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Summary.The ultimate goal of regression analysis is to obtain information about the conditional
distribution of a response given a set of explanatory variables. This goal is, however, seldom
achieved because most established regression models estimate only the conditional mean as
a function of the explanatory variables and assume that higher moments are not affected by the
regressors. The underlying reason for such a restriction is the assumption of additivity of signal
and noise. We propose to relax this common assumption in the framework of transformation
models. The novel class of semiparametric regression models proposed herein allows trans-
formation functions to depend on explanatory variables. These transformation functions are
estimated by regularized optimization of scoring rules for probabilistic forecasts, e.g. the contin-
uous ranked probability score. The corresponding estimated conditional distribution functions
are consistent. Conditional transformation models are potentially useful for describing possible
heteroscedasticity, comparing spatially varying distributions, identifying extreme events, deriv-
ing prediction intervals and selecting variables beyond mean regression effects. An empirical
investigation based on a heteroscedastic varying-coefficient simulation model demonstrates
that semiparametric estimation of conditional distribution functions can be more beneficial
than kernel-based non-parametric approaches or parametric generalized additive models for
location, scale and shape.

Keywords: Boosting; Conditional distribution function; Conditional quantile function;
Continuous ranked probability score; Prediction intervals; Structured additive regression

1. Introduction

One of the famous ‘Top 10 reasons to become a statistician’ is that statisticians are ‘mean lovers’
(Friedman et al., 2002), referring of course to our obsession with means. Whenever a distribution
is too complex to think or expound on, we focus on the mean as a single real number describing
the centre of the distribution and we block out other characteristics such as variance, skewness
and kurtosis. Our willingness to simplify distributions this way is most apparent when we deal
with many distributions at a time, as in a regression setting where we describe the conditional
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distribution PY |X =x of a response Y ∈R given different configurations of explanatory variables
X =x ∈χ. Many regression models focus on the conditional mean E.Y |X =x/ and treat higher
moments of the conditional distribution PY |X = x as fixed or nuisance parameters that must
not depend on the explanatory variables. As a consequence, model inference crucially relies on
assumptions such as homoscedasticity and symmetry. Information on the scale of the response,
e.g. prediction intervals, derived from such models also depends on these assumptions. Here,
we propose a new class of conditional transformation models that allow the conditional dis-
tribution function P.Y �υ|X =x/ to be estimated directly and semiparametrically under quite
weak assumptions. Before we introduce this class of models, we shall attempt to set a scene of
contemporary regression in the light of Gilchrist (2008) and to place the major players on this
stage.

Let Yx = .Y |X = x/ ∼ PY |X = x denote the conditional distribution of response Y given ex-
planatory variables X=x. We assume that PY |X=x is dominated by some measure μ and has the
conditional distribution function P.Y �υ|X=x/. A regression model describes the distribution
PY |X=x, or certain characteristics of it, as a function of the explanatory variables x. We estimate
such models on the basis of samples of pairs of random variables .Y , X/ from the joint distri-
bution PY ,X. It is convenient to assume that a regression model consists of signal and noise,
i.e. a deterministic part and an error term. In what follows, we denote the error term by Q.U/,
where U ∼U [0, 1] is a uniform random variable independent of X and Q : R→R is the quantile
function of an absolutely continuous distribution.

Apart from non-parametric kernel estimators of the conditional distribution function (Hall
et al., 1999; Hall and Müller, 2003; Li and Racine, 2008), there are two common ways to model
the influence of the explanatory variables x on the response Yx:

Yx = r{Q.U/|x} ‘mean or quantile regression models’ .1/

and

h.Yx|x/=Q.U/ ‘transformation models’. .2/

For each x∈χ, the regression function r.·|x/ :R→R transforms the error term Q.U/ in a mono-
tone increasing way. The inverse regression function h.·|x/= r−1.·|x/ : R→R is also monotone
increasing. Because h transforms the response, it is known as a transformation function and
models in the form of equation (2) are called transformation models.

A major assumption underlying almost all regression models of class (1) is that the regression
function r is the sum of the deterministic part rx : χ→ R, which depends on the explanatory
variables, and the error term:

r{Q.U/|x}= rx.x/+Q.U/:

When E{Q.U/}=0, we obtain, rx.x/=E.Y |X =x/, e.g. linear or additive models depending on
the functional form of rx. Model inference is commonly based on the normal error assumption,
i.e. Q.U/ = σΦ−1.U/, where σ > 0 is a scale parameter and Φ−1.U/ ∼ N .0, 1/. A novel
semiparametric approach is extended generalized additive models, where additive functions
of the explanatory variables describe location, scale and shape (generalized additive models for
location, scale and shape (GAMLSSs)) of a certain parametric conditional distribution of the
response given the explanatory variables (Rigby and Stasinopoulos, 2005). If the assumption
of a certain parametric form of the conditional distribution is questionable, rx describes the
τ -quantile of Yx when the quantile function Q is such that Q.τ / = 0 for some τ ∈ .0, 1/. This
leads us to quantile regression (Koenker, 2005). Estimating the complete conditional quantile
function is less straightforward since we must fit separate models for a grid of probabili-
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ties τ , and the resulting regression quantiles may cross. Solutions to this problem can be
obtained by combining all quantile fits in one joint model based on, for example, location–
scale models (He, 1997) or quantile sheets (Schnable and Eilers, 2012), or by monotonizing
the estimated quantile curves by using non-decreasing rearrangements (Dette and Volgushev,
2008).

For transformation models (2), additivity is assumed on the scale of the inverse regression
function h:

h.Yx|x/=hY .Yx/+hx.x/:

When E{Q.U/} = 0, we obtain −hx.x/ = E{hY .Yx/} = E{hY .Y/|X = x}. The monotone trans-
formation function hY : R→R does not depend on x and might be known in advance (Box–Cox
transformation models with fixed parameters, accelerated failure time models) or is commonly
treated as a nuisance parameter (Cox model; proportional odds model). One is usually interested
in estimating the function hx :χ→R, which describes the conditional mean of the transformed
response hY .Yx/. The class of transformation models is rich and very actively researched, most
prominently in literature on the analysis of survival data. For example, in the Cox additive
model, hY .Yx/= log{Λ.Yx/} is based on the unspecified integrated baseline hazard function Λ,
hx.x/=ΣJ

j=1hx,j.x/ is the sum of J smooth terms depending on the explanatory variables and
Q.U/=− log{− log.U/} is the quantile function of the extreme value distribution. Doksum and
Gasko (1990) discussed the flexibility of this class of models, and Cheng et al. (1995) introduced
a generic algorithm for linear transformation model estimation, i.e. with hx.x/=xTα, treating
hY as a nuisance.

In recent years, transformation models have been extended in two directions. In the first
direction, more flexible forms for the conditional mean function hx have been introduced, e.g.
the partially linear transformation model hx.x/ = xT.0, α/T + hsmooth.x1/ (where hsmooth is a
smooth function of the first variable x1; Lu and Zhang (2010)), the varying-coefficient model
hx.x/ = xT.0, 0, α/T + hsmooth.x1/x2 (Chen and Tong, 2010), random-effects models (Zeng
et al., 2005) and various approaches to additive transformation and accelerated failure time
models, such as the boosting approaches by Lu and Li (2008) and Schmid and Hothorn (2008).
In the second direction, many researchers have considered algorithms that estimate hY and (par-
tially) linear functions hx simultaneously, usually by a spline expansion of hY (e.g. Shen (1998)
and Cheng and Wang (2011)), as an alternative to the common practice of estimating hY post
hoc by some non-parametric procedure such as the Breslow estimator.

Although the transformation function hY is typically treated as an infinite dimensional
nuisance parameter, it is important to note that hY contains information about higher
moments of Yx, most importantly variance and skewness. Simultaneous estimation of hY and hx
is therefore extremely attractive because we can obtain information about the mean and higher
moments of the transformed response at the same time. However, owing to the decomposition
of the regression function r or the transformation function h into both a deterministic part de-
pending on the explanatory variables (rx or hx) and a random part depending on the response
(hY ) or error term (Q.U/), higher moments of the conditional distribution of Y given X = x
must not depend on the explanatory variables in mean regression and transformation models.
As a consequence, the corresponding models cannot capture heteroscedasticity or skewness
induced by certain configurations of the explanatory variables. Therefore, we cannot detect these
potentially interesting patterns, and our models will perform poorly when probability forecasts,
prediction intervals or other functionals of the conditional distribution are of special interest.

Recently, Wu et al. (2010) proposed a novel transformation model for longitudinal data
that partially addresses this issue. For responses and explanatory variables X.t/ observed at
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time t, the model assumes that h.Yx|t, x/=hY .Yx|t/+x.t/Tα.t/. Here, the transformation hY is
conditional on time, and higher moments may vary with time. However, since hY does not
depend on the explanatory variables x, these higher moments may not vary with one or more
of the explanatory variables. In the context of longitudinal data with functional explanatory
variables, Chen and Müller (2012) considered a similar model, where the regression coefficients
for functional principal components may depend on time t and the response Yx. Our contribution
is a class of transformation models where the transformation function is conditional on the
explanatory variables in the sense that the transformation function, and therefore higher
moments of the conditional distribution of the response, may depend on potentially all
explanatory variables. As a consequence, the models that are suggested here can deal with
heteroscedasticity and skewness that can be regressed on the explanatory variables, and we shall
show that reliable estimates of the complete conditional distribution function and functionals
thereof can be obtained.

We shall introduce these ‘conditional transformation models’ (Section 2), discuss the under-
lying model assumptions and embed the estimation problem in the empirical risk minimization
framework (Section 3). For simplicity, we restrict ourselves to continuous responses Y that have
been observed without censoring. We present a computationally efficient algorithm for fitting
the models in Section 4 and study the asymptotic properties of the estimated conditional distri-
bution functions in Section 5. The practical benefits of modelling the influence of explanatory
variables on the variance and higher moments of the response distribution are demonstrated in
Section 6 with a special emphasis on distributional characteristics of childhood nutrition in India
and on prediction intervals for birth weights of small fetuses. Finally, we use a heteroscedastic
varying-coefficient simulation model to evaluate the empirical performance of the algorithm
proposed and compare the quality of conditional distribution functions estimated by a con-
ditional transformation model and established parametric and non-parametric procedures in
Section 7.

2. Conditional transformation models

An attractive feature of transformation models is their close connection to the conditional
distribution function. With the transformation function h.Yx|x/ = Q.U/, we can evaluate the
conditional distribution function of response Y given the explanatory variables x via

P.Y �υ|X =x/=P{h.Y |x/�h.υ|x/}=F{h.υ|x/}
with absolute continuous distribution function F =Q−1. For additive transformation functions
h=hY +hx, the conditional distribution function reads F{h.υ|x/}=F{hY .υ/+hx.x/}, i.e. the
distribution is evaluated for a transformed and shifted version of Y. Higher moments depend
only on the transformation hY and thus cannot be influenced by the explanatory variables.
Consequently, we must avoid the additivity in the model h=hY +hx to allow the explanatory
variables to impact also higher moments. We therefore suggest a novel transformation model
based on an alternative additive decomposition of the transformation function h into J partial
transformation functions for all x ∈χ:

h.υ|x/=
J∑

j=1
hj.υ|x/, .3/

where h.υ|x/ is the monotone transformation function of υ. In this model, the transformation
function h.Yx|x/ and the partial transformation functions hj.·|x/ : R→R are conditional on x
in the sense that not only the mean of Yx depends on the explanatory variables. For this reason,
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we coin models of the form (3) conditional transformation models. Clearly, model (3) imposes
an assumption, namely additivity of the conditional distribution function on the scale of the
quantile function Q, i.e.

Q{P.Y �υ|X =x/}=
J∑

j=1
hj.υ|x/:

It should be noted that here we assume additivity of the transformation function h and not
additivity on the scale of the regression function r as is common for additive mean or quantile
regression models (1). Furthermore, monotonicity of hj is sufficient but not necessary for h

being monotone. Of course, we have to make further assumptions on hj to obtain reasonable
models, but these assumptions are problem specific, and we shall therefore postpone these issues
until Section 6. To ensure identifiability, we assume without loss of generality that the partial
transformation functions are centred around zero, EY [EX{hj.Y |X/}] = 0 for all j = 1, : : : , J for
non-systematic error terms .{E.Q.U/}=0).

3. Estimating conditional transformation models

The estimation of conditional distribution functions can be reformulated as a mean regression
problem since P.Y �υ|X = x/= E{I.Y �υ/|X = x} for the binary event Y �υ; this connection
is widely used (e.g. by Hall and Müller (2003) and Chen and Müller (2012)). Similarly to the
approach of fitting multiple quantile regression models to obtain an estimate of the conditional
quantile function, one could estimate the models E{I.Y � υ/|X = x} for a grid of υ values
separately. However, we instead suggest estimating conditional transformation models by the
application of an integrated loss function that allows the whole conditional distribution function
to be obtained in one step.

Let ρ denote a function of measuring the loss of the probability F{h.υ|X/} for the binary
event Y �υ. One candidate loss function is

ρbin{.Y �υ, X/, h.υ|X/} :=−.I.Y �υ/ log[F{h.υ|X/}]

+{1− I.Y �υ/} log[1−F{h.υ|X/}]/�0,

the negative log-likelihood of the binomial model .Y �υ|X=x/∼B[1, F{h.υ|x/}] for the binary
event Y �υ with link function Q=F−1. Alternatively, we may consider the squared or absolute
error losses

ρsqe{.Y �υ, X/, h.υ|X/} :=0:5|I.Y �υ/−F{h.υ|X/}|2 �0,

ρabe{.Y �υ, X/, h.υ|X/} :=|I.Y �υ/−F{h.υ|X/}|�0:

The squared error loss ρsqe is also known as the Brier score and the absolute loss ρabe has been
applied for assessing survival probabilities in the Cox model by Schemper and Henderson (2000).
We define the loss function l for estimating conditional transformation models as integrated loss
ρ with respect to a measure μ dominating the conditional distribution P.Y �υ|X =x/:

l{.Y , X/, h} :=
∫

ρ{.Y �υ, X/, h.υ|X/}dμ.υ/�0:

In the context of scoring rules, the loss l based on ρsqe is known as the continuous ranked
probability score or integrated Brier score and is a proper scoring rule for assessing the quality
of probabilistic or distributional forecasts (see Gneiting and Raftery (2007) for an overview).
It seems natural to apply these scores as loss functions for model estimation, but we are aware
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of only the work of Gneiting et al. (2005), who directly optimized the continuous ranked prob-
ability score for estimating Gaussian predictive probability density functions for continuous
weather variables. In the context of non-parametric or semiparametric estimation of condi-
tional distribution functions, minimization of the empirical analogue of the risk function

EY ,X[l{.Y , X/, h}]=
∫ ∫

ρ{.y �υ, x/, h.υ|x/}dμ.υ/dPY ,X.y, x/�0

for estimating conditional distribution functions has not yet been considered. Model estima-
tion based on the risk EY ,X[l{.Y , X/, h}] is reasonable because the corresponding optimization
problem is convex and attains its minimum for the true conditional transformation function h.
We summarize these facts in the following lemma, whose proof in given in Appendix A.

Lemma 1. The risk EY ,X[l{.Y , X/, h}] is convex in h for convex losses ρ in h. The population
minimizer of EY ,X[l{.Y , X/, h}] for ρ=ρbin and ρ=ρsqe is h.υ|x/=Q{P.Y �υ|X = x/}. For
ρ=ρabe, the minimizer is

h.υ|x/=
{−∞, P.Y �υ|X =x/�0:5,

∞, P.Y �υ|X =x/> 0:5:

The corresponding empirical risk function defined by the data is

ÊY ,X[l{.Y , X/, f}]=
∫ ∫

ρ{.y �υ, x/, h.υ|x/}dμ.υ/dP̂Y ,X.y, x/�0:

On the basis of an independent and identically distributed random sample .Yi, Xi/∼PY ,X, i=
1, : : : , N, of N observations from the joint distribution of response and explanatory variables,
we define P̂Y ,X as the distribution putting mass wi > 0 on observation i (wi ≡ N−1 for the
empirical distribution). For computational convenience, we also approximate the measure μ by
the discrete uniform measure μ̂, which puts mass n−1 on each element of the equidistant grid
υ1 <: : :<υn ∈R over the response space. The number of grid points n must be sufficiently large
to approximate the integral closely. The empirical risk is then

ÊY ,X[l{.Y , X/, h}]=n−1
N∑

i=1

n∑
{=1

wi ρ{.Yi �υ{, Xi/, h.υ{|Xi/}: .4/

This risk is the weighted empirical risk for loss function ρ evaluated at the observations
.Yi �υ{, Xi/ for i= 1, : : : , N and {= 1, : : : , n. Consequently, we can apply algorithms for fitting
generalized additive models to the binary responses Yi �υ{ under loss ρ for estimating model
(3). Although this seems to be quite straightforward, there are two issues to consider. First,
simply expanding the observations over the grid υ1 <: : :<υn increases the computational com-
plexity by n, which, even for moderately large sample sizes N, renders computing and storage
rather burdensome. Second, unconstrained minimization of the empirical risk, i.e. no smooth-
ness of h in its first argument and h being independent of the conditioning x, leads to estimates
F{ĥ.υ|x/}= P̂.Y �υ/ = N−1 ΣN

i=1I.Yi �υ/, i.e. the empirical cumulative distribution function
of Y for ρbin and ρsqe with wi =N−1. For ρabe, the empirical risk is minimized by F{ĥ.υ|x/}=0
for all υ with P̂.Y �υ/< 0:5 and otherwise by F{ĥ.υ|x/}=1.

Therefore, careful regularization is absolutely necessary to obtain reasonable models that lead
to smooth conditional distribution functions (i.e. smoothing in the Y -direction) and that are
similar for similar configurations of the explanatory variables (i.e. smoothing in the X-direction).
Instead of adding a direct penalization term to the empirical risk, we propose in the next section
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a boosting algorithm for empirical risk minimization that indirectly controls the functional form
and complexity of the estimate ĥ.

4. Boosting conditional transformation models

We propose to fit conditional transformation models (3) by a variant of componentwise boosting
for minimizing equation (4) with penalization. In this class of algorithms, regularization is
achieved indirectly via the application of penalized base learners, and the complexity of the
whole model is controlled by the number of boosting iterations. We refer the reader to Bühlmann
and Hothorn (2007) for a detailed introduction to componentwise boosting.

For conditional transformation models, we parameterize the partial transformation functions
for all j =1, : : : , J as

hj.υ|x/={bj.x/T ⊗b0.υ/T}γj ∈R, γj ∈RKjK0 , .5/

where bj.x/T ⊗b0.υ/T denotes the tensor product of two sets of basis functions bj :χ→RKj and
b0 :R→RK0 . Here, b0 is a basis along the grid of υ-values that determines the functional form of
the response transformation. The basis bj defines how this transformation may vary with certain
aspects of the explanatory variables. The tensor product may be interpreted as a generalized
interaction effect (which is further illustrated in Section 6). For each partial transformation
function hj, we typically want to obtain an estimate that is smooth in its first argument υ and
smooth in the conditioning variable x. Therefore, the bases are supplemented with appropriate,
prespecified penalty matrices Pj ∈RKj×Kj and P0 ∈RK0×K0 , inducing the penalty matrix P0j =
.λ0Pj ⊗1K0 +λj1Kj ⊗P0/ with smoothing parameters λ0 �0 and λj �0 for the tensor product
basis. The base learners corresponding to the partial transformation functions fitted to the
negative gradients in each iteration of the boosting algorithm are then ridge-type linear models
with penalty matrix P0j. In more detail, we apply the following algorithm for fitting conditional
transformation models with transformation functions (5).

4.1. Algorithm: boosting for conditional transformation models

Step 1 (initialization): initialize γ
[0]
j ≡ 0 for j = 1, : : : , J , the step size ν ∈ .0, 1/ and the

smoothing parameters λj, j =0, : : : , J . Define the grid υ1 <Y.1/ < : : :<Y.N/ �υn. Set m :=0.
Step 2 (gradient): compute the negative gradient Ui{ for ĥ

[m]
i{ =ΣJ

j=1{bj.Xi/
T ⊗b0.υ{/

T}γ
[m]
j ,

Ui{ :=− @

@h
ρ{.Yi �υ{, Xi/, h}

∣∣∣∣
h=ĥ

[m]
i{

:

Fit the base learners for j =1, . . . , J with penalty matrix P0j:

β̂j =arg min
β∈R

KjK0

N∑
i=1

n∑
{=1

wi[Ui{ −{bj.Xi/
T ⊗b0.υ{/

T}β]2 +βTP0jβ: .6/

Select the best base learner:

jÅ =arg min
j=1,:::,J

N∑
i=1

n∑
{=1

wi[Ui{ −{bj.Xi/
T ⊗b0.υ{/

T}β̂j]2:

Step 3 (update): update the parameters γ
[m+1]
jÅ =γ

[m]
jÅ + νβ̂jÅ and keep all other parameters

fixed, i.e. γ
[m+1]
j =γ

[m]
j , j �= jÅ. Iterate steps 2 and 3.
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Step 4 (stop): stop if m=M. Output the final model as a function of arbitrary υ∈R and x∈χ:

P̂.Y �υ|X =x/=F{ĥ
[M]

.υ|x/}=F

[
J∑

j=1
{bj.x/T ⊗b0.υ/T}γ

[M]
j

]
:

Before we investigate the asymptotic properties of the resulting estimates, we shall discuss
some details of this generic algorithm in what follows.

4.2. Model specification
The basis functions b0 and bj determine the form of the fitted model, and their choice is
problem specific. In the simplest situation, in which the conditional distribution of Y given
only one numeric explanatory variable x1 will be estimated, we could use the basis functions
b0.υ/= .1, υ/T and b1.x/= .1, x1/T. The corresponding base learner is then defined by the linear
function ..1, x1/⊗ .1, υ//γ1 = .1, υ, x1, x1υ/γ1. For each x1, the transformation is linear in υ with
intercept γ1 +γ3x1 and slope γ2 +γ4x1, i.e. not only the mean may depend on x1 but also the
variance. Restricting, for example, b0.υ/ to be constant, i.e. b0.υ/ ≡ 1, allows the effects of
explanatory variables to be restricted to the mean alone. Assuming that b1.x/ ≡ 1, however,
yields a transformation function that is not affected by any explanatory variable. More
flexible basis functions, e.g. B-spline basis functions, allow also for higher moments to de-
pend on the explanatory variables. We illustrate appropriate choices of basis functions in
Section 6.

4.3. Computational complexity
For the estimation of base learner parameters βj in equation (6), it is not necessary to evaluate
the Kronecker product ⊗ in expression (5) and to compute the nN ×K0Kj design matrix for the
jth base learner. The base learners that are used here are a special form of multi-dimensional
smooth linear array models (Currie et al., 2006), where efficient algorithms for computing
Ridge estimates (6) exist. The number of multiplications required for fitting the jth base learner
is approximately c6=.c2=N − 1/, instead of N2c4 for the simplest case with c = K0 = Kj and
N = n (see Table 2 in Currie et al. (2006)), and the memory required for storing the design
matrices is of the order NKj +NK0, instead of NnKjK0. Note that only the gradient vector is
of length Nn; all other objects can be stored in vectors or matrices growing with either N or n,
and an explicit expansion of the observations .Yi �υ{, Xi/ for i=1, : : : , N and {=1, : : : , n is not
necessary.

4.4. Choice of tuning parameters
The number of boosting iterations M is the most important tuning parameter determined by
resampling, e.g. by k-fold cross-validation or bootstrapping. For the latter resampling scheme,
the weights wi in expression (4) are drawn from an N-dimensional multinomial distribution with
constant probability parameters pi ≡N−1, i=1, : : : , N. The out-of-bootstrap empirical risk with
weights wOOB

i = I.wi = 0/ is then used as a measure to assess the quality of the distributional
forecasts for a varying number of boosting iterations M. The loss function that is used to fit the
models is the same function as is used as a scoring rule to assess the quality of the probabilistic
forecasts of the out-of-bootstrap observations.

The smoothing parameters λj, j = 0, : : : , J , in the penalty matrices are not tuned but rather
defined such that the jth base learner has low degrees of freedom. For our computations, we
simplified the penalty term to P0j =λj.Pj ⊗ 1K0 + 1Kj ⊗ P0/, i.e. one parameter controls the
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smoothness in both directions. Following Hofner et al. (2011a), the parameters λj were defined
such that each base learner has the same overall low degree of freedom. Note that the degree
of freedom of the estimated partial transformation function adapts to the complexity that is
inherent in the data via the number of boosting iterations M (Bühlmann and Yu, 2003). Different
smoothness in the two directions can be imposed by choosing different basis functions for b0
and bj, e.g. a linear basis function for bj and B-splines for b0. Other parameters, such as knots
or degrees of basis functions or the number n of grid points that the integrated loss function
l is approximated with are not considered as tuning parameters. The resulting estimates are
quite insensitive to their different choices. Also, we do not consider the distribution function
F or the loss function ρ as tuning parameter but assume that these are part of the model
specification. Different versions of F and ρ lead to different negative gradients; these are given in
Appendix A.

4.5. Monotonicity
The resulting estimate ĥ

[M]
.υ|x/ is not automatically monotone in its first argument. Mono-

tonicity and smoothness in the Y -direction depend on each other, and too complex estimates
tend to suffer from non-monotonicity. Empirically, on the basis of experiments that are reported
in Sections 6 and 7, non-monotonicity is a problem in poorly fitting models, owing to either
misspecification, overfitting or a low signal-to-noise ratio. From our point of view, inspecting
the model for non-monotonicity is helpful for model diagnostics and can be dealt with by re-
ducing model complexity. Alternatively, there are three possible modifications to the algorithm
that can be implemented to enforce monotonicity:

(a) fit base learners under monotonicity constraints in equation (6), e.g. by using the iterative
repenalization that was suggested by Eilers (2005),

(b) check monotonicity for each base learner and select the best among the monotone can-
didates only or

(c) select the base learner such that it is the best among all candidates that lead to monotone
updates in h[m].

None of these approaches had to be used for our empirical studies, in which all resulting estimates
were monotone for the appropriate number of boosting iterations M.

4.6. Model diagnostics and overfitting
Another convenient feature of transformation models is that, with the correct model h for
absolute continuous random variables Y , the errors Ei =h.Yi|Xi/, i= 1, : : : , N, are distributed
according to F . Therefore, if the observed residuals Ê

[M]
i = ĥ

[M]
.Yi|Xi/ are unlikely to come from

distribution F , e.g. assessed by using quantile–quantile plots or a Kolmogorov–Smirnov statistic,
the model is likely to fit the data poorly. However, a good agreement between Ê

[M]
i and F does

not necessarily mean that the explanatory variables describe the response well. A high correla-
tion between the ranking of the residuals and the ranking of the responses Y1, : : : , YN means that
the estimated conditional distribution is very close to the unconditional empirical distribution
of the responses. In this case, either the model may overfit or the response may be independent
of the explanatory variables. The fitted model may also be used to draw novel responses for given
explanatory variables by using the model-based bootstrap via Ỹ i ={υ : Q.Ui/= ĥ

[M]
.υ|Xi/} for

i=1, : : : , N, where U1, : : : , UN are independent and identically distributed uniform random vari-
ables. The stability of the model can now be investigated by refitting the model with observations
.Ỹ i, Xi/, i=1, : : : , N.
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5. Consistency of boosted conditional transformation models

The boosting algorithm that is presented here is a variant of L2WCBoost (Bühlmann and Yu,
2003) applied to dependent observations with more general base learners. In this section, we
shall develop a consistency result for the squared error loss ρsqe. For simplicity, we consider the
case in which the procedure is used with F.h/=h as the identity function, i.e. the error term is
uniformly distributed. Thus, we consider conditional transformation models of the form

P.Y �υ|X =x/=h.υ|x/=
J∑

j=1
hj.υ|xj/,

where the partial transformation function hj is conditional on the jth explanatory variable in
x = .x1, : : : , xJ / ∈ χ and EY{N−1ΣN

i=1 h.Y |Xi/} = 0:5. Our analysis is for the fixed design case
with deterministic explanatory variables Xi or when conditioning on all Xis. A modification
for the random-design case could be pursued along arguments that are similar to those for
L2-boosting as in Bühlmann (2006). As in Section 4, we use a basis expansion of h.υ|x/:

hN,γ.υ|x/=
J∑

j=1
{bj.xj/T ⊗b0.υ/T}γj =

J∑
j=1

K0,N∑
k0=1

K1,N∑
k1=1

γj,k0,k1 b0,k0.v/bj,k1.xj/,

where for simplicity the number of basis functions K1,N is equal for all xj.
Consider the (empirical) risk functions

Rn,N.h/= .nN/−1
N∑

i=1

n∑
{=1

{I.Yi �υ{/−h.υ{|Xi/}2

and

Rn,N,E.h/= .nN/−1
N∑

i=1

n∑
{=1

E[{I.Yi �υ{/−h.υ{|Xi/}2]:

Denote the projected parameter by

γ0,N =arg min
γ

Rn,N,E.hN,γ/: .7/

We make the following assumptions.

Assumption 1. The coefficient vector γ0,N is sparse and satisfies

‖γ0,N‖1 =o

[√{
N

log.JNK0,NK1,N/

}]
, N →∞:

Thereby, the dimensionality J =JN can grow with N.

Assumption 2. The basis functions satisfy, for some 0 <C<∞,

‖b0,k0‖∞ �C, ‖bj,k1‖∞ �C ∀j, k0, k1:

Assumption 3.

.nN/−1
N∑

i=1

n∑
{=1

hγ0,N .υ{|Xi/
2 �D<∞ ∀n, N:

Assumption 1 is an l1-norm sparsity assumption, assumption 2 is a mild restriction since we
are modelling I.Y �υ/ and assumption 3 requires that the signal strength does not diverge as
n, N →∞.
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Theorem 1. Assume assumptions 1–3. Then, for fixed n or for n=nN →∞ .N →∞/, and for
M =MN →∞ .N →∞/, MN =o[

√{N= log.JNK0,NK1,N/}],

.nN/−1
N∑

i=1

n∑
{=1

{hγ̂[M].υ{|Xi/−hγ0,N .υ{|Xi/}2 =oP.1/, N →∞:

A proof is given in Appendix A.
Convergence of hγ0,N .υ|x/ to the true function h.υ|x/ involves approximation theory to

achieve

.nN/−1
N∑

i=1

n∑
{=1

{hγ0,N .υ{|Xi/−h.υ{|Xi/}2 =o.1/, n, N →∞: .8/

We would want to estimate the function h.υ|x/ well over the whole domain, e.g. [aυ, bυ] ×χ.
This may be too ambitious if J =dim.χ/=JN grows with N. Hence, we restrict ourselves to the
setting where the number of active variables Jact <∞ is fixed (from the active set S):

h.υ|x/= ∑
j∈S

hj.υ|xj/, S ⊆{1, : : : , J} with |S|=Jact:

For the approximation, we typically would need K0,N , K1,N →∞ .N →∞/ for suitable basis
functions and n = nN →∞ .N →∞/; furthermore, the grid υ1 < υ2 < : : : < υn should become
dense as n = nN → ∞, and also the values Xact

1 , : : : , Xact
N should become dense in χS ⊆ χ as

N →∞ (here, Xact = {Xj; j ∈ S}∈χS). If J = JN grows, but the number of active variables in
the model Jact <∞ is fixed, then some uniform approximation hγ0,N .υ|x/→h.υ|x/ is possible
under regularity conditions.

We provide a summary for a typical situation.

Corollary 1. Consider the setting as in theorem 1, with J =JN potentially growing but fixed
dimensionality of the active variables Jact < ∞, n = nN →∞ .N →∞/, and the functions are
sufficiently regular such that expression (8) holds. Then, for M =MN as in theorem 1,

.nN/−1
N∑

i=1

n∑
{=1

{hγ̂[M].υ{|Xi/−h.υ{|Xi/}2 =oP.1/ n, N →∞:

This result states that the estimated hγ̂[M] are consistent for the true transformation h.

6. Applications

In this section, we present analyses with special emphasis on higher moments of the conditional
distribution, which have received less attention in previous analyses of these problems. Further
applications of conditional transformation models are given in Hothorn et al. (2012).

6.1. Childhood nutrition in India
Childhood undernutrition is one of the most urgent problems in developing and transition
countries. To provide information not only on the nutritional status but also on health and
population trends in general, demographic and health surveys conduct nationally representative
surveys on fertility, family planning and maternal and child health, as well as child survival,
human immunodeficiency virus–acquired immune deficiency syndrome, malaria and nutrition.
Childhood nutrition is usually measured in terms of a Z-score that compares the nutritional
status of children in the population of interest with the nutritional status in a reference
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population. The nutritional status is expressed by anthropometric characteristics, i.e. height for
age; in cases of chronic childhood undernutrition, the reduced growth rate in human develop-
ment is termed stunted growth or stunting. The Z-score, which compares an anthropometric
characteristic of child i with values from a reference population, is given as Zi = .ACi −m/=s,
where AC denotes the anthropometric characteristic of interest and m and s correspond to the
median and (a robust estimate for the) standard deviation in the reference population (strat-
ified with respect to age, gender and some other variables). We shall focus on stunting, i.e.
insufficient AC equivalent to height for age, as a measure of chronic undernutrition in what
follows and estimate the whole distribution of this Z-score measure for childhood nutrition
in India. Our investigation is based on India’s 1998–1999 Demographic and Health Survey
(International Institute for Population Sciences and ORC Macro, 2000) on 24166 children vis-
ited during the survey in 412 of the 640 districts of India. The lower quantiles of this distribution
can be used to assess the severity of childhood undernutrition, whereas the upper quantiles give
us information about the nutritional status of children in families with above-average nutritional
status.

The simplest conditional transformation model allowing for district-specific means and
variances reads

P.Z �υ|district=k/=Φ.α0,k +αkυ/, k =1, : : : , 412:

The base learner is defined by a linear basis b0.υ/= .1, υ/T for the grid variable and a dummy
encoding basis b1.district/ = .I.district = 1/, : : : , I.district = k//T for the 412 districts. The
resulting 824-dimensional parameter vector γ1 of the tensor product base learner then consists
of separate intercept and slope parameters for each of the districts of India. Since we assume
normality for the linear function α0,k +αkZ∼N .0, 1/, also the Z-score is assumed to be normal
with both mean and variance depending on the district. We can relax the normal assumption
on Z by allowing for more flexible transformations in the model

P.Z �υ|district=k/=Φ{h.υ|district=k/}, k =1, : : : , 412: .9/

Now b0.υ/ is a vector of B-spline basis functions evaluated at υ for some reasonable choice of
knots, whereas b1 remains as above. Hence, instead of assuming separate linear effects for the
districts, we now assume separate non-parametric effects parameterized in terms of B-splines.
To achieve smoothness of these non-parametric effects along the υ-grid, we specify the penalty
matrix P0 as P0 =DTD with second-order difference matrix D. It makes sense to induce spatial
smoothness on the conditional distribution functions of neighbouring districts since we do not
expect the distribution of the Z-score to change much from one district to its neighbouring
districts. In fact, spatial smoothing is absolutely necessary in this example since otherwise we
would estimate 412 separate distribution functions for the districts in India. To implement spatial
smoothness of neighbouring districts, the penalty matrix P1 is chosen as an adjacency matrix,
where the off-diagonal elements indicate whether two districts are neighbours (represented with
a value of −1) or not (represented with a value of 0). The diagonal of the adjacency matrix
contains the number of neighbours for the corresponding district. The estimated conditional
transformation function ĥ.Z|district=k/ can be interpreted as a transformation of the Z-scores
in district k to standard normality. Because the number of observations is large and the base
learner is fitted with penalization, we stop the boosting algorithm when the reduction of the
in-sample empirical risk is negligible.

From the estimated conditional distribution functions, we compute the τ -quantiles of the
Z-score for each district via Q̂.τ |district= k/= inf[υ :Φ{ĥ.υ|district= k}� τ ]. The conditional
10% and 90% quantiles are depicted in a colour-coded map in Fig. 1. The spatially smooth
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Fig. 1. Childhood nutrition in India—colour-coded map of the 10% and 90% conditional quantiles of the
Z -score: each circle corresponds to one district with the respective colour in the map; blue values in the
northern part of India correspond to small lower and upper quantiles; red values, especially in the eastern
Meghalaya and Assam states, indicate small lower quantiles but at the same time large upper quantiles; in
the southern part of India, the lower quantiles are largest with moderate upper quantiles; white parts indicate
districts with no observations

estimated lower and upper conditional quantiles shown simultaneously allow differentiation
between three groups of districts:

(a) districts with small lower and upper conditional quantiles (blue, especially in the Uttar
Pradesh state), where the Z-score is stochastically smaller than that of the remaining parts
of India and thus all children are less well fed;

(b) districts with more severe inequality, i.e. small lower but at the same time large upper
quantiles (red, in the Meghalaya and Assam states);

(c) districts with relatively large lower and upper quantiles, which indicates a relatively good
nutrition status of all children in the southern districts of India (violet, in Andhra Pradesh,
Madhya Pradesh, Maharashtra, Tamil Nadu and Kerala).

6.2. Birth weight prediction
Recent advances in neonatal medicine have lowered the threshold of survival to a gestational age
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of 23–24 weeks and to a birth weight of approximately 500 g. As neonatal risks of morbidity and
mortality are highest in the lowest weight range, diagnostic assessment of the small fetus needs
to be as precise as possible. Schild et al. (2008) focused on this high-risk group of small fetuses
(1600 g and under) and proposed a formula for estimating birth weight BW based on ultrasound
imaging performed within 7 days before delivery. In addition to predicting the expected birth
weight given four standard two-dimensional ultrasound parameters (HC, head circumference;
FE, femur length; BPD, biparietal diameter; AC, transverse diameter and circumference of
the fetal abdomen) and three additional three-dimensional ultrasound parameters (UA, upper
arm volume; FEM, thigh volume; ABDO, abdominal volume) X ∈R7, we aim at assessing the
uncertainty of this prediction by 80% prediction intervals for birth weight (based on data of 150
predominantly Caucasian women collected in a prospective cohort study at the universities in
Bonn and Erlangen, Germany; Schild et al. (2008)).

We begin with the linear model that was estimated by Schild et al. (2008),

BWx =656:41+1:832 ABDO+31:198HC+5:779FEM+73:521FL+8:301AC

−449:886 BPD+32:534 BPD2 +77:465Φ−1.U/,

and the classical prediction interval for a fetus with ultrasound parameters x is then the
symmetric interval around the estimated conditional mean Ê.BW|X =x/, whose width is given
by 2t150−8,0:9 ×77:465

√
[1+var{Ê.BW|X =x/}].

The normality assumption can be relaxed by deriving the upper and lower conditional quan-
tiles from two quantile regression models. Linear quantile regression (Koenker and Bassett,
1978) for the conditional 10%, 50% and 90% quantiles assumes that

BWx =α0,τ +xTατ +Qτ .U/, for τ =0:1, τ =0:5 and τ =0:9,

with Qτ .τ /=0. The corresponding prediction interval for a fetus with ultrasound parameters x is
now .α̂0,0:1 +xTα̂0:1, α̂0,0:9 +xTα̂0:9/. A more flexible description of the functional relationship
between ultrasound parameters and quantiles is given by the additive quantile regression model
(Koenker et al., 1994)

BWx =α0,τ +
7∑

j=1
rj,τ .xj/+Qτ .U/, for τ =0:1, τ =0:5 and τ =0:9:

Here, rj,τ is a quantile-specific smooth function of the jth ultrasound parameter. Parameter
tuning is difficult for these models; we therefore applied a boosting approach to additive quantile
regression (Fenske et al. (2011), with early stopping via a 25-fold bootstrap). Prediction intervals
can now be derived by {α̂0,0:1 + Σ7

j=1 r̂j,0:1.xj/, α̂0,0:9 + Σ7
j=1 r̂j,0:9.xj/}. Note that, for either

quantile regression model, the prediction interval is based on two separate models: one for
τ =0:1 and one for τ =0:9.

Finally, we derive prediction intervals from the conditional transformation model

P.BW�υ|X =x/=Φ{h.υ|x/}=Φ
{

7∑
j=1

hj.υ|xj/

}

where, under the assumption of additivity of the transformation function h, each ultrasound
parameter may influence the moments of the conditional birth weight distribution. The jth
base learner is the tensor product of B-spline basis functions b0.υ/ for birth weight and bj.xj/

are B-spline basis functions for the jth ultrasound parameter. The penalty matrices P0 and
Pj penalize second-order differences, and thus all estimates ĥj will be smooth bivariate tensor
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Fig. 2. Birth weight prediction—observed birth weights of 150 small fetuses (�) ordered with respect to
the estimated mean or median expected birth weight ( ): , fetus-specific 80% prediction intervals
for (a) the linear quantile regression model, (b) the additive quantile regression model, (c) the conditional
transformation model and (d) the linear model

product splines of birth weight and the respective ultrasound parameter, with both dimensions
being subject to smoothing. The number of boosting iterations was determined by a 25-fold
bootstrap. From the estimated conditional distribution functions, we compute the τ -quantiles
of the birth weight via Q̂.τ |X =x/= inf[υ :Φ{h.υ|x/}� τ ] and derive the prediction interval as
.Q̂.0:1|X =x/, Q̂.0:9|X =x//.

The observed birth weights ordered with respect to the predicted mean (linear model) or
median (quantile regression and conditional transformation model) are depicted in Fig. 2.
In addition, the respective 80% prediction intervals are visualized by grey areas. It should be
noted that, for all models, the prediction intervals are only interpretable for future observations;
however, poor coverage for the learning sample also indicates poor coverage for future cases.
The prediction intervals that were obtained from linear quantile regression indicate that the
model is confident about its predictions over the whole range of birth weights. This is also
so for the additive quantile regression models for birth weights of approximately 1000 g, but
the uncertainty increases for very small and larger fetuses. The intervals that were obtained
from the linear model and the conditional transformation model are similar. For birth weights
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between 500 and 1400 g, the prediction intervals of the conditional transformation model are
symmetric around the median. This might be an indication that the normality assumption by
the linear model is not completely unrealistic. The smaller interval widths that can be seen for
the linear model are most likely to be due to the variance estimate in this case ignoring the
model choice process that was performed before the final model fit by Schild et al. (2008). The
conditional transformation model takes this variability into account. The results may also be an
indication that the assumption of additivity of the transformation function rather than of the
regression function (for quantile regression models) might be more appropriate for modelling
birth weights.

7. Empirical evaluation

We shall compare the empirical performance of conditional transformation models fitted by
means of the proposed boosting algorithm to two competitors. Conditional transformation
models are semiparametric models in the sense that we assume a certain distribution for the
transformed responses and additivity of the model terms on the scale of the corresponding
quantile function. Therefore, it is natural to compare these estimated conditional distribution
functions with a fully parametric approach and a non-parametric estimation technique.

For simplicity, we study a model in which two explanatory variables influence both the con-
ditional expectation and the conditional variance of a normally distributed response Y. The
error term Φ−1.U/ is standard normal, and, to obtain normal responses, we restrict the possible
transformations to linear functions:

Φ−1.U/=h.Yx|x/=∑
j

hj.Yx|x/=∑
j

bj.x/Yx −aj.x/=Yx
∑
j

bj.x/−∑
j

aj.x/

⇔Yx =
Φ−1.U/+∑

j

aj.x/

∑
j

bj.x/
∼N

⎡
⎢⎣

∑
j

aj.x/

∑
j

bj.x/
,
{∑

j

bj.x/

}−2

⎤
⎥⎦:

Although the partial transformation functions are linear in Yx, the expectation and variance
depend on the explanatory variables in a non-linear way. The choices X1 ∼U [0, 1], X2 ∼U [−2, 2],
a1.x/=0, a2.x/=x2, b1.x/=x1 and b2.x/=0:5 lead to the heteroscedastic varying-coefficient
model

Yx = 1
x1 +0:5

x2 + 1
x1 +0:5

Φ−1.U/, .10/

where the variance of Yx ranges between 0.44 and 4 depending on X1. This model can be fitted
in the GAMLSS framework under the assumptions that the expectation of the normal response
depends on a smoothly varying regression coefficient .X1 +0:5/−1 for X2 and that the variance
is a smooth function of X1. This model is therefore fully parametric. As a non-parametric
counterpart, we use a kernel estimator for estimating the conditional distribution function of
Yx as a function of the two explanatory variables.

The conditional transformation model

P.Y �υ|X1 =x1, X2 =x2/=Φ{h.υ|x1, x2/}=Φ{h1.υ|x1/+h2.υ|x2/}
is a semiparametric compromise between these two extremes. The error distribution is assumed
to be standard normal and additivity of the transformation function h is also part of the model
specification. The base learners are tensor products of B-spline basis functions b0.υ/ for Y and
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B-spline basis functions for X1 and X2. The penalty matrices P0, P1 and P2 penalize second-
order differences, and thus ĥj will be smooth bivariate tensor product splines of the response
and explanatory variables X1 and X2. Smoothing takes place in both dimensions.

For all three approaches, we obtain estimates of P.Y � υ|X1 = x1, X2 = x2/ over a grid on
x1 and x2 and compute the mean absolute deviation MAD of the true and estimated probabilities,

MAD.x1, x2/= 1
n

∑
υ

|P.Y �υ|X1 =x1, X2 =x2/− P̂.Y �υ|X1 =x1, X2 =x2/|,

for each pair of x1 and x2. Then, the minimum, the median and the maximum of the MAD-
values over this grid are computed as summary statistics. This procedure was repeated for 100
random samples of size N =200 drawn from model (10). Cross-validation was used to determine
the bandwidths for the kernel-based methods; for details see Hayfield and Racine (2008). The
boosting-based estimation of GAMLSSs (Mayr et al., 2012a) turned out to be more stable than
the reference implementation (package gamlss; Stasinopoulos et al. (2011)), and we therefore
fitted the GAMLSSs by the dedicated boosting algorithm. For GAMLSSs and conditional
transformation models fitted by boosting, the number of boosting iterations was determined
via sample splitting. To investigate the stability of the three procedures under non-informative
explanatory variables, we added p=1, . . . , 5 uniformly distributed variables without association
to the response to the data and included them as potential explanatory variables in the three
models. The case p=0 corresponds to model (10).

Fig. 3 shows the empirical distributions of the minimum, median and maximum MAD for the
three competitors. For p=0, the GAMLSS and conditional transformation models perform on
par with respect to the median MAD, although the GAMLSS shows a somewhat larger vari-
ability. The median MAD is slightly smaller than 0:02 for both procedures, which indicates that
the true conditional distribution function can be fitted precisely. The maximal MAD is smallest
for conditional transformation models and can be quite large for the GAMLSS. In contrast, for
some configurations of the explanatory variables, the GAMLSS seems to offer better estimates
with respect to the minimal MAD. The kernel estimator leads to the largest median MAD-values
but seems more robust than the GAMLSS with respect to the maximal MAD. These results are
remarkably robust in the presence of up to five non-informative explanatory variables, although
of course the MAD increases with p.

The general theme that the GAMLSS on average performs as well as conditional transforma-
tion models in the special case of model (10) but is associated with a larger variability might be
explained by the independent estimation of the functions for the expectation and variance, i.e. the
GAMLSS does not ‘know’ that the varying-coefficient term and the variance term are actually
the same. The inferior performance of the kernel estimator might be explained by the techni-
cal difficulties that are associated with bandwidth choice. The tuning parameters for the two
boosting approaches are easier to choose. Our general impression is that the kernel-estimated
conditional distribution functions are more erratic than the smooth functions that are obtained
with boosting for conditional transformation models (the analysis of the simulation data is not
shown here).

Since conditional transformation models are also an alternative to quantile regression models,
it would be interesting to compare the two approaches. At this point, it is important to recall that
the two models assume additivity of the effects of X1 and X2, but on different scales as explained
in Section 2. Consequently, the heteroscedastic varying-coefficient model (10) cannot be fitted
in a straightforward way by using standard linear or additive quantile regression. However, the
estimation problem can be slightly reformulated by describing the τ -quantile of Yx as the sum
of a varying-coefficient term r1.x1/x2 and a smooth function r2.x1/. This model, implemented
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F
ig

.
3.

E
m

pi
ric

al
ev

al
ua

tio
n—

m
in

im
um

,
m

ed
ia

n
an

d
m

ax
im

um
of

th
e

m
ea

n
ab

so
lu

te
de

vi
at

io
n

M
A

D
be

tw
ee

n
th

e
tr

ue
an

d
es

tim
at

ed
pr

ob
ab

ili
tie

s
fo

r
co

nd
iti

on
al

tr
an

sf
or

m
at

io
n

m
od

el
s

(C
T

M
),

no
n-

pa
ra

m
et

ric
ke

rn
el

di
st

rib
ut

io
n

fu
nc

tio
n

es
tim

at
io

n
an

d
G

A
M

LS
S

s
fo

r
10

0
ra

nd
om

sa
m

pl
es

:
va

lu
es

on
th

e
or

di
na

te
ca

n
be

in
te

rp
re

te
d

as
ab

so
lu

te
di

ffe
re

nc
es

of
pr

ob
ab

ili
tie

s;
,m

ed
ia

n
of

th
e

co
nd

iti
on

al
tr

an
sf

or
m

at
io

n
m

od
el

s



Conditional Transformation Models 21

Fig. 4. Comparison of additive quantile regression (AQR) and conditional transformation models (CTM):
scatter plots of true versus estimated quantiles obtained from one conditional transformation model and
from three additive quantile regression models fitted to 200 observations drawn from the heteroscedastic
varying-coefficient model (10)

by using the boosting approach to additive quantile regression with varying coefficients that
was introduced by Fenske et al. (2011), allows the estimation of conditional τ -quantiles.

We fitted three such quantile regression models (for τ = 0:5, 0:75, 0:9) to a sample of size
N = 200 from model (10) and determined the optimal number of boosting iterations by the
out-of-sample empirical risk of the check function. To give an impression, we compare these
estimated τ -quantiles with the corresponding conditional quantiles obtained by inverting the
estimated conditional distribution function from a conditional transformation model. Fig. 4
displays scatter plots of the true conditional quantiles over a grid of x1- and x2-values with
the corresponding estimated quantiles derived from one conditional transformation model and
the three additive quantile regression models for τ = 0:5, 0:75, 0:9; the latter models include
the varying-coefficient term. It seems that, in this example, both approaches recover the true
quantiles equally well.

8. Discussion

In Quantile Regression, Koenker (2005) put transformation models in the ‘twilight zone of
quantile regression’ and suggested that estimating conditional distribution functions by means
of transformation models might be an alternative to the direct estimation of conditional quantile
functions. We undertook the ‘worthwhile exercise’ (Koenker (2005), section 8.1.1) and devel-
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oped a semiparametric framework for the estimation of conditional distribution functions by
conditional transformation models that allows higher moments of the conditional distribution
to depend on the explanatory variables.

Because the empirical risk function (4) is equivalent to well-established risk functions for
binary data, many potentially interesting algorithms can be used to fit conditional transfor-
mation models, although dependent observations must be dealt with. We chose a component-
wise boosting approach mainly because of its ‘divide-and-conquer’ strategy, which allows a very
efficient fitting of base learners that depend on the response and on one or more explanatory
variables at the same time via linear array models. Although boosting became popular owing
to its success in fitting simple models under challenging circumstances—especially linear or
additive models for high dimensional explanatory variables—the attractiveness of this class of
algorithms for fitting challenging models in simple circumstances has been only rarely recog-
nized. Exceptions are Ridgeway (2002) and Sexton and Laake (2012), who studied boosting
algorithms for fitting density functions. Lu and Li (2008), Schmid and Hothorn (2008) and
Schmid et al. (2011) proposed boosting algorithms for transformation models that treat the
transformation function hY as a nuisance parameter. In the same model framework, Tutz and
Groll (2012) proposed a likelihood boosting approach for fitting cumulative and sequential
models for ordinal responses.

Boosting algorithms for estimating conditional quantiles by minimizing the check function
have been introduced by Kriegler and Berk (2010), Fenske et al. (2011) and Zheng (2012). The
computation of prediction intervals based on pairs of such models is quite straightforward
(Mayr et al., 2012b). Our approach to the estimation of the conditional distribution function
has the advantage that one model fits the whole distribution, which can then be used to derive
arbitrary functionals. The quantile score representation of the continuous ranked probability
score (see Gneiting and Ranjan (2011)) might be a basis to develop a boosting technique which
is similar to that described in this paper for the estimation of full conditional quantile functions.
The main difference between transformation and quantile regression models that we must keep
in mind is that additivity is assumed on two different scales. From a practical point of view,
diagnostic tools to assess which of these scales is more appropriate for assuming an additive
model would be very important.

The applications that were presented in Section 6 showed that conditional transformation
models are generic, and we can, by choosing appropriate base learners, fit models that are spe-
cific to the problem at hand. An empirical evaluation showed that the estimated conditional dis-
tribution functions are on average as good as the estimates that are obtained from a parametric
approach (the GAMLSS) that relies on more assumptions. In comparison with non-parametric
kernel distribution estimators, conditional transformation models are more adaptable, for
example, to spatial or temporal data. The performance of the semiparametric models com-
pared with that of the non-parametric competitor was considerably better at the small price of
the assumption of additivity of the transformation function.

It will be interesting to study conditional transformation models further with respect to the
following extensions. Discrete distributions can be handled by basis functions b0 offering one
parameter for each element of the support of Y , similarly to a proportional odds model (see
Hothorn et al. (2012) for an application). Instead of making assumptions about the quantile
function Q representing the error distribution, it would be possible to fit the corresponding
distribution function by techniques introduced for single-index models (Tutz and Petry, 2012).
Accelerated failure time models fitted by boosting of an inverse probability of censoring weighted
risk have been described by Hothorn et al. (2006), and future research awaits the investigation
of the performance of conditional transformation models under censoring.
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9. Computational details

Conditional transformation models were fitted by using an implementation of componentwise
boosting in package mboost (version 2.1-2; Hothorn et al. (2011)). Package gamboostLSS
(version 1.0-3; Hofner et al. (2011b)) was used to fit GAMLSSs and kernel distribution
estimation was performed by using package np (version 0.40-13; Hayfield and Racine (2011)).
Linear quantile regression was computed by using package quantreg (version 4.79; Koenker
(2011)). All computations were performed by using R version 2.13.2 (R Development Core
Team, 2011).

Throughout Section 6, we used the loss function that was defined by ρbin and modelled non-
linear functions by cubic B-spline bases with 20 equidistant knots. For further computational
details we refer the reader to the R code that implements the analyses that were presented in
Sections 6 and 7, which is available in an experimental R package ctm at http://R-forge.R-
project.org/projects/ctm. The results that are presented in this paper can be repro-
duced by using this package, except for the birth weight data, which are not publicly available.
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Appendix A: Proofs

A.1. Proof of lemma 1
A.1.1. Convexity
If the loss function ρ is convex in its second argument, so is the loss function l,

l{.Y , X/, αh+ .1−α/g}�α l{.Y , X/, h}+ .1−α/ l{.Y , X/, g},

with g.·|x/ : R → R being a monotone increasing transformation function and α∈ [0, 1], because of the
convexity of ρ and the monotonicity and linearity of the Lebesgue integral.

A.1.2. Population minimizers
Let f denote the density of F. With iterated expectation we have

EY ,X [l{.Y , X/, h}]=
∫ ∫ ∫

ρ{.y �υ, x/, h.υ|x/}dμ.υ/dPY |X=x.y/dPX.x/

=
∫ ∫ ∫

ρ{.y �υ, x/, h.υ|x/}dPY |X=x.y/︸ ︷︷ ︸
=:Aυ, x{h.υ|x/}

dμ.υ/dPX.x/

and the risk is minimal when Aυ,x{h.υ|x/} is minimal for the scalar h.υ|x/ for all υ and x, i.e. when

0 != @Aυ, x{h.υ|x/}
@{h.υ|x/}
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=
∫

@

@h.υ|x/
ρ{.y �υ, x/, h.υ|x/}dPY |X=x.y/

ρ=ρsqe=
∫

[I.y �υ/−F{h.υ|x/}f{h.υ|x/}]dPY |X=x.y/

=f{h.υ|x/}
[∫

I.y �υ/dPY |X=x.y/−F{h.υ|x/}
]

=f{h.υ|x/}[P.Y �υ|X =x/−F{h.υ|x/}]

which for f{h.υ|x/}> 0 is 0 for h.υ|x/=F−1{P.Y �υ|X =x/}. Similar, for ρ=ρbin the term

0 != @Aυ, x{h.υ|x/}
@h.υ|x/

=
∫

−
[

I.y �υ/

F{h.υ|x/}f{h.υ|x/}− 1− I.y �υ/

1−F{h.υ|x/}f{h.υ|x/}
]

dPY |X=x.y/

=f{h.υ|x/}
⎡
⎣

∫
1− I.y �υ/dPY |X=x.y/

1−F{h.υ|x/} −

∫
I.y �υ/dPY |X=x.y/

F{h.υ|x/}

⎤
⎦

=f{h.υ|x/}
[

1−P.Y �υ|X =x/

1−F{h.υ|x/} − P.Y �υ|X =x/

F{h.υ|x/}
]

is 0 for h.υ|x/=F−1{P.Y �υ|X =x/} when f{h.υ|x/}> 0.
For the absolute error, note that

ρabe{.Y �υ, X/, h.υ|X/}= I.Y �υ/[1−F{h.υ|X/}]+{1− I.Y �υ/}F{h.υ|X/}
and thus

Aυ, x{h.υ|x/}=
∫

ρabe{.y �υ, x/, h.υ|x/}dPY |X=x.y/

=
∫

I.Y �υ/[1−F{h.υ|X/}]+{1− I.Y �υ/}F{h.υ|X/}dPY |X=x.y/

= [1−F{h.υ|X/}]P.Y �υ|X =x/+F{h.υ|X/}{1−P.Y �υ|X =x/}:

This expression attains its minimal value of P.Y � υ|X = x/ for P.Y � υ|X = x/ � 0:5 when F{h.υ|X/}
= 0. For P.Y �υ|X = x/ > 0:5, the minimum 1 −P.Y �υ|X = x/ is attained when F{h.υ|X/}= 1. Thus,
absolute error will lead to too extreme estimated values of h and corresponding conditional distribution
functions.

A.2. Proof of theorem 1
We use a modified argument of a proof that was presented in section 12.8.2. in Bühlmann and van de Geer
(2011). Formally, we can write

I.Yi �υ{/=hγ0,N .υ{|Xi/+ "i{,
"i{ = I.Yi �υ{/−hγ0,N .υ{|Xi/ i=1, . . . , N, {=1, . . . , n:

The errors "i{ have reasonable properties, as discussed in equation (11) below.
There are two issues that need to be addressed. First, we define the inner products of functions h and g:

.h, g/n,N,E =n−1
n∑

{=1
E{h.υ{|X/g.υ{|X/}

and

.h, g/n,N =n−1N−1
N∑

i=1

n∑
{=1

h.υ{|Xi/g.υ{|Xi/:

The proof in Bühlmann and van de Geer (2011) can then be used with the scalar product .h, g/n,N .
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Secondly, for controlling the probabilistic part of the proof, we need to show that the analogue of
formula (12.26) in Bühlmann and van de Geer (2011) holds. This translates to deriving a bound for

max
j,k0,k1

.b0,k0 bj,k1 , "/n,N = max
j,k0,k1

.nN/−1
N∑

i=1

n∑
{=1

b0,k0 .υ{/ bj,k1 .Xj/"i{:

Because hγ0,N is the projection of I.Y � υ{/, { = 1, . . . , n, onto the basis functions b0,k0 .υ{/ bj,k1 .Xj/, { =
1, . . . , n, with respect to the ‖·‖n, N, E-norm (see expression (7)), and, owing to the definition of "i{, we have

n−1
n∑

{=1
E{"i{ b0,k0 .υ{/bj,k1 .Xj/}=0 ∀j, k0, k1: .11/

Therefore,

.nN/−1
N∑

i=1

n∑
{=1

b0,k0 .υ{/ bj,k1 .Xj/"i{ =N−1
N∑

i=1
Zi.j, k0, k1/,

E{Zi.j, k0, k1/}=0:

Furthermore, owing to the boundedness assumption in assumption 1, ‖Zi.j, k0, k1/‖∞ �C1 for some con-
stant C1 <∞, ∀i, j, k0, k1. Applying Hoeffding’s inequality, for independent (but not necessarily identically
distributed) random variables (van de Geer (2000), lemma 3.5) and using the union bound, we obtain

max
j,k0,k1

.b0,k0 bj,k1 , "/n,N =OP [
√{log.JNK0,NK1,N/=N}]:

This, together with the proof from section 12.8.2 in Bühlmann and van de Geer (2011), completes the
proof of theorem 1.

A.3. Gradients
We present the gradients for different loss functions ρ and arbitrary absolute continuous distribution
functions F with density function f :

Ui{

ρ=ρbin=
{

I.Yi �υ{/

F.ĥ
[m]
i{ /

− 1− I.Yi �υ{/

1+F.ĥ
[m]
i{ /

}
f.ĥ

[m]
i{ /,

Ui{

ρ=ρsqe= {I.Yi �υ{/−F.ĥ
[m]
i{ /}f.ĥ

[m]
i{ /,

Ui{

ρ=ρabe= [I.Yi �υ{/−{1− I.Yi �υ{/}]f.ĥ
[m]
i{ /:
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Bühlmann, P. and Yu, B. (2003) Boosting with the L2 loss: regression and classification. J. Am. Statist. Ass., 98,

324–339.
Chen, K. and Müller, H. G. (2012) Conditional quantile analysis when covariates are functions, with application

to growth data. J. R. Statist. Soc. B, 74, 67–89.
Chen, K. and Tong, X. (2010) Varying coefficient transformation models with censored data. Biometrika, 97,

969–976.
Cheng, G. and Wang, X. (2011) Semiparametric additive transformation model under current status data.

Electron. J. Statist., 5, 1735–1764.
Cheng, S. C., Wei, L. J. and Ying, Z. (1995) Analysis of transformation models with censored data. Biometrika,

82, 835–845.
Currie, I. D., Durban, M. and Eilers, P. H. C. (2006) Generalized linear array models with applications to

multidimensional smoothing. J. R. Statist. Soc. B, 68, 259–280.
Dette, H. and Volgushev, S. (2008) Non-crossing non-parametric estimates of quantile curves. J. R. Statist. Soc.

B, 70, 609–627.



26 T. Hothorn, T. Kneib and P. Bühlmann
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