Discoveries at Risk

Nicolai Meinshausen and Peter Bithlmann
Seminar fiir Statistik, ETH Ziirich, Switzerland

May 9, 2003

Abstract

When testing multiple hypotheses simultaneously, the false discovery rate (FDR)
measures the expected proportion of falsely rejected hypothesis. The true amount
of false discoveries, however, is very often much larger than indicated by FDR. We
propose the new Discoveries-at-Risk approach (DaR) to multiple hypotheses testing,
a generalization of the family-wise error rate (FWER). FWER can still be controlled,
if desired, but more powerful testing is possible by allowing a certain fraction of false
discoveries. This is in common with the FDR-approach to multiple hypotheses testing.
The risk of underestimating the true proportion of false discoveries is, however, tightly
controlled in the Discoveries-at-Risk approach.

Although DaR often pays a price in terms of power for such tighter control of
underestimation compared to FDR, we present a surprising result saying that our new
DaR approach offers both tighter control and more power than FDR when controlling
at low error rates.

The proposed method of DaR-control is applied to simulated and microarray data
and compared to FWER- and FDR- controlling procedures.

1 Introduction

With growing amount of available data in diverse fields, notably biology, simultaneous
testing of multiple hypotheses has become increasingly popular. It is misleading to test
each of possibly thousands of hypotheses individually and declare those with a sufficiently
low p-value as “significant findings”. A large proportion of these “discoveries” might be due
to falsely rejected null hypotheses, see e.g. Soric (1989).

There has been growing interest recently to develop appropriate type I error rates in multiple
testing situations. The two most prominent examples are the family-wise error rate, see
e.g. Holm (1979) or Westfall and Young (1993), and the false discovery rate, introduced by
Benjamini and Hochberg (1995).

1.1 Preliminaries

In a general multiple testing situation, we assume that there are m hypotheses to test, myg
of which are null hypotheses and m; = m — mg that fulfill the alternative hypothesis.

Each hypothesis is rejected if the p-value of the corresponding test is in the rejection region
' = [0,7]. The total number of rejected hypotheses is a random variable and denoted by



accepted | rejected
null true U \% myg
alternative true T S mi
W R m

Table 1: Notation. Number of correctly and falsely accepted and rejected hypotheses.

R. The realization of this random variable is the observed number of rejections R,s. The
total number of rejected null hypotheses is denoted by V. Table 1 below summarizes the
notation. Whenever necessary, dependence upon the rejection region I' = [0, 4] is indicated
by V(7), R(7) etc.

1.2 Type I error rates

The family-wise error rate (FWER) is defined as the probability of making at least one
wrong rejection:
FWER = P[V > 0].

The FWER measures thus the risk that one or more null hypotheses are falsely rejected.
Control of FWER is often criticized for being too conservative, resulting in low power. In
fact, the power vanishes for mg — oo under fairly general assumptions as shown in section
2.

Often one does not care about some false rejections as long as they are rare compared to
the total number of rejections. An interesting quantity is thus the proportion of falsely
rejected null hypotheses among all rejections. The false discovery rate (FDR), proposed by
Benjamini and Hochberg (1995), is the expectation of this ratio. It is defined as

. . _ [ V/IR ifR>0

FDR = E[Q)] with @ = { 0 ifR=0 (1)
False discoveries are “permitted” as long as they are rare compared to the number of
correctly rejected hypotheses.

It has to be noted, though, that FDR measures only the ezpected proportion of falsely
rejected hypotheses. FDR contains no information about the variance or distribution of
this quantity. The variance can be quite high, in particular for dependent test statistics. A
serious, yet mostly ignored shortcoming of FDR is the high risk that the actual proportion
of falsely rejected hypotheses is much larger than suggested by FDR.

1.3 QOutline

In section 2 the new and flexible framework of “Discoveries-at-Risk” is introduced as a
generalization of the family-wise error rate. FWER can still be controlled in the new
approach, if desired, but more powerful testing is possible by allowing a certain fraction
of false discoveries. This is in common with the FDR-approach to multiple hypotheses
testing. The risk of underestimating the true proportion of false discoveries is, however,
tightly controlled in the Discoveries-at-Risk approach.



The relations to the family-wise error rate and the false discovery rate are shown in sections
2.3 and 2.4. Section 2 contains most of the theoretical arguments why DaR should often be
preferred over FWER and FDR. In particular, we present a surprising result saying that in
comparison to FDR, our new DaR approach offers both tighter control of underestimating
the actual amount of false discoveries as well as more power when controlling at low error
rates.

A possible estimate of DaR, which is constructive and bounds DaR from above, is presented
in section 3.

Last, we show with simulated data in section 4 that FDR indeed frequently underestimates
the true proportion of false discoveries. We then apply Discoveries-at-Risk control to the
problem of detecting differentially expressed genes from publicly available microarray data
and compare the results to various FWER- and FDR- controlling procedures.

2 Discoveries-at-Risk

2.1 Discoveries-at-Risk for fixed Rejection Regions

In a typical multiple testing situation we can approximate or at least bound from above
the distribution of falsely rejected hypotheses V. To assess the significance of the rejections
made, one could calculate the probability that the number of false rejections is at least as
large as the actually observed number of rejections,

PV > Rups)-

If this probability is substantial, one cannot even exclude the possibility that all rejections
are false. In most multiple testing problems, however, this probability is very small. In
other words, it is very unlikely that false rejections account for all rejections made.

On the other hand, it is often very likely that some of the true null hypotheses are falsely
rejected. In other words, the value of

PV > 0],

or, equivalently, the value of the family-wise error rate is often large.
As an intermediate approach we are interested in finding the smallest proportion £ of all
rejections R,p5, such that

P[V > ﬂRobs] (2)

is bounded by some small «. It is then very unlikely that false rejections account for more
than this fraction of all rejections made.

Definition 1 (Discoveries-at-Risk) Let g1, = q1_q(7) be the (1-a)-quantile of the dis-
tribution of V(7). Discoveries-at-Risk at level a is defined as

DaR®(7) = { - (/R() Z R>0

The dependence on the choice of the rejection region [0,~] is omitted where possible for
sake of notational simplicity.



Discoveries-at-Risk! is a random variable. Its realized value, for a given dataset, is then of
the form in (2).

Proposition 1 The realized value of DaR® is, for a positive number of rejections, equal to

mgn{ﬂ : P[V > BRos) < a}.

A proof is given in the Appendix.

The proportion of false discoveries is larger than the Discoveries-at-Risk value only with
probability «. In other words, the interval [0, DaR®] is a (1-a)-confidence interval for the
proportion of false rejections.

Proposition 2 In case R is strictly positive,
P[V/R > DaR"] < a.
In case R is not strictly positive, let Q be defined as in (1). Then P[Q > DaR%] < a.

A proof is given in the Appendix.

The risk of underestimating the true proportion of false discoveries can thus be limited with
Discoveries-at-Risk to any desired value. This is in sharp contrast to the false discovery
rate, where such underestimation occurs frequently and cannot be controlled.

2.2 Controlling Discoveries-at-Risk.

Instead of working with a fixed rejection region and estimating the Discoveries-at-Risk value
it might be of interest to reject as many hypotheses as possible while keeping the percentage
of discoveries that are “at risk” below a certain value. In other words, one might want to
find the largest possible rejection region such that the Discoveries-at-Risk value DaR® does
not exceed a certain threshold.

Definition 2 (Rejection Region) The rejection region 'Y, z(8) = [0,7%.r(8)] is the
largest rejection region such that the Discoveries-at-Risk value is controlled at value 3:

YDar(B) = vrg[gﬁ]{v : DaR®(v) < B}.

One can limit the percentage of discoveries at risk to any desired value through the choice
of 8. See e.g. Benjamini and Hochberg (1995), Storey et al. (2002) or Westfall and Young
(1993) for similar approaches to FDR- and FWER-control respectively.

2.3 The relation to FWER

The Discoveries-at-Risk approach can be viewed as a generalization of the family-wise error
rate (FWER).
Controlling the family-wise error rate at level o ensures that?

P[V/R>0]<a. (3)

I'Due to similar underlying ideas, the term “Discoveries-at-Risk” is intentionally chosen similar to Value-
at-Risk, a well established method for financial risk management, see e.g. Duffie and Pan (1997).

2R is assumed to be strictly positive. If R is not strictly positive, (3) and (4) still hold if V/R is replaced
by Q, as defined in (1).



Controlling DaR® at value ( ensures on the other hand that
P[V/R> ] < . (4)

Controlling DaR® at the value 8 = 0 is equivalent to controlling FWER at level a. Equally
many or more rejections occur if a small fraction of false rejections is accepted and DaR*
is controlled at some value 3 > 0.

Proposition 3 Let I'rwrr = [0,7$wrr] be the rejection region such that FWER is con-
trolled at level o (analogously to Definition 2). The rejection region I'par = [0,7%,5(0)] is
for any value of B at least as large as the rejection region I'rwrr = [0, Y& wer)-

Yewer = YDar(0) < YDar () vo<p<l

A proof is given in the Appendix.

In an exploratory setting this property is quite useful as sometimes control of FWER pro-
duces already sufficiently many rejections and one is certain to capture all of them when
controlling DaR® at any value 8 (which is not the case for FDR-control, see Theorem 3).
The main problem with FWER is vanishing power for large numbers of tested hypotheses.
This holds under a fairly large class of dependency structures of the test statistics, as
specified below.

Assumption 1 The dependency between the test statistics is such that
Var[V]/mé¢ — 0 formg — o0,
Var[S]/m} — 0  formy — oo.
Proposition 4 Assumption 1 is fulfilled e.g. for
1. independent test statistics

2. correlated test statistics under the condition that the correlation matriz of 1j,,cr) has
block structure and the size 1,4, of the largest block is allowed to grow but not as fast
as mo:

lmaz/mo — 0 for mg — oo.

“Block structure” is here equivalent to
Covllip,ery, Lip,er)] =0
for i,j in different blocks or partition cells of {1,...,m}
A proof is given in the Appendix.
Theorem 1 Under Assumption 1,
Yewer — 0 for mg — oo.

A proof is given in the Appendix.

The power of a FWER controlling procedure thus vanishes for large numbers of tested
hypotheses.

On the other hand, controlling DaR®* at small but strictly positive values has the important
advantage that the power does not vanish for many tested hypotheses.

We make three reasonable assumptions.



Assumption 2 For some 0 < my < 1,
mo = |_7T0mJ.

Note that the following results are valid as well if the number of true null hypotheses is e.g.
binomially distributed as in Storey et al. (2002).

Assumption 3 There exist real-valued functions Fo(vy), F1(Y), strictly positive for v > 0,
such that

E[S]/m1 — Fi(y) formq — oo, (5)
E[V]/mo¢ — Fp(y) =7 for mg — oo. (6)

The second part of Assumption 3, (6), is just included for notational convenience as it is
always fulfilled. Note that
E[V]/mo = v = Fy(7)

is indeed the cumulative distribution function of the uniformly distributed p-values under
the null hypothesis and does not depend on the choice of my.

Assume that the specific form of alternative hypotheses is completely characterized by
some vector v. The first part of Assumption 3, (5), is then for example fulfilled if v is
independently drawn for each alternative hypothesis from some underlying distribution.
Assumptions 1 and 3 together only imply convergence in probability of S/my and V/my to
Fy and Fy respectively. The assumptions are thus weaker than the assumption of almost
sure pointwise convergence in Storey et al. (2002).

Assumption 4 Fy and Fy are as specified in Assumption 3 and

Fy(v)
Fi(v)

For Assumption 4 to be valid, the function F; has to vanish more slowly for v — 0 than
Fy(y) = 7, the cumulative distribution function of uniformly distributed p-values under the
alternative hypothesis. Note that, under Assumption 2,

—0 fory — 0.

Fo(v) =c- lim %

Fi(y) m—oo E[S]’

with ¢ = 71 /7. Assumption 4 thus essentially states that we expect to find an overwhelming
majority of true alternative hypotheses at infinitesimal small p-values.

Theorem 2 Under Assumptions 1-4, there exists for every positive value of B a rejection
region T' = [0,v] with v > 0 such that for large values of m, [0,73,r(08)] contains T' with
arbitrarily high probability. That is,

V3>03y>0: P3.r(B)>7] =1 form — .

A proof is given in the Appendix.
Note that Theorem 1 is still valid under the same assumptions.



The advantage of allowing even a tiny percentage of false discoveries (by controlling DaR®
at strictly positive values () is thus that the power of the resulting procedure does not
vanish for large numbers of tested hypotheses.

Discoveries-at-Risk is hence a more flexible approach to multiple testing than FWER. The
family-wise error rate can still be controlled in the Discoveries-at-Risk framework. But, if
required, more powerful testing is possible by allowing a certain proportion 8 > 0 of false
rejections.

2.4 The relation to FDR

There is a great risk that FDR underestimates the actual amount of false discoveries. The
fact that Discoveries-at-Risk is capable of limiting this risk to any desired and typically low
value a was shown in Proposition 2.

One might object, though, that there is “no free lunch” and a price has to be paid in order
to achieve this better protection. This “price” might e.g. consist of fewer rejections if both
DaR®* and FDR are controlled at the same value 8. This is often true, though the difference
was never large in the data we have seen, see also section 4.

Surprisingly, also the opposite behaviour regarding rejection power can occur. No rejections
can be made if FDR is controlled at sufficiently low values.

Theorem 3 Let 'rpr = [0, vrpor(0)] be the rejection region such that FDR is controlled at
value 3. Not a single p-value P;, i = 1,...,m is in the rejection region T ppr = [0, vrpr(8)]
if B is smaller than a strictly positive random variable By. That is

3o : min {Pi} ¢ [0,7rpr(B)] VB < o
A proof is given in the Appendix.
Assume that control of FWER at level a produces r > 0 rejections in a given dataset. If r is
small, control of FDR might be interesting as false rejections are allowed and, hence, more
rejections could be expected for control of FDR at some positive error rate than for control
of FWER. But, maybe surprisingly, control of FDR will lead to zero rejections if a very
low error rate is chosen; see Theorem 3. This cannot happen with control of DaR*. For
any error rate (including zero), there will be at least r rejections, as argued in Proposition
3. Thus DaR® is more powerful than FDR when controlling at very low error rates. See
section 4 for examples.
For very large numbers of tested hypotheses, however, it can be shown that both DaR® and
FDR give similar results.

Theorem 4 For any fized rejection region, DaR* converges in probability to FDR under
Assumptions 1-3,
DaR* X5 FDR for m — oo.

A proof is given in the Appendix.

It has to be noted, though, that even for several thousands of tested hypotheses the difference
between DaR® and FDR can still be large, particularly in case of dependent tests.

For larger rejection regions and dependent test statistics, the distribution of V/R is usually
spread out (see section 4 for numerical examples) and the proportion of false rejections is
often substantially higher than indicated by FDR. DaR® is typically larger than FDR in
such cases as it protects against frequent underestimation of V/R.



2.5 The role of the level a and value

It might be confusing at first that two “error rates”, namely a and 3, have to be specified
for control of DaR®.

The error rate 8 measures the proportion of false rejections. The value of 3 thus serves
as the maximal value of DaR® or FDR that one is willing to accept. Control of FWER
implicitly corresponds to the choice 3 = 0 in DaR®, as shown in section 2.3.

The true proportion of false discoveries is, however, not bounded by 8. The probability that
the true proportion of false discoveries is larger than g3 is measured by a. This probability
can be controlled at suitable low values in either the DaR®- or FWER-approach to multiple
testing. As mentioned above and illustrated in section 4, this second error rate a cannot
be controlled and is usually large in the FDR-approach to multiple testing.

Our explicit notation should help to distinguish between these two different error rates.

3 Estimating Discoveries-at-Risk

First we propose an estimate of Discoveries-at-Risk for a fixed rejection region. Second, it
is shown how this estimate can be used for control of Discoveries-at-Risk.

3.1 Estimating Discoveries-at-Risk for a fixed rejection region

By definition, the value of DaR® is given by the distribution of V. We estimate the distri-
bution of V' under the complete null hypothesis, assuming that all hypotheses are true null
hypotheses. A similar approach was taken in Benjamini and Hochberg (1995) for control of
the false discovery rate or in Westfall and Young (1993) for single-step control of FWER.

Definition 3 Let P¢ be the random vector of p-values under the complete null hypothesis.
The random variable V¢ is defined as the number of rejected hypotheses under the complete
null hypothesis,

m

Ve(y) =Y lpsery-

i=1
Definition 4 Let ¢§__(v) be the (1-o)-quantile of the distribution of V(). DaR?% is

estimated as
S h% ) di—a(V/R(y) ifR(y)>0
Dak (v) = { 0 ifR(v) =0

The proposed estimate provides strong control over DaR® in that it is larger than the true
value of DaR“.

Theorem 5 It holds for all possible realizations that
Dak" (y) > DaR* ().

Furthermore, for ally >0, P[V/R > ljm\Ra] <a.

A proof is given in the Appendix.



3.2 Estimating Rejection Regions

The estimate of the rejection region follows immediately by replacing in Definition 2 the
—_—
value of DaR® by the proposed estimate DaR .

Definition 5 We estimate the rejection region I' = [0,75,z(8)] by:

Then(0) = max {7: Dok’ () < B}

Corollary 1 The estimated rejection region is conservative. For all possible realizations it
holds that

a%aR(ﬂ) S V%aR(ﬂ) Vi<a<l1 5/6 Z 0.

This is a direct consequence of Definition 5 and Theorem 5.

As stated above, controlling DaR* at value 8 = 0 is equivalent to controlling FWER at
level . It is thus of interest to compare the power of controlling DaR®* at value 8 =0 (as
proposed in Definition 5) to other FWER-controlling procedures.

Theorem 6 Controlling the Discoveries-at-Risk value with the proposed estimate DaR’ at
B = 0 achieves the same power (the same number of rejections) for controlling FWER as
the single-step minP controlling procedure of Westfall and Young (1993).

A proof is given in the Appendix.

Controlling DaR® at value 8 = 0 is thus a slightly less powerful FWER-controlling proce-
dure than the step-down method of Westfall and Young (1993). We emphasize that this is
just a property of the proposed estimate of DaR®. Finding less conservative estimates of
DaR* is clearly desirable. We note, though, that almost no difference in power is visible
between the two mentioned FWER-controlling procedures in the application of detecting
differential gene expression from microarray data, see the following section.

4 Numerical Studies

We demonstrate the usefulness of the Discoveries-at-Risk framework both with simulated
and real data and compare results to existing methods.

4.1 Simulated Data

A two-class problem with 50 different observations Z¥ € R™, k =1,...,50, is constructed
with m = 5000:

class 1: Z',... ,Z% i.i.d. ~ N(0,X)
class 2: Z2%,...,Z°° i4.d. ~ N(u, 2),

. 0 ied
with “i={1 z'eA(l)’

where Ag is a random subset of {1,...,m} with cardinality |Ag| = 4500 and A; is its
complement. Using the two-sample Wilcoxon test at individual significance level 5%, we
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Figure 1: The distribution of V/R for | = 1, corresponding to independent test statistics (left),
and block dependent test statistics with block-size [ = 500 (right).

test for each component 4, i = 1,...,m whether the distribution of Z},...,Z?5 is different
from the distribution of Z%¢, ..., Z°.

The distribution is, in reality, the same for 4500 hypotheses as p; = 0 if the i-th null
hypothesis is true. The distribution is shifted between the two classes by setting p; = 1 for
the remaining 500 components.

We assume that the dependency between the components from different hypotheses has
block-structure, see Proposition 4. The correlation between hypotheses within one block is
moderate at 0.25. All blocks have equal size I, chosen for notational simplicity such that
m is a multiple of I. We denote the set of hypotheses in one block by L, k =1,...,m/L.
Then

1 i=7
;=4 025 i#j, Ik:i,j €Ly
0 otherwise

In Figure 1, the histograms of the proportion V/R of false rejections® are shown for 10’000
simulations. The variance of V/R is clearly larger for positively correlated test statistics
than for independent test statistics.

In Table 2 the probability of underestimating V/R with either FDR or DaR%% is shown.
While V/R is larger than DaR%®® in less than 5% of all simulations (as argued in Proposition
2), V/R is larger than FDR in between one-third and one-half of all cases. The expected
shortfall is largest for dependent test statistics: if V/R is e.g. larger than FDR in the case
of I = 5000, it is larger on average by 138%,

V/R

E[WW/R > FDR| = 2.38.

3There has never been a problem with the quotient V/R, as in all simulations the number of rejections
has been strictly positive. For a more formal, but for practical purposes equivalent, definition one might
use the definition Q as in (1).
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I=1 1=500 I=>5000
P[V/R > FDR] | 4997% 432%  32.2%
P[V/R > DaR® | 4.6%  4.7% 4.8%
E[FDR/DaR"] 0.81 0.46 0.20

Table 2: The risk (in percent) of underestimating V/R with FDR and DaR%%.

=1 1=500 1=25000
——bh

P[V/R>FDR | |279% 351%  23.3%
——~st

P[V/R>FDR | |556% 465%  31.5%

_——0.05
P[V/R>DaR | 0%  1.9% 4.0%

——bh ——0.05
E[FDR /DaR || 0.69 0.45 0.26

— st ———0.05
E[FDR” /DaR ] | 0.62 0.41 0.24

Table 3: The risk (in percent) of underestimating V/R with the Benjamini-Hochberg estimate

—bh —— st —0.05
FDR of FDR, the Storey estimate FDR® and the proposed estimate DaR  of the Discoveries-
at-Risk value DaR% 5.

In Table 3 it can be seen that the proportion V/R of false rejections is frequently underesti-
mated not only by the true value of FDR but as well by estimates of FDR. This probability
is shown for the Benjamini-Hochberg estimate of FDR,

_—_Dbh
FDR =

(7)

obs

and the Storey-estimate fDT%St of FDR, setting A = 0.5. For details see Storey (2002).
Although the latter estimate is on average larger than the true value of FDR, it achieves
even less protection against underestimation of V/R than the true value of FDR (at least
for independent test statistics). This is due to the fact that this estimate is negatively
correlated with V/R.

The proposed estimate of DaR® on the other hand achieves the argued protection against
underestimation of V/R (see Theorem 5).

It has thus been demonstrated that the risk of underestimating V/R with FDR is very
large. This risk can easily be controlled at any desirable value with the Discoveries-at-Risk
approach.

4.2 Detection of differential gene expression in microarray data

With microarray experiments it is possible to monitor expression levels in cells for several
thousands of genes simultaneously (Alon et al. (1999); Golub et al. (1999); Ross et al.
(2000)).

A common aim is to identify genes that are differentially expressed, that is associated with
a variable of interest, such as tumour subtypes. We looked at three publicly available
datasets, where the variable is a binary class label, distinguishing either between normal

11
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Figure 2: Various error rates of false discoveries as a function of the number Rps of rejected
hypotheses: (a, ‘) the Benjamini-Hochberg estimate of FDR, (b,'+’) the estimate of DaR%?®,
(c,‘A\’) the estimate of DaR%%® and (d,‘...") the estimate of DaR%% under assumed independence
between the test statistics. The number of hypotheses that can be rejected when controlling FWER
at level @ = 0.05 is indicated by a vertical line and corresponds to the region where the estimate
of DaR%% is identically zero. The data are taken from leukemia (left), colon (middle) and breast
cancer studies (right).

and tumourous colon tissue (Alon et al. (1999)), two subtypes of leukemia (Golub et al.
(1999)) or clinical outcome for breast cancer (van’t Veer et al. (2002)).

Preprocessing of the data is in each case performed as suggested by the authors. For each
gene we test if the expression levels are stochastically larger for one or the other class using
the Wilcoxon-test.

Under the complete null hypothesis, the distribution of the number of falsely rejected hy-
potheses is obtained by permutations of the class labels, see Dudoit et al. (2000) and Ge
et al. (2003). This yields the distribution of V¢ (see section 3.1), conditional on the observed
expression matrix and conditional on the number of members in each class. The number of
randomly sampled permutations is restricted here to 20’000 for each dataset.

Comparison with FWER. Controlling the estimate of DaR® at value 8 = 0 was shown in
Theorem 6 to be equivalent to the single-step resampling based F WER-controlling procedure
of Westfall and Young (1993). The resulting number of rejections are shown in the first
column of Table 4 and are indicated by a vertical line in Figure 2.

We compare the power to other FWER-controlling procedures. The number of possible
rejections of the arguably most powerful method for strong control of FWER, the step-
down procedure by Westfall and Young (1993), is shown in the second column of Table
4. Furthermore we give in the third column the number of rejections under the step-down
FWER-controlling procedure of Holm (1979) and, in the fourth column, the number of
rejections when Bonferronis correction is applied. A comprehensive review of these methods
in the context of testing differential gene expression in microarray data can be found in Ge
et al. (2003).

The proposed DaR®-controlling procedure achieves on all three datasets almost the same
power as the resampling-based step-down FWER-controlling procedure of Westfall and
Young. Less powerful are Holm’s step-down method and Bonferronis correction, the best
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R(7%,2(0)) W.and. Holm  Bonferroni
step-down  step-down correction
leukemia «a = 0.01 196 196 193 191
a=0.05 281 288 269 266
a=0.1 332 339 312 307
colon «a=0.01 36 36 32 32
a = 0.05 68 68 55 55
a=0.1 90 92 69 69
breast « = 0.01 1 1 0 0
a = 0.05 3 3 2 2
a=0.1 3 3 3 3

Table 4: Number of rejected hypotheses for various FWER-controlling procedures and levels a.

R(7%ez(8)) Vpar(B) R(A#HHr(B)) R(EFHR(B))
leukemia B =0 281 501 0 0
B8 =0.01 509 831 701 855
B =0.05 811 1182 1093 1360
B8 =01 1025 1407 1346 1694
colon (3=0 68 203 0 0
8 =0.01 100 274 194 241
8 =0.05 194 460 373 472
B8 =01 253 563 492 641
breast 8 =0 3 20 0 0
8 =0.01 3 20 0 0
B =0.05 3 123 3 3
=01 3 344 28 323

Table 5: Number of rejections if Discoveries-at-Risk and the false discovery rate are controlled
at various values (3.

known but least powerful of all multiple testing procedures. The latter two methods do not
take the dependency between the test statistics properly into account.

Comparison with FDR. The number of rejected hypotheses for DaR*-control and FDR-
control at various values of 3 is shown in Table 5. More specifically, the number of rejections
is shown for control of the estimate of DaR®% in the first and DaR® in the second column.
The number of rejections for FDR-control with the Benjamini-Hochberg estimate (7) of FDR
is shown in the third and with the Storey-estimate of FDR in the fourth column (setting
A = 0.5, see Storey (2002)).

It can be observed in Table 5 that the number of rejected hypotheses vanishes if FDR is
controlled at small values 3 (as argued already in Theorem 3). Comparing with Table 4,
it can furthermore be seen that controlling DaR® at any value 8 > 0 leads to at least as
many rejections as controlling FWER at level a (see as well Proposition 3).

Controlling at the positive but small value g8 = 0.01, more rejections occurred for control
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of DaR%% than for control of FDR in the most difficult data (breast cancer), but less in
the easier cases of leukemia and colon cancer data. For larger values of 3, control of FDR
leads typically to more rejections than control of DaR%%. Put differently, the estimate of
DaR%% is greater than the estimate of FDR for larger rejection regions. This is mostly
due, however, to the high degree of dependency between the test statistics and the resulting
high variance of the number of false rejections. For comparison, the estimate of DaR%%
under assumed independence between the test statistics is shown in Figure 2. Hence, as
already argued by Figure 1 and Tables 2 and 3, the power of FDR is likely to be caused by
not properly protecting against type I errors.

5 Conclusions

Controlling the Discoveries-at-Risk value DaR® is a new and flexible tool in multiple hy-
pothesis testing. It offers substantial advantages compared to the common control of the
family-wise error rate (FWER) or the false discovery rate (FDR).

If desired, FWER can still be controlled in the Discoveries-at-Risk framework but more
powerful procedures are possible by allowing a certain fraction of false discoveries. This
is in common with the false discovery rate. But the true amount of false discoveries is
often very much larger than indicated by FDR. This shortcoming of FDR is corrected in
the Discoveries-at-Risk approach. Surprisingly, besides the tight control of underestimating
the amount of false discoveries, the DaR® approach has even more power than FDR when
controlling at very low error rates.

The new Discoveries-at-Risk approach to multiple hypotheses testing thus combines the
advantages of both the false discovery and family-wise error rate while avoiding poor power
(the major problem with FWER) on the one hand and low protection against underestima-
tion of the true amount of false discoveries (as with FDR) on the other hand.

References

Alon, U., N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. Levine (1999).
Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays. Cell Biology 96, 6745-6750.

Benjamini, Y. and Y. Hochberg (1995). Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society, Series
B 57, 289-300.

Dudoit, S., Y. H. Yang, M. J. Callow, and T. P. Speed (2000). Statistical methods for
identifying differentially expressed genes in replicated cDNA microarray experiments.
Statistica Sinica 12(1), 111-139.

Duffie, D. and J. Pan (1997). An overview of value at risk. Journal of Derivatives, 7-49.

Ge, Y., S. Dudoit, and T. Speed (2003). Resampling-based multiple testing for microar-
ray data analysis. Technical report, Department of Statistics, University of California,
Berkeley.

14



Golub, T. R., D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller,
M. L. Loh, J. R. Downing, M. A. Caliguri, C. D. Bloomfield, and E. S. Lander (1999).
Molecular classification of cancer: class discovery and class prediction by gene expression
monitoring. Science 286, 531-537.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics 6, 65-70.

Ross, D. T., U. Scherf, M. B. Eisen, C. M. Perou, C. Rees, P. Spellman, V. Iyer, S. S.
Jeffrey, M. van der Rijn, M. Waltham, A. Pergamenschikov, J. C. F. Lee, D. Lashkari,
D. Shalon, T. Myers, J. Weinstein, D. Botstein, and P. O. Brown (2000). Systematic
variation in gene expression patterns in human cancer cell lines. Nature Genetics 24,
227-234.

Soric, B. (1989). Statistical “discoveries” and effect-size estimation. Journal of The Amer-
ican Statistical Association 84(406), 608—610.

Storey, J. D. (2002). A direct approach to false discovery rates. J. R. Statist. Soc. B 64(3),
479-498.

Storey, J. D., J. E. Taylor, and D. Siegmund (2002). A unified estimation approach to
false discovery rates. Technical report, Department of Statistics, University of California,
Berkeley.

van’t Veer, L. J., H. Dal, M. J. van der Vijver, Y. D. He, A. A. M. Hart, M. Mao, H. L. Pe-
terse, K. van der Kooy, M. J. Marton, A. T. Witteveen, G. J. Schreiber, R. M. Kerkhoven,
C. Roberts, P. S. Linsley, R. Bernards, and S. H. Friend (2002). Gene expression profiling
predicts clinical outcome of breast cancer. Nature 406, 742-747.

Westfall, P. H. and S. S. Young (1993). Resampling-based multiple testing: Ezamples and
methods for p-value adjustment. John Wiley & Sons.

6 Appendix: Proofs

Proof of Proposition 1. For a positive number of rejections R, the realization of
DaR® is equal to

DaR®

q1—a/Robs
= min{n: P[V > n] <n}/Rops

min{f : PV > BRops] < 0.

Il

Proof of Proposition 2. It suffices to show the second claim. By definition of (), equation
1),

o _ m q17a(’7)
PIR() > DaR*()] = Plpos> 5oy
PIV(Y) > ¢1—a(¥)]

Q,

|R(7) > 0] P[R(y) > 0]

IA A
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as q1—q(7) is the 1 — o quantile of V(7).

Proof of Proposition 3. Let I' = [0,7%wggr] be the rejection region for controlling
FWER at level a. Then
PV (7) > 0]

< VY < Yrwers
and P[V(y)>0] >
>

VY > YrwEr-

Hence q1_q(y) =0 for all v € T and g1—4(y) > 0 for all v ¢ T". By Definition 1,

a =0 o< ’Y%WER’
DaR*(7) { >0 v 2 Yrwer-

It then follows by Definition 2 that v%,z(0) = Y& wer-
Furthermore, by Definition 2,

7([1)(1,13(5) 2 ’Y%aR(O) Vﬂ > 0.

This completes the proof of Proposition 3.

Proof of Proposition 4. It is sufficient to show claim (b) for V. We assume for notational
simplicity that mg is a multiple of l,,4z,

Elk S N H klmaz = mo.
The variance of V' is bounded by

Var[V] < 12,,. -k =m0 - lmaz-

max

Hence
Var[V]/mg S lmaa:/mo —+0 for mg — OQ0.

Proof of Theorem 1. For any rejection region I' = [0,+], FWER is only controlled at a
given level « if it holds that
PIV() =0>1-a

For a proof of the proposition it is hence sufficient to show that for any rejection region

I'=10,7],
! PV(y)=0]—=0  for mg — oo. (8)

To show (8), some 0 < k < 1 is chosen. Then

PV (y) = (] PV (y) — mo7| = mo7]

<

< PV(y) — movy| > kmoy].
Using the Chebyshev inequality,

Var[V(v)]

PIV() = mo| > wman] € =50

Under Assumption 1 and any fixed values of y and &, the last quantity vanishes for mg — oco.
This proves (8).
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Lemma 1 Under Assumptions 1-8 it holds pointwise that

Viy)/m N woFo(y) form — oo, 9)
R(y)/m 5 mFy(y)+mFi(y)  form — oo, (10)

where Fy and Fy are defined as in Assumption 3.

Proof of Lemma 1. To prove the first claim (9), it is sufficient to show that under
Assumptions 2 and 3,
E[V()]
m

— moFo () for m — oc. (11)

Formula (9) follows then by the Chebyshev inequality and Assumption 1. But

EV(M] _ mo E[V(v)]

m m Mg
By Assumption 2,
Mo
— = 7o for m — oo.
m
Furthermore,
EV(y
V()] =7 =F().
mo

This implies (11) and hence (9).
It remains to show the second claim (10). First,
St + V(V)] _ m BISM] | mo EV()]

m m m  my m Mo

It was shown above that

mo EIV()] _

moFo () for m — oo..
m mo

Similarly, it follows by Assumptions 2 and 3 that

mi E[S()]

w1 F1 () for m — oo,
m mi

which completes the Proof of Lemma, 1.

Lemma 2 Under Assumptions 1-4, there exists a function g(vy) with the properties
v/9(y) >0 fory—0 (12)

such that it holds pointwise for all v > 0 that

P[R(v) <mg(y)] = 0 for m — oo. (13)
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Proof of Lemma 2. We claim that the function

wr o _ moFo(y) + mFi(v)
(1) = =

has the desired property. Properties (12) and (13) have to be verified.
Using Fy(y) = v and observing that m > 0 according to Assumption 2,

e 2Fy(7) 2 h(y
’Y/.q (’Y) - 71_0};10(,_)/) +ﬂ_1F1(fy) S nt Fl(7

~—

~—

By Assumption 4,
Fo(y)

Fi(y)

-0 for v — 0.

Hence
v/9*(y) =0  fory—0,

and property (12) is shown for g*.
It remains to show property (13). By Lemma 1, R(y)/m converges pointwise in probability
to 2g*(y). Hence

R(y) 2 2mg*(v) for m — oo.
Property (13) follows thus immediately for g*(v).
Proof of Theorem 2. Given 8 > 0, we show that there exists a v* > 0 such that
P[DaR*(v*)< Bl =1  form — oo. (14)

If (14) holds, then
Py3.r(B) > =1 form — oo,

and the claim is proven.
Using the Chebyshev inequality, it holds for any ¢ > 1/4/a that

P[V(y) ¢ [0,moy + cy/VarlV(y)]] < P[[V(y) —mov] > ev/Var[V()]]
<

Q.

Hence
q1-a(7) <moy + ey Var[V(y)].

By Definition 1, it follows that

parr(y) < { (rov+eV/VerlVED/RG) RO)

{ (()mv + e/ Var[V(y)])/R(v) Rgvg > 8

IA

Under Assumptions 1-4, Lemma 2 states that there exists a function g(y) with property
(12) such that
P[R(y) <mg(y)] =0  VYy>0.
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This implies that

Ve>0 Im' e N: P[—g

Using this in (15), it follows that

Ve>0 Im' eN: P[DaRa('y) < !JZY) + & Z}CZ([;;(’Y)]] >1—¢ Vm>m'. (15)

Note that the value of m’ might depend on both v and e.
As by (12), v/g(v) = 0 for v — 0, there exists a v* > 0 such that

v*/9(v*) < B/2. (16)

Given ¢ and ~*, it is possible under Assumptions 1 and 2 to choose m* > m’' such that

C—V‘/Cw[wsﬂm VmZm*.

mg(7*)
Putting this and (16) back into (15),
VB>0,e>0 Iy >0,m*eN: P[DaR*(v*) < B8] >1—¢ Vm>m*,  (17)

which proves (14) and completes thus the proof of Theorem 2.

Proof of Theorem 3. For any rejection region [0,7] with v > 0,
PlV(y)=0]< 1.

Let @ be defined as in equation (1). Then
PQ() =0] <1,

and hence E[Q(y)] > 0. The value of FDR is thus strictly positive for any non-vanishing
rejection region.
Let

Bo = FDR(v")

be the strictly positive value of the false discovery rate for the rejection region
x] — : P,
[0,7"]= [0, min {P:}],

where minj<;<,,{P;} is the minimum of all p-values. No rejections occur if FDR is con-
trolled at any value 8 < (o.
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Proof of Theorem 4. We show the Proposition in two parts. First, it is shown that

7o Fo(y)

DaR“ LN
0= TR + A0

for m — oo. (18)

Second, we show that

moFo ()
moFo(y) + mF1(7)

The claim follows from (18) and (19).
It suffices to proof the claim for strictly positive R(v) as in case R(y) =0,

FDR(v) —

for m — oc. (19)

DaR“(y) = 0 = FDR(%). (20)

For strictly positive R(7),

a;y_ @aly) 1
Dal0) = == Ry

where ¢1_4(7) is the (1-a)- quantile of V (v).
It follows directly from the first claim in Lemma 1 and Assumptions 1 and 2 that

Gi—a(y)/m — 7o for m — oo. (21)

Furthermore, it follows by Lemma 1 and Assumption 2 that
R(y)/m  mFo(y) +mFi(v)

Together with (21), (18) follows and it remains to show (19).
Now,

for m — oo.

Hence, by Lemma 1,

V(v) R 7o Fo ()

for m — oo.
R(v) moFo(v) + T F1()

As furthermore

V()
<1 vy>o0,
Bm <t Y12
it follows that Vi) Fo()
9 To Loy
E — for m — oo.
6! 7 MM+ mEG)

This proves (19) and completes the proof of Theorem 4.
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Proof of Theorem 5. Let h; be equal to Hy if the i-th hypothesis is a null hypothesis.
If h; = Hy, P§{ = P; by definition of P{. Hence

V(y) = Z Ipier < Zl[PfeF] =V(y).
hi=Ho =t
Therefore
P[V(y)>k] <P[V¢(y) >k]  VkeN,y>0.
and

4 () = q-aly) VYy>0.
Hence, for all possible realizations,

DaR () > DaR*(y) ¥~ > 0. (22)

The second claim follows directly from (22) and Proposition 2.

Proof of Theorem 6. Let p(;) be the ordered realizations of unadjusted p-values P; in
a multiple testing situation with

P1) <Pe) <-.- < Pm)-

Let p(;), i = 1,...,m be the corresponding single-step, minP adjusted p-values as in Westfall
and Young (1993),
P = P[_min Pj<pg), (23)

where P¢ is the random variable of p-values under the complete null hypothesis.
For any rejection region I' = [0, ], we have by definition of V¢ that

PV(y) > 0] = P[_min P} <1]. (24)

In case that no rejections occur for control of FWER with the single-step method at level
a, we have

P[Vc(p(z-))>0]>a Vi=1,...,m
and hence ¢f_,(p@;)) > 0 for all i = 1,...,m. Therefore no rejections occur as well for

control of DaR  at value B8=0.
For a positive number of rejections with the single-step method, the rejection region [0, 7%, 5 (0)]

for control of ﬁa?%a at value 8 = 0 is given by

Far(3=0) = max{y:Dak () =0}
= max{y:qf_,(y) =0}
= max{y: P[V°(y) >0]<a}
= max{y: P[l_rlnin P; <] <a}. (25)

=1...,m

It is clear by (23) that the rejection region defined by (25) includes those and only those
test statistics with a single-step FWER-adjusted p-value p(;) below or at a. This completes
the proof of Theorem 6.
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