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Abstract One challenge of large-scale data analysis is that the assumption of

an identical distribution for all samples is often not realistic. An optimal linear

regression might, for example, be markedly different for distinct groups of the

data. Maximin effects have been proposed as a computationally attractive way to

estimate effects that are common across all data without fitting a mixture distribution

explicitly. So far just point estimators of the common maximin effects have been

proposed in Meinshausen and Bühlmann (Ann Stat 43(4):1801–1830, 2015). Here

we propose asymptotically valid confidence regions for these effects.

1 Introduction

Large-scale regression analysis often has to deal with inhomogeneous data in the

sense that samples are not drawn independently from the same distribution. The

optimal regression coefficient might for example be markedly different in distinct

groups of the data or vary slowly over a chronological ordering of the samples. One

option is then to either model the exact variation of the regression vector with a

varying-coefficient model in the latter case [5, 7] or to fit a mixture distribution in

the former [1, 6, 8]. For large-scale analysis with many groups of data samples or

many predictor variables this approach might be too expensive computationally and

also yield more information than necessary in settings where one is just interested

in effects that are present in all sub-groups of data. A maximin effect was defined

in [9] as the effect that is common to all sub-groups of data and a simple estimator

based on subsampling of the data was proposed in [3]. However, the estimators

for maximin effects proposed so far just yield point estimators but we are interested

here in confidence intervals. While we are mostly dealing with low-dimensional data

where the sample size exceeds the number of samples, the results could potentially

be extended to high-dimensional regression using similar ideas as proposed for
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256 D. Rothenhäusler et al.

example in [12] or [11] for the estimation of optimal linear regression effects for

high-dimensional data.

1.1 Model and Notation

We first present a model for inhomogeneous data as considered in [9]. Specifically,

we look at a special case where the data are split into several known groups g D
1; : : : ; G. In each group g, we assume a linear model of the form

Yg D Xgb0
g C "g; (1)

where Yg is a n-dimensional response vector of interest, b0
g a deterministic p-

dimensional regression parameter vectors and Xg a n �p-dimensional design matrix

containing in the columns the n observations of p predictor variables. The noise

contributions "g are assumed to be independent with distribution Nn.0; �2Idn/. We

assume the sample size n to be identical in each group. Generalizations to varying-

coefficient models [5, 7] are clearly possible but notationally more cumbersome.

Inhomogeneity is caused by the different parameter vectors in the group. We define

X as the row-wise concatenation of the design matrices X1; X2; : : : ; XG and assume

that the groups are known, that is we know which observations belong to the groups

g D 1; : : : ; G, respectively. For the distribution of Xg, g D 1; : : : ; G we consider

different scenarios.

1.1.1 Scenario 1

Random design. The observations of the predictor variables are independent

samples of an unknown multivariate distribution F with finite fourth moments. We

assume this distribution to be common across all groups g D 1; : : : ; G.

1.1.2 Scenario 2

Random design in each group. The observation in each group are independent

samples of an unknown distribution Fg with finite fourth moments. Observations in

different groups are independent. The distribution Fg may be different in different

groups.

In the following if not mentioned otherwise we assume Scenario 1. The

generalization to Scenario 2 is to a large extent only notational.
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1.2 Aggregation

The question arises how the inhomogeneity of the optimal regression across groups

is taken into account when trying to estimate the relationship between the predictor

variables and the outcome of interest. Several known alternatives such as mixed

effects models [10], mixture models [8] and clusterwise regression models [4] are

possibilities and are useful especially in cases where the group structure is unknown.

They are at the same time computationally quite demanding.

A computationally attractive alternative (especially for the discussed case of

known groups but also more generally) is to estimate the optimal regression

coefficient separately in each group, which are either known (as assumed in the

following) or sampled in some appropriate form [9]. As estimates for the b0
g we use

in the following standard least squares estimators

Obg D arg min
b2Rp

kYg � Xgbk2
2:

The restriction to this estimator is only for the purpose of simplicity. Regularization

can be added if necessary but the essential issues are already visible for least-squares

estimation.

Now a least-squares estimator is obtained in each group of data and the question

is how these different estimators can be aggregated. The simplest and perhaps most

widely-used aggregation scheme is bagging (bootstrap aggregation), as proposed by

Breiman [2], where the aggregated estimator is given by

Bagging W Ob WD
X

g

wg
Obg; where wg D 1

G
8g D 1; : : : ; G: (2)

If the data from different groups originate from an independent sampling mech-

anism, the bagging is a useful aggregation scheme. In particular, computing the

bagged estimator is computationally more attractive than computing a single least-

squares estimator as it allows the data to be split up into distinct subsets and

processed independently before the aggregation step. For inhomogeneous data, the

variability of the estimates Obg for g D 1; : : : ; G allows to gain some insight into

the nature of the inhomogeneity. However, as argued in [3], averaging is the wrong

aggregation mechanism for inhomogeneous data.

1.3 Maximin Effect and Magging

For inhomogeneous data, instead of looking for an estimator that works best on

average, Meinshausen and Bühlmann [9] proposed to aim to maximize the minimum

explained variance across several settings g D 1; : : : ; G. To be more precise, in our
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setting,

bmaximin WD arg max
b2Rp

min
gD1;:::;G

V.b; b0
g/;

where V.b; b0
g/ is the explained variance in group g (with true regression vector b0

g)

when using a regression vector b. That is

V.b; b0
g/ WD EkYgk2

2 � EkYg � Xgbk2
2

D 2bt˙0b0
g � bt˙0b;

where ˙0 WD E Ȯ with Ȯ WD .nG/ 1XtX is the sample covariance matrix. In words,

the maximin effect is defined as the estimator that maximises the explained variance

in the most adversarial scenario (“group”). In this sense, the maximin effect is the

effect that is common among all groups in the data and ignores the effects that are

present in some groups but not in others. It was shown in [9] that the definition

above is equivalent to

bmaximin D arg min
b2CVX.B0/

bt˙0b;

where B0 D .b0
1; : : : ; b0

G/ 2 R
p�G the matrix of the regression parameter vectors and

CVX.B0/ denotes the closed convex hull of the G vectors in B0. The latter definition

motivates maximin aggregating, or magging [3], which is the convex combination

that minimizes the `2-norm of the fitted values:

Magging: Ob WD
GX

gD1

˛g
Obg; where ˛ WD arg min

˛2CG

k
GX

gD1

˛gXObgk2 and

CG WD f˛ 2 R
G W min

g
˛g�0 and

X

g

˛gD1g

The magging regression vector is unique if XtX is positive definite. Otherwise, we

can only identify the prediction effect Xbmaximin and the solution above is meant to

be any member of the feasible set of solutions. To compute the estimator, the dataset

is split into several smaller datasets and we assume here that the split separates the

data into already known groups. After computing estimators on all of these groups

separately, possibly in parallel, magging can be used to find common effects of all

datasets. This is in particular interesting if there is inhomogeneity in the data. For

known groups, as in our setting, magging can be interpreted as the plug-in estimate

of the maximin effect.
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In the following we need additional notation. For B WD .b1; : : : :; bG/ 2 R
p�G and

for ˙ 2 R
p�p positive definite define

M˙ .B/ WD arg min
b2CVX.B/

bt˙b

We obtain the original definition of the magging estimator for M Ȯ . OB/ with OB D
.Ob1; : : : ; ObG/ and the maximin effect with M˙0.B0/.

1.4 Novel Contribution and Organization of the Paper

So far only point estimators of maximin effects have been proposed in the literature.

In Sect. 2 we discuss an asymptotic approach to construct confidence regions

for the maximin effect. Specifically, we calculate the asymptotic distribution ofp
n.M Ȯ . OB/ � M˙0.B0// and derive corresponding asymptotically valid confidence

regions. This gives us (asymptotically) tight confidence regions and will shed

more light on the (asymptotic) nature of the fluctuations of the magging estimator.

We evaluate the actual coverage of this approximation on simulated datasets in

Sect. 3. The proofs of the corresponding theorems and an alternative non-asymptotic

approach can be found in the Appendix. The advantages and disadvantages of the

approaches are discussed in Sect. 4.

2 Confidence Intervals for Maximin Effects

In Scenario 1, the random design of the predictor variables is identical across all

groups of data. For fixed G and n ! 1, we can then use the delta method to derive

the asymptotic distribution of the scaled difference between the true and estimated

magging effects

p
n.M Ȯ . OB/ � M˙0.B0//:

This in turn allows to construct confidence intervals for the true maximin effects. Let

W. OB; Ȯ / be a consistent estimator of the (positive definite) variance of the Gaussian

distribution

lim
n!1

p
n.M Ȯ . OB/ � M˙0 .B0//:

Let ˛ > 0. Choose � as the .1 � ˛/-quantile of the �2
p-distribution. Define then a

confidence region as

C. Ȯ ; OB/ WD fM 2 R
p W .M Ȯ . OB/ � M/tW. OB; Ȯ / 1.M Ȯ . OB/ � M/ � �

n
g (3)
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The definition of W. OB; Ȯ / is deferred to the Appendix, section “Definitions and

Formulas”. We will show in the following that we obtain asymptotically valid

confidence intervals with this approach. For simplicity, we work with Scenario 1

here and assume that the noise contributions "g in Eq. (1) are independent with

distribution Nn.0; �2Idn/. Furthermore, each Xg 2 R
n�p is assumed to have full

rank, requiring p � n. Though the framework for the result is a Gaussian linear

model, it can be easily extended to more general settings.

The following theorem describes the coverage properties of the confidence

interval (3). In the following, for x; y 2 R
p and ˙ 2 R

p�p positive definite define

hx; yi˙ WD xt˙y.

Theorem 1 Let ˙0 be positive definite. Let M˙0 .B0/ D
PG

gD1 ˛gb0
g with ˛g � 0,PG

gD1 ˛g D 1 and let this representation be unique. Let jfg W ˛g ¤ 0gj > 1. Suppose

that the hyperplane orthonormal to the maximin effect contains only “active” b0
g, i.e.

fb0
g W g D 1; : : : ; Gg\fM 2 R

p W hM�M˙0.B0/; M˙0 .B0/i˙0 D 0g � fb0
g W ˛g ¤ 0g.

Then

lim
n!1

PŒM˙0 .B0/ 2 C. Ȯ ; OB/� D 1 � ˛:

In other words, the set defined in (3) is an asymptotically valid confidence region for

M˙0.B0/ under the made assumptions. If the true coefficients b0
g in each group are

drawn from a multivariate density, then the assumptions are fulfilled with probability

one.

The special case jfg W ˛g ¤ 0gj D 1 is excluded, as the magging estimator is

identical to a solution in one individual group in this case, which is equivalent to

M Ȯ . OB/ D Obg for a g 2 f1; : : : ; Gg, up to an asymptotically negligible set. This case

is mainly excluded for notational reasons. The assumptions of Theorem 1 guarantee

that the derivative of magging M˙ .B/ exists and is continuous at B0 and ˙0. If

the latter condition is violated, it is still possible to obtain asymptotic bounds in

the more general setting, as limn!1
p

n.M Ȯ . OB/ � M˙0.B0// is still subgaussian.

We explore the violation of these assumptions with simulation studies in the next

section. The proof of Theorem 1 is an application of Slutsky’s Theorem, combined

with the following result about the asymptotic variance of the magging estimator.

Theorem 2 Let the assumptions of Theorem 1 be true. Then, for n ! 1,

p
n
�

M Ȯ . OB/ � M˙0.B0/
�

(4)

* N

�
0; �2

X

g2A.B0;˙0/

Dt
gM˙0.B0/˙ 1 DgM˙0 .B0/ C V.B0

A.B0;˙0/
; ˙0/

�
:

Here, Dg denotes the differential in direction bg. This derivative is calculated

in the Appendix, see section “Definitions and Formulas”. The set A.B; ˙/ �
f1; : : : ; Gg denotes indices g for which bg has nonvanishing coefficient ˛g in one of
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the convex combinations M˙ .B/ D
P

gD1;:::;G ˛gbg with ˛g � 0,
P

gD1;:::;G ˛g D 1.

Note that by the assumptions of Theorem 1 this convex combination is unique for

M˙0.B0/. The definition of V.BA.B;˙/; ˙/ is somewhat lengthy and can be found in

the Appendix, section “Definitions and Formulas”.

The first summand in the variance in formula (4) is due to fluctuations of the

estimator of B0, the second summand is due to fluctuations of the estimator of ˙0.

If ˙0 is known in advance, we can use Ȯ WD ˙0 and in the theorem above V D 0.

Figure 1 is an illustration of Theorem 2.

Fig. 1 An illustration of Theorems 1 and 2. On the upper plot the blue dots represent 3000

realizations of Obg, g D 1; 2; 3 with dimension p D 3. The black dots are the corresponding magging

estimates M Ȯ . OB/. The green line indicates the true maximin effect M˙0 .B0/. On the lower plot, the

black line indicates one of the M Ȯ . OB/ with the corresponding approximate 95 %-confidence region

calculated with the terms of Eq. (3)
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3 Numerical Examples

The aim of this section is to evaluate the actual coverage of the approximate

confidence regions as defined above. We study several examples. They have in

common that the entries in X are i.i.d. N .0; 1/. Furthermore the "g are i.i.d.

N .0; Idn/ and independent of X. The tables show the coverage of the true

maximin effect M˙0 .B0/ by the proposed 95 % confidence regions. We calculate

the confidence intervals only for p < n scenarios as long as least squares estimators

are used (Tables 1, 2, and 3), while the case of p � n is covered in Tables 4 and 5

by the use of a ridge penalty. All simulations were run 1000 times.

In the setting of Table 1 all assumptions of Theorem 1 are satisfied. As expected,

for large p the convergence of the actual coverage seems to be slower. Note that for

validity of Theorem 1 it is not necessary that p D G, as we have asymptotically tight

coverage for all 1 < G � p.

In Tables 2 and 3 we explore the violation of one of the assumptions in

Theorem 1. The maximin effect is M˙0 .B0/ D .1; 0; 0 : : :/, and the convex

combination M˙0 .B0/ D
PG

gD1 ˛gb0
g with ˛g � 0,

P
˛g D 1 is not unique. In both

cases, this seems to lead to too conservative confidence regions. Generally, in these

Table 1 b0
g D eg, g D 1; : : : ; G D p, where the eg denote the vectors of the standard basis, 1000

iterations

n D 5 10 15 100 200 500 1000 2000 4000

p D 3 0.70 0.78 0.82 0.92 0.94 0.95 0.94 0.94 0.95

5 0.69 0.76 0.90 0.93 0.95 0.94 0.95 0.95

10 0.62 0.84 0.88 0.94 0.95 0.96 0.94

15 0.78 0.85 0.93 0.92 0.95 0.95

20 0.72 0.83 0.90 0.91 0.95 0.94

40 0.54 0.63 0.79 0.88 0.91 0.94

80 0.57 0.38 0.50 0.74 0.85 0.92

The coverage can be seen to be approximately correct if n is sufficiently large

Table 2 b0
g D e1 C zge2, g D 1; : : : ; G D p, zg � N .0; 1/ independent

n D 5 10 15 100 200 500 1000 2000 4000

p D 3 0.64 0.84 0.91 0.97 0.96 0.82 0.98 0.96 0.97

5 0.61 0.79 0.99 0.97 0.88 0.82 0.91 1.00

10 0.23 0.99 0.99 1.00 0.99 0.93 0.98

15 0.99 0.99 1.00 1.00 0.99 0.99

20 0.99 1.00 0.99 1.00 1.00 0.99

40 0.94 1.00 1.00 1.00 1.00 1.00

80 0.00 1.00 1.00 1.00 1.00 1.00

The assumptions are violated, yielding too conservative confidence intervals. The 0:00 at n D 100,

p D 80 is due to a large bias of M Ȯ . OB/ towards 0. For larger n, however, this bias quickly vanishes

and we get the desired coverage (starting at approximately n D 120)
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Table 3 b0
g D e1, g D 1; : : : ; G D Œ0:8p�

n D 5 10 15 100 200 500 1000 2000 4000

p D 3 0.76 0.87 0.90 0.99 0.99 0.99 1.00 1.00 1.00

5 0.65 0.78 1.00 1.00 1.00 1.00 1.00 1.00

10 0.33 1.00 1.00 1.00 1.00 1.00 1.00

15 0.99 1.00 1.00 1.00 1.00 1.00

20 0.99 1.00 1.00 1.00 1.00 1.00

40 0.93 1.00 1.00 1.00 1.00 1.00

80 0.00 1.00 1.00 1.00 1.00 1.00

The assumptions are again violated and coverage is too high. At p D 80 and n D 100 we

observe the same effect as in Table 2. In this scenario the estimated confidence regions can become

arbitrarily large. This stems from the fact that if some of the Obg corresponding to A. OB; Ȯ / are very

close, the estimated variance of magging may become large. In this setting a different approach,

for example as discussed in section “Relaxation-Based Approach” in the Appendix makes more

sense

Table 4 b0
g D eg, g D 1; : : : ; G D p

n D 5 10 15 100 200 500 1000 2000 4000

p D 3 0.71 0.77 0.84 0.92 0.94 0.96 0.95 0.94 0.93

5 0.74 0.69 0.76 0.90 0.94 0.94 0.95 0.95 0.95

10 0.55 0.70 0.60 0.86 0.88 0.93 0.94 0.94 0.95

15 0.52 0.53 0.70 0.77 0.86 0.91 0.94 0.95 0.95

20 0.53 0.48 0.52 0.73 0.81 0.89 0.93 0.92 0.94

40 0.40 0.47 0.37 0.52 0.62 0.81 0.87 0.90 0.94

80 0.20 0.40 0.37 0.56 0.38 0.52 0.72 0.84 0.90

The diagonal elements of Ȯ and Ȯ
g where increased by a value 10�4 in order to make them

invertible and not too ill-conditioned for n � p. Again, coverage is approximately correct for n

sufficiently large

Table 5 This table shows the average maximum eigenvalues of the estimated covariance matrix

of
p

n.M˙0 .B0/ M Ȯ . OB//, analogous to Table 4

n D 5 10 15 100 200 500 1000 2000 4000

p D 3 41.70 2.97 1.59 0.59 0.53 0.49 0.47 0.47 0.46

5 831.50 13.52 4.83 0.42 0.34 0.30 0.28 0.26 0.26

10 6.56 1935.77 27.78 0.29 0.20 0.16 0.14 0.13 0.12

15 0.29 19.83 3844.87 0.26 0.16 0.12 0.10 0.09 0.08

20 0.08 4.25 41.04 0.29 0.15 0.09 0.08 0.07 0.06

40 0.01 0.04 4.61 2.71 0.16 0.07 0.05 0.04 0.03

80 0.00 0.00 0.01 205.85 1.09 0.06 0.03 0.02 0.02

settings the difficulty arises from the fact that the derivative of M˙ .B/ does not exist

at M˙0 .B0/. As a result, the fluctuations of limn

p
n.M˙0.B0/ � M Ȯ . OB//—provided

that this limit exists—are not necessarily Gaussian anymore.
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In the last simulation, depicted in Table 4 the Obg, g D 1; : : : ; G were not

calculated by ordinary least squares but ridge regression. The diagonal elements

of Ȯ and Ȯ
g where increased by a value 10 4 in order to make them invertible

and not too ill-conditioned for n � p. Apart from that we used the same setting as

in Table 1. As in Table 1, for large n the coverage seems to be (approximately)

correct but severe undercoverage can still occur for n � p. In these high-

dimensional settings, the tuning ridge parameter would need to be better adjusted

for a useful balance between bias and variance and the bias of the ridge penalty

would have to be adjusted for, something which is beyond the current scope.

In Table 5 the corresponding maximum eigenvalues of the estimated variance ofp
n.M˙0 .B0/ � M Ȯ . OB// were plotted, each entry being the average over all 1000

runs. We observe a spike for p D n. This peaking is similar to a related effect in

ridge and lasso regression. Specifically, for fixed p and varying n, the norm of the

regression estimate is growing as n is increased, reaching its peak at approximately

p D n while then decreasing again as the solution converges towards the true

parameter as n grows very large.

4 Discussion

We derived the asymptotic distribution of the magging estimator and proposed

asymptotically tight and valid confidence regions for the maximin effect. The

corresponding theorems requires a rather weak assumption on the true regression

coefficients b0
1; : : : ; b0

G. However, if this assumption is not satisfied, as studied in

simulations, the resulting confidence regions seem to become too conservative.

Especially when all of the “active” vectors fObg : g 2 A. Ȯ ; OB/g are very close to

each other, the proposed confidence regions tend to become large. Furthermore, in

this scenario the magging estimator may suffer from a large bias. Then it may make

more sense to use an approach based on relaxation. Such an approach is outlined

in the Appendix in section “Relaxation-Based Approach” and it would also allow

for non-asymptotic confidence intervals at the price of coverage probabilities well

above the specified level. The proposed asymptotic confidence interval on the other

hand is arguably more intuitive and yields in most scenarios tight bounds for large

sample sizes.

Appendix

The structure is as follows: the first part is devoted to the most important definitions

and explicit formulas which were omitted in the main section of the paper. The

second part contains the proof of Theorem 2 and several lemmata. The third part

contains the proof of Theorem 1. Finally, the last part contains a relaxation-based

idea to construct confidence intervals for maximin effects.
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Definitions and Formulas

Definition 1 (A.B; ˙/) The set A.B; ˙/ � f1; : : : ; Gg denotes indices g for which

bg has nonvanishing coefficient ˛g in one of the convex combinations M˙ .B/ DP
gD1;:::;G ˛gbg with ˛g � 0,

P
gD1;:::;G ˛g D 1. Note that by the assumptions of

Theorem 1 or Theorem 2 the ˛g are unique for M˙0 .B0/.

Definition 2 (W.B; ˙/) W. OB; Ȯ / is a consistent estimator of the variance of

limn

p
n.M Ȯ . OB/ � M˙0 .B0//, see proof of Theorem 2.

W.B; ˙/ D �2
X

g2A.B;˙/

Dt
gM˙ .BA.B;˙//˙

 1 DgM˙ .BA.B;˙// C V.BA.B;˙/; ˙/

Definitions and explicit formulas of these terms can be found below. We estimate

˙0 by Ȯ D 1
nG

XtX. Dt
gM˙ .B/ denotes the derivative of M˙ .B/ with respect to bg.

Explicit Formula for V. OB
A. OB; Ȯ /

; Ȯ /

(Compare with Lemma 5)

Consistent estimator of the additional variance of limn

p
n.M Ȯ . OB/ � M˙0 .B0//

“caused” by not knowing ˙0, see proof of Theorem 2 and Lemma 5.

V. OB
A. OB; Ȯ /; Ȯ / D OD. ODt Ȯ OD/ 1 ODt OC OD. ODt Ȯ OD/ 1 ODt;

where OC is the empirical covariance matrix of the p-dimensional vectors
1p
G

Xt
k�Xk�M Ȯ . OB/, k D 1; : : : ; .nG/. Furthermore, with QB D OB

A. OB; Ȯ /, G0 D
jA. OB; Ȯ /j:

OD WD .Qb2; : : : ; QbG0/ � .Qb1; : : : ; Qb1/:

Explicit Formula for DgM Ȯ . OB
A. Ȯ ; OB/

/

(Compare with Lemma 1)

Let us again write QB D OB
A. OB; Ȯ /, G0 D jA. OB; Ȯ /j,

DgM Ȯ . OB
A. Ȯ ; OB// D � kM Ȯ . QB/k Ȯ

k.Id � cPA.g//Qbgk Ȯ
.Id � cPA.g//Qbg

k.Id � cPA.g//Qbgk Ȯ
M Ȯ . QB/t

kM Ȯ . QB/k Ȯ
Ȯ

C k.Id � cPA.g//M Ȯ . QB/k Ȯ
k.Id � cPA.g//Qbgk Ȯ

Ŏ QB:
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Here, cPA.g/ denotes the affine projection on the smallest affine space containing
Qb1; : : : ; Qbg 1; QbgC1; : : : ; QbG0 . Let ˘ QB 2 R

p�p denote the projection on hQb2 �
Qb1; : : : ; QbG0 � Qb1i?. These geometric definitions are meant with respect to the scalar

product hx; yi Ȯ D xt Ȯ y.

Proof of Theorem 2

Proof The proof is based on the delta method. As OB * B0 and Ȯ * ˙0, by

Lemma 2, A.B0; ˙0/ = A. OB; Ȯ / up to an asymptotically negligible set. Hence

M˙0.B0/ D M˙0.B0
A.B0;˙0/

/ and M Ȯ . OB/ D M Ȯ . OBA.B0;˙0// up to an asymptotically

negligible set. So without loss of generality let us assume (without changing the

definition of Ȯ ) that A.B0; ˙0/ D A. OB; Ȯ / D f1; : : : ; Gg, and hence B0 D
B0

A.B0;˙0/
, OB D OB

A. OB; Ȯ /. By Lemmas 1 and 3, M˙ .B/ is continuously differentiable

in a neighborhood of B0 and ˙0. Using Taylor in a neighborhood of B0 and ˙0 we

can write

p
n
�

M Ȯ . OB/ � M˙0.B0/
�

D DBM� .�/
p

n. OB � B0/

C D˙ M� .�/
p

n. Ȯ � ˙0/ COP.1/

D.DBM� .�/ � DBM˙0.B0//
p

n. OB � B0/

C .D˙ M� .�/ � D˙ M˙0.B0//
p

n. Ȯ � ˙0/

C DBM˙0.B0/
p

n. OB � B0/

C D˙ M˙0 .B0/
p

n. Ȯ � ˙0/ COP.1/;

with � D 
B0 C .1 � 
/ OB and � D 
˙0 C .1 � 
/ Ȯ for some random variable


 2 Œ0; 1�. We now want to show that the first and second term are negligible, and

calculate the asymptotic Gaussian distributions of the last two terms. Furthermore

we want to show that the last two terms are asymptotically independent. This

guarantees that the variance of limn

p
n
�

M Ȯ . OB/ � M˙0 .B0/
�

is the sum of the

variances of the two asymptotic Gaussian distributions.

Hence, to prove (4) it suffices to show:

(1) DBM� .�/ � DBM˙0.B0/ DOP.1/

(2) D˙ M� .�/ � D˙ M˙0.B0/ DOP.1/

(3)
p

n.Obg � b0
g/ * N .0; �2.˙0/ 1/ for g D 1; : : : ; G.

(4) DBM˙0.B0/
p

n. OB � B0/ * N

�
0; �2

P
g2A.B0;˙0/ Dt

gM˙0.B0/.˙0/ 1 DgM˙0

.B0/
�

buehlmann@stat.math.ethz.ch



Confidence Intervals for Maximin Effects in Inhomogeneous Large-Scale Data 267

(5) D˙ M˙0.B0/
p

n. Ȯ � ˙0/ * N .0; V.B0; ˙0//

(6) For ın WD p
n. OB � B0/ and �n WD p

n. Ȯ � ˙0/ we have .ın; �n/ * .ı; �/

with ıg, g D 1; : : : ; G and � independent.

Part (1) and (2): By Lemmas 1 and 3 the derivatives are continuous at B0 and

˙0 and Ȯ ! ˙0, OB ! B0 in probability (which implies � ! B0 and � ! ˙0

in probability).

Part (3): This is immediate, as under the chosen model, conditioned on X,

Obg � N .bg; �2.Xt
gXg/ 1/

and 1
n
Xt

gXg ! ˙ in probability.

Part (4): Part (3) and a linear transformation.

Part (5): We defer this part to Lemma 5.

Part (6): We saw the convergence of ın in part (3). The convergence of �n is

deferred to Lemma 4. In the following we use the notation ı D .ı1; : : : ; ıG/ and

ın D .ın;1; : : : ; ın;G/. For the asymptotic independence of part (6). we have to

show that for any bounded continuous function g,

Eg.ın; �n/ !
Z Z

g.ı; �/
.det˙0/G=2

.2��2/G=2

GY

gD1

exp

�
�ıt

g

˙0

2�2
ıg

�
dı1 � � � dıGPŒd��:

In the following equation the inner integral is bounded by 2, and for n ! 1,
1
n
Xt

gXg ! ˙0 in probability. Hence, by dominated convergence on the inner and

outer integral,

Z Z
j

GY

gD1

q
det 1

n
Xt

gXg

.2��2/1=2
exp

�
�ıt

n;g

Xt
gXg

2n�2
ın;g

�

�
GY

gD1

p
det˙0

.2��2/1=2
exp

�
�ıt

n;g

˙0

2�2
ın;g

�
jdın;1 � � � dın;GPŒd�n� ! 0:

Using this,

lim sup
n!1

jEg.ın; �n/ � g.ı; �n/j D 0;

where ı is independent of �n, ıg � N .0; �2.˙0/ 1/ i.i.d.. Finally, with �

independent of ı, � � limn

p
n. Ȯ � ˙0/,

lim sup
n!1

jEg.ın; �n/ � Eg.ı; �/j

D lim sup
n!1

jEg.ı; �n/ � Eg.ı; �/j
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D lim sup
n!1

j
Z

EŒ.g.ı; �n/ � g.ı; �//jı�
.det˙0/G=2

.2��2/G=2

GY

gD1

exp

�
�ıt

g

˙0

2�2
ıg

�
dı1 � � � dıGj

D 0:

In the second line we used Eq. (4), in the last line we used dominated convergence

and �n * �. This concludes the proof.

Let ˙ 2 R
p�p be symmetric positive definite. In the following, we work in the

Hilbert space .Rp; h�; �i˙/, where for x; y 2 R
p,

hx; yi˙ WD xt˙y;

and induced norm

kxk˙ D
p

xt˙x:

This means that projections and orthogonality etc. are always meant with respect

to this space. Let PA denote the affine projection on the smallest affine space

containing b1; : : : ; bG. Let PA.g/ denote the affine projection on the smallest affine

space containing b1; : : : ; bg 1; bgC1; : : : ; bG. Note that for g D 1 this space can be

expressed as b2 C hb3 � b2; : : : ; bG � b2i. Let ˘B 2 R
p�p denote the projection on

hb2 � b1; : : : ; bG � b1i?.

Lemma 1 If M˙ .B/ D ˛1b1 C : : : C ˛GbG with 0 < ˛g < 1 for g D 1; : : : ; G > 1

and this representation is unique (i.e. B D .b1; : : : ; bG/ has full rank), then M˙ is

continuously differentiable in a neighborhood of B with

Dg;vM˙ .B/ D � kM˙ .B/k˙

k.Id � PA.g//bgk˙

h M˙ .B/

kM˙ .B/k˙

; vi˙

.Id � PA.g//bg

k.Id � PA.g//bgk˙

C k.Id � PA.g//M˙ .B/k˙

k.Id � PA.g//bgk˙

˘Bv: (5)

Here, Dg;vM˙ .B/ denotes the differential with respect to the variable bg in

direction v.

Remark 1 In the proof of Theorem 2, we could assume that without loss of

generality f1; : : : ; Gg D A.B; ˙/, i.e. B D BA.B;˙/. We saw that in a neighborhood

of B and ˙ , magging depends only on BA.B;˙/. Hence, for using the formula of

DgM˙ .B/ in the context of Theorems 1 and 2, replace in the definition B by BA.B;˙/.

The derivatives with respect to bg, g 2 f1; : : : ; Gg � A.B; ˙/ are zero.

Proof Without loss of generality, let us assume that g D 1. We will show that the

partial derivatives exist and are continuous.
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Let �1 2 hb2 � b1; : : : ; bG � b1i? and �2 2 hb2 � b1; : : : ; bG � b1i and define
QB WD .b1 C�1 C�2; b2; : : : ; bG/. First, we want to show that, if k�1 C�2k˙ small,

M˙ . QB/ D PA.1/M˙ .B/ � hPA.1/M˙ .B/; .Id � PA.1//Qb1i˙

k.Id � PA.1//Qb1k2
˙

.Id � PA.1//Qb1: (6)

Let us denote the r.h.s. by �. QB/. We have to show:

1. �. QB/ ? .Id � PA.1//Qb1

2. �. QB/ ? hb3 � b2; : : : :; bG � b2i
3. �. QB/ 2 CVX. QB/, the convex hull generated by the columns of QB.

Note that 1. and 2. guarantee that the r.h.s. in (6) is perpendicular to the linear space

generated by the columns of QB.

1. is trivial. 2. By definition, .Id � PA.1//Qb1 ? hb3 � b2; : : : :; bG � b2i.

PA.1/M˙ .B/ ? hb3 � b2; : : : :; bG � b2i as we can decompose into PA.1/M˙ .B/ D
M˙ .B/ � .Id � PA.1//M˙ .B/, which are both, by definition, perpendicular to

hb3 � b2; : : : :; bG � b2i.

Now let us show 3.: M˙ .B/ D
PG

gD1 ˛gbg for some 0 < ˛g and
PG

gD1 ˛g D 1,

i.e. .BtB/ 1BtM˙ .B/ D .B�hb1;:::;bGi/
 1M˙ .B/ D ˛. Similarly, as �. QB/ lies on the

affine space generated by Qb1; : : : ; QbG, we have �. QB/ D
PG

gD1 Q̨g
Qbg with

PG
gD1 Q̨g D

1. For small k�1 C �2k˙ , QB has full rank and as �. QB/ ! M˙ .B/,

lim
�!0

. QB�hQb1;:::;QbGi/
 1�. QB/ D lim

�!0
. QBt QB/ 1 QBt�. QB/ D ˛:

Hence, for small k�1 C �2k˙ , Q̨g > 0 and
PG

gD1 Q̨g D 1, hence �. QB/ 2 CVX. QB/

and thus M˙ . QB/ D �. QB/. This concludes the proof of (6).

Note that, as �1 ? hb2 � b1; : : : ; bG � b1i D hb1 � b2; b3 � b2; : : : ; bG � b2i,

.Id � PA.1//Qb1 D Qb1 � arg min

2b2Chb3 b2 ;:::;bG b2i

k
 � b1 � �1 � �2k2
˙

D Qb1 � arg min

2b2Chb3 b2 ;:::;bG b2i

k
 � b1 � �2k2
˙ C k�1k2

˙

D �1 C .Id � PA.1//.b1 C �2/: (7)

.Id�PA.1//.b1 C�2/ and .Id�PA.1//b1 are linearly dependent. To see this, observe

that both lie in the one-dimensional space hb2 �b1; : : : ; bG �b1i\hb3 �b2; : : : ; bG �
b2i?. This implies that

hPA.1/M˙ .B/; .Id � PA.1//.b1 C �2/i˙

k.Id � PA.1//.b1 C �2/k2
˙

.Id � PA.1//.b1 C �2/

D hPA.1/M˙ .B/; .Id � PA.1//b1i˙

k.Id � PA.1//b1k2
˙

.Id � PA.1//b1 (8)
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Now we can put these pieces together: In the first step we use (6) and (7), in the

second we use �1 2 hb2 � b1; : : : ; bG � b1i?.

M˙ . QB/ D PA.1/M˙ .B/ � hPA.1/M˙ .B/; �1 C .Id � PA.1//.b1 C �2/i˙

k�1 C .Id � PA.1//.b1 C �2/k2
˙

.�1 C .Id � PA.1//.b1 C �2//

D PA.1/M˙ .B/ � hPA.1/M˙ .B/; �1 C .Id � PA.1//.b1 C �2/i˙

k�1k2 C k.Id � PA.1//.b1 C �2/k2
˙

.�1 C .Id � PA.1//.b1 C �2//:

In the first step we do an expansion of the equation above and in the second, we

use (8) and .Id � PA.1//.b1 C �2/ D .Id � PA.1//b1 C O.k�2k˙ /:

M˙ . QB/

DPA.1/M˙ .B/ � hPA.1/M˙ .B/; .Id � PA.1//.b1 C �2/i˙

k.Id � PA.1//.b1 C �2/k2
˙

.Id � PA.1//.b1 C �2/

� hPA.1/M˙ .B/; �1i˙

k.Id � PA.1//.b1 C �2/k2
˙

.Id � PA.1//.b1 C �2/

� hPA.1/M˙ .B/; .Id � PA.1//.b1 C �2/i˙

k.Id � PA.1//.b1 C �2/k2
˙

�1 C O.k�1k2
˙ C k�2k2

˙ //

DPA.1/M˙ .B/ � hPA.1/M˙ .B/; .Id � PA.1//b1i˙

k.Id � PA.1//b1k2
˙

.Id � PA.1//b1

� hPA.1/M˙ .B/; �1i˙

k.Id � PA.1//b1k2
˙

.Id � PA.1//b1

� hPA.1/M˙ .B/; .Id � PA.1//b1i˙

k.Id � PA.1//b1k2
˙

�1 C O.k�1k2
˙ C k�2k2

˙ //:

From this and (6) we obtain

M˙ . QB/ � M˙ .B/

D � hPA.1/M˙ .B/; �1i˙

k.Id � PA.1//b1k2
˙

.Id � PA.1//b1

� hPA.1/M˙ .B/; .Id � PA.1//b1i˙

k.Id � PA.1//b1k2
˙

�1 C O.k�1k2
˙ C k�2k2

˙ //:
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Now let us write �1 C �2 D 
v; �1 D 
.M˙ .B/=kM˙ .B/k˙ C �v?/ with v? ?
M˙ .B/ and v? ? hb2 � b1; : : : ; bG � b1i. By noting that

hPA.1/M˙ .B/; �1i˙ D hM˙ .B/ C .PA.1/ � Id/M˙ .B/; 

M˙ .B/

kM˙ .B/k˙

C �v?/i˙

D 
kM˙ .B/k˙

D 
h M˙ .B/

kM˙ .B/k˙

; vi˙ kM˙ .B/k˙ ;

and, as .Id � PA.1//M˙ .B/ and .Id � PA.1//b1 are linearly dependent (both lie in the

one-dimensional space hb2 � b1; : : : ; bG � b1i \ hb3 � b2; : : : ; bG � b2i?),

�hPA.1/M˙ .B/; .Id � PA.1//b1i˙ D h.Id � PA.1//M˙ .B/; .Id � PA.1//b1i˙

D k.Id � PA.1//M˙ .B/k˙ k.Id � PA.1//b1k˙ :

We obtain:

M˙ . QB/ � M˙ .B/

D � 

kM˙ .B/k˙

k.Id � PA.1//b1k2
˙

h M˙ .B/

kM˙ .B/k˙

; vi˙ .Id � PA.1//b1

� 

k.Id � PA.1//M˙ .B/k˙k.Id � PA.1//b1k˙

k.Id � PA.1//b1k2
˙

˘Bv C O.k�1k2
˙ C k�2k2

˙ //:

Hence the directional derivative exists and is equal to (5). The assertion follows by

existence and continuity of the directional derivatives in a neighborhood of B.

Lemma 2 Let ˙0 be positive definite. M˙ .B/ is continuous in B and ˙ in

a neighborhood of ˙0. Furthermore, under the assumptions of Theorem 1 (or

Theorem 2), in a neighborhood of B0 and ˙0, A.B; ˙/ is constant.

Proof First, let us prove that magging is continuous. Proof by contradiction:

Assume there exist sequences Bk ! B, ˙k ! ˙ positive definite such that

M˙k
.Bk/ 6! M˙ .B/. Without loss of generality, as ˙ is invertible, M˙k

.Bk/

converges, too. By definition of M˙k
.Bk/ we have

kM˙k
.Bk/k˙k

� k˘Bk
M˙ .B/k˙k

;

where ˘Bk
denotes the projection (in h�; �i) on the convex set CVX.Bk/. By

continuity,

k lim
k

M˙k
.Bk/k˙ � kM˙ .B/k˙ :

buehlmann@stat.math.ethz.ch



272 D. Rothenhäusler et al.

We have M˙k
.Bk/ 2 CVX.Bk/ and hence by continuity limk M˙k

.Bk/ 2 CVX.B/.

As magging is unique (˙ is positive definite), this yields a contradiction.

Consider b0
g with g 2 A.B0; ˙0/. By the assumptions of Theorem 1, M˙0.B0/ DP

i2A.B0;˙0/ ˛ib
0
i with 0 < ˛i < 1. Hence for small 
 2 R, .1 � 
/M˙0.B0/ C 
b0

g 2
CVX.B0/ and by definition of magging

kM˙0 .B0/k˙0 � k.1 � 
/M˙0 .B0/ C 
b0
gk˙0 (9)

Using this inequality for small 
 > 0 and small 
 < 0 we obtain hM˙0.B0/;

b0
g � M˙0 .B0/i D 0. Hence, for all g 2 A.B0; ˙0/, M˙0.B0/ is perpendicular (with

respect to h�; �i˙0) to b0
g � M˙0 .B0/. Hence A.B0; ˙0/ � M˙0.B0/ C M˙0.B0/?.

Furthermore, by assumptions of Theorem 1, if g 62 A.B0; ˙0/ we have b0
g 62

M˙0.B0/ C M˙0 .B0/?. By continuity, for B D .b1; : : : ; bG/ close to B0 and ˙ close

to ˙0 (in k � k2/ we have bg 62 M˙ .B/ C M˙ .B/?. By an analogous argument as in

Eq. (9), g 62 A.B; ˙/. This proves A.B0; ˙0/ � A.B; ˙/.

It remains to show A.B; ˙/ � A.B0; ˙0/: For notational simplicity let us assume

A.B0; ˙0/ D f1; : : : ; Gg. For B close to B0 and ˙ close to ˙0, M˙ .B/ D B Q̨ withPG
iD1 Q̨ i D 1, 0 � Q̨ i � 1. We want to show that for B close to B0 and ˙ close to

˙0 (in k � k2/, 0 < Q̨ i < 1.

To this end, note that by the assumptions of Theorem 1 we have that B0
A.B0;˙0/

(here without loss of generality: B0) has full rank, hence for B close to B0 and ˙

close to ˙0, .BtB/
 1

BtM˙ .B/ D Q̨ with Q̨ i � 0,
P

i Q̨ i D 1. Furthermore,

lim
B!B0;˙!˙0

 
BtB

� 1
BtM˙ .B/ D

 
.B0/tB0

� 1
.B0/tM˙0.B0/ D ˛:

Hence for B close to B0 and ˙ close to ˙0 (in k � k2/), 0 < Q̨ i < 1. This concludes

the proof.

Lemma 3 Let G > 2. Let M˙ .B/ D ˛1b1 C : : : C ˛GbG with unique 0 < ˛g < 1

satisfying
PG

gD1 ˛g D 1. Then the mapping

fpositive definite matrices in R
p�pg ! R

p

˙ 7! M˙ .B/

is continuously differentiable at B, ˙ . Let � be a symmetric matrix. The differential

in direction � is

D˙ M˙ .B/� D �D.Dt˙D/ 1Dt�M˙ .B/;

where

D WD .b2; : : : ; bG/ � .b1; : : : ; b1/:
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Proof By elementary analysis, it suffices to show that the directional derivatives

exist in a neighborhood and that they are continuous.

For a small symmetric perturbation ��, by continuity of magging (Lemma 2),

M˙C��.B/ has to satisfy

M˙C��.B/ D M˙ .B/ C D


for some (small) vector 
 2 R
G 1. By definition of magging, and as 0 < ˛g < 1

we have kM˙C��.B/k˙C�� � kM˙C��.B/ C D
 0k˙C�� for all small vectors 
 0 2
R

G 1. Hence,

M˙C��.B/t.˙ C ��/D D 0: (10)

Putting these two conditions together, we get

.M˙ .B/ C D
/t.˙ C ��/D D 0:

Furthermore, analogously as in Eq. (10) we obtain

M˙ .B/t˙D D 0:

By combining the last two equations,


 tDt.˙ C ��/D D �M˙ .B/t��D:

As Dt.˙ C ��/D is invertible (D has full rank as B has full rank. B has full rank as

the ˛g are unique),


 t D �M˙ .B/t��D.Dt.˙ C ��/D/ 1;

D
 D �D.Dt.˙ C ��/D/ 1Dt��M˙ .B/:

Dividing by � and letting � ! 0 gives the desired result.

Lemma 4 Let Xk� � F, k D 1; : : : ; nG denote the i.i.d. rows of X. Let

EŒkXt
1�X1�k2

2� < 1 and ˙0 D EŒXt
1�X1�� positive definite. Then, for n ! 1,

1

G
p

n

nGX

kD1

 
Xt

k�Xk� � ˙0
�

* �

where the symmetric matrix � has centered multivariate normal distributed entries

under and on the diagonal with covariance

cijkl WD Covar.�ij; �kl/ D 1

G
EŒ.X1iX1j � EŒX1iX1j�/.X1kX1l � EŒX1kX1l�/�:
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Proof Apply the CLT.

In the following Lemma, we want to calculate the distribution of

�D.Dt˙D/ 1Dt�M˙ .B/:

Lemma 5 Let us use setting of Lemma 3 and 4.

D˙ M˙ .B/
p

n. Ȯ � ˙/ * N .0; V.B; ˙//

with

V.B; ˙/ D D.Dt˙D/ 1DtCD.Dt˙D/ 1Dt;

where

Cij D
pX

k;lD1

M˙ .B/kM˙ .B/lciklj;

is the covariance matrix of �M˙ .B/ and

D WD .b2; : : : ; bG/ � .b1; : : : ; b1/:

Remark 2 In the proof of Theorem 2, we could assume that without loss of

generality f1; : : : ; Gg D A.B; ˙/, i.e. B D BA.B;˙/. For using the definition of V

in the context of Theorems 1 and 2, replace in the definition B by BA.B;˙/. The G in

the definition of C stays the same, i.e. it is still the total number of groups.

Proof With Lemmas 3 and 4 it suffices to calculate the distribution of

�D.Dt˙D/ 1Dt�M˙ .B/;

i.e. the nontrivial part is to calculate the distribution of �M˙ .B/. We know it is

Gaussian and centered, hence it suffices to determine the covariance matrix:

E
 
�M˙ .B/M˙ .B/t�

�
ij

D E

pX

k;lD1

�ik.M˙ .B/M˙ .B/t/kl�lj

D
pX

k;lD1

M˙ .B/kM˙ .B/lE�ik�lj

D
pX

k;lD1

M˙ .B/kM˙ .B/lciklj:

In the last line we used Lemma 4. This concludes the proof.

buehlmann@stat.math.ethz.ch



Confidence Intervals for Maximin Effects in Inhomogeneous Large-Scale Data 275

Proof of Theorem 1

Proof First, note that by Lemma 1, W.˙0; B0/ is invertible. Using Lemma 2, in a

neighborhood of B0 and ˙0 the set-valued function A.B; ˙/ is constant. Hence, by

Lemma 1 and Lemma 3, the derivatives of M˙ .B/ D M˙ .BA.B;˙// are continuous

at B0 and ˙0. Furthermore, V.BA.B;˙/; ˙/ is continuous in C and in B and ˙ at B0

and ˙0. All together, W.˙; B/ is continuous at B0 and ˙0 in all its variables. By

the definition of C in Lemma 5 and the definition of OC in section “Definitions and

Formulas” in this Appendix, OC ! C.

Hence, W. Ȯ ; OB/ ! W.˙0; B0/ in probability and we obtain that W. OB; Ȯ / 1 !
W.B0; ˙0/ 1 in probability. By Theorem 2 and Slutsky’s Theorem we obtain

p
n.M Ȯ . OB/ � M˙0.B0//tW. OB; Ȯ / 1

p
n.M Ȯ . OB/ � M˙0 .B0// * �2.p/

for n ! 1. Hence

PŒM˙0 .B0/ 2 C. Ȯ ; OB/�

DPŒ.M Ȯ . OB/ � M˙0 .B0//tW. OB; Ȯ / 1.M Ȯ . OB/ � M˙0 .B0// � �

n
�

!1 � ˛

for n ! 1. This concludes the proof.

Relaxation-Based Approach

A simple approach is as follows: For given ˛ > 0, take random sets RB, R˙ such

that

PŒ˙0 2 R˙ ; B0 2 RB� � 1 � ˛;

where B0 D .b0
1; : : : ; b0

G/ is the matrix of regression coefficients in all G groups. A

generic approach is to choose a confidence region for ˙0 on the confidence level

1�˛=2 and confidence regions for b0
g on the confidence level 1�˛=.2G/. However,

this approach can easily be improved by taking larger regions around Obg that are

far away from zero (thus have negligible influence on M Ȯ . OB/) and smaller regions

around Obg that are close to zero. Then calculate

R D fM Q̇ . QB/ W Q̇ 2 R˙ ; QB 2 RBg � R
p;

which is a 1 � ˛ confidence region for the maximin effect. However, direct

computation of this confidence region is computationally cumbersome.
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For known ˙0 the idea can be relaxed to the following scheme:

For m 2 R
p and ˙ 2 R

p�p positive definite let us define kmk˙ WD
p

mT˙m.

Note that this defines a norm on R
p. Now,

kM˙0 .B0/k˙0 D min

�0;

PG
gD1 
gD1

kB0
k˙0

D min

�0;

PG
gD1 
gD1

kB0
k˙0 � kB
k˙0 C kB
k˙0

� sup

�0;

PG
gD1 
gD1

jkB0
k˙0 � kB
k˙0 j C min

�0;

PG
gD1 
gD1

kB
k˙0

� sup

�0;

PG
gD1 
gD1

k.B0 � B/
k˙0 C min

�0;

PG
gD1 
gD1

kB
k˙0

and hence

kM˙0.B0/k˙0 � sup

�0;

PG
gD1 
gD1

GX

gD1


gkb0g � bgk˙0 C min

�0;

PG
gD1 
gD1

kB
k˙0

D max
gD1;:::;G

kb0g � bgk˙0 C min

�0;

PG
gD1 
gD1

kB
k˙0

D max
gD1;:::;G

kb0g � bgk˙0 C kM˙ .B/k˙0

By symmetry,

jkM˙0.B0/k˙0 � kM˙0 .B/k˙0 j � max
gD1;:::;G

kb0g � bgk˙0 : (11)

We can now choose a covering of the confidence region RB with B.k/ 2 RB,k D
1; : : : ; K such that balls B�k

.B.k// with radius �k around B.k/ cover RB with respect

to the maximum norm kBkmax WD maxg kbgk˙0 .

A confidence region of the maximin effect can then be constructed as

QR D
[

kD1;:::;K

fM W jkMk˙0 � kM˙0 .B.k//k˙0 j � �kg \ CVX
 
B�k

.B.k//
�

:

This confidence region is valid: For all M˙0 .B0/ 2 RB there exists k 2 f1; : : : ; Kg
such that kB0 � B.k/kmax � �k. By Eq. (11), jkM˙0 .B0/k˙0 � kM˙0 .B.k//k˙0 j � �k,

hence M˙0 .B0/ 2 QRB. This implies RB � QRB;

PŒM˙0 .B0/ 2 QR� � PŒM˙0 .B0/ 2 R� � PŒB0 2 RB� � 1 � ˛:

If ˙0 is unknown, using the approach above we need to estimate lower and upper

bounds for k � k˙0 .
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