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Large contingency tables summarizing categorical variables arise in many areas. One example is in
biology, where large numbers of biomarkers are cross-tabulated according to their discrete expres-
sion level. Interactions of the variables are of great interest and are generally studied with log–linear
models. The structure of a log–linear model can be visually represented by a graph from which the
conditional independence structure can then be easily read off. However, since the number of
parameters in a saturated model grows exponentially in the number of variables, this generally comes
with a heavy computational burden. Even if we restrict ourselves to models of lower-order inter-
actions or other sparse structures, we are faced with the problem of a large number of cells which play
the role of sample size. This is in sharp contrast to high-dimensional regression or classification
procedures because, in addition to a high-dimensional parameter, we also have to deal with the
analogue of a huge sample size. Furthermore, high-dimensional tables naturally feature a large
number of sampling zeros which often leads to the nonexistence of the maximum likelihood estimate.
We therefore present a decomposition approach, where we first divide the problem into several lower-
dimensional problems and then combine these to form a global solution. Our methodology is
computationally feasible for log–linear interaction models with many categorical variables each or
some of them having many levels. We demonstrate the proposed method on simulated data and
apply it to a bio-medical problem in cancer research.
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1 Background

We consider the problem of estimation and model selection in log–linear models for large con-
tingency tables involving many categorical variables. This problem encompasses the estimation of
the graphical model structure for categorical variables. This structure-learning task has lately
received considerable attention as it plays an important role in a broad range of applications. The
conditional independence structure of the distribution can be read off directly from the structure of
a graphical model (a graph) and hence provides a graphical representation of the distribution
that is easy to interpret (see Lauritzen, 1996). Graphical models for categorical variables correspond
to a class of hierarchical log–linear interaction models for contingency tables. Thus, fitting a
graph corresponds to model selection in a hierarchical log–linear model log(p)5Xb, where p
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is the vector of cell probabilities of a table, b is a parameter vector and X is the design matrix
(Section 2.2).

Fitting the log–linear model for large contingency tables in full detail turns out to be a very
hard computational problem in practice. In the following, we list three possible goals for fitting
log–linear models. The goals are ranked in increasing order according to their computational
difficulty:

(i) Graphical structure: Finding the graphical structure for discrete categorical variables is
easiest but it does not allow to infer the magnitude of the coefficients b in the log–linear
model, see also formula (3).

(ii) Parameter vector b: The next level of difficulty is the estimation of the unknown parameter
vector b in a log–linear model whose full dimension equals the number of cells in the
contingency table. For large tables, the dimension of b is huge but under some sparsity
assumptions it is possible to accurately estimate such a high-dimensional vector using
suitable regularization. The major problem is here that besides the high dimensionality of
b, the analogue of the sample size (the row-dimension of X) is huge, e.g. 340 for 40
categorical variables having three levels each.

(iii) Probability vector p: The most difficult problem is the estimation of the probability vector p
whose dimension equals again the number of cells in the table. It is rather unrealistic to
place some sparsity assumptions on p in the sense that many entries would equal exactly
zero which would enable feasible computation. Therefore, it is impossible to ever compute
an estimate of the whole probability vector p (e.g. having dimensionality 340). Nevertheless,
thanks to sparsity of the parameter vector b and the junction tree algorithm, it is possible to
compute accurate estimates fp̂ðiÞ; i 2 Cg for any reasonable-sized collection C of cells in the
contingency table.

There is hardly any method which can achieve all these goals for contingency tables involving
many, say more than 20, variables. One approach to address the log–linear modeling problem for
large contingency tables is presented in Jackson, Gray, and Fienberg (2007), in which some di-
mensionality reduction is achieved by reducing the number of levels per variable. The reduction is
accomplished via collapsing two categories by aggregating their counts if the two categories behave
sufficiently similar. If d variables are considered, this method reduces the problem at best to d binary
variables. For this special case with binary factors, an approach based on many logistic regressions
can be used for fitting log–linear interaction models whose computational complexity is feasible even
if the number of variables is large (Wainwright, Ravikumar, and Lafferty, 2007). Another method to
address the log–linear modeling problem for large contingency tables is proposed in Kim (2005), in
which the variables are grouped such that they are highly connected within groups but less between
groups and graphical models are fitted for these subgroups. The subgraph models are then combined
using so-called graphs of prime separators. The implementation of the combination however is not an
easy task and no exact algorithm is given on how to combine the models.

Our presented methodology allows to achieve all the goals above for categorical variables having
possibly different numbers of levels: inference of a graphical model for discrete variables, of a sparse
parameter vector in a log–linear model and of a collection of cell probabilities. Motivated by the
approach in Kim (2005), we also propose a decomposition approach, in which the dimensionality
reduction is achieved by recursively collapsing the large contingency table on certain variables
(decomposition) and thereby reducing the problem to smaller tables which can be handled more
easily. All the fitted lower-dimensional log–linear models are combined appropriately to represent
an estimation of the joint distribution of all variables. The procedure enables us to handle very large
tables e.g. up to hundreds of categorical variables, where some or all of them can have more than
two categories. This multi-category framework is much more challenging than the approach
in Wainwright et al. (2007) for large binary tables. In Ravikumar, Wainwright, and Lafferty (2009),
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an extension to the multi-category case within the class of pairwise Markov random fields is
sketched: it is argued that higher-order interactions could be included in a pairwise Markov field
but no methodology or algorithm is described how to actually do this difficult computational
task.

2 Definitions

In this section, we introduce several important theoretical concepts. First, we define the general
log–linear interaction model. Subsequently, we introduce the hierarchical log–linear model and the
graphical model as restricted versions of the log–linear interaction model. Then, we define collap-
sibility and decomposability, which are crucial concepts for breaking up a graphical model into
smaller pieces.

2.1 Log–linear interaction model

We adopt here the notation of Darroch, Lauritzen, and Speed (1980). Assume we have some factors
or categorical variables, indexed by a set V. Each factor v 2 V has a set of possible levels
Iv ¼ f0; 1; . . . ; kvg. The contingency table is the cartesian product of the individual sets: I ¼

Q
v2V Iv.

An individual cell in the contingency table is denoted by i 2 I and the corresponding cell count by
ni. A marginal index for variable set a � V is denoted by ia. For example, assume that we have two
binary variables, then V ¼ f1; 2g, I1 ¼ I2 ¼ f0; 1g and the contingency table is given by
I ¼ fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg. An individual cell is for example i5 (0,1) and the index describing the
margin along the second variable (a5 2) is ia 5 i2 5 (1). The total number of cells in a contingency
table is m ¼ jI j ¼

Q
v2V jIvj. In our example, m5 4. A natural way of representing the distribution

of the cell counts is via a vector of probabilities p ¼ ðpðiÞ; i 2 IÞ. In our example, this would cor-
respond to defining four probabilities p ¼ ðpð0;0Þ; pð0;1Þ; pð1;0Þ; pð1;1ÞÞ. If a total number of n individuals
are classified independently, then the distribution of the corresponding cell counts n ¼

ðn1; n2; . . . ; nmÞ is multinomial with probability p. Finally, the general log–linear interaction model
specifies the unknown distribution p as follows:

log pðiÞ ¼
X
a�V

xaðiaÞ 8i 2 I ð1Þ

where xa are functions of cell i which only depend on the variables in a. These functions are called
interactions between the variables in a. If |a|5 1, xa is called main effect, if |a|5 2 first-order
interaction and an interaction of order k�1 if |a|5 k. For identifiability purposes, we impose con-
straints on the functions, namely that k-th-order interaction functions are orthogonal to interaction
functions of lower order.

2.2 Hierarchical log–linear models

A hierarchical log–linear model is a log–linear interaction model with the additional constraint that
a vanishing interaction forces all interactions of higher order to be zero as well:

xa ¼ 0) xb ¼ 0 8a � b � V

Hierarchical models can be specified via the so-called generators or generating class G which is a set
of subsets of V consisting of the maximal interactions which are present. More precisely, the
generating class G has the following property:

xa ¼ 0, there is no q 2 G with a � q: ð2Þ
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Consider an example with three binary factors. An example for a hierarchical log–linear model is
the model consisting of all main effects, an interaction between 1 and 2 and an interaction between 1
and 3: this corresponds to G ¼ ff1; 2g; f1; 3gg. However, the log–linear interaction model with main
effect 1 and interaction between 1 and 2 (but no main effect 2) is not in the class of hierarchical
log–linear models.

If we go back to formula (1) and rewrite it in matrix formulation, we get:

logðpÞ ¼ Xb; ð3Þ

where b is a vector of unknown coefficients and X 2 Rm�m the design matrix. Each row of X

corresponds to a certain cell and the columns of X correspond to the functions xaðiaÞ. The number of
columns needed to represent the function xa depends on the number of different states ia can take
on. For example consider a categorical variable a that can take on three levels. Then, xa is called a
main effect (as |a|5 1) and Xa (the columns of X corresponding to a) is two dimensional. Originally,
it would be three dimensional but for identifiability purposes, the subspace spanned by Xa is chosen
orthogonal to the already existing columns of lower-order interaction (here orthogonal to the
intercept) and we further choose it orthogonal within the subspace. By choosing the identifiability
constraints this way, the parameterization of the matrix used in Eq. (3) is equivalent to choosing a
poly contrast in terms of ANOVA. If we go back to our example with two binary factors where
m5 4, Eq. (3) becomes:

log p

ð0; 0Þ
ð0; 1Þ
ð1; 0Þ
ð1; 1Þ

0BB@
1CCA ¼ Xb; with X ¼

1 1 1 �1
1 1 �1 1
1 �1 1 �1
1 �1 �1 1

0BB@
1CCA; and b ¼ ðb;;b1;b2; b12Þ

T; ð4Þ

where the first column is the intercept and belongs to a ¼ ;, the second column belongs to a5 1 and
has entry 1 whenever variable a5 1 takes on the first level and �1 else and similarly for the third
column. The fourth column belongs to the interaction between variables 1 and 2. A description of X
for the general case can be found in Dahinden et al. (2007). In the following section, we will denote
the components of b belonging to Xa with ba.

2.3 Graphical models

We first introduce some terminology. A graph is defined as a pair G5 (V,E ), where V is the set of
vertices or nodes and E � V � V is the set of edges linking the vertices. Each node represents a
(categorical) random variable. Here, we consider only undirected graphs which means that ðu; vÞ 2
E is equivalent to ðv; uÞ 2 E. A path from u to v is a sequence of distinct nodes v0 ¼ u; v1; . . . ; vn ¼ v
such that ðvi; vi11Þ 2 E for all i 2 f0; 1; . . . ; n� 1g. Given three sets of variables A;S;B � V , we say
that S separates A from B in V if all paths from vertices in A to vertices in B have to pass through S.
Consider a random vector Z ¼ fZv; v 2 Vg with a given distribution. We say that the distribution of
Z is globally Markov with respect to a graph G if for any three disjoint subsets A;S;B � V the
following property holds:

S separates A from B) ZA?ZBjZS; ð5Þ

where the symbol ‘‘?’’ denotes (conditional) independence. This states that we can read off con-
ditional independence relationships directly from the graph if the distribution is globally Markov
with respect to the graph. Graphical models therefore provide a way to represent conditional
(in)dependence relationships between variables in terms of a graph structure. We say that a set
of nodes of G forms a complete subgraph of G if every pair in that set is connected by an edge.
A maximal complete subgraph is called a clique.

The undirected graphical model (from now on ‘‘graphical model’’ for short) represented by a
graph G corresponds to a hierarchical log–linear model where the cliques of the graph are the
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generators of the model. If we go back to our example in the previous section and assume that
b12 6¼ 0 in formula (4), then the hierarchical log–linear model (4) can be represented by the graphical
model shown in Fig. 1A; if b12 5 0, then the corresponding graphical model is the one in Fig. 1B.

Conversely, assume that the generators of a log–linear model are given by a set G. By connecting all the
vertices appearing in the same generator with each other and placing no other edge, the so-called
interaction graph is built. By the definition of the interaction graph and by looking at formula (1), it
becomes clear that the distribution induced by the log–linear model is Markov with respect to the
interaction graph and we can read off conditional independencies directly from the graph. It is also clear
that G corresponds to a graphical model via its interaction graph if and only if G is the set of cliques of this
graph. In that case we say that G is a graphical generating class. If there are cliques in the interaction
graph which are not in G, the hierarchical log–linear interaction model is not graphical and its interaction
structure cannot be adequately represented by the graph alone. However, the graph may still completely
represent all conditional independencies of the underlying distribution. The simplest example of a hier-
archical log–linear model M which is not graphical is V ¼ f1; 2; 3g and G ¼ ff1; 2g; f2; 3g; f3; 1gg. Its
interaction graph is shown in Fig. 1C which has as its only clique the complete graph f1; 2; 3g. Since the
set of cliques and the set of generators G are not identical, model M is not graphical.

Any joint probability distribution of discrete random variables can be expanded in terms of a
log–linear interaction model. For some distributions it is possible to represent all (conditional)
independencies in an undirected graphical model and these distributions are called faithful to their
interaction graph G or we say that the graph is a perfect map of the distribution. In other words, the
graph captures all and only the conditional independence relationships of the distribution.

2.4 Collapsibility

Collapsing over a variable simply means summing over that variable and thereby reducing
(collapsing) the table to the remaining dimensions.

When collapsing over a variable, spurious associations between the remaining variables may be
introduced and original associations can vanish. A criterion that addresses this problem is
collapsibility. We say that a variable is collapsible with respect to a specific interaction xa, when the
interaction in the original contingency table is identical to the interaction in the collapsed con-
tingency table (i.e. xa in Eq. (1) remains the same).
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Figure 1 Examples of graphical models. (A) Full (maximal) model corresponding to the
example given by formula (4). (B) In the same example graph with b1250. (C) Example of
an interaction graph corresponding to a hierarchical log–linear model which is not graphical.
(D) The separator S52 has index nðSÞ ¼ 2. (E) The separator S5 2 has index nðSÞ ¼ 1.
(F) Example of a nondecomposable graph.
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The general result regarding collapsibility, which goes back to a theorem stated in Bishop,
Fienberg, and Holland (1975), can be summarized as follows:

By collapsing a table over a variable which interacts with s other variables; then s- and

higher order interactions between the remaining variables are not changed in the collapsed
table: Conversely; lower-order interactions between there maining variables are affected
by collapsing: ð6Þ

Suppose, for example, that variable X only interacts with one other variable Y. If we collapse over
X, no interaction changes but main effects may be changed. Furthermore, suppose that Z is in-
dependent of all other variables. Then neither main effects nor interactions change when collapsing
over Z.

2.5 Decomposability

Assume a graphical model on the vertex set V. A triple of disjoint subsets (A,S,B) of the vertex set V
forms a decomposition if (i) V ¼ A [ S [ B, (ii) S separates A from B and (iii) S is complete.

Decomposability is defined recursively: A graph is decomposable if it is complete or if there exists
a decomposition (A,S,B) where the subgraphs of G restricted to the vertex sets A [ S and S [ B are
decomposable.

Denote by C the set of all cliques of a decomposable graph and by S the set of all separators. For
a decomposable graph with decomposition into cliques C and separators S, the probability of a cell i
is given by the following formula (see for example Proposition 4.18 of Lauritizen, 1996):

pðiÞ ¼

Q
C2C pðiCÞQ

S2S pðiSÞ
nðSÞ ; ð7Þ

where nðSÞ is the so-called index of the separator. The formal definition of the index nðSÞ is a bit
cumbersome and is given in Lauritzen (1996). However, intuitively it can be thought of as the
number of times the set S acts as a separator. For example: In Fig. 1D, node 2 separates f1g and f4g
(the cliques consisting of single nodes f1g and f4g), f1g and f3g, and also f3g and f4g. Therefore, the
index of the separating node 2 is 3, as node 2 acts three times as separator. If we look at Fig. 1E, we
see that the node 2 only separates f1g from the clique f3; 4g as the single nodes 3 and 4 are no longer
cliques since there is an edge between them. Therefore, the node 2 only acts once as separator and
thus the corresponding index is 1.

It might not be possible to decompose the graph into decomposable components. By definition,
this is the case for nondecomposable graphs. The simplest example of a nondecomposable graph is
shown in Fig. 1F. For a nondecomposable graph one can always add a minimal number of edges to
the graph, such that it becomes decomposable (this step is called minimal triangulation; see Olesen
and Madsen, 2002). Formula (7) also holds for such triangulated graphs.

3 Estimating a Log–Linear Model using a Decomposition Approach

In this section, we propose our novel method for recovering both the graph structure and the
parameters of a discrete graphical model. The underlying idea is to learn models over small sets of
variables and stitch them together. More precisely, we first estimate an initial graph using node-wise
regressions, add triangulations if necessary to make this graph decomposable and then use the
decomposed components as the smaller sets of variables. The smaller sets are then analyzed one at a
time and stitched together using formula (7). In the following, we will describe each step of our
method in more detail. The details of log–linear model selection on the smaller sets of variables are
deferred to Section 4. An outline of our decomposition approach for log–linear model estimation is
given in Algorithm 1.
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Algorithm 1. Outline of our decomposition approach for log-linear model estimation.

3.1 Estimation of initial graph by node-wise regression

If we knew the underlying true graph and if it was sparse, we could use a decomposition and
collapse the contingency table on sub-tables given by the cliques C and the separators S from the
decomposition. Then we could perform model selection in the collapsed tables and combine the
estimates according to formula (7). Of course, we do not know the graph and therefore we do not
know C and S for the decomposition. In this section we propose a method of how to come up with
an initial graph estimate.

A log–linear model measures the associations among the variables. The association between two
variables can also be measured by doing regression from one variable upon the others. It is thus

input: Node set V ¼ fZ1; . . . ;Zpg, data matrix D on V, C ¼ fg; S ¼ fg; M ¼ fg, smax

output: Estimated log–linear model
// Estimate importance matrix using node-wise regression (see Section
3.1)

1 Set M5R 5 ~R :¼ p� p matrix consisting of 0’s
2 for i in 1:p do

3 Do regression Zi � V n fZig using cforest on D
4 Mi;�i :¼ importance measure of regression for each covariate
5 Ri;1:p :¼ ranks of Mi;1:p (small number corresponds to small rank)
6 end

7 ~Ri;j :¼ max ðRi;j ;Rj;iÞ

// Triangulation and Recursive Decomposition (see Section 3.2)
8 G :¼ complete graph on V
9 while |V|40 do

10 if G is not decomposable then

11 ~G :¼ minimal triangulation of G
12 else

13 ~G :¼ G
14 end

15 find any minimal clique C of ~G
16 if |C|rsmax then

17 split C into minimal separator S and rest A: A [ S ¼ C
18 record C in C, S in S
19 estimate log–linear model on C (see Section 4.1) and save inM
20 V :¼ V n A, G :¼ subgraph of ~G on V, ~R :¼ ~Ri2V ; j2V

21 else

22 ði; jÞ :¼ index of minimal entry in ~R
23 G :¼ G where edge between i and j is deleted
24 ~Ri;j ¼ ~Rj;i :¼ 1
25 end

26 end

// Combination of results (see Section 3.3)
27 log pðiÞ ¼

P
C2C log pðiCÞ �

P
S2S nðSÞlog pðiSÞ (p(iS) and p(iC) were recorded inM)
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reasonable to apply a regression method to find groups of variables which are highly associated
within a group but only weakly associated between groups.

See for the following also Algorithm 1 lines 1–7. Assume a graphical model on the node set
V ¼ f1; . . . ; pg with corresponding random variables Z ¼ fZ1; . . . ;Zpg. For every node i in the
graph, we run a regression with Zi as response variable and all remaining variables V n Zi as
covariates. We then draw an edge between nodes i and j if and only if the covariate Zj has an
influence on the response Zi. Ideally, the regression method involves interactions among the cov-
ariates (unless we assume a binary Ising model as in Wainwright et al., 2007; Ravikumar et al.,
2009).

Inspired by Kim (2005), we use a nonparametric regression approach. But instead of their single
regression tree strategy we use a Random Forest approach (Breiman, 2001). Trees can naturally
incorporate interactions between variables without running severely into the curse of dimensionality
and are therefore ideal for our purposes. We prefer Random Forest instead of a single tree, since
Random Forest oftentimes yield much more stable results for variable selection.

There are three common ways of measuring the importance of individual variables in Random
Forest regression. First, the importance measure can be the number of times a variable has been
chosen as split variable (selection frequency). Second, the decrease in the so-called Gini index can be
used. Third, the permutation accuracy which measures the prediction accuracy before and after
permuting a variable can be used.

By performing node-wise regression from each variable on all others and using any importance
measure mentioned above, an importance matrix M can be built whose element Mi;j describes the
importance of variable Zj (acting as covariate) to the variable Zi (acting as response). Note that this
matrix is not symmetric.

There is one technical difficulty, which we would like to mention here. A high entry in the
importance matrix indicates a strong association between the corresponding row and the
column variable. However, depending on the importance measure, the values between various
predictor variables as well as between different regressions might not be comparable. It has been
shown that popular importance criteria in Random Forest such as the Gini index, the selection
frequency or the permutation accuracy are all strongly biased toward variables with more categories
(see Strobl et al., 2007). We therefore use the ‘‘cforest’’ method proposed by Strobl et al. (2007)
which provides a variable importance measure that can be reliably used for variable selection even
in situations where the predictor variables vary in their scale of measurement or their number of
categories.

Still, however, the importance measures are only consistent within rows but not between
rows as the variable importance not only depends on the predictor variables in a regression
but also on the response variable. Therefore, values cannot be directly compared between
rows. For that reason we only consider the ranks of the importance matrix entries within rows.
This yields the importance matrix of ranks R with Ri;1:p ¼ rankðMi;1; . . . ;Mi;pÞ, where small
numbers correspond to small ranks. Thus, two variables Zi and Zj are strongly (conditionally)
dependent if and only if Ri;j and Rj;i are both large. In this context, we define a symmetrized
importance matrix of ranks ~R with ~Ri;j ¼ maxðRi;j ;Rj;iÞ 8i; j 2 V . An initial graph estimate could
now be obtained by placing only those edges, whose corresponding entry in ~R is larger than a given
cutoff.

3.2 Triangulation and recursive decomposition

Since it is not clear how to find a suitable cutoff for the initial graph, we employ a recursive scheme
(see Algorithm 1 lines 8–26). First, we start with a complete graph G0. Then, we delete the edge with
the smallest importance according to ~R. If the resulting graph G1 is not decomposable, we extend it
to its minimal triangulation ~G1, which is guaranteed to be decomposable (see Section 2.5). If ~G1 has
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a clique that is small enough to be analyzed on its own (this depends on computational resources
and could be the case for smax 5 10 binary variables), we split it off. If it has no such clique, we keep
deleting edges in G1 according to smallest importance (and set the corresponding entry of deleted
edges in ~R to infinity, so that it is not considered for deletion again) until there is a small enough
clique. Let us assume that A [ S corresponds to a clique in the (triangulated) thinned graph, S
separates A from V n fA [ Sg and jA [ Sj � smax ¼ 10. We then split off this clique (and we then
estimate a log–linear model on it, see Section 4.1).

From here, we restart the whole procedure with the remaining graph, i.e. setting G0 :¼ V n A. As
corresponding importance matrix, we take only those rows and columns of ~R which correspond to
the nodes in V n A. This is repeated until the remaining graph consists of cliques whose cardinalities
are less or equal to smax. Therefore, the amount of edges which we recursively delete depends on the
maximal size of cliques which we allow, denoted by smax which is a tuning parameter of our
procedure of initial graph estimation. As mentioned above, smax is usually chosen by computational
requirements as the optimal size of the initial graph seems to be of minor importance.

Note that it is not crucial that we have the sparsest possible subgraphs to collapse on, as
long as any reasonable log–linear model selection procedure can be applied for these
subgraphs. Such a decomposition is implemented in the R package LLdecomp, available at
http://www.r-project.org.

3.3 Combination of results

Assume we have collapsed the table on the cliques C and separators S of the graph induced by the
recursive thinning and decomposition procedure. Furthermore, assume that we have fitted a model
for each of these sub-tables (the collapsed tables on C and S). We then get the log–linear model
corresponding to the full graph by using formula (7):

log pðiÞ ¼
X
C2C

log pðiCÞ �
X
S2S

nðSÞ log pðiSÞ

¼
X
C2C

XcbC �
X
S2S

nðSÞXSbS;
ð8Þ

where XC and XS are the design matrices resulting from restricting the total design matrix to nodes
in C and S respectively. The same notation applies to bC and bS. Formula (8) describes how to
aggregate the results of the collapsed tables. In addition, one can derive from Eq. (8) that if we have
three disjoint subsets A,S,B where S separates A from B, then we can safely collapse over B without
changing an interaction between variables in A or between variables consisting of a mix of A and S.
The only interactions which might change are the ones between variables which are exclusively in S
(in the following denoted by separator interactions). This is in accordance with the result stated in
Eq. (6). But as formula (8) holds, the introduced interactions have a very small b-coefficient. We
therefore expect that if we threshold the parameter vector b, most of the introduced zeros belong to
so-called separator interactions x : 9S 2 S with x 2 S, i.e. interactions exclusively contained in a
separator. Consequently, we set the threshold that the introduced zeros belong to equal parts to
separator and nonseparator interactions. See Fig. 2 for a graphical illustration of the procedure. In
Section 5.3 we will argue empirically that such a thresholding rule works well.

4 Graphical Model Selection Procedures

In this section, we state five methods for log–linear model selection. Three of them (decomposition
group lasso (DGL), decomposition stepwise forward (DSF) and decomposition full model (DF))
can be used for model selection within our proposed decomposition approach (see line 19 in
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Algorithm 1). The remaining two (WW and RF) are established alternative methods and will be
used for comparison.

Our methods use up to three tuning parameters: For decomposition of the graph, we use a bound
on the size of cliques in our graph (smax; see line 16 of Algorithm 1). Furthermore, in Section 3.3, we
introduce a threshold for correcting the interaction-adding effect of collapsing to marginal models.
Finally, in this section we use regularization parameters for selecting the graph within components.

4.1 Model selection for decomposition approach

The first method we propose is inspired by the Lasso, originally formulated by Tibshirani (1996) for
estimation and variable selection in linear regression. Extending this idea, a model selection ap-
proach for log–linear models has been developed in Dahinden et al. (2007). The coefficient vector b
is estimated with the group-lasso-penalty (Yuan and Lin, 2006):

bbl ¼ arg min
b
�
1

n
lðbÞ1l

X
a�C
a 6¼;

jjbajj‘2

2664
3775; ð9Þ

where lðbÞ ¼
Pm

i¼1 niðXbÞi ¼ log pb½n�1c and jjbajj
2
‘2
¼
P

j ðbaÞ
2
j . Therefore l(b) is up to an additive

constant c, which does not depend on b, the log-likelihood function. This minimization has to be
calculated under the additional constraint that the cell probabilities add to 1. The group-lasso-penalty
has the property that the solution of Eq. (9) is independent of the choice of the orthogonal subspace of
Xa and furthermore, the penalty encourages sparsity at the interaction level. Thus, the vector b̂a cor-
responding to the interaction xa (Section 2.1) has all components either nonzero or zero. Furthermore,
by using group-lasso-penalty model selection we avoid the sampling zero problem, which is problematic
regarding the existence of the MLE (see e.g. Christensen, 1991). The tuning parameter l can be assessed
by cross-validation: we divide the individual counts into a number of equal parts and in turn leave out
one part and use the rest to form a training contingency table with cell counts ntrain.

We abbreviate our decomposition approach using group-lasso-penalty for arbitrary values of l
by DGL. When l is chosen by cross-validation, we abbreviate the method by DGL:CV. If, in
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Figure 2 Illustration of how many separator edges to take up into the model. x-Axis: the
fraction of separator interactions x with b̂x ¼ 0 among all separator interactions. y-Axis: the
fraction of nonseparator interactions with estimated interaction coefficient equal zero.
The points correspond to different levels of thresholding. We see that if we threshold 30% of
the nonzero b̂ coefficients, we have almost exclusively thresholded separator interactions, as
we would expect.

242 C. Dahinden et al.: Decomposition and model selection

r 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



addition to that, hard-thresholding for the parameter vector b is used in the specific way described in
Section 3.3, we abbreviate this method by DGL:F (‘‘Final model of suggested procedure’’).

Our second method is a stepwise forward procedure and aims to minimize the AIC-type criterion
sk�2 log(l), where l is the maximized value of the likelihood function for the corresponding model
with k degrees of freedom; s5 2 corresponds to the genuine AIC. Here, we also vary the parameter
s; a large parameter leads to sparser models. We abbreviate this method for arbitrary values of s by
DSF and by DSF:AIC if s5 2.

Finally, we propose a third method where no model selection is performed after decomposition
and the MLE on the decomposed model is used. This corresponds to DSF with s5 0. We abbreviate
this method by DF.

4.2 Alternative approaches for comparison

Our first method for comparison is given in Wainwright et al. (2007), where the problem of esti-
mating the graph structure of binary valued Markov networks is considered. They propose to
estimate the neighborhood of any given node by performing ‘1-penalized logistic regressions on the
remaining variables using some penalty parameter l. Assume we have d binary random variables
and observations thereof z ¼ ðz1; . . . ; zd Þ 2 f0; 1g

d . Furthermore, we assume that the data are gen-
erated under the so-called Ising model:

log pðzÞ ¼
Xd
s;t¼1

bstzszt1CðBÞ; ð10Þ

where B is a symmetric d� d matrix and CðBÞ is a normalizing constant which ensures that the
probabilities add up to 1. If we go back to the log–linear interaction model described in Section 2.1
with binary variables, i.e. the cell i 2 f0; 1gd , then by comparing formulae (1)–(10) we see that the Ising
model is a log–linear model whose highest interactions are of order 1 and the parameterization is, in
terms of ANOVA, with Helmert instead of poly contrasts. Therefore, the interaction graph builds up
by connecting the nodes s and t for which bst 6¼ 0. Wainwright et al. (2007) prove that under certain
sparsity assumptions their method correctly identifies the underlying graph structure. Note that both
our method and Wainwright et al. (2007) use node-wise regression. The difference is that we estimate
the node neighborhoods by performing normal regression and hard-thresholding importance mea-
sures derived from regression weights. We emphasize that the Wainwright et al. (2007) approach
works for binary variables only, while our decomposition approach explained in Section 3 works for
general multi-category variables. For arbitrary values of the tuning parameter l, we abbreviate this
method by WW. If the tuning parameter is chosen by cross-validation, we abbreviate the method by
WW:CV. It turns out, that WW:CV sometimes yields dense models. Therefore, we abbreviate by
WW:MIN the solution for the minimal l for which the normalization constant could be computed
(due to computational limitations connected with the junction tree algorithm).

Our second method for comparison is Random Forest. As explained in Section 3.1, Random
Forest together with a suitable cutoff on the rank importance matrix ~R can be used to derive an
initial graph estimate. This yields a graph but no estimation of the log–linear interaction model is
provided. We abbreviate this method by RF.

For convenience, in Table 1 we give a short overview of the methods that were defined in this
section and are going to be used in the simulation study in the next section.

5 Simulation Study

We simulate from a log–linear interaction model corresponding to a graph with 40 nodes and 91
edges. Each node corresponds to a binary variable (and thus, we can compare with the method in
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Wainwright et al. (2007), explained in Section 4.2). The graph is shown in Fig. 3. This is the same
simulation setting as was used in Kim (2005). We generate 10 data sets each consisting of 100 000
observations according to the graph in Fig. 3.

In Section 5.1, we investigate the effect of the maximal clique size smax (for splitting off a clique as
explained in Section 3.2) in our decomposition approach with respect to performance in estimating

Table 1 Overview of the methods used in the simulation studies.

Abbreviation Description

DGL Decomposition approach using group-lasso-penalty without fixing the penalty
parameter

DGL:CV As DGL but penalty parameter fixed by cross-validation
DGL:F Final result of DGL and hard-thresholding as explained in Section 3.3
DSF Decomposition approach using stepwise forward selection without fixing penalty

parameter
DSF:AIC As DSF but penalty parameter fixed corresponding to AIC
DF Decomposition approach without model selection but using MLE
WW Approach by Wainwright et al. (2007) without fixing the penalty parameter
WW:CV As WW but penalty parameter fixed by cross-validation
WW:MIN As WW using minimal penalty parameter that is computationally feasible for

junction tree
RF Random forest
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Figure 3 Graph from which we simulate. Nodes correspond to binary random variables.
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the correct model structure. In Section 5.2 we compare different approaches with respect to per-
formance in estimating the correct model structure, whereas in Section 5.3 we compare in terms of
accuracy for estimating the cell probabilities.

5.1 Optimal clique size

We estimate a model using DGL:CV for smax equal to 3, 5 and 10. A ROC curve is shown in Fig. 4,
in which the endpoints of the curves correspond to the selected model of DGL:CV. The curves then
build up by successively eliminating edges corresponding to the smallest estimated interaction
vector coefficient b̂. We see here that larger decomposition sizes lead to slightly more favorable ROC
curves. The picture remains qualitatively the same if we use DSF instead of DGL. For the re-
mainder of the simulations, we will keep the maximal clique size in our approach fixed at smax 5 10.
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Figure 4 Comparison of decomposition sizes. Decomposition into cliques of maximal size 3,
5 and 10 using DGL:CV. The curves corresponds to models which arise by thresholding the
final b̂-coefficient.
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Figure 5 Comparison of decomposition approaches DGL, DSF and DF using smax 5 10. The
dotted vertical line corresponds to the difference in the true positive rate (number of correctly
selected edges/number of true edges) for the two procedures when they are compared at the
false-positive rate (number of incorrectly selected edges/number of true gaps) of DGL:F. Note
that the x-axis is shown only up to 0.5.
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5.2 Performance for structure estimation

First, we compare DGL, DSF and DF. The performance for structure estimation is shown in ROC
curves (Fig. 5). For DSF the curve builds up by varying s (compare Section 4.1). Note, that the
starting point of the curve of DSF coincides with DF. DGL starts from DGL:CV and uses hard-
thresholding of b̂ for obtaining the values on the ROC curve. Note that during this hard-thresh-
olding, the value of DGL:F is produced, too. We see that DSF and DGL lead to models which have
approximately the same number of false-positive and false-negative edges, but the DGL is slightly
favorable. The solution of DF has the largest false positive rate (as was expected since no model
selection was done).

Second, in Fig. 6 the alternative approaches WW and RF are compared with DGL. In order to
keep a simple overview, the results for DSF are no longer shown. We see that our decomposition
approach (DGL) slightly outperforms the alternative approaches WW and RF. Keep in mind that
in addition to the advantage of our method in performance, RF does not yield an estimate for the
parameter vector and WW does so only for binary variables, whereas our method is applicable to
general multi-category variables.

Although Figs. 5 and 6 only represent one simulated data set, we observed a similar picture for
other simulation settings. The lines for DGL and DSF are always very close, with DGL being
slightly better and both methods being clearly superior to the global approaches. The reason why
Figs. 5 and 6 only display results from one dataset is that the single final models cannot be averaged
over different data sets as they have different positions on the curves for different data sets (different
numbers of true and false positives). If we average over all these values, the result is not very
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Figure 6 Comparison of DGL with WW and RF. For DGL the line builds up by thresh-
olding the b̂-coefficient where l is chosen by cross-validation. For RF, the edges with least
importance are successively eliminated and for WW, the tuning parameter l is varied. The
gray vertical line indicates the false-positive rate of DGL:F at which the true positive rates of
the other methods are compared in Table 2.

Table 2 Comparison of true positive rates of different methods at the false-positive rate of DGL:F
(indicated in Figs. 5 and 6 by vertical lines).

Mean difference p-Value (t-test)

tpr(DGL)�tpr(DSF) 0.052 0.036
tpr(DGL)�tpr(WW) 0.060 0.011
tpr(DGL)�tpr(RF) 0.013 0.256
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meaningful anymore. However, we can average the differences of true positive rates for e.g. DGL
and DSF where both methods have the same number of false positives as the solution of DGL:F
(dotted vertical line in Fig. 5). The results of such comparisons are summarized in Table 2. We see
that DGL yields a significantly (for significance level a5 0.05) higher true positive rate than the
corresponding solutions of DSF and WW. On the other hand, the comparison between the solution
of DGL and RF (at the false-positive rate of DGL:F) shows no significant difference.

5.3 Performance for estimation of cell probabilities

DGL, DSF, DF and WW yield estimates of the parameter vector b which can be immediately
transformed into estimates of cell probabilities. In this section we will compare these methods with
respect to the performance for estimating the cell probabilities. Recall that RF does not yield an
estimate of the parameter vector and is therefore not included in this comparison.

All approaches considered in this section yield the parameter vector b only up to a constant. We
need to ensure that the estimated cell probabilities add up to one. For sparse graphs, we can use the
junction tree algorithm to calculate the normalizing constant for the probabilities. For a detailed
description see Lauritzen (1996).

We compare the estimated probabilities, using cross-validation for tuning parameters and using
an expression which is up to a constant the Kullback–Leibler divergence between the estimated and
the true probability (non-normalized Kullback–Leibler divergence):

�log
Y
i

p̂
pi
i

 !
¼ �

X
i

pi log p̂i;

where p̂ is the estimated probability vector and p denotes the true probability vector. As this sum
requires the calculation of 240E1012 components of p̂ and p and the summation of the two huge
vectors, this is computationally not feasible. To avoid this problem, we calculate an empirical
version by simulating one million observations from the graph in Fig. 3 and summing over these 106

values only.
The results are summarized in Table 3. We see that DGL:F, DSF:AIC and DF perform similarly

and WW:MIN is clearly inferior. For WW:CV, which is shown in Fig. 6, the normalizing constant
could not be computed. This is because the CV-optimal solution almost corresponds to the full
model and thus, the junction tree algorithm is not feasible. The maximal computable solutions of
WW still correspond to very large models, which on average involve 22.05% of all possible edges,
compared with 17.01% for DGL:F and 11.66% for the true graph.

Table 4 provides further insight about significance of the differences in Table 3. All methods are
compared against each other using a paired t-test for the empirical (non-normalized) Kullback–
Leibler divergences and the p-values are reported. One can see that there is no significant
(at significance level a5 0.05) difference for the decomposition approaches, whereas they are all

Table 3 Mean empirical (non-normalized) Kullback–Leibler divergence between true and
estimated probabilities.a)

Mean SD

DGL:F 4.0080 0.0204
DSF:AIC 4.0242 0.0217
DF 4.0223 0.0099
WW:MIN 4.3360 0.1094

a) The p-values for all the pairwise comparisons are given in Table 4.
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superior to WW. This provides evidence that the decomposition of the model is more crucial than
the effective choice of the log–linear model fitting procedure afterward.

Furthermore, it is worthwhile stating that the thresholding of the coefficients (Section 3.3) does
hardly influence the likelihood as shown in Fig. 7. On average, 35% of the coefficients are thre-
sholded as indicated by the dotted line. However, for these threshold–optimal solutions, calculated
as described in Section 3.3, the empirical (non-normalized) Kullback–Leibler divergence is
approximately the same as for the nonthresholded model.

6 Application to Tissue Microarray Data

6.1 Tissue Microarray technology

The central motivation that led to this work was to fit a graphical model to discrete expression levels
of biomarkers resulting from Tissue Microarray (TMA) experiments. TMA technology allows rapid
visualization of molecular targets in thousands of tissues at a time, either at DNA, RNA or at
protein level. TMAs are composed of hundreds of tissue sections from different patients arrayed on
a single glass slide. With the use of immunohistochemical staining, they provide a high-throughput
method to analyze potential biomarkers on large patient samples. The assessment of the expression
level of a biomarker is usually performed by the pathologist on a categorical scale: expressed/not
expressed, or the level of expression.

TMAs are powerful for validation and extension of findings obtained from genomic surveys such
as cDNA microarrays. cDNA microarrays are useful to analyze a huge number of genes, e.g. a

Table 4 All possible pairwise comparisons between models: p-values of a paired t-test for the
equality of (non-normalized) Kullback–Leibler divergence.

DSF:AIC DF WW:MIN

DGL:F 0.1030 0.0677 4.7� 10�6

DSF:AIC – 0.8080 6.0� 10�6

DF – – 7.5� 10�6
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Figure 7 Mean empirical (non-normalized) Kullback–Leibler distance between true and
estimated probability in dependence of the percentage of thresholded coefficients. The vertical
line indicates the average of percentages of thresholded coefficients using the thresholding rule
from Section 3.3.
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couple of thousands in one specimen at a time. In contrast, TMAs are applicable to the analysis of
one target at a time, denoted as biomarker, but in up to 1000 tissues on each slide.

The analysis of the interaction pattern of these biomarkers and in particular the estimation of
the graphical model associated with the underlying discrete random variables is of bio-medical
importance. These graph-based patterns can deliver valuable insight into the underlying biology. A
detailed description of the TMA technology can be found in Kallioniemi et al. (2001).

6.2 Estimation of graphical model

Our TMA data set consists of TMA measurements from renal cell carcinoma patients. We have
information from 1116 patients, 831 thereof having a clear cell carcinoma tumor, which is the tumor of
interest here. We have identified 18 biomarkers from which we have information for the majority of the
patients. Among 831 ccRCC (clear cell renal cell carcinoma) observations, 527 observations are com-
plete with all biomarker measurements available. For 87 observations one measurement was missing, 64
and 30 observations had 2 or 3 missing values, respectively. In total, 123 observations contained more
than 3 missing values and were ignored in the analysis. For the observations with 1, 2 or 3 missing
values, multiple imputation was applied using the R package mice (Van Buuren and Oudshoorn,
2007).

Using DGL:F, we estimated a graphical model to the TMA data. The resulting graph is shown in
Fig. 8. The thickness of the line corresponds to the ‘2-norm of the respective interaction coefficients.
Two biomarkers connected by a thick line, as is the case for nuclear p27 and cytoplasmic p27,
indicates a strong interaction. The kinase inhibitor p27 exhibits its function in the cell nucleus and
therefore recent studies have focused on nuclear p27 expression. Our graphical log–linear model,
however, shows a tight association between nuclear and cytoplasmic expression of p27. Therefore, it
can be speculated that both nuclear and cytoplasmic presence is required to ensure proper function
of p27. It has been shown that in renal tumors, the von Hippel–Lindau protein (VHL protein) is
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Figure 8 Estimated graphical model from TMA data.
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upregulating the expression of the tumor suppressor p27 (Osipov et al., 2002). The graphical model
here provides supporting evidence that VHL indeed regulates p27, and the corresponding b-coef-
ficient (not displayed here) implies that it is a positive regulation.

Furthermore, it has been shown in vitro by Roe et al. (2006) that VHL increases p53 expression
which is a tumor suppressor. In our model it seems as if p53 is conditionally independent of VHL.
Indeed, it has long been known that p53 activates expression of p21 (e.g. Kim, 1997). This de-
pendence is displayed very clearly in the graphical model. We can therefore view the p53–p21
pathway with its strong interaction as one unit and it is therefore very reasonable that nuclear VHL
interacts with p53. As nuclear VHL is only expressed in 14% of the tumors, and it further makes
sense from a biological point of view that the strong interaction between VHL and the p21–p53
pathway is in fact a causal relation, we can indeed speculate that the loss of VHL deactivates the
tumor suppressor p53 which in turn favors tumor development.

CA9, Glut1 and Cyclin D1 are all hypoxia-inducible transcription factor (HIF) target genes
(Wenger, Stiehl, and Camenisch, 2005). HIF has not been measured but we can clearly see that all
these HIF targets are connected by a rather thick line implying that they might react to a common
gene. In addition, CD10 strongly interacts with Glut1 a known HIF target which suggests that
CD10 might also be regulated by HIF. The reduction of E-Cadherin expression has been found to
be negatively correlated with HIF expression in Imai et al. (2003). This is supported by a strong
negative interaction between E-Cadherin and CA9 which is positively correlated with HIF
expression (not measured).

A lot of supporting evidence has been delivered for already existing theories. However, two
strong interactions, one between PAX2 and nuclear p21 and the other between PAX2 and Cyclin
D1 cannot be immediately explained. PAX2 is absent in normal renal tubular epithelial cells but
expressed in many clear cell renal cell carcinoma tumors (see Mazal et al., 2005). Its frequent
expression together with the strong interaction with the p21–p53 pathway, Cyclin D1 and PTEN
make PAX2 an interesting and possibly important molecular parameter whose exact function and
role still remains to be elucidated.

A more detailed discussion of bio-medical implications is given in Dahinden et al. (2010).

7 Discussion

We have proposed a decomposition approach to estimating log–linear models for large contingency
tables and for fitting discrete graphical models. In a simulation study, we have compared various
algorithms and concluded that our procedures are very competitive. It seems that the decomposition
of the problem is much more crucial than the choice of the algorithm to handle the smaller
decomposed data sets: no matter whether DGL, DSF or DF is applied, the resulting models are
superior to nondecomposition approaches such as WW and RF for model selection as well as for
probability or parameter estimation.

Maybe most important is the computational feasibility of our procedure for large contingency
tables. The proposed method is scalable to orders of realistic complexity (e.g. dozens up to hundreds
of factors) where most or all other existing algorithms become infeasible. In particular, our pro-
cedure is not only capable of handling binary data but can easily deal with factors with more levels.
Furthermore, with DGL one does not risk the nonexistence of the parameter estimator in case of
sampling zeroes in the contingency table as this might arise when using the MLE. Our procedure
not only fits a graphical model but also yields an estimation of the parameter vector b in a log–linear
model and therefore of the cell probabilities. All this is achieved with good performance in com-
parison to other methods. As a drawback, if the true underlying graph has a clique which is larger
than our decomposition size, then some of the edges in the graph are necessarily lost.

We apply the proposed approach to a problem in molecular biology and we find supporting
evidence for dependencies between biomarkers which have already been found to exist in vitro or
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some even in renal tumors, the domain of our application. However, some strong interactions
cannot be explained immediately and therefore, new biological hypotheses arise.

The R package LLdecomp for computing a decomposition as described in this article
(i.e. recursively finding cliques and separators) is available at http://www.r-project.org.
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