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ABSTRACT

Genotypic causes of a phenotypic trait are typically determined via

randomized controlled intervention experiments. Such experiments

are often prohibitive with respect to durations and costs, and inform-

ative prioritization of experiments is desirable. We therefore consider

predicting stable rankings of genes (covariates), according to their

total causal effects on a phenotype (response), from observational

data. Since causal effects are generally non-identifiable from observa-

tional data only, we use a method that can infer lower bounds for the

total causal effect under some assumptions. We validated our

method, which we call Causal Stability Ranking (CStaR), in two situ-

ations. First, we performed knock-out experiments with Arabidopsis

thaliana according to a predicted ranking based on observational gene

expression data, using flowering time as phenotype of interest.

Besides several known regulators of flowering time, we found

almost half of the tested top ranking mutants to have a significantly

changed flowering time. Second, we compared CStaR to established

regression-based methods on a gene expression dataset of

Saccharomyces cerevisiae. We found that CStaR outperforms these

established methods. Our method allows for efficient design and pri-

oritization of future intervention experiments, and due to its generality

it can be used for a broad spectrum of applications.

Availability: The full table of ranked genes, all raw data and an ex-

ample R script for CStaR are available from the Bioinformatics

website.
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Supplementary Information: Supplementary data are available at
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1 INTRODUCTION

The growing interest in causal inference (e.g. Kruglyak and

Storey, 2009) has increased the need not only for methods able

to handle this task but also for designed experimental validation.

It is of general interest to infer the genotypic causes of a complex

phenotypic trait (Glazier et al., 2002). The classical approach

relies on randomized controlled intervention experiments, e.g.

knocking out a gene and observing the effect on the phenotype

relative to the wild-type organism. However, such intervention

experiments are time consuming and expensive, and a prioritiza-

tion with respect to most informative new experiments is very

desirable. A genetic method to identify loci causing phenotypes

or gene expression patterns is based on quantitative trait loci

(QTL) and expression QTL (Gilad et al., 2008; Kliebenstein,

2009). This can be a very powerful approach but it is limited

to loci where genetic variation exists and to situations where

segregating progeny of control crosses is available. Often, how-

ever, it is desirable to predict causal effects from purely observa-

tional data. We therefore consider the problem of predicting

total causal effects from data obtained by observing a system

without subjecting it to targeted interventions (observational

data). This problem is generally ill-posed, but the recently pro-

posed IDA method (Maathuis et al., 2009, 2010) provides esti-

mated lower bounds of total causal effects from observational

data under some assumptions (Supplementary Section S1).

However, these bounds come without a measure of uncertainty.

We address this issue by introducing a new method combining

IDA and a version of stability selection (Meinshausen and

Bühlmann, 2010), which we call Causal Stability Ranking

(CStaR; Fig. 1). The addition of stability selection to IDA pro-

vides two advantages. First, CStaR leads to a stable ranking of

genes (covariates) according to the sizes of lower bounds for their

predicted total causal effects, irrespective of the choice of the

tuning parameter in stability selection. Second, under some add-

itional assumptions, CStaR allows controlling an error rate of

false-positive findings, namely the expected number of false posi-

tives and hence also the per-comparison error rate (PCER).

CStaR results were confirmed in two biological scenarios using

the simple model Saccharomyces cerevisiae and the more com-

plex model Arabidopsis thaliana. Together, the built-in error

measure and the success in finding relevant regulator genes

make CStaR an excellent ranking method for the targeted

design of experiments based on easily available resources.

2 METHODS

Based on observational training data and a set of required assumptions,

CStaR predicts a lower bound for the total causal effect of a covariate on

a response of interest, including a PCER for the false-positive selections.

This is achieved by combining IDA (Section 2.1) with a version of sta-

bility selection (Section 2.2) on a range of different parameters. Predicted*To whom correspondence should be addressed.
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total causal effects are ranked according to their stability aggregated over

this range (Section 2.3).

2.1 Causal inference when the directed acyclic graph

(DAG) is absent (IDA)

The IDA procedure (Maathuis et al., 2009) is a statistical method

that infers lower bounds for the absolute values of total causal effects on a

response of interest from observational data under the assumption that

the data come from an unknown DAG without hidden variables.

Suppose we have a dataset with n observations consisting of a response

and p explanatory variables. Denoting by �j (j¼ 1, . . . , p), the true total

causal effect of gene (covariate) j to the response (the total causal effect �j
can be interpreted as follows: a change of gene j by one unit (one standard

deviation) causes an average change of size �j in the response), the output

of IDA is the estimated lower bound �̂
j
. It is shown (Maathuis et al.,

2009) that under certain assumptions (Supplementary Section 1) and as

sample size n tends to infinity:

�̂j !
n!1

�j, �j � �j
�� ��,

justifying the IDA procedure to infer lower bounds. These lower bounds

are conservative: for example, if the lower bound is equal to zero, we

would not make a statement that there is no causal effect (since the true

total causal effect could be indeed equal to zero, or it could be larger than

zero but the lower bound would not detect it). Based on the estimated

lower bounds, we obtain a ranking of genes (covariates) with j1 being the

index corresponding to the top rank, j2 for the second best rank and

so on:

�̂j1 � �̂j2 � . . . � �̂jp ð1Þ

Under the assumption that the data come from an unknown DAG with-

out hidden variables, the true total causal effect �j is generally

non-identifiable from observational data, but lower bounds are. The con-

ceptual idea for constructing lower bounds is as follows (Maathuis et al.,

2009). We first infer the so-called Markov equivalence class of all the

DAGs (see Supplementary Section S1), which are compatible with the

observational data. Using intervention calculus (Pearl, 2000), we derive

all potential total causal effects based on each DAG Gr in the equivalence

class (for every gene (covariate) j)

f�j;r; r ¼ 1, . . . ,mg j ¼ 1, . . . , pð Þ,

and we define the true lower bounds as

�j ¼ min
r¼1, ..., m

�j;r
�� �� j ¼ 1, . . . , pð Þ: ð2Þ

Under our assumptions (see Supplementary Section S1), these (true)

lower bounds �j are identifiable from observational data, and the IDA

algorithm yields the estimates �̂j (j¼ 1, . . . , p). The main components of

the IDA method are the PC-algorithm for estimating the Markov equiva-

lence class of DAGs (Spirtes et al., 2000) and a local algorithm for

calculating the bounds �j without enumerating all DAG members in

the estimated Markov equivalence class (Maathuis et al., 2009). It is

Fig. 1. Schematic overview of the methodological framework used in CStaR. After pre-processing the data (Step 1), lower bounds for the total causal

effects are estimated 100 times using stability selection (Meinshausen and Bühlmann, 2010) according to the following procedure. A subsample of size

n=2
� �

is repeatedly drawn from the total of n pre-processed data points (Step 2). On each subsample (or stability run), lower bounds for the total causal

effects are estimated using IDA (Maathuis et al., 2009) and used to rank the genes (Step 3, Section 2.1). Next, for a range of different q-values, we record

the relative frequencies over the 100 stability runs that each gene appeared in the top q ranks (Section 2.2). The median rank over these different qs is used

to generate the final ranking of the genes (Step 4). Furthermore, under additional assumptions, an upper bound for the PCER is estimated for each

q-value and its corresponding relative frequency (Section 2.3). Finally, the gene ranking allows for design of new experiments. Thus, a biological

validation using intervention experiments can be performed. We tested CStaR in two situations. First, on a publicly available compendium of 31 natural

A. thaliana accessions consisting of n¼ 47 gene expression measurements, each with 21,326 genes and corresponding flowering time data (Lempe et al.,

2005; Supplementary Section S2.1). We performed biological intervention experiments according to the causal gene ranking (Table 1) by focusing on

candidates that were not already known to control flowering time and for which mutant seeds were readily available (Supplementary Section S2.3). The

biological experiments were analyzed using a two-sample Welch’s t-test (Supplementary Section S2.4). The second validation was performed on a

publicly available dataset in S. cerevisiae containing n¼ 63 observational and 234 interventional full-genome expression profiles, with p¼ 5,361 genes

(Hughes et al., 2000; Supplementary Section S3). Since this dataset includes both observational and interventional data, the validation was analyzed by

comparing estimated total causal effects based on the observational data with inferred effects from the interventional data (Fig. 2)
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this local algorithm that makes the inference of these lower bounds based

on thousands of genes (covariates) feasible. IDA is implemented in the

R-package pcalg (Kalisch et al., 2012).

2.2 Stability selection

CStaR incorporates a stability selection step (Meinshausen and

Bühlmann, 2010). We draw 100 independent random subsamples of

size n/2 and we run IDA on the subsampled data. In each subsampling

run, which we also call stability run, we check whether gene (covariate) j

has appeared among the top q variables when using the ranking as in

equation (1) based on the subsampled data. We can then report the

relative selection frequency �̂j, among the 100 stability runs, that gene

(covariate) j has appeared (or been selected) among the top q variables.

These relative selection frequencies yield a stable list of genes (covariates):

the index j1 corresponds now to the most stably selected variable, and jp
to the least stable variable:

�̂1 � �̂2 � . . . � �̂p: ð3Þ

Besides the increased stability in the ranking (3), stability selection is

controlling the expected number of false-positive selections. Define the

stably selected genes (covariates) as

Ŝstable ¼ fj; �̂j � �thrg,

for some threshold 0.55�thr� 1. Denote the wrongly selected genes (false

positives) by V ¼ jŜstable \Sfalsej, where Sfalse is the set of (false) genes

(covariates) whose true lower bound �j¼ 0, see (2). Then, for a given

threshold �thr and a given value of q [which influences (3)] we have,

assuming an exchangeability condition (see Supplementary Section S1;

Meinshausen and Bühlmann, 2010):

E V½ � �
1

2�thr � 1

q2

p
ð4Þ

and this leads to a bound for the PCER (PCER¼E½V�=p). If a gene

(covariate) j has relative selection frequency �̂j, a bound for the corres-

ponding PCER is given by

1

2�̂j � 1

q2

p2

2.3 Summary ranking

As novelty, we avoid choosing a specific q for the execution of stability

selection by assessing the stability and the rank of each gene on a range of

different q-values. This constitutes the main modification of the standard

stability selection scheme and it also constitutes a useful simplification for

the practitioner. This can be summarized graphically (Supplementary Fig.

S1 gives an example for a single gene in the A. thaliana validation). We

found that CStaR is relatively insensitive to the choice of the range of qs.

However, down to a certain lower bound, small values of q lead to higher

sensitivity and thus better results (see also Supplementary Section S3). If

the q-values fall below such a lower bound, the ranking becomes unstable

again. Finally, all genes are ranked according to the median rank with

respect to the different q-values. Ties in the final ranking are sorted ac-

cording to median total causal effect size.

2.4 Validation

We validated CStaR in two situations. First, we trained CStaR on a

publicly available compendium of A. thaliana gene expression data and

performed new biological validation experiments (Supplementary Section

S2). The compendium contains 47 expression profiles of natural acces-

sions from diverse geographic origins (Lempe et al., 2005). The pheno-

typic trait of interest is time to flowering, which is robustly measured by

the number of days to bolting or the number of rosette leaves formed

before bolting (Amasino, 2010). Timing of flowering according to

local climatic conditions is a major determinant of the plants’ repro-

ductive success and an important agronomical trait that greatly

affects yield. Therefore, an improved knowledge about genes controlling

flowering time is of substantial economic value (Craufurd and Wheeler,

2009).

As a second validation of the CStaR method, we compared it with the

plain IDA method [ranking as in (1)], Lasso (Tibshirani, 1996), elastic net

(Zou and Hastie, 2005) both using linear models (ranking according to

absolute values of estimated regression coefficients) and marginal correl-

ation (ranking according to absolute values of marginal correlation to the

response) on a publicly available dataset of gene expression profiles in S.

cerevisiae (Hughes et al., 2000; Supplementary Section S3). This dataset

includes both observational and interventional data obtained under simi-

lar conditions. Hence, it forms an excellent basis to assess the perform-

ance of methods aimed at estimating total causal effects from

observational data, as the effects estimated from the observational data

can be compared with the effects inferred from the interventional data.

These data were used to validate IDA (Maathuis et al., 2010), and we

followed the same approach to validate CStaR. In particular, we used the

interventional data to infer the total causal effects of the knock-out genes

on the remaining genes and defined the top 5% of the effects that were

largest in absolute value as the true positives.

3 RESULTS

3.1 Validation for A. thaliana

CStaR scores five known regulators of flowering time (DWF4,

FLC, FRI, RPA2B and SOC1; Amasino, 2010; Domagalska

et al., 2007; Xia et al., 2006) in its top 25 (Table 1). In particular,

SOC1, FRI and FLC are curated flowering time genes in

Fig. 2. True-positive selections (y-axis) versus false-positive selections

(x-axis) for CStaR (solid) versus plain IDA (Maathuis et al., 2009; long

dashed), Lasso (Tibshirani, 1996; short dashed), elastic net (Zou and

Hastie, 2005; dash dotted), the latter two using linear models and mar-

ginal correlation ranking (dotted) in the S. cerevisiae validation

(Supplementary Section S3). Random guessing is indicated by the grey

line. All methods were trained on the observational data. True positives

were defined as the largest 5% of the effects (in absolute value) inferred

from the interventional data
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Arabidopsis Reactome (Tsesmetzis et al., 2008) containing 119

known regulators of flowering. This is a highly significant en-

richment of known curated regulators when compared with

random guessing (p510–5 in a hypergeometric test).

Interestingly, FLC and FRI are not only major regulators of

flowering time in the model species A. thaliana but also in the

oil-seed rape crop.

Among the other genes in the top 25, which were not already

known to play a role in flowering time, there were 13 genes for

which mutant seeds were readily available (Supplementary Table

S1). These mutants were used for intervention experiments in

order to further validate CStaR and to discover new influential

genes for flowering time in A. thaliana (Supplementary Section

S2.3).
The intervention experiments were performed under two

photoperiod conditions, short-day (SD) and long-day (LD)

with 8 h and 16h of light, respectively. As phenotypic responses,

the number of days to bolting (DTB, for both SD and LD) as

well as the rosette leave number (RLN, only for LD) were re-

corded. Seed viability varied between different genotypes

(Supplementary Tables S2–S4) reducing the number of testable

mutants to nine (Supplementary Table S1).

Differences between the knock-out and control group were

tested using a two-sided Welch’s t-test, because the mutant sam-

ples showed different empirical variances compared with the con-

trol group. This is most pronounced in the short-day layout.

Four new genes were found to have a significant total causal

effect on the phenotypic responses at level �¼ 0.05 in at least

one of the three settings (Table 2). Among the significant genes is

OTLD1, a gene involved in chromatin modifications, which may

potentially regulate FLC expression. Another significant gene is

PDH-E1, which is involved in carbohydrate metabolism, a

known regulation point of flowering time. We did not adjust

these p-values for multiple testing because we only perform a

small number of tests and, in view of small sample sizes, we do

not want to sacrifice power. Future studies of the identified novel

genes may increase the biological understanding of flowering

time control and provide potential targets for breeding strategies

in crops. The entire approach from modelling to biological ex-

periments and findings is schematically described in Figure 1.

Table 1. Top 25 findings by CStaR for the A. thaliana data

Gene Summary rank Median effect Maximum expression Error (PCER) Name/annotation

1 AT2G45660 1 0.60 5.07 0.0032 SOC1

2 AT4G24010 2 0.61 5.69 0.0033 ATCSLG1

3 AT1G15520 2 0.58 5.42 0.0033 PDR12

4 AT3G02920 5 0.58 7.44 0.0041 RPA2B

5 AT5G43610 5 0.41 4.98 0.0069 ATSUC6

6 AT4G00650 7 0.48 5.56 0.0051 FRI

7 AT1G24070 8 0.57 6.13 0.0040 ATCSLA10

8 AT1G19940 9 0.53 5.13 0.0045 ATGH9B5

9 AT3G61170 9 0.51 5.12 0.0044 PPR protein

10 AT1G32375 10 0.54 5.21 0.0045 F-box protein

11 AT2G15320 10 0.50 5.57 0.0047 LRR protein

12 AT2G28120 10 0.49 6.45 0.0054 Nodulin protein

13 AT2G16510 13 0.50 10.7 0.0050 AVAP5

14 AT3G14630 13 0.48 4.87 0.0056 CYP72A9

15 AT1G11800 15 0.51 6.97 0.0053 Endonuclease

16 AT5G44800 16 0.32 6.55 0.0079 CHR4

17 AT3G50660 17 0.40 7.60 0.0078 DWF4

18 AT5G10140 19 0.30 10.3 0.0085 FLC

19 AT1G24110 20 0.49 4.66 0.0071 Peroxidase

20 AT2G27350 20 0.48 7.06 0.0067 OTLD1

21 AT1G27030 20 0.45 10.0 0.0075 Unknown protein

22 AT2G28680 22 0.46 5.23 0.0072 Cupin protein

23 AT3G16370 23 0.43 12.4 0.0099 Lipase/hydrolase

24 AT5G25640 23 0.33 5.59 0.0091 Serine protease

25 AT1G30120 24 0.46 9.97 0.0077 PDH-E1 BETA

The genes are ranked by increasing summary rank, where ties are sorted according to the estimated median total causal effect taken over 100 stability runs (third column).

The maximum expression is taken over the original log2 data. The error (PCER) is the median PCER over the range of q values. SOC1, FRI and FLC are 3 of 119 curated

flowering time genes in the Arabidopsis Reactome (Tsesmetzis et al., 2008) (http://www.arabidopsisreactome.org). This is a highly significant enrichment of known curated

regulators when compared with random guessing (p510–5, hypergeometric test). Although not curated in Arabidopsis Reactome, also RPA2B and DWF4 are known to affect

flowering time (Domagalska et al., 2007; Xia et al., 2006). Since the ordering of the genes in the table is given by their summary rank, the values of median total causal effect

and PCER are not decreasing monotonously. For instance, ATSUC6 has a smaller median total causal effect and a larger PCER than the endonuclease, but since its lower

bound for the total causal effect is more stable, the former is ranked 10 positions higher than the latter. All genes from this list, for which mutant seeds were readily available

and which were not already known to control flowering time, were used in the subsequent intervention experiments (indicated in bold). In total, intervention experiments were

performed for 13 of the 25 top genes not previously known to regulate flowering (Supplementary Section S2.3).
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3.2 Validation for S. cerevisiae

We trained the plain IDA method, Lasso (Tibshirani, 1996),

elastic net (Zou and Hastie, 2005) and marginal correlation rank-

ing on the observational data, and compared their receiver oper-

ating characteristic curves on absolute scale (Fig. 2) showing a

clear improvement of CStaR over plain IDA. Moreover, CStaR

and IDA are clearly superior to high-dimensional regression

methods and marginal correlation screening, which is in line

with the earlier validation of IDA (Maathuis et al., 2010).

4 DISCUSSION

We propose CStaR as a general method to obtain a stable rank-

ing of genes in terms of the strengths of their total causal effects

on a phenotype of interest. An added value of our method is

that, under some assumptions, this ranking comes with an error

measure controlling false-positive selections. We showed that

CStaR exhibits a large increase in sensitivity when compared

with plain IDA and modern regression-type methods in S. cere-

visiae (Fig. 2). Moreover, we demonstrated the success of CStaR

for the biologically much more complex multicellular organism

A. thaliana. However, in view of uncheckable assumptions

(Supplementary Section S1), CStaR is not a tool for confirma-

tory causal inference.

We used insertion mutant lines for experimental validation.

This approach can provide very strong evidence for hypotheses

about gene function but it often suffers from a high

false-negative rate. Genetic networks are characterized by a

high degree of functional redundancy, which can buffer effects

of single mutations. The A. thaliana genome, for instance, under-

went a relatively recent duplication causing partial redundancy

between many orthologous gene pairs. Thus, often double mu-

tants need to be tested to observe alterations in phenotype.

In addition, the function of essential genes cannot be tested

with insertion mutants. Therefore, the high proportion of con-
firmation in the test set of insertion mutants is highly reassuring.

This makes it plausible that CStaR is relevant for commercial
crops, by pointing to better target genes for marker-assisted

breeding and transgenic approaches. In fact since CStaR is math-

ematically justified under clearly stated assumptions (Maathuis
et al., 2009; Meinshausen and Bühlmann, 2010), it has the po-

tential to generalize many other settings in biology, agriculture
and other fields where efficient design and prioritization of new

intervention experiments is a core aim.
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Table 2. p-values from two-sided Welch’s t-tests in the A. thaliana

validation

Welch’s t-test

Gene DTB-SD DTB-LD RLN-LD

PDH-E1 BETA 0.04 0.04 0.91

ATGH9B5 0.02 0.15 0.04

LRR protein 0.66 0.03 0.47

OTLD1 0.43 0.03 0.86

PDR12 0.26 0.92 0.77

F-box protein 0.18 – –

peroxidase 0.18 – –

PPR protein – 0.65 0.47

cupin protein – 0.12 0.93

Only genes are shown for which the insertion was experimentally verified and for

which in at least one of the following three settings at least four replicates could be

harvested for validation: days to bolting in short days (DTB-SD), days to bolting in

long days (DTB-LD) and rosette leave number in long days (RLN-LD). Each

mutant was tested versus a control group. p-values50.05 are written in bold (for

complete results see Supplementary Tables S2–S4). A missing entry indicates insuf-

ficient number of replicates for testing, i.e. less than four plants.
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