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1 Preamble

We thank the discussants, in alphabetical order, Goeman and Böhringer (GB), Fromm-
let and Schimek (FS), Heller (HE) and Rodrigues and Lourenco (RL) for their
insightful, interesting and very valuable contributions on our paper.

2 The analysis pipeline in practice

One of our main goals of the paper is to provide an “analysis pipeline”, as coined
by HE. It includes software and explanation: the latter is given by some supporting
mathematical theory as well as empirical evidence and experience, and they are all
“incomplete”. Incompleteness of empirical evidence is due to the limited amount of
analyzed real and simulated data; on the other hand, the mathematical theory exhibits
incompleteness due to unrealistic assumptions and a lack of understanding of the
actual procedure. We will elaborate on the second issue in Sect. 3.

Despite the mentioned incompleteness above, we want to communicate and trans-
fer the analysis pipeline to practice, with the hope that it will serve as a step towards
more reliable and replicable methodology for assigning “relevance” of features as,
for example, in the analysis of data from GWAS. In fact, we should re-mention here
that our paper is building and reviewing on previous contributions starting with Mein-
shausen et al. (2009) on multiple sample splitting and inference, Meinshausen (2008),
Mandozzi and Bühlmann (2016a, b) on high-dimensional hierarchical inference and
Buzdugan et al. (2016), Klasen et al. (2016) on real GWAS applications: the novelty of
the paper is primarily the review of earlier work, the development of modular software
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with the R-package hierinf for providing the “analysis pipeline” and an extension
for meta analysis.

Parts of the methodology should be extended and perhaps adapted in the future. We
believe though that the principle of hierarchical inference is very natural and powerful
and consider it as appropriate for a range of inference problems. This seems to be
in accordance with the comments from all the discussants. They also make various
suggestions how the analysis pipeline could be modified and further developed and
we will discuss them below.

2.1 Frommarginal to multivariate regression: gaining potential stability

FS ask why modeling of the population structure (which is rather common in GWAS) is
less an issue with a multivariate model. The simplest hypothetical case is the following:
the response Y is a (linear) function of the covariates X (“Y is caused by X in a structural
equation model”). Assuming that the population structure results in say shifts of the
X variables or changing the proportions of discrete X variables (but not on Y ; this
means, the population structure is not a confounder), then the regression coefficients
stay the same while the correlations can change dramatically. We quote here Tukey,
explaining from a different point of view why regression in general should be much
better than marginal correlation: “One of the major arguments for regression instead
of correlation is potential stability. We are very sure that the correlation cannot remain
the same over a wide range of situations, but it is possible that the regression coefficient
might. We are seeking stability of our coefficients so that we can hope to give them
theoretical significance” (Tukey 1954). Nevertheless, additional deconfounding within
a multivariate model may be beneficial: using mixed models as mentioned in Sect. 5
or performing deconfounding more directly as discussed in Sect. 6.

3 Themain assumptions for theory and the actual methodology

We admit that the presented theory in the paper is far from satisfactory. Yet we think
that this does not rule out the usefulness of the methodology.

The theory essentially requires the screening property of the Lasso or any other
high-dimensional variable selector; for example, the adaptive or thresholded Lasso
have slightly better theoretical properties for variable screening than the Lasso (van
de Geer et al. 2011) at the price of a two-stage and hence more complicated screening
procedure.

To establish the screening property of the Lasso, the sparsity assumption (A1) in
the paper seems somehow “unavoidable” for theory. As we explain in the paper in
Section 2.1.1, the condition on sparsity can be relaxed to weak sparsity in terms of
�q -“norm” for 0 < q < 1 (van de Geer 2016). In addition, it could still be interesting
to consider a best sparse approximation of the truth: the justification of our inferential
procedure hinges then on the behavior of the Lasso in such a sparse approximation
setting, see Bühlmann and van de Geer (2011).
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As GB write, a main problem is that the screening property of the Lasso would
typically not hold. It is known that with Lasso screening on a first split half-sample
and single variable inference afterwards on the other half-sample, the resulting p
values are highly variable across different sample splits, resulting in a so-called p
value lottery (Meinshausen et al. 2009). It is probably the instability of the Lasso as
a variable screening method which leads to such highly variable (and non-replicable)
results. The issue is perhaps a bit less pronounced for p values of groups of highly
correlated variables since our procedure would work fairly well if randomly any of the
highly correlated variables are selected. GB propose a goodness-of-fit test regarding
the screening property of the Lasso: we have not tried it out but we think that it would
easily indicate violation of the screening property of the Lasso, see also the “p value
lottery” mentioned above.

3.1 Two remedial views on the problematic screening property of the Lasso

Aggregation and Stability The paper takes up the old idea from Meinshausen et al.
(2009) to aggregate the p values from multiple sample splits. Formula (8) in the paper,
derived in Meinshausen et al. (2009), describes in fact a general result for aggre-
gating multiple and arbitrarily dependent p values. Romano and DiCiccio (2019)
have recently studied this problem more generally. With an aggregation over multi-
ple sample splits, the results are much less depending on the realizations of sample
splitting than using a single split. Unfortunately, we have no theory in absence of an
approximate screening property of the Lasso, although in principle it seems that the
screening property is less important when using aggregation of p values as discussed
next.

The aggregation bears a relation to Stability Selection (Meinshausen and Bühlmann
2010). For example, when using median aggregation of the p values with fixed γ = 0.5
in formula (18), a significant group (at any level α < 1) requires that at least one
variable in the group G of interest must have been selected (by the Lasso screening)
at least 50% times across the B sample splits. This is due to the fact that we assign a
p value equal to 1 if no selected variable appears in the group G, i.e., if Ŝ[b] ∩ G = ∅.
Since aggregation requires some stability for significance, this view contrasts what
GB wrote, namely that “We are not sure that this [aggregation] is the best way to
deal with such variability, since such variability could also be a strong indicator that
the screening property fails. If that would be the case, the results would have excess
Type I errors for every data split, and consequently also for the aggregated result.”
It is perhaps instructive to indicate a bit more the role of stability. Stability Selection
counts

f (G) = B−1
B�

b=1

I (Ŝ[b] ∩ G �= ∅).

One then establishes a threshold τ such that all G with f (G) ≥ τ are inferred to
be “relevant”, and it controls the expected number of false positives as a measure of
“type I error”. The validity for such an error control with Stability Selection requires a

123

Author's personal copy



C. Renaux et al.

strong condition about exchangeability. With regard to the inference procedure in the
paper, we control the more classical FWER but also requiring a strong assumption,
namely the screening condition. Empirically it seems that both Stability Selection
and our hierarchical inference procedure work “well” in regimes much beyond the
assumptions from theory.

Post-selection inferencewith respect tomultiple selectors Another remedy relies on
an interpretation from post-selection inference as described in Sect. 7. While the infer-
ence procedure remains the same, the post-selection interpretation does not require
the screening property of the Lasso.

3.2 Different methods based on old and new de-biasing of the Lasso

In the paper in Section 2.2.2, we mention a few other methods: de-biasing or
de-sparsifying the Lasso do not require a screening property nor the beta-min con-
dition (A3). The main bottleneck with the de-biased Lasso is the computational cost
O

�
n min(n, p)p2

�
which is quadratic in p for p � n whereas the hierarchical infer-

ence approach of the paper requires O
�
Bn2 p

�
essential operations (Section 2.2.1 in

the paper). For GWAS with very large p, de-biasing the Lasso is not really feasible.
In Guo et al. (2019), we develop a de-biasing technique for group testing which

is, especially for large groups, computationally more efficient and statistically more
powerful than the de-biased Lasso in a range of scenarios. This novel group testing
procedure can then be plugged into the hierarchical testing framework. From a theory
perspective, it does not require a screening property nor the beta-min assumption (A3).
We plan to have this alternative group testing method as an option in our R-package
hierinf.

4 Exploratory versus confirmatory inference and stability

FS raise the point that in the context of GWAS, exploratory data analysis and inference
has an important role. This is certainly an important remark. As we indicated above,
we think that the hierarchical inference procedure in the paper is still working “well”
beyond the regime where the assumptions for theory hold and where the method would
be confirmatory.

In particular, the sample splitting aspect of our procedure exploits whether some
findings are sufficiently stable, see Sect. 3.1 above. Stability itself is an important
requirement in inference and data analysis: this has been emphasized from differ-
ent viewpoints in Meinshausen and Bühlmann (2010), Shah and Samworth (2013),
Yu (2013), Kumbier and Yu (2019). We also discuss stability from the viewpoint of
replicability in Sect. 6.

Significance and ranking It is perhaps a bit delicate to let the user decide whether
a procedure is confirmatory or not. We all know that “P ≤ 0.05” is a too simplified
“one-dimensional” view, especially with complex and large-scale data, as FS have
mentioned as well. However, ranking variable or group importance in terms of p
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values might be better than ranking based on magnitude of point estimators: because
the former takes some uncertainty into account. (And it might be even better to do
some sort of ranking with confidence intervals than p values).

5 Adaptations of the procedure

All discussants raised various interesting points: some adaptations of our procedure
would address some of them. FS ask whether mixed models could be used: this would
be possible, for example using a high-dimensional �1-penalized mixed model fit for
screening of the relevant fixed effects (Schelldorfer et al. 2011, 2014) followed by
low-dimensional mixed model inference.
GB mention that it would be valuable to include biological insights: this is directly

possible as long as it is encoded in terms of hierarchical groups. One can define a R
dendrogram, manually or using some other function, and feed it into our software;
region-wise grouping is already built into hierinf as discussed in the paper (end of
Section 2.3 and Section 3.1). Instead of a hierarchy, other structures such as directed
acyclic graphs are possible (Goeman and Mansmann 2008) but this would require a
substantial extension; see also the nice overview by Goeman and Solari (2014) which
covers structured inference as well.
HE points out that controlling the false discovery rate (FDR) is important. We agree

but do not know how to do this in a “data adaptive” way: our hierarchical procedure
proceeds in a top-down manner through the hierarchy without pre-determining the
final depth of the tree. Controlling the FDR at outer nodes is certainly an important
step in that direction but requires to pre-define the outer nodes (the depth of the tree).
RL and also FS bring up the issue of choosing the aggregation scheme for meta

analysis. We were also a bit surprised that Tippett’s method worked better than Stouf-
fer’s, even in situations where we would expect an advantage for the latter. We gave a
reason for this in the paper (end of Section 4.2), namely the instability by design of the
procedure (which is still present to a certain extent despite multiple sample splitting
and aggregation). Other aggregation techniques are possible, of course: with Tippett
and Stouffer, we tried out two of them which are at “opposite poles” of each other.

6 Replicability and transferability

HE brings up the issue of replicability, whether significant findings occur in two or
more datasets. As she points out, nothing in addition is needed than the p values for
the multiple datasets. We plan to implement this nice suggestion into the software
hierinf and our analysis pipeline. We also want to point out the work by Heller
and Yekutieli (2014) which uses an elegant empirical Bayes approach for replicability
analysis.

One of the plaguing issues in practice is the transferability to new sub-populations
or different “domains”. The classical quantification of replicability is concerned for the
same data generating distribution. But if the data mechanism (slightly) changes from
one to another sub-population, the situation is different. Transfer learning, primarily
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developed in machine learning, deals with the changing mechanism situation, mainly
for prediction (Pan and Yang 2010).

Population structure, unobserved confounding and beyond HE mentions the issue
of unobserved confounding. It is certainly one of the major problems for transferability
to new sub-populations. Recent proposals to do “deconfounding” include Wang and
Blei (2018), Ćevid et al. (2018): due to the difficulty of the problem, the proposals rely
on some “untestable” assumptions. Spectral transformation from Ćevid et al. (2018)
requires only to linearly transform the data first which can then be used as input to
our procedure. We should also mention that one could easily use the classical tech-
nique (which may be somewhat inferior to spectral transformations): namely directly
adjusting for the first few principal components of the design matrix by using them as
control variables in our software hierinf.

When having observed more than one sub-population, an instrumental variables
approach can be used for deconfounding (Angrist et al. 1996, cf.) where the envi-
ronments encode discrete instruments. Instrumental variables regression relies on
untestable and stringent assumptions. These severe conditions can be relaxed: stability
in so-called anchor regression leads to replicability (in linear models with confound-
ing) even when the data generating distributions change according to some unknown
shift perturbations (Rothenhäusler et al. 2018).

7 Post-selection inference with respect tomultiple selectors

Post-selection inference has been further developed in the past years by Lockhart et al.
(2014), Tibshirani et al. (2016), Fithian et al. (2014). It is an appealing concept and is
(in part) motivated by what “practitioners intend to do”, namely select a (sub-)model
and then do inference in the selected (random) model using the same data twice.

More precisely, denote by M ⊆ {1, . . . , p} a subset of the covariates. For the
derivations in this section, we consider a random design linear model with E[X ] = 0
and E[X T X ] = �: it makes things easier here but implies that the t-test in low-
dimensional sub-models is not exact. We denote by β(M) = �−1

M E[X T
M Y ] with X M

the components of X corresponding to M and �M = E[X T
M X M ].

When having a single selector Ŝ ⊆ {1, . . . , p}, post-selection inference leads to
p values and confidence intervals for the parameter β(M) for M = Ŝ: that is, it is
conditional inference given that Ŝ = M . This is the “classical” approach of selective
inference, namely for one selector. When the selector is given by the Lasso or forward
stepwise selection, Tibshirani et al. (2016) have elegant ways to do exact post-selection
inference. Also the approach mentioned by HE falls into this category. On the other
hand, Berk et al. (2013) do simultaneous inference for all sub-models M ⊆ {1, . . . , p}
and this immediately implies conservative inference when any selector has been used.
In terms of significance tests for groups of variables, the null-hypotheses are of the
following form. For a single sub-model M ,

H0,G(M) : βG(M) = 0.
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It means that β j (M) = 0 for all j ∈ G ∩ M ; if G ∩ M = ∅, then H0(M) is considered
to be always true. When considering all sub-models M simultaneously as in Berk et al.
(2013), the null-hypotheses are

H0,G(all) : βG(M) = 0 for all subsets M ⊆ {1, . . . , p}.

Our hierarchical procedure is considering the null-hypotheses:

H0,G(M [1], . . . , M [B]) : βG(M [b]) = 0 for all b = 1, . . . , B, (1)

where the Lasso selector (on the first half of the split data) leads to Ŝ[b] = M [b], over
multiple sample splitting b = 1, . . . , B. It is easy to see that our hierarchical procedure
leads to valid p values for the hypotheses as in (1) when modifying the estimation
of the error variance; and this is true without requiring the screening property of the
Lasso and without requiring the sparsity or compatibility conditions (A1) and (A2),
nor do we need (A3). The price to be paid is the more difficult interpretation of the
hypotheses in (1).

7.1 Instability of the selector and interpretation of the null-hypothesis in (1)

When using one selector Ŝ only, with the Lasso as a prime example, there is a sub-
stantial problem about replicability. On a new dataset, it is very likely that the selector
picks a very different model: the degree of replicability is then very low because infer-
ence is done in two very different models. In our view, this is a substantial issue when
doing post-selection inference with e.g. the Lasso or forward stepwise selection.

On the other end of the spectrum is the approach by Berk et al. (2013) which
performs simultaneous inference over all sub-models: there is no specific selector
involved and hence there is no instability of a selector. The degree of replicability
should be much improved at the price of using a very conservative method.

Multi sample splitting as a way to create different selected models An important
issue is how to protect against the instability of one selector. One generic way is via re-
or sub-sampling: this is perhaps the most natural approach in frequentist statistics. This
viewpoint implies the following: multiple sample splitting involves some efficiency
loss due to lower sample size for the inference after selection but it gains in terms of
replicability and instability with respect to the selector. This is a non-standard trade-
off which is not really understood: earlier work from Breiman (1996a, b) convincingly
indicates that “gain in stability is worthwhile, perhaps at the price of lower sample
size”. The “lower sample size” is not even obvious due to aggregation over many
sub-sampled estimates. We thus conclude that multiple sample splitting is a “natural
way” for post-selection over many selectors.

Interpretation of the inferential statements The remaining problem though is
the interpretation of the null-hypothesis in (1). It seems useful to inspect, in an
exploratory way, which variables and group of variables occurred in the selected
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models M [1], . . . , M [B]: we could count the relative frequencies of single variables in
all these models, of groups of two variables, groups of three variables and so on. This
gives us an idea of the conditioning sets in the different selected regression models.

Beyond such exploratory reasoning, the following toy example indicates what we
have in mind when relying on a so-called faithfulness assumption (see below). Consider
p = 10 and the true active variables are S0 = {1, 2, 3, 7, 8}. The variable {1} has been
found to be significant by our procedure. We also observe that the single variables {3}
and {8} occurred in all the models M [1], . . . , M [B]. Under a faithfulness assumption
described below, which is very common in directed graphical modeling, cf. Spirtes
et al. (2000), we then conclude that variable {1} is significant given the variables {3, 8},
and also that variable {1} is significant given either {3} or {8} alone, and that variable
{1} is marginally significant given no other variable. Similar conclusions hold when a
group, say, {2, 7} has occurred in all the selected models.

The faithfulness assumption requires in our context that for every sub-model M ,

if β j (M) = 0 
⇒ β j (M �) = 0 for all M � ⊇ M .

For example, if the marginal effect β j (∅) = 0, then it must be zero as well when
conditioning on additional variables.

In future research we plan to exploit how such a post selection interpretation over
many selectors works and whether it leads to interesting insights.

8 Concluding words

We wholeheartedly thank all the discussants for sharing their insights and ideas. This
certainly has led to clarifications and will lead to improvements of our analysis pipeline.
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