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Abstract We present a compact review of methods for constructing tests and
confidence intervals in high-dimensional models. Links to theory, finite sample
performance results and software allows to obtain a “quick” but sufficiently deep
overview for applying the procedures.

1 Introduction

We review some methods for assigning significance of (co-)variables or for
confidence intervals of a parameter in a high-dimensional regression-type model.
Our major focus is for a high-dimensional linear model

Y D Xˇ0 C " (1)

with n � 1 response vector Y, n � p design matrix X, p � 1 regression vec-
tor ˇ0 and n � 1 error vector " having i.i.d. components with EŒ"i� D 0,
Var."i/ D �2

" and "i uncorrelated from Xi. We also discuss some extensions,
including generalized linear models. While there is much literature on conver-
gence rates for parameter estimation and prediction (cf. [6]), only recent work
addresses the problem of constructing confidence intervals or tests. Some recent
reviews on this topic include Bühlmann et al. [5] with a focus on applica-
tions in biology, and Dezeure et al. [8] who present a much more detailed and
broader treatment. The current work aims to provide a very compact and “fast
to read” access to the topic, yet it still contains the main ideas and hints to
software.
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2 High-Dimensional Linear Model and Some Methods
for Inference

Consider the high-dimensional linear model in (1). The goal is to test null-
hypotheses H0;j W ˇ0

j D 0 versus HA;j W ˇ0
j ¤ 0 (or a one-sided alternative) for

individual variables with index j 2 f1; : : : ; pg, or to construct a confidence interval
for ˇ0

j . In the high-dimensional setting, these tasks are non-trivial since standard
least squares methodology cannot be used.

2.1 De-sparsified Lasso

Zhang and Zhang [26] propose a method based on low-dimensional regularized
projection using the Lasso. A motivation can be derived from standard least squares:
in the low-dimensional setting with p < n and X having full rank, it is well-known
that the ordinary least squares estimator satisfies:

Ǒ
OLS;j is the projection of Y onto the residuals of ZOLS;j;

where the n � 1 residual vector ZOLS;j arises from OLS regression of Xj versus
all other co-variables X�j (which is the design matrix without the jth column). In
the high-dimensional setting, the projection is ill-defined since the residual vector
ZOLS;j � 0. The idea is to replace the residuals by a regularized version: we fit Xj

versus X�j with the Lasso and denote the corresponding residuals by Zj (when doing
this for all j’s, this is the nodewise Lasso from Meinshausen and Bühlmann [18]).
We then look at the projection

ZT
j Y=ZT

j Xj D ˇ0
j C

X

k¤j

ˇ0
k ZT

j Xk=ZT
j Xj C ZT

j "=ZT
j Xj:

The first term on the right-hand side is what we aim for, the second one is a bias,
and the third one is the noise component with mean zero. To get rid of the bias, we
employ a bias correction using (again) the Lasso: this leads to a new estimator

Obj D ZT
j Y=ZT

j Xj �
X

k¤j

Ǒ
kZT

j Xk=ZT
j Xj . j D 1; : : : ; p/; (2)

where Ǒ denotes the Lasso estimator for the regression of Y versus X. A typical
choice for the regularization parameter involved in Zj and for Ǒ is based on cross-
validation of the corresponding Lasso estimations. The estimator Ob is not sparse and
hence the name “de-sparsified Lasso”. One can show that the error in bias estimation
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is asymptotically negligible [10, 24, 26] on the 1=
p

n-scale, and one then obtains

p
n.Obj � ˇ0

j / ) N .0; �2
" �jj/ .n ! 1/; �jj D kZjk2

2=n

.ZT
j Xj=n/2

: (3)

The convergence as n ! 1 encompasses that the dimension p D p.n/ � n tends to
infinity as well, at a potentially much faster rate than sample size. We thus have an
asymptotic pivot and we can then construct p-values for H0;j or confidence intervals
by plugging in an estimate for �2

" , see Sect. 2.3. In fact, the asymptotic variance
is the smallest possible (among regular estimators) and it reaches the Cramér-Rao
lower bound [24]: thus, statistical tests and confidence intervals derived from (3) are
asymptotically optimal. Furthermore, the convergence in (3) to a Gaussian limit is
uniform for a large part of the parameter space and thus, we obtain honest confidence
intervals [11].

It is important to outline the assumptions which are used to establish the result
in (3). Assume that the design X consists of (possibly fixed realizations of) i.i.d.
rows whose distribution has a p � p covariance matrix †. The main conditions are
as follows:

(A1) The rows of X have a (sub-)Gaussian distribution and the smallest eigen-
value of † is bounded away from zero.

(A2) The matrix †�1 is row-sparse: the maximal number of non-zero entries in
each row is bounded by o.

p
n= log. p//.

(A3) The linear model is sparse: the number of non-zero entries of ˇ0 is
o.

p
n= log. p//.

(A4) The error " has a (sub-) Gaussian distribution.

We note that these assumptions imply the ones in van de Geer et al. [24]. The most
restrictive conditions are (A2) regarding the design and (A3) saying that the linear
model needs to be rather sparse.

2.2 Ridge Projection

The estimator in (2) is has a linear part and a non-linear bias correction. A similar
construction can be made based on the Ridge estimator:

Ǒ
Ridge D .n�1XTX C �I/�1n�1XTY: (4)

A main message is that the Ridge estimator has substantial bias when p � n: in
fact, it estimates a projected parameter

�0 D Pˇ0; P D XT.XXT/�X;

where .XXT/� denotes a generalized inverse of XXT [22].
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The bias for �0 can be made arbitrarily small by choosing � sufficiently small,
and a quantitative bound is given in Bühlmann [3]. A potentially substantial bias
occurs, however, due to the difference between �0 and the target ˇ0. Since

�0

Pjj
D ˇ0

j C
X

k¤j

Pjk

Pjj
ˇ0

k ;

this bias can be estimated and corrected with

X

k¤j

Pjk

Pjj

Ǒ
k;

where Ǒ is the Lasso estimator. Thus, we construct a bias corrected Ridge estimator

ObRIj D
Ǒ
RidgeIj
Pjj

�
X

k¤j

Pjk

Pjj

Ǒ
k; j D 1; : : : ; p: (5)

A typical choice of the regularization parameter in (4) for Ǒ
Ridge is � D �n D n�1

and we can use cross-validation for the regularization parameter in the Lasso Ǒ. This
estimator has the following property [3]:

��1
" �

�1=2
RIjj .ObRIj � ˇ0

j / � Z C �j; Z � N .0; 1/;

�R D . O† C �/�1 O†. O† C �/�1; O† D n�1XTX;

j�jj � ��1
" max

k¤j
�

�1=2
RIjj

ˇ̌
ˇ̌Pjk

Pjj

ˇ̌
ˇ̌ k Ǒ � ˇ0k1: (6)

Here, the “�” symbol represents an approximation which becomes exact as � &
0C. The problem here is that the behavior of jPjk=Pjjj and of the diagonal elements
�RIjj are not easily under control, but they are observed for fixed design X so that it
is possible to construct an upper bound as discussed next.

2.2.1 Inference Based on an Upper Bound

Assuming the so-called compatibility condition on the design X [6, Ch.6.2], we
obtain that

j�jj � �
�1=2
RIjj max

k¤j

ˇ̌
ˇ̌Pjk

Pjj

ˇ̌
ˇ̌ OP.s0

p
log. p/=n/;

and in practice, we use an upper bound of the form

�bound
j WD �

�1=2
RIjj max

k¤j

ˇ̌
ˇ̌Pjk

Pjj

ˇ̌
ˇ̌ .log. p/=n/1=2�� ; (7)
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for some small 0 < � < 1=2, typically � D 0:05; this bound is motivated via an
implicit assumption that s0 � .n= log. p//� .

Inference can then be based on (6) with the upper bound in (7). For example, for
testing H0;j W ˇ0

j D 0 against the two-sided alternative HA;j W ˇ0
j ¤ 0 we use the

upper bound for the p-value

2.1 � ˆ..��1
" �

�1=2
RIjj jObRIjj � �bound

j /C//;

and an analogous construction can be used for a two-sided 1�˛ confidence interval
for ˇ0

j :

ŒObRIj � a; ObRIj C a�;

a D .ˆ�1.1 � ˛=2/ C �bound
j /�"�

1=2
RIjj:

The main conditions used for proving consistency of the Ridge-based inference
method are as follows:

(B1) As assumption (A1).
(B2) The linear model is sparse: for 0 < � < 1=2 which is used in (7), the number

of non-zero entries of ˇ0 is O..n= log. p//�/.
(B3) The error " has a Gaussian distribution.

It is expected that assumption (B3) could be relaxed to sub-Gaussian distributions
as in (A4). No condition is required in terms of sparsity of †�1 as in (A2), but
typically the method does not lead to optimality as with the de-sparsified Lasso
estimator from Sect. 2.1.

2.3 Estimation of the Error Variance

The de-sparsified Lasso and the Ridge projection method in Sects. 2.1 and 2.2
require an estimate of �" for construction of tests or confidence intervals.

The scaled Lasso [23] leads to a consistent estimate of the error variance: it is
a fully automatic method which does not need a user-specific choice of a tuning
parameter. Reid et al. [21] present an empirical comparison of various estimators
which suggests that the alternative scheme of residual sum of squares of a cross-
validated Lasso solution exhibits has good finite-sample performance.

2.4 Multi Sample Splitting

Sample splitting is a generic method for construction of p-values. The sample is
randomly split in two halves with corresponding indices from disjoint sets I1; I2 	
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f1; : : : ; ng, I1 [ I2 D f1; : : : ; ng with jI1j D bn=2c and jI2j D n � bn=2c. A variable
selection technique OS 
 f1; : : : ; pg is used on the first half I1, denoted by OS.I1/: a
prime example is the Lasso where OS D f jI Ǒ

j ¤ 0g, and other selectors OS can be
derived from a sparse estimator in the same way. With the fewer variables from OS,
we can obtain p-values based on the second half I2 and using classical t-tests from
ordinary least squares: that is, we only use the subsample .YI2 ; XI2;OS/ of the data,
with obvious notational meaning of the sub-indices. Such a procedure is implicitly
contained in Wasserman and Roeder [25]. Sample splitting avoids that we would
use the data twice for selection and inference which would lead to over-optimistic
p-values.

It is rather straightforward to see that such a principle works if

OS.I1/ � S0 D f jI ˇ0
j ¤ 0g;

jOS.I1/j < n=2; (8)

where OS.I1/ denotes the selector based on the subsample with indices I1. Further-
more, multiple testing adjustment over all components j D 1; : : : ; p (see Sect. 3.2)
can be done in a powerful way, e.g., Bonferroni correction only needs an adjustment
with a factor jOS.I1/j which is often much smaller than p. A drawback of the method
is its severe sensitivity of how the sample is split: Meinshausen et al. [20] propose
repeated splitting of the sample (multi sample splitting) and show how to combine
the corresponding dependent p-values. The latter is of independent interest and the
procedure is described below in Sect. 2.4.1.

Such a multi sample splitting method leads to p-values which are already adjusted
for multiple testing, either for the familywise error rate or the false discovery rate.
The main conditions which are required for the method are (8): when using the
Lasso as a screening method (typically with either a cross-validated choice of � or
taking a fixed fraction of the variables entering the Lasso path first), they are implied
by the following:

(C1) As assumption (A1).
(C2) beta-min assumption:

min
j2S0

jˇ0
j j � p

s0 log. p/=n;

and s0 D o.n= log. p// where s0 D jS0j denotes the number of non-zero entries
of ˇ0.

(C3) As assumption (A4).

The beta-min assumption in (C2) is rather unpleasant since, for example, we would
like to find out with significance testing whether a regression coefficient is large or
smallish (or zero): thus, an a-priori assumption excluding smallish coefficients is
unpleasant. The condition can be somewhat relaxed to “zonal assumptions” which
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still require that there is a gap between large and smallish coefficients and restrict
the number of smallish coefficients [4].

2.4.1 Aggregation of p-Values

With the multi sample splitting approach described above we obtain the following:
for testing the null-hypothesis H0;j W ˇ0

j ¤ 0, when repeating the sample splitting B
times, we get p-values

P.1/
j ; : : : ; P.B/

j :

The problem, in general, is how to aggregate many p-values which can be arbitrarily
dependent to a single p-value Pj. The following Lemma is very general and might
be of interest in other problems.

Lemma 1 ([20]) Assume that we have B p-values P.1/; : : : ; P.B/ for testing a null-
hypothesis H0, i.e., for every b 2 f1; : : : ; Bg and any 0 < ˛ < 1, PH0 ŒP

.b/ � ˛� � ˛.
Consider for any 0 < 	 < 1 the empirical 	 -quantile of the values fP.b/=	 I b D
1; : : : ; Bg:

Q.	/ D min
�
empirical 	 -quantile fP.1/=	; : : : ; P.B/=	g; 1

�
:

Furthermore, consider a suitably corrected minimum value of Q.	/ over a range
which is lower bounded by a positive constant 	min:

P D min

�
.1 � log.	min// min

	2.	min;1/
Q.	/; 1

�
: (9)

Then, both Q.	/ (for any 	 2 .0; 1/) and P are conservative p-values satisfying for
any 0 < ˛ < 1: PH0 ŒQ.	/ � ˛� � ˛ or PH0 ŒP � ˛� � ˛, respectively.

A simple generic aggregation rule is with 	 D 1=2: multiply the raw p-values by
the factor 2 and take the sample median. Potential power improvement is possible
with an adaptive version searching for the best 	 as in (9) but paying a price in terms
of the factor .1 � log.	min// (which e.g. is �3:996 for 	min D 0:05).

2.5 Stability Selection

Stability Selection [19] is an even (much) more generic method than the multi
sample splitting from Sect. 2.4. It can be applied to any structure estimation problem
such as edges in a graph: variable selection in a regression problem is a special case
thereof which we discuss now a bit further.
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As with multi sample splitting, we randomly split the sample in two halves with
indices I1 and I2, respectively, and we consider a variable selection method OS 

f1; : : : ; pg. The idea is to analyze the stability of OS.I1/, based on the half-sample I1,
when subsampling the data, and in fact, we do not make any use of the other half of
the sample I2. Thus, denote by I� a random subsample of size bn=2c. We consider
the event that a single variable j is selected by OS.I�/ based on the subsample I�,
j 2 OS.I�/, and we compute its probability


. j/ D P
�Œ j 2 OS.I�/�:

In practice, this probability is computed based on B � 100 random subsamples and
calculating empirical relative frequencies.

The main problem is to determine a threshold 1=2 < �thr � 1 such that

. j/ � � implies that variable j is selected in a “stable way”. This can be
formalized as follows: denote by V D j [j2Sc

0
f
. j/ � �gj, that is, the number

of false positive selections. Then, assuming some conditions as outlined below, the
following formula holds [19]:

EŒV� � 1

2�thr � 1

q2

p
; (10)

where q � jOS.I�/j (almost surely). For example, q can be specified as the top q
variables of a ranking (or selection) scheme, e.g., the q variables having largest
regression coefficients in absolute value (if there are fewer than q coefficients with
non-zero values, just take all of them). For the Lasso based on the first half-sample,
since it selects at most bn=2c variables, a good value of q might be in the range of
n=10 to n=3.

The formula (10) can then be inverted to determine a threshold �thr for a given
bound of EŒV� and a given q (which specifies the selection method OS). For example,
by tolerating EŒV� � 5, a specified q D 30 and p D 1;000 we choose

�thr D .1 C q2

p

1

5
/=2 D .1 C 302

1;000

1

5
/=2 D 0:59

and such a choice then satisfies EŒV� � 5. When using the tolerance bound EŒV� �
˛, the corresponding threshold �thr leads to a procedure where

PŒV > 0� � EŒV� � ˛;

and hence, with control of the familywise error rate.
The main assumptions for validity of (10) are here sketched only:

(D1) The selector OS is performing better than random guessing.
(D2) An exchangeability condition holds implying that it is equally likely that a

noise variable is selected by OS.
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The formal assumptions are given in Meinshausen and Bühlmann [19]. In fact,
assumption (D1) is a mild condition while (D2) is rather restrictive: however, it was
shown empirically that formula (10) approximately holds even for scenarios where
(D2) does not hold. Interestingly, a beta-min assumption as in (C2) is not required
for Stability Selection.

2.6 A Summary of an Empirical Study

We briefly summarize the results from a fairly large empirical study in Dezeure
et al. [8]. An overall conclusion is that the multi sample splitting and the Ridge
projection method are often somewhat more reliable for familywise error control
(type I error control) than the de-sparsified Lasso procedure; on the other hand,
the de-sparsified Lasso has often (a bit) more power in comparison to multi sample
splitting and Ridge projection. However, these findings depend on the particular case
and they are not consistent among all considered settings. Figure 1 illustrates the
familywise error control and power of various methods for 96 different scenarios,
varying over different covariate designs, sparsity degrees and structure of active sets,
and signal to noise ratios.

From a practical point of view, if one is primarily concerned about false positive
statements, the multi sample splitting method might be preferable: especially for
logistic linear models (see Sect. 3.1), the adapted version of multi sample splitting
was found to be most “robust” for reliable error control.

0.0 0.2 0.4 0.6 0.8 1.0

Covtest

JM

MS−Split

Ridge

Despars−Lasso

FWER

0.0 0.2 0.4 0.6 0.8 1.0

Power

Fig. 1 Ninety-six different simulation scenarios, all with p D 500 and n D 100, with varying
covariate design, sparsity and structure of the active set, and signal to noise ratio. Each dot
represents a scenario, shown with jittered plotting. Five methods: De-sparsified Lasso (Despars-
Lasso, as in Sect. 2.1), Ridge projection (Ridge, as in Sect. 2.2), Multi sample splitting (MS-Split,
as in Sect. 2.4), a method from Javanmard and Montanari [10] (JM), covariance test from Lockhart
et al. [13] (Covtest). Left panel: familywise error rate (FWER) with nominal level at 0:05 indicated
by the dotted line; right panel: power (Power) representing the fraction of correctly identified
active variables with non-zero regression coefficients. The figure is similar to some graphical
representations in Dezeure et al. [8]
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2.6.1 Supporting Theoretical Evidence and Discussion of Various
Assumptions

Supporting evidence from theory, for the performance results in the empirical study,
can be based by discussing the main assumptions underlying the different methods.
The de-sparsified Lasso method is expected to work well and is most powerful
if the design matrix is sparse in terms of its corresponding row-sparsity of †�1

(assumption (A2)) and if the linear model is rather sparse as well (assumption
(A3)). The Ridge projection method does allow for designs with non-sparse rows
of †�1; however, the less restrictive assumption come with a price in that there
is no optimality results in terms of power. The multi sample splitting method,
which performs empirically quite reliably, has a theoretical drawback as it requires a
zonal or the stronger beta-min assumption for the underlying regression coefficients
(assumption (C2)); in terms of sparsity for the linear model, the multi sample
splitting method is justified for a broader regime, allowing for s0 D o.n= log. p//

(assumption (C2)), than the required s0 D o.
p

n= log. p// in assumption (A2) for
the de-sparsified Lasso.

Stability Selection is controlling the number of false positives EŒV� and not e.g.
the familywise error rate (except when controlling EŒV� at a very low level ˛ which
implies familywise error control at level ˛). The restrictive theoretical assumption is
the exchangeability condition (D2): however, it seems that this condition is far from
necessary. Stability Selection does not require a beta-min assumption as in (C2).

2.7 Other Methods

Very much related to the de-sparsified Lasso in Sect. 2.1 is a proposal by Javanmard
and Montanari [10]. Their method is proved to be asymptotically optimal without
requiring sparsity of the design as in condition (A2). Empirical evidence suggests
though that the error control is not very reliable, see Fig. 1.

Bootstrap methods have been suggested to construct confidence intervals and
p-values [7, 12]. They seem to work well for the components where the true
parameter value equals zero, but they are often poor for the other components with
non-zero parameters. Furthermore, multiple testing adjustment often requires a huge
number of bootstrap replicates for reasonable computational approximation of tail
events.

The covariance test [13] has been recently proposed as an “adaptive” method
for assigning significance for the Lasso. Asymptotic validity of the test was shown
under rather restrictive assumptions, in particular a restrictive beta-min assumption
in the spirit of condition (C2). Empirical results of the covariance test are illustrated
in Fig. 1, indicating that its power is comparably poor and error control is less
reliable than for example for the Ridge projection or multi sample split method.
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Another interesting proposal is due to Meinshausen [17]: we outline more details
in Sect. 3.4.

3 Extensions and Further Topics

We briefly discuss here important extensions and additional issues.

3.1 Generalized Linear Models

Generalized linear models can be immediately treated with the multi sample
splitting method or Stability Selection. Instead of e.g. the Lasso, we use `1-norm
regularized maximum likelihood estimation for the selector OS, and low-dimensional
inference (for the multi sample splitting method) is then based on maximum
likelihood methodology.

The de-sparsified Lasso or the Ridge projection method are most easily adapted
via additional weights as in iteratively reweighted least squares estimation [15]. The
weights wi D wi.ˇ

0/ .i D 1; : : : n/ can be estimated by plugging in the `1-norm
regularized maximum likelihood estimate; we can then proceed with new weighted
data

QY D WY; QX D WX; W D diag.w1; : : : ; wn/;

and apply the procedures from Sects. 2.1 and 2.2.

3.2 Multiple Testing Correction

Adjustment to multiple testing can be based using standard procedures which
require valid p-values for individual tests as input: even under arbitrary dependence
among the p-values, we can use e.g. the Bonferroni-Holm method for controlling the
familywise error rate or the procedure from Benjamini and Yekutieli [1] to control
the false discovery rate.

For the de-sparsified Lasso or Ridge projection method, one can use a simulation-
based method which is less conservative than Bonferroni-Holm in presence of
dependence: the details are given in Bühlmann [3].

We note that the multi sample splitting method from Sect. 2.4 as in the software
package hdi (see Sect. 3.3) yields p-values which are adjusted for controlling the
familywise error or false discovery rate.
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3.3 R-Package hdi

The R-package hdi [16] contains implementations of various methods, namely the
de-sparsified Lasso, the Ridge projection, the multi sample splitting method and of
Stability Selection. We refer to to Dezeure et al. [8] how to use the procedures and
what the various R-functions can do.

3.4 Testing Groups of Parameters

There might be considerable interest in testing the null-hypothesis H0;G W ˇ0
j D 0 for

all j 2 G, where G 
 f1; : : : ; pg corresponds to a group of variables. The alternative
is HA;G W there exists j 2 G with ˇ0

j ¤ 0.
Based on the de-sparsified Lasso or Ridge projection method, one can use a

simulation-based procedure to obtain an approximate distribution of maxj2G jObjj
under the null-hypothesis H0;G. We refer to Bühlmann [3] for the details. The multi
sample splitting method can be modified for testing H0;G, as described in Mandozzi
and Bühlmann [14].

An interesting and very different proposal is given by Meinshausen [17] which
can be used for testing individual but also groups of variables (and the latter is the
main motivation in that work): the procedure does not even require an identifiability
condition in terms of the design matrix X as it automatically determines whether a
parameter or a group of parameters is identifiable.

3.5 Selective Inference

Especially with confidence intervals, one would typically report only for a few
selected variables. An interesting approach to account for the selection effect, in
terms of the false coverage rate, is presented in Benjamini and Yekutieli [2]. Their
procedure can be applied for confidence intervals from e.g. the de-sparsified Lasso
or the Ridge projection method from Sects. 2.1 or 2.2.

3.6 Some Thoughts on Bayesian Methods

For expository simplicity, consider a Gaussian linear model with Gaussian prior for
the regression coefficients ˇ D .ˇ1; : : : ; ˇp/:

ˇ1; : : : ; ˇp i.i.d. � N .0; �2/;

Yjˇ � Nn.Xˇ; �2/: (11)
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The maximum a-posteriori estimator is then the Ridge estimator

Ǒ
MAP D argminˇkY � Xˇk2

2=n C �2

�2n
kˇk2

2:

For �2 large, this is the Ridge estimator with small regularization parameter � as in
Sect. 2.2.

Denote by ˇ� a realization from the prior distribution, and we are interested
in constructing an interval which contains ˇ� with high probability. Alternatively,
when adopting the frequentist Bayesian viewpoint (cf. [9]), we assume that the data
is generated from a true parameter ˇ0, and we are interested to construct an interval
which covers ˇ0 with high probability, based on a Bayesian model in (11). As
discussed in Sect. 2.2, we know that for �2 large or �2 very small, Ǒ

MAP is essentially
unbiased for �� D Pˇ� (or �0 D Pˇ0), where P is as in Sect. 2.2, but it can be
severely biased for ˇ� (or ˇ0) in the high-dimensional scenario with p � n. Thus,
the standard (Gaussian prior) Bayesian credible region centered around Ǒ

MAP seems
rather flawed for covering ˇ� or ˇ0 in the frequentist Bayesian paradigm.

Of course, in the classical Bayesian inference paradigm, such a bias does not
occur, even when p � n, since the distribution of ˇjY is Gaussian with mean
EŒˇjY� D Ǒ

MAP.

4 Conclusions

We provide a compact review of some methods for constructing tests and confidence
intervals in high-dimensional models. The main assumptions underlying each
method as well as a summary of empirical results are presented: this helps to
understand, also from a comparative perspective, the strengths and weaknesses of
the different approaches. Furthermore, a link to the R-package hdi is made. Thus, the
user and practitioner obtains a “quick” but sufficiently deep overview for applying
the procedures.
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