εi |2+δ ≤ C , for all i .

(A4) ‖β̂∗ − β̂‖1 = oP∗(1/
√
log(p) log(1 + |G|)) in probability.

(A5) maxi j |Xi j | ≤ CX .
(A6) max j∈G ‖Z j‖∞ ≤ K , δ = 2, i.e., bounded fourth moment of ε, log(|G|) =

o(n1/7).

Here σε, δ, L , C , CX , LZ and K are positive constants uniformly bounded away from
0 and ∞, and G ⊆ {1, . . . , p} indicates a set of variables of interest, e.g., G = { j}
for inference of a single β j . As our theoretical results require no more than the fourth
moment of ε, we set δ ∈ (0, 2] for simplicity without loss of generality. The constant
δ is the same in (A2), (A3) and (A6), e.g., δ = 2 in (A3) when (A6) is imposed. Unless
otherwise stated, (A2) is imposed with an arbitrarily small δ > 0 when |G| = O(1)
and strengthened with (A6) when |G| → ∞.

Justification of (A1), (A2), (A4) and (A6). Sufficient assumptions for (A1), (A2), (A4)
and (A6) (and choosing λX � √

log(p)/n) are as follows.

(B1) The rows of the design matrix are i.i.d. realizations from a distribution with
covariance matrix ΣX , and the smallest eigenvalue of ΣX is larger than some
M > 0. Furthermore, for some constantsC1,C2, 0 < C1 ≤ τ 2j = 1/(Σ−1

X ) j j ≤
C2 < ∞.

(B2) s0 = o(
√
n/{log(p)√log(|G|)}), ∑k �= j |(Σ−1

X ) jk | ≤ o(
√
n/ log p).

(B3) The smallest sparse eigenvalue of XT X/n, with sparsity of the order s0, is
bounded from below by a positive constant.

Assumptions (B1, only the first requirement), (B2, only the first requirement) and
(A5) imply that with high probability (w.r.t. i.i.d. sampling the rows of the design
matrix), (B3) and the compatibility condition for the set S0 hold (Bühlmann and van
de Geer 2011, Cor.6.8). Alternatively, by Maurey’s empirical method (Rudelson and
Zhou 2013), (B3) and (A5) directly imply the compatibility condition for deterministic
design. It is known (Bühlmann and van de Geer 2011, Th.6.1 and Ex14.3) that with
the compatibility condition for S0 and λ ≥ 2‖XT ε/n‖∞ we have that ‖β̂ − β0‖1 =
OP (s0

√
log(p)/n) and thus, (B2) implies (A1).

Let γ 0
j be the population regression coefficients of X j versus X− j and Z0

j = X j −
∑

k �= j Xk(γ
0
j )k . ByNemirovski’s inequality, (B1) and (A5) imply2maxk �= j |XT

k Z
0
j/n|

≤ λX with large probability for a certain λX = OP (
√
log(p)/n). For such λX , the

second part of (B2) implies

‖Z j − Z0
j‖22/n + 2−1λX‖γ̂ j‖1 ≤ (3/2)λX‖γ 0

j ‖1 = o(1).

As ‖Z0
j‖∞ ≤ CX (1+‖γ 0

j ‖1) = o(
√
n/ log p) by (A5), the Bernstein inequality gives

max
j≤p

∣
∣
∣τ 2j − ‖Z0

j‖22/n
∣
∣
∣ = oP (1).
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Thus, due to the second part of (B1) we have proved the requirement on ‖Z j‖22/n in
(A2) and (A6). Moreover, as ‖Z j − Z0

j‖2+δ ≤ ‖Z j − Z0
j‖2 = o(n1/2),

‖Z j‖2+δ
2+δ ≤ 21+δ

(
‖Z0

j‖22‖Z0
j‖δ∞ + ‖Z j − Z0

j‖2+δ
2

)
� n1+δ/2 � ‖Z j‖2+δ

2 ,

which proves the last statement in (A2). If the second requirement of (B2) is strength-
ened to max j≤p ‖γ 0

j ‖1 = CΣ , the �∞ bound in (A6) follows from ‖Z j‖∞ ≤
(1 + ‖γ̂ j‖1)CX ≤ (1 + 3CΣ)CX .

Assumption (A4) holds when assuming (B1, only the first requirement), (B2, only
the first requirement) and (A5) (and these assumptions imply the compatibility con-
dition as mentioned earlier), ensuring that ŝ0 = ‖β̂‖0 = OP (s0) = oP (

√
n/ log(p)).

The latter holds under a sparse eigenvalue condition on the design (Zhang and Huang
2008) or when using, e.g., the adaptive or thresholded Lasso in the construction of the
bootstrap samples (van de Geer et al. 2011) and (Bühlmann and van de Geer 2011,
Ch.7.8-7.9).

3.3.1 Homoscedastic errors

The bootstrap is used to estimate the distribution of the studentized statistic

(
b̂ j − β0

j

)
/ŝ.e. j ,

1/ŝ.e. j = √
n

|ZT
j X j/n|

σ̂ε‖Z j‖2/√n
,

where ŝ.e. j is the approximate standard error for b̂ j when the Lasso is nearly fully
de-biased, with the estimated standard deviation of the error.

Theorem 1 Assume (A1)–(A5) with common E ε2i = σ 2
ε throughout the theorem. Let

P
∗ represent the residual bootstrap. Then,

Tj =
(
b̂ j − β0

j

)
/ŝ.e. j

D�⇒ N (0, 1),

T ∗
j =

(
b̂∗
j − β̂ j

)
/ŝ.e.∗j

D∗�⇒ N (0, 1) in probability,

for each j ∈ G; here, “D” and “D∗” denote convergence in distribution with respect
to the original and to the bootstrap measure, respectively. If |G| = O(1), then

sup
(t j , j∈G)

∣
∣
∣P∗ [

T ∗
j ≤ t j , j ∈ G

]
− P

[
Tj ≤ t j , j ∈ G

]∣∣
∣ = oP (1).

If (A6) holds, then

sup
c∈R

∣
∣
∣
∣P

∗
[

max
j∈G h

(
T ∗
j

)
≤ c

]

− P

[

max
j∈G h

(
Tj

) ≤ c

]∣
∣
∣
∣ = oP (1)
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for h(t) = t , h(t) = −t and h(t) = |t |.
A proof is given in the Electronic Supplementary Material. We note that Theo-

rem 1 only requires a weak form of homoscedasticity in the sense of equal variance,
instead of the stronger assumption of equal distribution, and that under this weak
homoscedasticity, the original and the bootstrap distributions have asymptotically the
same (estimated) standard errors

ŝ.e. j ∼
√

Asymp.Var(b̂ j ) ∼
√

Asymp.Var∗(b̂∗
j ) ∼ ŝ.e.∗j ,

where we omit that the statements are with high probability (in P∗ and/or in P). See
also after the proof of Theorem 1 in the Electronic Supplementary Material.

3.3.2 Heteroscedastic errors

Consider the inverse of the robust standard error formula:

1/ŝ.e.robust, j = √
n
|ZT

j X j/n|
ω̂ j

,

ω̂2
j = n−1

n∑

i=1

(

ε̂i Z j;i − n−1
n∑

r=1

ε̂r Z j;r

)2

.

For deriving the consistency of the bootstrap in the presence of heteroscedastic errors,
we remove the homoscedasticity assumption on the variance, Eε2i = σ 2

ε , imposed in
Theorem 1.

Theorem 2 Assume (A1)–(A5). Let P
∗ represent the residual bootstrap. Then, for

each j ∈ G,

(
b̂ j − β0

j

)
/ŝ.e.robust, j

D�⇒ N (0, 1),
(
b̂∗
j − β̂ j

)
/ŝ.e.∗robust, j

D∗�⇒ N (0, 1) in probability.

Here, “D” and “D∗” denote convergence in distribution with respect to the original
and to the bootstrap measure, respectively.

A proof is given in the Electronic Supplementary Material. Different than for the
homoscedastic case, the original and the bootstrap distributions have asymptotically
different (estimated) standard errors

ŝ.e.robust, j ∼
√

Asymp.Var(b̂ j ) �

√
Asymp.Var∗(b̂∗

j ) ∼ ŝ.e.∗robust, j ,

where we omit that the statements are with high probability (in P∗ and/or in P). Sim-
ilarly, the residual bootstrap does not provide consistent estimation of the correlation

123



698 R. Dezeure et al.

between different b̂ j to justify simultaneous inference as considered in Theorem 1.
The reason is that the bootstrap constructs i.i.d. errors and does not mimic the het-
eroscedastic structure in the original sample. See also the sentences after the proof
of Theorem 2 in the Electronic Supplementary Material. Simultaneous inference with
heteroscedastic errors is treated in the following section.

4 Simultaneous inference with the bootstrap

We discuss here the advantages of the bootstrap for simultaneous inference and multi-
ple testing adjustment in the presence of heteroscedasticity. Of particular interest here
is the problem of simultaneous inference over a group G ⊆ {1, . . . , p} of components
of the regression parameter β, including the case where G = {1, . . . , p} is very large
and includes all components. More precisely, we want to estimate the distribution of

max
j∈G h(Tj ), Tj =

(
b̂ j − β0

j

)
/ŝ.e.robust, j , (11)

by using the bootstrap for h(t) = t , h(t) = −t and h(t) = |t |.
We propose below bootstrap schemes which are consistent and work well for either

homoscedastic or heteroscedastic errors.

4.1 The multiplier wild bootstrap

We introduce a multiplier wild bootstrap (Wu 1986; Liu and Singh 1992; Mammen
1993). Consider the centered residuals ε̂cent = ε̂− ε̂, where ε̂ = Y −Xβ̂, and construct
the multiplier bootstrapped residuals as

ε∗W
i = Wi ε̂cent,i (i = 1, . . . , n),

W1, . . . ,Wn i.i.d. independent of the data with EWi = 0, EW 2
i = 1 and EW 4

i < ∞.

(12)

We then proceed as with the standard residual bootstrap for constructing Y ∗ =
Xβ̂ + ε∗W , and the bootstrap sample is then {(Xi ,Y ∗

i )}ni=1 as input to compute the

bootstrapped estimator T ∗
j = (b̂∗

j − β̂ j )/ŝ.e.∗robust, j , i.e., using the plug-in rule of the
bootstrap sample to the estimator.

This wild bootstrap scheme is asymptotically consistent for simultaneous inference
with heteroscedastic (as well as homoscedastic) errors, see Sect. 4.4.

4.2 The xyz-paired bootstrap

Wemodify here the paired bootstrap for regression (Efron 1979; Liu and Singh 1992)
to deal with the case of heteroscedastic errors (Freedman 1981). As recomputation
of Z j with bootstrap data would be expensive, we propose to append z-variables to
the xy-matrix as additional regressors and bootstrap the entire rows of the xyz-matrix.
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However, to create an unbiased regression model for the bootstrap, the variables have
to be correctly centered to ensureE

∗[(X∗
j )
T ε∗] = E

∗[(Z∗
j )
T ε∗] = 0.We note that this

is not a problem in the low-dimensional case because the residual vector in the least
squares estimation is automatically orthogonal to all design vectors. Thewild bootstrap
does not have a centering problem either because the newly generated multiplier
variables Wi all have zero mean. For the paired bootstrap, we propose to i.i.d. sample
rows of the n× (2p+ 1) matrix (X̂, Ŷ , Ẑ), and hence the name xyz-paired bootstrap,

X̂ j = X j − XT
j ε̂cent

‖ε̂cent‖22
ε̂cent, Ŷ = X̂β̂ + ε̂cent, Ẑ j = Z j − ZT

j ε̂cent

‖ε̂cent‖22
ε̂cent,

where ε̂cent is as in the residual bootstrap. Indeed, for the resulting (X∗,Y ∗, Z∗),

E
∗[ε∗] = E

∗[(X∗
j )
T ε∗] = E

∗[(Z∗
j )
T ε∗] = 0 with ε∗ = Y ∗ − X∗β̂ = (ε̂cent)

∗.

The bootstrapped estimators b̂∗
j , ω̂

∗
j and ŝ.e.

∗
robust, j are then defined by the plug-in rule

as in the wild bootstrap, with T ∗
j = (b̂∗

j − β̂ j )/ŝ.e.∗robust, j .
The xyz-paired bootstrap is shown to be consistent for simultaneous inference with

heteroscedastic errors, see Sect. 4.4. However, limited empirical results (not shown in
the paper) suggested that it may not be competitive in comparison with the Gaussian
multiplier wild bootstrap from Sect. 4.1.

4.3 The Westfall–Young procedure for multiple testing adjustment

TheWestfall–Young procedure (Westfall andYoung 1993) is a very attractive powerful
approach for multiple testing adjustment based on resampling. It uses the bootstrap
to approximate joint distributions of p values and test statistics, therefore taking their
dependencies into account. This in turn leads to efficiency gains: The procedure has
been proven for certain settings to be (nearly) optimal for controlling the familywise
error rate (Meinshausen et al. 2011).

A standard assumption for theWestfall–Young procedure is the so-called subset piv-
otality for the statistics Tj = b̂ j/ŝ.e.robust, j (or using the version for the homoscedastic
case with ŝ.e. j ). Note that in this subsection, Tj is without the centering at β̂ j .

(subs-piv) Subset pivotality holds if, for every possible subset G, the marginal distri-
bution for {Tj j ∈ G} remains the same under the restriction H0,G : β j = 0 for
all j ∈ G and H0,complete : β j = 0 for all j = 1, . . . , p.

When focusing specifically on a max-type statistic, we can weaken subset pivotality
to a restricted form.

(restricted subs-piv) Restricted subset pivotality holds if, for every possible subset
G, the distribution of max j∈G |Tj | remains the same under the restriction H0,G :
β j = 0 for all j ∈ G and H0,complete : β j = 0 for all j = 1, . . . , p.

Subset pivotality can be justified in an asymptotic sense. For groups G with finite
cardinality, Theorems 1 and 3 presented below imply that asymptotic subset pivotality
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holds. For large groups G (with |G| as large as p � n) and assuming Gaussian errors,
the restricted form of subset pivotality holds, see, e.g., Zhang and Zhang (2014). For
large groups and non-Gaussian errors, restricted subset pivotality can be established
under the conditions in Theorems 1 and 3. (The proof of these theorems implies the
restricted subset pivotality, by using arguments from Chernozhukov et al. (2013).)

Assuming restricted subset pivotality (in an asymptotic sense) we immediately
obtain that for any group G ⊆ {1, . . . , p}:

P

[

max
j∈G |Tj | ≤ c|H0,G

]

= P

[

max
j∈G |Tj | ≤ c|H0,complete

]

(c ∈ R), (13)

or its asymptotic version with approximate equality. This suggests to approximate the
distribution of max j∈G |Tj | under the complete null hypothesis H0,complete by using a
bootstrap scheme under the complete null hypothesis H0,complete. We use

Y ∗0 = ε∗W for the multiplier wild bootstrap in (12), (14)

that is, the construction as before but replacing β̂ by the zero vector. For the het-
eroscedastic residual bootstrap, this means that we perform i.i.d. resampling of the
rows of (ε̂cent, X, Z j ). We notationally emphasize the bootstrap under H0,complete by
the asterisk “∗0”. The bootstrap approximation is then as follows:

P
∗0

[

max
j∈G |T ∗0

j | ≤ c

]

≈ P

[

max
j∈G |Tj | ≤ c|H0,complete

]

(c ∈ R),

and when invoking (13) we obtain that P
∗0[max j∈G |T ∗0

j | ≤ c] ≈ P[max j∈G |Tj | ≤
c|H0,G]. A rigorous justification for this approximation and the parallel approximation
by the xyz-paired bootstrap is given in Theorem 3 below.

We then easily obtain multiplicity-adjusted p values which approximately control
the familywise error rate for testing all the hypotheses H0, j : β0

j = 0 for all j =
1, . . . , p:

Pj,corr = P
∗0

[

max
k∈{1,...,p} |T

∗0
k | > |t j |

]

,

where Tk = b̂k/ŝ.e.robust,k (or using the non-robust version ŝ.e.k), T ∗0
k its bootstrapped

version under H0,complete using (14) and t j is the observed, realized value of the test
statistic Tj . Because the bootstrap is constructed under the complete H0,complete we can
compute the bootstrap distribution of maxk∈{1,...,p} |T ∗0

k | once and then use it to cali-
brate the p values for all components j = 1, . . . , p: Obviously, this is computationally
very efficient.

As described inWestfall andYoung (1993), thismethod improves uponBonferroni-
style and Sidak adjustments,mainly because the bootstrap is taking dependence among
the test statistics into account and hence is not overly conservative like the Bonferroni-
type or Sidak correction. Furthermore, the Westfall–Young method does not rely on
the assumption that the p values are uniformly distributed under H0; j , for all j . Finally,
a Bonferroni-type correction goes far into the tails of the distributions of the individual
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test statistics, in particular if p is large: One typically would need some importance
sampling for a computationally efficient bootstrap approximation of a single test statis-
tic in the tails. We found that the Westfall–Young method is much less exposed to this
issue (because the maximum statistics are directly bootstrapped without doing addi-
tional corrections in the tail).

4.4 Consistency of the multiplier wild and xyz-paired bootstrap

We discuss under which assumptions the multiplier wild and xyz-paired boot-
strap schemes achieve consistency for estimating the distribution of Tj = (b̂ j −
β0
j )/ŝ.e.robust, j , max j∈G(±Tj ), and max j∈G |Tj |, where G ⊆ {1, . . . , p}. The cen-

tered and standardized bootstrapped estimator is T ∗
j = (b̂∗

j − β̂ j )/ŝ.e.∗robust, j .
Theorem 3 Assume (A1)–(A5) (and thus allowing for heteroscedastic errors). Let P∗
represent the multiplier wild bootstrap. Then,

Tj =
(
b̂ j − β0

j

)
/ŝ.e.robust, j �⇒ N (0, 1),

T ∗
j =

(
b̂∗
j − β̂ j

)
/ŝ.e.∗robust, j

D∗�⇒ N (0, 1) in probability,

for each j ∈ G. If |G| = O(1); then,

sup
(t j , j∈G)

∣
∣
∣P∗ [

T ∗
j ≤ t j , j ∈ G

]
− P

[
Tj ≤ t j , j ∈ G

]∣∣
∣ = oP (1).

If (A6) holds, then

sup
c∈R

∣
∣
∣
∣P

∗
[

max
j∈G h

(
T ∗
j

)
≤ c

]

− P

[

max
j∈G h

(
Tj

) ≤ c

]∣
∣
∣
∣ = oP (1)

for h(t) = t , h(t) = −t and h(t) = |t |.
Moreover, all the above statements also hold when P

∗ represents the xyz-paired
bootstrap, provided that δ = 2 in (A2) and (A3), max j∈G(‖Z j‖2/|ZT

j X j |) =
oP (1/

√
log(2|G|)), and √

log(p)/n = oP (1/
√
log(p) log(1 + |G|)).

Aproof is given in the Electronic SupplementaryMaterial.We note that the assump-
tion (A4) is meant to be with respect to the multiplier wild or the paired xyz-bootstrap,
respectively: It is ensured by the same conditions as outlined in Sects. 3.3 and 3.3.2.
Furthermore, condition (A6) can be relaxed to log(|G|) = o(n1/5) for Mammen’s
wild bootstrap and the xyz-paired bootstrap (Deng and Zhang 2017).

For the xyz-paired bootstrap, the additional condition log(p)/n = oP (1/√
log(p) log(1 + |G|)) is a consequence of (A1) and the �1 minimax rate of the

Lasso (Ye and Zhang 2010), and upper bounds of the form max j ‖Z j‖2/|ZT
j X j | =

OP (n−1/2), implying the requirement in Theorem 3 and the uniform n−1/2 rate for
the standard error of b̂ j , can be found in Zhang and Zhang (2014) and van de Geer
et al. (2014).
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4.4.1 Conceptual differences between the multiplier wild and residual bootstrap

We briefly discuss some conceptual differences between the multiplier bootstrap and
residual bootstrap while (mostly) not distinguishing whether the inference is simulta-
neous or for individual parameters. (The residual bootstrap alsoworks for simultaneous
inference as discussed in Theorem 1.)

The multiplier wild bootstrap leads to the correct standard error of the estimator
for both cases of either homo- or heteroscedastic errors, i.e.,

ŝ.e.∗robust, j ∼
√
Asym.Var∗(b̂∗

j ) ∼
√

Asym.Var(b̂ j ) ∼ ŝ.e.robust, j .

The asymptotic equivalence Asym.Var∗(b̂∗
j ) ∼ Asym.Var(b̂ j ) does not hold for the

residual bootstrap in the case of heteroscedastic errors. However, this property is not
needed when constructing the inference based on the pivots as in (9), and the absence
of the asymptotic equivalence between studentized b̂∗

j and b̂ j is theoretically supported
by Theorem 2. Nevertheless, the fact that the residual bootstrap does not capture the
correct asymptotic variance in the non-standardized case, which has been a major
reason to introduce the wild bootstrap (Mammen 1993), might remain a disadvantage
for the residual bootstrap.

When the multiplier variables Wi are i.i.d. N (0, 1), the wild bootstrap as in (12)
induces an exactGaussian distribution (given the data) for the linear part ZT

j ε∗/ZT
j X j ,

the leading termof b̂∗
j . This is considered inBelloni et al. (2015b), Belloni et al. (2015a)

and Zhang and Cheng (2016). For the finite sample case with non-Gaussian errors,
the distribution of the original quantity ZT

j ε/ZT
j X j is non-Gaussian: By construc-

tion, the Gaussian multiplier bootstrap cannot capture such a non-Gaussianity. The
residual bootstrap is better tailored to potentially pick up such non-Gaussianity and
hence might have an advantage over the Gaussian multiplier wild bootstrap. Still, if
heteroscedasticity is a concern, one should use non-Gaussian multipliers as advocated
in Mammen (1993) and justified in Theorem 3.

Our limited empirical results suggest that the residual bootstrap and Gaussian mul-
tiplier wild bootstrap lead to very similar empirical results in terms of type I (actual
level of significance for tests, and actual confidence coverage) and type II errors (power
of tests, and size of confidence regions) for (i) the case of homoscedastic errors and
for individual and simultaneous inference and (ii) the case of heteroscedastic errors
and individual inference when using the robust standard error formula for the residual
bootstrap. For the case of heteroscedastic errors and simultaneous inference, the wild
bootstrap seems to be the preferred method. Some supporting empirical results are
given in the Electronic Supplementary Material.

5 Empirical results

We compare the bootstrapped estimator to the original de-sparsified Lasso in terms
of single testing confidence intervals and multiple testing corrected p values. We
also consider the restricted low-dimensional projection estimator (RLDPE) which
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Fig. 1 Histogram of the coverage probabilities of two-sided 95% confidence intervals for 500 parameters.
It illustrates how the results look like for a perfectly correct method for creating confidence intervals and
one uses only 100 realizations to compute the probabilities (color figure online)

has been introduced by Zhang and Zhang (2014) as a version of the de-biased (or
de-sparsified) Lasso to enhance the reliability of coverage while paying a price for
efficiency, and we also compare with the ZC approach from Zhang and Cheng (2016)
which applies the bootstrap only to the linear part of the de-sparsified estimatorwithout
bootstrapping the estimated bias correction term. We always consider the residual
bootstrap, unless explicitly specified that thewild bootstrap (withGaussianmultipliers)
is used. Moreover, when considering scenarios with homoscedastic errors, we always
studentizewith the non-robust estimator ŝ.e. j and for heteroscedastic errors,we always
studentize with the robust estimator ŝ.e.robust, j (unless specified differently).

Of particular interest is the accuracy of the bootstrap when dealing with non-
Gaussian and even heteroscedastic errors. For multiple testing, one would like to
find out how much there is to gain when using the Westfall–Young procedure over a
method that does not exploit dependencies between the outcomes of the tests, such
as Bonferroni–Holm. To this end, it is interesting to look at a variety of dependency
structures for the design matrix and to look at real data as well.

For confidence intervals, we visualize the overall average coverage probability as
well as the occurrence of too high or too low coverage probabilities. We work with
histograms of the coverage probabilities for all coefficients in themodel, as in example
in Fig. 1. These probabilities are always computed based on 100 realizations of the
corresponding linear model. For those cases where coverage is too low, we visualize
the confidence intervals themselves to illustrate the poor coverage. An example of the
plot we will work with is shown in Fig. 2.

For multiple testing, we look at the power and the familywise error rate:

Power =
∑

j∈S0
P[H0, j is rejected]/s0,

FWER = P[∃ j ∈ Sc0 : H0, j is rejected],

where the probabilities are computed based on 100 realizations of the linear model.
We use boxplots to visualize the power and error rates, similar to Fig. 3, where

each data point is the result of the probability calculation described above. In order
to generate interesting and representative data points, we look at different choices for
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Fig. 2 Plot of two-sided 95% confidence intervals. It illustrates how the results would look like for a
correctmethod for creating confidence intervalswhen one only computes 100 confidence intervals. Eighteen
coefficients are chosen and are drawn in 18 columns from left to right with a black horizontal bar indicating
the coefficient size. If any coefficients differ from zero then they are plotted first from the left (in order
of increasing magnitude). This particular example does not exhibit any of those nonzero coefficients. The
other coefficients are chosen to be those with the lowest coverage such that we can investigate potential
causes for this poor coverage. The 100 computed confidence intervals are drawn from left to right in the
column for the corresponding coefficient. The line segment is colored black in case it contains the truth,
red otherwise. The number of confidence intervals that cover the truth for a particular coefficient is written
above the confidence intervals in the respective column. The overall average coverage probability over all
coefficients is displayed in the right-most column (color figure online)
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Fig. 3 Plot of multiple testing performance in terms of familywise error rate (FWER) control. It illustrates
how the results look like for a correct method for multiple testing correction, if one computes the error
rates over 100 realizations of the model. The target is controlling the FWER at level 0.05. This target is
highlighted by a horizontal, dotted red line. We sample independent and identically distributed p values
p j ∼ U (0, 1), for j = 1, . . . , 500, and compute the familywise error rate over 100 realizations when using
the rejection threshold α = 0.05/500 = 0.0001. The boxplot based on 300 data points is the result of
repeating this experiment 300 times (color figure online)

the signal and different seeds for the data generation. As a rule, results for different
design types are put in separate plots.

5.1 Varying the distribution of the errors

We first consider the performance of the bootstrap when varying the distribution of
the errors for simulated data.
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The design matrix will be generated ∼ Np(0,Σ) with a covariance matrix Σ of
two possible types (although mainly of Toeplitz type):

Toeplitz: Σ j,k = 0.9| j−k|.
Independence: Σ = Ip.

In case themodel contains signal, the coefficient vectorwill have s0 = 3 coefficients
that differ from zero. This is a rather small number of active variables. However, the
theory requires (at least) s0 = o(

√
n/ log(p)) (Assumption (B2)) leading to the value

1.61 within the o(.)-term for n = 100 and p = 500 which we typically consider in
our simulations. Larger values of s0 have been considered empirically in van de Geer
et al. (2014): For such cases, the coverage of confidence intervals or the type I error
control in testing was found to be rather unreliable. The coefficients are picked in 6
different ways:

Randomly generated : U(0, 2),U(0, 4),U(−2, 2),

A fixed value : 1, 2 or 10.

5.1.1 Homoscedastic Gaussian errors

Data are generated from a linear model with Toeplitz designmatrix and homoscedastic
Gaussian errors of variance σ 2 = 1, ε ∼ Nn(0, In). The sample size is chosen to be
n = 100, and the number of parameters p = 500.

For confidence intervals, we focus on one generated designmatrixX and one gener-
ated coefficient vector of typeU (−2, 2). The histograms for the coverage probabilities
are shown in Fig. 4. The coverage probabilities are more correct for the bootstrapped
estimator. The original estimator has a bias for quite a few coefficients resulting in
low coverage, as shown in Fig. 5. In addition, it tends to have too high coverage
for many coefficients. The conservative RLDPE has much wider confidence inter-
vals, which addresses the problem of low coverage, but results in too high overall
coverage.

Formultiple testing, we generate 50Toeplitz designmatricesXwhich are combined
with 50 coefficient vectors for each coefficient typeU (0, 2),U (0, 4),U (−2, 2),fixed
1,fixed 2 and fixed 10. For each of these 300 linear models, the coefficient vector
undergoes a different random permutation. A value for the familywise error rate
and power is then computed by generating 100 realizations of the linear models,
as described in the introduction of Sect. 5. The boxplots of the power and familywise
error rate are shown in Fig. 6. The bootstrap is the least conservative option. In addi-
tion, one can conclude that it still has proper error control by comparing the results
to perfect error control in Fig. 3. One would expect to see a difference in power, but
there does not seem to be a visible difference between the bootstrap approach and the
original estimator for our dataset. The RLDPE, on the other hand, does turn out to be
more conservative.
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Fig. 4 Histograms of the coverage probabilities of two-sided 95% confidence intervals for all 500 param-
eters in a linear model (n = 100, p = 500), computed from 100 independent replications. Perfect
performance would look like Fig. 1. The fixed design matrix is of Toeplitz type, the single coefficient vec-
tor of type U (−2, 2) and homoscedastic Gaussian errors. The original estimator has more over-coverage
and under-coverage than the bootstrapped estimator. The RLDPE has little under-coverage, like the boot-
strapped estimator, but it has too high coverage probabilities overall. The ZC approach to bootstrapping,
which only bootstraps the linearized part of the estimator, does not show any improvements over the original
de-sparsified Lasso (color figure online)

5.1.2 Homoscedastic non-Gaussian errors

Data are generated from a linear model with Toeplitz designmatrix and homoscedastic
centered Chi-squared errors ε1, . . . , εn, of variance σ 2 = 1,

ζ1, . . . , ζn i.i.d. ∼ χ2
1 , εi = ζi − 1√

2
, i = 1, . . . , n.

The sample size is chosen to be n = 100, and the number of parameters p = 500.
For confidence intervals, we focus on one generated designmatrixX and one gener-

ated coefficient vector of typeU (−2, 2). The histograms for the coverage probabilities
are shown in Fig. 7.

The performance for the confidence intervals looks similar to that for Gaussian
errors; only the under-coverage of the original estimator is even more pronounced.
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Fig. 5 Two-sided 95% confidence intervals for the de-sparsified Lasso estimator. From left to right 18
coefficients are shown with a black horizontal bar of a certain height illustrating the value of the coefficient.
Only the first three coefficients differ from zero. The other 15 coefficients presented are thosewith the lowest
confidence interval coverage for that particular method (in increasing order from left to right). One hundred
response vectorswere generated for a linearmodelwith homoscedasticGaussian errors, fixed design of type
Toeplitz, a single coefficient vector of type U (−2, 2), sample size n = 100 and dimension p = 500. Each
of these realizations was fitted to produce a confidence interval for each coefficient in the model. The 100
confidence intervals are drawn as vertical lines and ordered from left to right in the column corresponding to
that particular coefficient. The line segments are colored black if they cover the true coefficient and colored
red otherwise. The number above each coefficient corresponds to the number of confidence intervals, out of
100, which end up covering the truth. The average coverage probability over all coefficients is provided in
a column to the right of all coefficients. The original estimator has some bias for a few coefficients, which
results in a lower-than-desired coverage for those coefficients. The RLDPE has wider confidence intervals
exhibiting over-coverage. The ZC approach to bootstrapping, which only bootstraps the linearized part of
the estimator, does not show any improvements over the original de-sparsified Lasso (color figure online)

The coverage for the bootstrapped estimator looks as good as in the Gaussian case.
As shown in Fig. 8, the cause for the poor coverage of the non-bootstrapped estimator
is again bias. Using the robust standard error estimation does not impact the results,
as shown in the Electronic Supplementary Material.

For multiple testing, the same setups were looked at as in Sect. 5.1.1, but now with
the different errors. As shown in Fig. 9, the poor single testing confidence interval
coveragedoes not translate into poormultiple testing error control. Theoriginalmethod
withBonferroni–Holm is on the conservative side, while the bootstrap is slightly closer
to the correct level.

5.1.3 Heteroscedastic non-Gaussian errors

Data are generated from a linear model with heteroscedastic non-Gaussian errors.
The example is taken from Mammen (1993) with sample size n = 50, but where we
increased the number of parameters to p = 250 from the original p = 5. The model
has no signal β0

1 = β0
2 = · · · = β0

p = 0 and introduces heteroscedasticity while still
maintaining the correctness of the linear model.
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Fig. 6 Boxplot of the familywise error rate and the power for multiple testing for the de-sparsified Lasso.
The target is controlling the FWER at level 0.05, highlighted by a horizontal, dotted red line. Two different
approaches for multiple testing correction are compared: Westfall–Young (WY) and Bonferroni–Holm
(BH). ForBonferroni–Holm,wemake the distinction between the originalmethod and theRLDPEapproach.
Three hundred linear models are investigated in total, where 50 Toeplitz design matrices are combined with
50 coefficient vectors for each of the 6 types: U (0, 2),U (0, 4),U (−2, 2), fixed 1,fixed 2, fixed 10. The
variables belonging to the active set are chosen randomly. The errors in the linear model were chosen to
be homoscedastic Gaussian. Each of the models has a data point for the error rate and the power in the
boxplot. The error rate and power probabilities were calculated by averaging over 100 realizations (color
figure online)
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Fig. 7 The same plot as Fig. 4 but for homoscedastic Chi-squared errors. The bootstrapped estimator has
better coverage properties (color figure online)
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Fig. 8 The same plot as Fig. 5 but for homoscedastic Chi-squared errors. The original estimator has quite
some bias for a few coefficients, which results in a lower-than-desired coverage for those coefficients (color
figure online)
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Fig. 9 The same plot as Fig. 6, but for homoscedastic Chi-squared errors (color figure online)

Each row of the design matrix X is generated independently ∼ Np(0, Ip) and then
given a different variance. Each row is multiplied with the value Zi/2, where the
{Z1, . . . , Zn} are chosen i.i.d. ∼ U (1, 3).

The errors εi are chosen to be a mixture of normal distributions

ε1, . . . , εn i.i.d, εi = liζi + (li − 1)ηi ,

li ∼ Bernoulli(0.5), ζi ∼ N (1/2, (1.2)2), ηi ∼ N (−1/2, (0.7)2),

with li , ζi , ηi independent of each other.
The responses are generated by introducing heteroscedasticity in the errors

Yi = Qiεi + εi ∀i = 1, . . . , n

with Qi = X2
i,1 + X2

i,2 + X2
i,3 + X2

i,4 + X2
i,5 − E[Z2

i ].
For confidence intervals, we focus on one generated design matrix X. The his-

tograms for the coverage probabilities are shown in Fig. 10, and the plot of the actual
confidence intervals is shown in Fig. 11.What is immediately clear from Fig. 10 is that
it makes a big difference if one uses the robust version of the standard error estimation

123



710 R. Dezeure et al.

Original

F
re

qu
en

cy

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0
20

40

Bootstrap

F
re

qu
en

cy

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0
20

40

Robust
 Original

F
re

qu
en

cy

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0
20

40
60

Robust
 Bootstrap

Coverage

F
re

qu
en

cy

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0
20

40

De−sparsified Lasso

Fig. 10 The same plot as Fig. 4, but for heteroscedastic non-Gaussian errors and without signal. The
robust standard error estimation clearly outperforms the non-robust version. There seems to be hardly any
difference between the bootstrap and the original estimator after choosing the standard error estimation
(color figure online)

or not. The coverage is very poor for the non-robust methods, while for the robust
methods the performance looks like perfect coverage (Fig. 1).

There isn’t any benefit for the bootstrap over the original estimator for this dataset.
The robust original estimator does not show any bias in Fig. 11 and has great coverage
already. The overall average coverage is slightly more correct for the bootstrap with a
value of 95.1 versus 95.9.

In contrast to the single testing confidence intervals, all methods (robust and non-
robust) perform adequately for multiple testing as shown in Fig. 9. Due to the lack of
signal in the dataset, we can only investigate error rates. Fifty different designmatrices
were generated to produce the 50 data points in the boxplots. The bootstrap is less
conservative and has actual error rate closer to the true level (Fig. 12).

5.1.4 Discussion

Bootstrapping the de-sparsified Lasso turns out to improve the coverage of confidence
intervals without increasing the confidence interval lengths (that is, without losing
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Fig. 11 The same plot as Fig. 5, but for heteroscedastic non-Gaussian errors and without signal. The
non-robust estimators have low coverage for many coefficients. Unlike the other setups, there does not
seem to be a bias in the original estimator for this dataset (color figure online)
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Fig. 12 The same plot as Fig. 6, but for heteroscedastic non-Gaussian errors and without signal. We only
report the error rate because all null hypotheses are true for the generated dataset. The plot on the left is for
the non-robust methods, and the one on the right for the robust ones (color figure online)

efficiency). The use of the conservative RLDPE (Zhang and Zhang 2014) is not nec-
essary: The bootstrap achieves reliable coverage, while for the original de-sparsified
Lasso, the RLDPE seems worthwhile to achieve reasonable coverage while paying a
price in terms of efficiency. Furthermore, bootstrapping only the linearized part of the
de-sparsified estimator as proposed by Zhang and Cheng (2016), and implicit in the
work by Belloni et al. (2015a, b), is clearly sub-ideal in comparison with bootstrapping
the entire estimator and using the plug-in principle as advocated here.

Formultiple testing, the bootstrapped estimator had familywise error rates that were
closer to the target level, while Bonferroni–Holm adjustment is too conservative. This
finding was not reflected in any noticeable power improvements, but some gains are
found, see Sect. 5.2.
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The robust standard error turned out to be critical when dealingwith heteroscedastic
errors. Therefore,we recommend the bootstrapped estimatorwith robust standard error
estimation as the method to be used: If the errors were homoscedastic, we pay a price
of efficiency; see also the sentence at the end of Sect. 5.2.1.

As can be seen in the Electronic Supplementary Material, the Gaussian multiplier
bootstrap also performswell. The performance is very similar to the residual bootstrap,
and as onewould expect, it handles heteroscedastic errors as good as the robust standard
error bootstrap approach.

5.2 A closer look at multiple testing

The examples fromSect. 5.1 showed little to no power difference between the bootstrap
and the original estimator. One straightforward explanation for this is that the signal
in the simulated datasets did not fall into the (possibly small) differences in rejection
regions.

As another more signal-independent way to investigate multiple testing perfor-
mance, we compare the computed rejection regions. Unfortunately, the actual values
of the rejection thresholds are often quite unintuitive to compare. Instead, it can be
more informative to invert the Bonferroni–Holm adjustment rule to compute some
equivalent number of tests, which is essentially equivalent to the number of tests
under independence. The Westfall–Young procedure computes a rejection threshold
trej for the absolute value of the test statistic, and we can then compute the equivalent
number of tests (with the Bonferroni adjustment) pequiv as

pequiv = α

2(1 − Φ(trej ))
, (15)

for controlling the familywise error rate at level α and with Φ(.) the cumulative dis-
tribution function forN (0, 1). Improvements in rejection threshold are then reflected
in pequiv being a lot smaller than the actual number of hypotheses tested p, while still
properly controlling the error rates.

Looking at the rejection thresholds presented inFig. 13,we can see that the bootstrap
does improve substantially over the original estimator with a Bonferroni correction.
Multiple testing with the bootstrap is often equivalent to testing about 300 (indepen-
dent) tests with Bonferroni correction in comparison with the original 500.

5.2.1 Real measurements design

We take design matrices from real data (8 datasets measuring gene expressions, see
table below) and simulate a linear model with known signal and homoscedastic Gaus-
sian errors. We look at all 6 signal options described in Sect. 5.1.

For every signal type,we only look at 5 different seeds for generating the coefficients
and for the permutations of the coefficient vector (in contrast to the typical 50 as
used in Sect. 5.1.1). As usual, the familywise error rates are computed based on 100
realizations of each model.

123



High-dimensional simultaneous inference with the bootstrap 713

WY BH

0.
00

0.
04

0.
08

Familywise error rate

F
W

E
R

WY BH

0
10

0
20

0
30

0
40

0
50

0

Equivalent number of tests

pe
qu

iv

standard

WY BH

0.
00

0.
02

0.
04

0.
06

0.
08

Familywise error rate

F
W

E
R

WY BH

0
10

0
20

0
30

0
40

0
50

0

Equivalent number of tests

pe
qu

iv

chisq

Fig. 13 The same plots as Fig. 6 for the homoscedasticGaussian errors (top) and Fig. 9 for the homoscedas-
tic non-Gaussian errors (bottom), but displaying the number of equivalent tests pequiv instead of the power.
The actual number of hypotheses tested is highlighted by a horizontal, dotted red line (color figure online)

Boxplots of the familywise error rate and pequiv for the lymphoma dataset are
shown in Fig. 14. The median values of the equivalent number of tests and the FWER
for all the different designs are as follows:

dsmN71 Brain Breast Lymphoma Leukemia Colon Prostate nci

Median pequiv WY 1264 886 1162 1083 1230 655 2466 1289
Median pequiv BH 4088 5596 7129 4025 3570 2000 6032 5243
Dimension p 4088 5597 7129 4026 3571 2000 6033 5244
Median FWER WY 0.02 0.06 0.05 0.05 0.05 0.03 0.06 0.03
Median FWER BH 0.00 0.02 0.01 0.01 0.03 0.00 0.04 0.01
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Fig. 14 The same plot as in Fig. 13, but with design matrix coming from real measurements (lymphoma
in this case) with simulated signal and homoscedastic Gaussian errors (color figure online)

The bootstrap achieves substantial reductions in the median equivalent number of tests
for all datasets investigated here.

We note that when studentizing the test statistics with the robust standard error, the
power gain with the bootstrap (Westfall–Young method) is often rather marginal. This
is illustrated in the Electronic Supplementary Material.

5.2.2 Real data example

We revisit a dataset about riboflavin production by bacillus subtilis (Bühlmann et al.
2014), already studied inBühlmann (2013), van deGeer et al. (2014) andDezeure et al.
(2015). The dataset has dimensions n = 71, p = 4088, and the original de-sparsified
Lasso does not manage to reject any null hypothesis H0, j at the 5% significance level
after multiple testing correction with Bonferroni–Holm.

Despite the power gain that is possible with this design matrix (see dsmN71 in
Table in Sect. 5.2.1), the bootstrapped estimator does not reject any hypotheses either
with the Westfall–Young procedure.

We investigate what signal strength one would be able to detect in this real dataset
by adding artificial signal to the original responses. This is done by adding a linear
component X jc of increasing signal strength c for a single variable j ,

Y
′ = Y + X jc.

One can keep track of the p value for this particular coefficient and repeat the experi-
ment for all possible columns of the design j = 1, . . . , p. Boxplots of this experiment
are shown in Fig. 15.

The bootstrap results in smaller p values for the same signal values. It rejects the
relevant null hypothesis almost all the time for signal values above c > 2.5. Note that
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Fig. 15 Multiple testing corrected p values for increasing artificial signal added to the real dataset about

riboflavin (dsmN71). Signal is added only one variable at a time Y
′ = Y + X j c, and only the p value for

that coefficient p j is stored for each such experiment and value of c. The values − log(p j ) for all different
experiments ( j = 1, . . . , p = 4088) are plotted in boxplots grouped by value of c. A horizontal, dashed
blue line indicates the rejection threshold 0.05. The bootstrap approach tomultiple testing clearly has higher
power as it picks up on the signal quicker. The bootstrap has a lower bound on the minimal achievable p
value due to the finite number of bootstrap samples B = 1000, namely − log(1/1000) ≈ 6.9

we do not have access to replicates and therefore, we cannot determine the actual error
rate.

5.2.3 Discussion

The bootstrap with theWestfall–Young (WY)multiple testing adjustment leads to reli-
able familywise error control while providing a rejection threshold which is far more
powerful than using the Bonferroni adjustment (in the case of homoscedastic errors),
especially in the presence of dependence among the components for testing (while for
heteroscedastic errors and when using the robust standard error for studentization, the
efficiency gain of WY often seems less substantial). Since the efficient WY adjust-
ment is not adding additional computational costs to the one from bootstrapping, such
simultaneous inference and WY multiple testing adjustment is highly recommended.

6 Further considerations

We discuss here additional points before providing some conclusions.
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6.1 Model misspecification

So far, the entire discussion has been for a linearmodel as in (1)with a sparse regression
vector β0. The linearity is not really a restriction: Suppose that the true model would
involve a nonlinear regression function

Yi = f 0(Xi ) + εi (i = 1, . . . n).

Then×1vector of the true function at the observeddata values ( f 0(X1), . . . , f 0(Xn))
T

can be represented as

( f 0(X1), . . . , f 0(Xn))
T = Xβ0 (16)

for many possible solutions β0: This is always true as long as rank(X) = n, which
typically holds in p ≥ n settings. The issue is whether there are solutions β0 in (16)
which are sparse: A general result to address this point is not available, see Bühlmann
and van de Geer (2015).

It is argued inBühlmann andvandeGeer (2015) thatweak sparsity in terms of‖β0‖r
for 0 < r < 1 suffices to guarantee that the de-sparsified Lasso has an asymptotic
Gaussian distribution centered at β0, as described in Theorem 1 or 2. Thus, assuming
that there is a weakly sparse solution β0 in (16) is relaxing the requirement for �0
sparsity. The presented theory for the bootstrap could be adapted to cover the case for
weakly sparse β0.

The interpretation of a confidence interval for β0, based on the Gaussian limiting
distribution of the de-sparsified Lasso or using its bootstrapped version as described
in this paper, is that it covers all �r (0 < r < 1) weakly sparse solutions β0 which
are solutions of (16). For this, we implicitly assume that there is at least one such �r
weakly sparse solution.

6.2 Random design

The distinction between fixed and random design becomes crucial for misspecified
models. If the true model with random design is linear, then by conditioning on the
covariables, the corresponding fixed design model is again linear. And if the inference
is correct conditional on X, it is also correct unconditional for random design. If the
true random design model is nonlinear, one can look at the best projected random
design linear model: But then, when conditioning, the obtained projected fixed design
linear model has a bias (or nonzero conditional mean for the error). In other words,
conditioning on the covariables is not appropriate when the model is wrong, and one
should rather do unconditional inference in a random design (best approximating)
linear model, see Bühlmann and van de Geer (2015).

Thus, there are certainly situations where one would like to do unconditional infer-
ence in a random design linear model, see also Freedman (1981) who proposes the
“paired bootstrap” in a low-dimensional setting. The bootstrap which we discussed
in this paper is for fixed design only: for random design, one should resample the
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covariables as well. Because of the latter the computational task becomes much more
demanding: For the de-sparsified Lasso, and when p is large, most of the computation
is spent on computing all the residual vectors Z1, . . . , Z p, which requires running
the Lasso p times. For bootstrapping with fixed design, this computation has to be
done only once (since Z1, . . . , Z p are deterministic values of the fixed design X); with
random design, it seems unavoidable to do it B ≈ 100 − 1′000 times which would
result in a major additional computational cost.

6.3 Conclusions

We propose residual, wild and paired bootstrap methodologies for individual and
simultaneous inference in high-dimensional linearmodelswith possibly non-Gaussian
and heteroscedastic errors. The bootstrap is used to approximate the distribution of
the de-sparsified Lasso, a regular non-sparse estimator which is not exposed to the
unpleasant super-efficiency phenomenon.

We establish asymptotic consistency for possibly simultaneous inference for
parameters in a group G ⊆ {1, . . . , p} of variables, where p � n but s0 =
o(n1/2/{log(p) log(|G|)}) and log(|G|) = o(n1/7) with s0 denoting the sparsity. The
presented general theory is complemented by many empirical results, demonstrat-
ing the advantages of our approach over other proposals. Especially for simultaneous
inference and multiple testing adjustment, the bootstrap is very powerful.

For homoscedastic errors, the residual bootstrap and wild bootstrap perform simi-
larly. For heteroscedastic errors, the wild bootstrap is more natural and can be used for
simultaneous inference (whereas the residual bootstrap fails to be consistent). Thus, for
protecting against heteroscedastic errors, the wild bootstrap seems to be the preferred
method. Our proposed procedures are implemented in the R-package hdi (Meier et al.
2016).
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