
© 2017 Royal Statistical Society 1369–7412/18/80005

J. R. Statist. Soc. B (2018)
80, Part 1, pp. 5–31

Kernel-based tests for joint independence

Niklas Pfister and Peter Bühlmann,
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and Jonas Peters

Max Planck Institute for Intelligent Systems, Tübingen, Germany, and University
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Summary. We investigate the problem of testing whether d possibly multivariate random vari-
ables, which may or may not be continuous, are jointly (or mutually) independent. Our method
builds on ideas of the two-variable Hilbert–Schmidt independence criterion but allows for an
arbitrary number of variables. We embed the joint distribution and the product of the marginals
in a reproducing kernel Hilbert space and define the d-variable Hilbert–Schmidt independence
criterion dHSIC as the squared distance between the embeddings. In the population case, the
value of dHSIC is 0 if and only if the d variables are jointly independent, as long as the kernel
is characteristic. On the basis of an empirical estimate of dHSIC, we investigate three non-
parametric hypothesis tests: a permutation test, a bootstrap analogue and a procedure based
on a gamma approximation. We apply non-parametric independence testing to a problem in
causal discovery and illustrate the new methods on simulated and real data sets.
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1. Introduction

We consider the problem of non-parametric testing for joint or mutual independence of d ran-
dom variables. This is a very different and more ambitious task than testing pairwise indepen-
dence of a collection of random variables. Consistent pairwise non-parametric independence
tests date back to Feuerverger (1993) and Romano (1986) and have more recently received con-
siderable attention by using kernel-based methods (Gretton et al., 2005, 2007), and other related
approaches for estimating or testing pairwise (in)dependence including distance correlations
(Székely and Rizzo, 2009, 2014), rank-based correlations (Bergsma and Dassios, 2014; Leung
and Drton, 2016; Nandy et al., 2016) or also non-parametric and semiparametric copula-based
correlations (Liu et al., 2012; Xue and Zou, 2012; Wegkamp and Zhao, 2016; Gaißer et al., 2010).

One of our motivations to develop methods for non-parametric testing of joint independence
originates from the area of causal inference, and we discuss this in Section 5.2: there, inferring
pairwise independence is not sufficient as those models assume the existence of jointly inde-
pendent noise variables. Our test can therefore be used as a goodness-of-fit test and for model
selection; see Section 5.2. A further interesting application of joint independence tests is inde-
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pendent component analysis. Whereas many algorithms use a stepwise approach to construct
the collection of independent features, a more direct option is to minimize a measure of mutual
dependence explicitly (such as our d-variable Hilbert–Schmidt independence criterion (HSIC)
dHSIC); for more details see Chen and Bickel (2006) or Matteson and Tsay (2016). (We thank
a referee for pointing out this interesting application.)

For testing joint independence, consider the distribution P.X1,:::,Xd/ of the random vector X=
.X1, : : : , Xd/. (Throughout the paper, a superscript on X always denotes an index rather than an
exponent.)Bydefinition, .X1, : : : , Xd/are jointlyormutually independent ifandonly ifP.X1,:::,Xd/

=PX1 ⊗ : : :⊗PXd
. For a given positive definite kernel, we map both distributions into the re-

producing kernel Hilbert space (RKHS) (see Section 2.1 for details) and consider their squared
distance. Such a mapping can in fact be seen as a generalization of the L2-distance between ‘tra-
ditional’ kernel density estimators; see the discussion on page 732 in Gretton, Borgwardt, Rasch,
Schölkopf and Smola (2012). For characteristic kernels (e.g. the popular Gaussian kernel), the
embedding of Borel probability measures is injective and the squared distance is 0 if and only if
the variables are jointly independent. For the finite sample case, we compute a suitable estimator
that can be used as a test statistic. We then construct three statistical tests: two tests are based on
permutation and bootstrap procedures, and a third test approximates the distribution of the test
statistic under independence with a gamma distribution. Our statistic extends the HSIC (Gretton
et al., 2005) and contains it as a special case. We therefore call the corresponding test procedure
the d-variable HSIC dHSIC. We prove that the permutation-based approach has correct level and
that the bootstrap approach has pointwise asymptotic level and is consistent in the sense that it
has asymptotic power equal to 1 against any fixed alternative; see equation (3.5) in Section 3.

In the literature, other mutual independence tests have been proposed. Kankainen (1995)
discussed a characteristic-function-based non-parametric mutual independence test; see Section
2.4. The dependence measure is a weighted integral over the difference between the characteristic
functions of the joint and the product distribution. All weight functions result in special cases
of dHSIC for an appropriate choice of kernel. We show that our results carry over to the
characteristic function framework, whereas the opposite direction works for only a restrictive
class of kernels. Moreover, although Kankainen (1995) did prove similar results about the
asymptotic distribution of the test statistic as given in theorem 2 in Section 3.1, her proof
cannot be directly extended to our more general framework. This is one of the reasons why we
developed some of our general results about V-statistics. The test in Kankainen (1995) is shown
to be consistent, but the word consistency there refers to the property that the asymptotic
distribution of the test statistic under the alternative hypothesis diverges; instead, we employ
the commonly used definition that a test is consistent if the testing procedure itself (in our case
the bootstrap) is consistent in the sense that it has asymptotic power equal to 1; see equation
(3.5). Our consistency results immediately carry over to the characteristic function framework,
as it is contained as a special case of dHSIC.

Bakirov et al. (2006) used an independence coefficient as the measure of dependence, which
is defined as the normalized distance between the characteristic functions of the product and
marginal distributions and is hence strongly related to the approach by Kankainen (1995).
They approximated the asymptotic test statistic, which is also a sum of χ2-distributed random
variables, using tail bounds. This results in a test that has (conservative) asymptotic level in the
sense of inequality (3.4). However, because of the conservative bounds which are independent of
the dependence strength, the resulting test is, in general, not able to detect all fixed dependences,
even in the large sample limit.

One test for which a consistency result as in equation (3.5) has been shown is an older method
based on Beran and Millar (1987) and Romano (1986), page 27; it does not seem to be used



Tests for Joint Independence 7

in practice very often. As a test statistic, it takes the maximal difference between the empirical
distribution and the product of its marginals over a class of sets. One then chooses a distribution
over sets and approximates this infinite class by C <∞ randomly chosen sets; see Section 5.1.
This makes the construction impractical with a rather ad hoc computational implementation.
In our experiments, we found that this test has less power than dHSIC and is computationally
more demanding, even for moderate values of C.

Both this test and the characteristic-function-based tests mentioned above are restricted to
the Euclidean space; dHSIC allows more general kernels such as kernels on graphs or strings
(see Gretton et al. (2007)).

Finally, it is possible to use the following alternative procedure that constructs a joint inde-
pendence test from a bivariate test: joint independence holds if and only if for all k∈{2, : : : , d}
we have that Xk is independent of .X1, : : : , Xk−1/. We can therefore perform d− 1 statistical
tests and combine the results by using a Bonferroni correction. However, such a procedure
is asymmetric in the d random variables and depends on the order of the random variables.
Furthermore, it is known that the Bonferroni correction is often conservative and, because of
performing d−1 tests, such a test is of order d times more computationally expensive than the
direct dHSIC-approach; see Section 5.3.3.

1.1. Contribution
This work extends the two-variable HSIC (Gretton et al., 2005, 2007; Smola et al., 2007) to
testing joint independence for an arbitrary number of variables. The resulting test, moreover,
extends the work of Kankainen (1995) to the more flexible framework of kernel methods (see
Section 2.4) and establishes consistency, as mentioned also in the previous section. Although the
dHSIC test statistic was briefly mentioned by Sejdinovic et al. (2013), the derivation of the general
results about asymptotic distributions (theorem 2 and theorem 3 in Section 3.1) as well as the
mathematically rigorous treatment of the permutation test and the bootstrap test are novel: this
concerns results for both types of test about their level (type I error) in proposition 3 in Section
3.2.1 and theorem 4 in Section 3.2.2 and the consistency (asymptotic power) of the bootstrap in
theorem 5. In fact, the consistency result is quite remarkable, establishing asymptotic consistency
for any fixed alternative. It is the first such result for kernel-based methods and maybe the first
result for a practically feasible test for joint independence having asymptotic error control and
asymptotic power equal to 1. We also prove that under the null hypothesis it holds that ξ2.h/>0,
which has been implicitly assumed in for example Gretton et al. (2007), theorem 2.

For the gamma-approximation-based test, we compute general formulae for the mean and for
the variance; see propositions 4 and 5 in Section 3.3. To make our tests accessible we have created
an R package called dHSIC, which is available on the Comprehensive R Archive Network.
Moreover, we have applied our dHSIC to real data in causality, showing its usefulness also in
applied settings, in terms of both model selection and goodness-of-fit tests.

To establish these properties, we derive new results for V-statistics (see the on-line appendix
C) that are of independent interest: lemma C.3 there (asymptotic difference between U- and
V-statistics), theorem C.5 (asymptotic variance of a V-statistic), theorem C.6 (asymptotic bias
of a V-statistic), theorem C.9 (asymptotic distribution of a degenerate V-statistic) and theorem
C.13 (asymptotic distribution of a degenerate resampled V-statistic).

2. Hilbert–Schmidt independence criterion for d-variables

2.1. Reproducing kernel Hilbert spaces
We present here a brief introduction to RKHSs and the theory of mean embeddings. Given a
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set X we call a function k : X ×X→R a positive semidefinite kernel if for any set of points
.x1, : : : , xn/∈X n the corresponding Gram matrix .k.xi, xj//1�i,j�n is symmetric and positive
semidefinite. Moreover, denote by F.X / the space of functions from X to R. RKHSs on X are
well behaved subclasses of F.X / defined as follows.

Definition 1 (RKHS). Let X be a set and let H⊆F.X / be a Hilbert space. Then H is called
an RKHS if there is a kernel k on X satisfying

(a) ∀ x∈X : k.x, ·/∈H, and
(b) ∀ f ∈H, ∀ x∈X : 〈f , k.x, ·/〉H=f.x/. We then call k a reproducing kernel of H.

For any positive semidefinite kernel k there is an RKHS with reproducing kernel k. A com-
monly used kernel on Rm is the Gaussian kernel, defined for all x, y∈Rm by

k.x, y/= exp{−‖x−y‖2Rm=.2σ2/}: .2:1/

It is possible to embed complicated objects into an RKHS and to analyse them by using
the Hilbert space structure. Inner products can be expressed as function evaluations via the
reproducing property, which simplifies computation within an RKHS. In this paper, we em-
bed probability distributions in an RKHS. For this, we use the Bochner integral to define an
embedding of M.X / :={μ|μ is a finite Borel measure on X} into an RKHS.

Definition 2 (mean embedding function). Let X be a separable metric space, let k be a
continuous bounded positive semidefinite kernel and let H be the RKHS with reproducing
kernel k. Then, the mean embedding (associated with k) is defined as the function Π :M.X /→H
with

Π.μ/ :=
∫

X
k.x, ·/μ.dx/:

To infer that two distributions are equal given that their embeddings coincide, it is necessary
that the mean embedding is injective. A kernel is called characteristic if the mean embedding
Π is injective (see Fukumizu et al. (2007)). The Gaussian kernel (2.1) on Rm, for example, is
characteristic (e.g. Sriperumbudur et al. (2008), theorem 7).

2.2. Definition of dHSIC and independence property
Our goal is to develop a non-parametric hypothesis test to determine whether the components
of a random vector X= .X1, : : : , Xd/ are mutually independent, based on an independently and
identically distributed (IID) sample X1, : : : , Xn of the vector X. By definition, joint independence
holds if and only if

PX1⊗ : : :⊗PXd =P.X1,:::,Xd/:

The central idea is to embed both PX1⊗ : : :⊗PXd
and P.X1,:::,Xd/ into an appropriate RKHS

and then to check whether the embedded elements are equal. To keep an overview of all our
assumptions, we summarize the setting that is used throughout the rest of this work.

2.2.1. Setting 1 (dHSIC)
For all j∈{1, : : : , d}, let X j be a separable metric space and denote by X=X 1× : : :×X d the
product space. Let .Ω, F , P/ be a probability space and, for every j∈{1, : : : , d}, let Xj :Ω→X j

be a random variable with law PXj
. Let .Xi/i∈N be a sequence of IID copies of X= .X1, : : : , Xd/.
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For j∈{1, : : : , d}, let kj :X j×X j→R be a continuous, bounded, positive semidefinite kernel
on X j and denote by Hj the corresponding RKHS. Moreover, assume that the tensor product
of the kernels kj denoted by k=k1⊗ : : :⊗kd is characteristic (Gretton (2015) argued (for d=2)
that this follows if the individual kernels are characteristic) and let H=H1⊗ : : :⊗Hd be the
(projective) tensor product of the RKHSs Hj. Let Π : M.X/→H be the mean embedding
function associated with k.

It is straightforward to show that this setting ensures that H is an RKHS with reproducing
kernel k, that k is continuous and bounded, that H is separable and contains only continuous
functions and that Π is injective. Using this setting we can extend the HSIC from two variables
as described by Gretton et al. (2007) to the case of d variables. The extension is based on the
HSIC characterization via the mean embedding described by Smola et al. (2007).

Definition 3 (dHSIC). Assume setting 1. Then, define the statistical functional

dHSIC.P.X1,:::,Xd//:=‖Π.PX1⊗: : :⊗PXd
/−Π.P.X1,:::,Xd//‖2H

and call it dHSIC.

Therefore, dHSIC is the distance between the joint measure and the product measure after
embedding them into an RKHS. Since the mean embedding Π is injective we obtain the following
relationship between dHSIC and joint independence.

Proposition 1 (independence property of dHSIC). Assume setting 1. Then it holds that

dHSIC.P.X1,:::,Xd//=0 ⇔ PX1⊗ : : :⊗PXd =P.X1,:::,Xd/:

This proposition implies that we can use dHSIC as a measure of joint dependence between
variables. We express dHSIC in terms of the individual kernels k1, : : : , kd , which will later be
the basis of the estimator that is defined in Section 2.3. A proof is given in the on-line appendix
D.6.

Proposition 2 (expansion of dHSIC). Assume setting 1. Then it holds that

dHSIC=E

{
d∏

j=1
kj.X

j
1, X

j
2/

}
+E

{
d∏

j=1
kj.X

j
2j−1, X

j
2j/

}
−2E

{
d∏

j=1
kj.X

j
1, X

j
j+1/

}
:

2.3. Estimating dHSIC
Our estimator will be constructed by using several V-statistics. We therefore start by summarizing
a few well-known definitions and the most important results from the theory of V-statistics.
Readers who are familiar with these topics may skip directly to definition 4.

Let n∈N, q∈{1, : : : , n}, let X be a metric space, .Ω, F , P/ a probability space, X : Ω→X a
random variable with law PX and let .Xi/i∈N be IID copies of X, i.e. .Xi/i∈N∼IID PX. Define
Mq.n/ :={1, : : : , n}q as the q-fold Cartesian product of the set {1, : : : , n}. Consider a measurable
and symmetric (i.e. invariant under any permutation of its input arguments) function g :Xq→R,
which we call the core function. The V-statistic

Vn.g/ := 1
nq

∑
Mq.n/

g.Xi1 , : : : , Xiq/ .2:2/

then estimates the statistical functional θg := θg.PX/ := E{g.X1, : : : , Xq/}. As opposed to U-
statistics, defined in expression (C.1) in the on-line appendix C, V-statistics are usually biased.
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Here, we consider a V-statistic because it can be computed much faster than the corresponding
U-statistic, especially if q > 2. Whereas U-statistics have been extensively studied (e.g. Serfling
(1980)), results for V-statistics are often restricted to q= 2. For dHSIC, we require q= 2d (see
lemma 1) and therefore develop general results for q> 2 in the on-line appendix C.

The following notation appears throughout the paper in the context of V-statistics and is
also commonly used for U-statistics; see Serfling (1980), section 5.1.5. Given the core function
g :Xq→R we define for every c∈{1, : : : , q−1} the function gc :X c→R by

gc.x1, : : : , xc/ :=E{g.x1, : : : , xc, Xc+1, : : : , Xq/}
and gq≡g. Then, gc is again a symmetric core function such that for every c∈{1, : : : , q−1}

E{gc.X1, : : : , Xc/}=E{g.X1, : : : , Xq/}=θg:
Further define g̃≡g− θg and for all c∈{1, : : : , q} define g̃c≡gc− θg to be the centred versions
of the core functions. Moreover, define, for every c∈{1, : : : , q},

ξc :=var{gc.X1, : : : , Xc/}=E{g̃c.X1, : : : , Xc/
2}: .2:3/

We sometimes write ξc.g/ to make clear which core function we are talking about.
We now estimate each term in proposition 2 by a V-statistic.

Definition 4 ( ̂dHSIC/. Assume setting 1. For all .x1, : : : , xn/ ∈Xn we define ̂dHSIC=
. ̂dHSICn/n∈N as

̂dHSICn.x1, : : : , xn/ := 1
n2

∑
M2.n/

d∏
j=1

kj.x
j
i1

, x
j
i2

/+ 1
n2d

∑
M2d.n/

d∏
j=1

kj.x
j
i2j−1

, x
j
i2j

/

− 2
nd+1

∑
Md+1.n/

d∏
j=1

kj.x
j
i1

, x
j
ij+1

/

if n∈{2d, 2d+1, : : :} and as ̂dHSICn.x1, : : : , xn/ :=0 if n∈{1, : : : , 2d−1}.

Whenever it is clear from the context, we drop the functional arguments and just write ̂dHSICn

instead of ̂dHSICn.X1, : : : , Xn/. To make this estimator more accessible for analysis we can
express it as a V-estimator with a single core function. For this, define h : X2d→R to be the
function satisfying for all z1, : : : , z2d ∈X that

h.z1, : : : , z2d/= 1
.2d/!

∑
π∈S2d

{
d∏

j=1
kj.z

j
π.1/, z

j
π.2//+

d∏
j=1

kj.z
j
π.2j−1/, z

j
π.2j//−2

d∏
j=1

kj.z
j
π.1/, z

j
π.j+1//

}
,

.2:4/

where S2d is the set of permutations on {1, : : : , 2d}. The following lemma shows that ̂dHSIC is
a V-statistic with core function h. A proof is given in the on-line appendix D.7.

Lemma 1 (properties of the core function h). Assume setting 1. It holds that the function
h that is defined in equation (2.4) is symmetric continuous, and there exists C > 0 such that
for all z1, : : : , z2d ∈X we have |h.z1, : : : , z2d/|<C. Moreover, Vn.h/= ̂dHSICn (see expression
(2.2)), and θh=E{h.X1, : : : , X2d/}=dHSIC.

2.4. Characteristic function framework
Kankainen (1995) considered a characteristic-function-based mutual independence test. She
considered a weighted integral over the difference between the characteristic functions of the
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joint and the product distribution. For a weight function g, the resulting empirical test statistic
(Kankainen (1995), page 25) is given by

Tn.x1, : : : , xn/ :=n

{
1
n2

∑
i1,i2

d∏
j=1

∫
R

exp{itj.x
j
i1
−x

j
i2

/}gj.tj/dtj

+ 1
n2d

d∏
j=1

∑
i1,i2

∫
R

exp{itj.x
j
i1
−x

j
i2

/}gj.tj/dtj− 2
nd+1

∑
i1

d∏
j=1

∑
i2

∫
R

exp{itj.x
j
i1
−x

j
i2

/}gj.tj/dtj
}

:

The characteristic function framework is contained in the dHSIC-framework as a special case.
We recover our dHSIC test statistic by choosing

k.x, y/=
d∏

j=1

∫
R

exp{itj.xj−yj/}gj.tj/dtj: .2:5/

This choice is justified by Bochner’s theorem (e.g. Unser and Tafti (2014), theorem B.1).

Theorem 1 (Bochner’s theorem). Let f be a bounded continuous function on Rd . Then, f is
positive semidefinite if and only if it is the (conjugate) Fourier transform of a non-negative
and finite Borel measure μ, i.e.

f.x/=
∫

Rd
exp.i〈x, t〉/μ.dt/:

Given the characteristic function framework with a weight function g satisfying properties 1–5 in
Kankainen (1995), page 25, it holds that the measureμg.B/ :=∫

B Πd
j=1gj.tj/dtj is a non-negative

finite Borel measure on Rd and hence k defined as in equation (2.5) is a positive semidefinite
kernel. The setting that was given in Kankainen (1995) is thus entirely contained within our
dHSIC-framework.

Furthermore, the dHSIC-framework is strictly more general. To see this, let k be a continuous
bounded stationary positive semidefinite kernel on Rd . Then, by stationarity there is a contin-
uous bounded function f on Rd such that k.x, y/=f.x− y/ and hence by Bochner’s theorem
there is a measure μ∈M.Rd/ such that

k.x, y/=
∫

Rd
exp.i〈x−y, t〉/μ.dt/:

This is, however, still more general than the setting in Kankainen (1995) as there it was ad-
ditionally assumed that the measure μ is absolutely continuous with a density g satisfying
properties 1–5, which in particular requires that g is a simple product, i.e. g.t/=Πd

j=1gj.tj/ and
that the components gj are even. Both of these conditions are essential to the proofs that were
given in Kankainen (1995). Therefore the results from the characteristic function framework
in Kankainen (1995) cannot be transferred to our more general dHSIC-setting. Also note that
the characteristic function framework is restricted to real-valued domains, whereas kernels are
more flexible, e.g. kernels on graphs or strings (see Gretton et al. (2007)).

3. Statistical tests for joint independence

Assume setting 1 and denote by P.X/ the space of Borel probability measures. In this section
we derive three statistical hypothesis tests for the null hypothesis

H0 :={μ∈P.X /|X∼μ=PX, PX=PX1⊗: : :⊗PXd } .3:1/

against the alternative
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Table 1. Properties of the three hypothesis tests

Hypothesis test Consistency Level Speed

Permutation† Unknown (remark 2,
Section 3.2.1)

Valid (proposition 3,
Section 3.2.1)

Slow

Bootstrap† Pointwise (theorem 5,
Section 3.2.2)

Pointwise asymptotic
(theorem 4, Section 3.2.2)

Slow

Gamma approximation No guarantee No guarantee Fast

†For implementation one can use the Monte Carlo approximation. This leads to a reasonably fast
implementation, while conserving the (asymptotic) level and consistency results. Further details
are given in Section 4.2.

HA :={μ∈P.X /|X∼μ=PX, PX �=PX1⊗ : : :⊗PXd }: .3:2/

On the basis of the asymptotic behaviour given in theorem 2 in Section 3.1, we consider
n ̂dHSICn as test statistic and define a decision rule ϕ= .ϕn/n∈N encoding rejection of H0 if
ϕn=1 and no rejection of H0 if ϕn=0. For all n∈{1, : : : , 2d−1} we define ϕn :=0 and for all
n∈{2d, 2d+1, : : :} and for all .x1, : : : , xn/∈Xn we set

ϕn.x1, : : : , xn/ :=1{n ̂dHSICn.x1,:::, xn/>cn.x1,:::, xn/} .3:3/

where the threshold c= .cn/n∈N remains to be chosen. Ideally, for fixed α∈ .0, 1/ the hypothesis
test should have (valid) level α, i.e., for every μ=PX ∈H0 and all n, P{ϕn.X1, : : : , Xn/=1}�α,
where X1, X2, : : :∼IID PX ∈H0. A weaker condition states that the test respects the level in the
large sample limit, i.e., for every μ=PX ∈H0,

limsup
n→∞

P{ϕn.X1, : : : , Xn/=1}�α, .3:4/

where X1, X2, : : :∼IID PX ∈H0. Such a test is said to have pointwise asymptotic level. Addition-
ally, the test is called pointwise consistent if for all fixed PX ∈HA it holds that

lim
n→∞P{ϕn.X1, : : : , Xn/=1}=1, .3:5/

where X1, X2, : : :∼IID (fixed) PX ∈HA. Table 1 summarizes the properties that our three tests
satisfy.

In Section 3.1 we consider some of the asymptotic properties of the test statistic n ̂dHSICn.
In particular, we show the existence of an asymptotic distribution under H0. We then construct
three hypothesis tests of the form (3.3). The first two are a permutation test and a bootstrap test
which are discussed in Section 3.2. Both tests are based on resampling and hence do not rely on
explicit knowledge of the asymptotic distribution under H0. In Section 3.3 we consider a third
test which is based on an approximation of the asymptotic distribution under H0 by using a
gamma distribution.

3.1. Asymptotic behaviour of the test statistic
We first determine the asymptotic distribution of n ̂dHSICn under H0, extending Gretton et al.
(2007), theorem 2, from HSIC to dHSIC.

Theorem 2 (asymptotic distribution of n ̂dHSICn under H0). Assume setting 1. Let .Zi/i∈N
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be a sequence of independent standard normal random variables on R, let

Th2 ∈L{L2P.X1,:::,Xd/, |·|R}
be such that for all f ∈L2.P.X1,:::,Xd/, |·|R/ and for all x∈X it holds that

.Th2.f//.x/=
∫

X
h2.x, y/f.y/P.X1,:::,Xd/.dy/:

(Given a measure space .Ω, F ,μ/ the space Lr.μ, |·|R/ consists of all measurable functions
f :Ω→R such that

∫
Ω |f.ω/|rμ.dω/<∞. The corresponding space of equivalence classes of

such functions is denoted by Lr.μ, |·|R/. Moreover, we denote the space of all linear bounded
operators from a Banach space B onto itself by L.B/.) Denote by .λi/i∈N the eigenvalues of
Th2 . Then under H0 it holds that

ξ2.h/> 0

and

n ̂dHSICn
d→

(
2d

2

)∞∑
i=1

λiZ
2
i as n→∞:

The proof of this result relies on the asymptotic distribution of degenerate V-statistics (see
theorem C.9 in the on-line appendix). To show that the degenerate setting applies we need to
prove that under H0 it holds that ξ1.h/= 0 and ξ2.h/ > 0. The latter statement is of interest
in itself and has been for example implicitly assumed in Gretton et al. (2007), theorem 2. But,
whereas ξ1.h/=0 follows more or less directly from the independence assumption under H0 (see
lemma D.9 in the on-line appendix), the condition ξ2.h/>0 is difficult to verify directly because
of the complicated form of the core function h. We therefore circumvent direct verification
by using empirical process theory to prove that the asymptotic distribution of n ̂dHSICn has
certain continuity properties (see theorem D.3 in the on-line appendix) that are not satisfied by
the asymptotic distribution resulting from the theory of V-statistics if both ξ1.h/ and ξ2.h/ were
0. A full proof is given in the on-line appendix D.2.

Remark 1 (estimation of eigenvalues). It is possible to construct a test that estimates the
eigenvalues of the integral operator in theorem 2 by first estimating the eigenvalues of the Gram
matrix corresponding to h2 and then computing the asymptotic distribution by using a bootstrap
procedure; see Gretton et al. (2009). Given knowledge of the exact form of h2 and under the
assumption that h2 is positive definite (which can be shown for d=2, but is unknown for d> 2)
one can prove consistency; see Pfister (2016). However, since h2 is a complicated function (see
lemma D.8 in the on-line appendix) depending on the unknown distribution PX (as opposed to
Gretton et al. (2009)) one must estimate h2, which means one would have to account additionally
for that approximation. In simulations, the eigenvalue estimation generally performed worse
than the gamma approximation in almost all our experiments. We have therefore decided not
to include this approach in the paper. There is, however, an implementation in the dHSIC R
package.

The following theorem (a proof is given in the on-line appendix D.2) is an important result re-
quired to establish consistency (of the bootstrap test), stating that n ̂dHSICn diverges under HA.

Theorem 3 (asymptotic distribution of n ̂dHSICn under HA). Assume setting 1. Then under
HA it holds for all t∈R that

lim
n→∞P.n ̂dHSICn � t/=0:
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3.2. Resampling tests
We first introduce the notation of a general resampling scheme which encompasses the
permutation and bootstrap method that is used later. For every function ψ= .ψ1, : : : ,ψd/ sat-
isfying for all i∈{1, : : : , d} that ψi :{1, : : : , n}→{1, : : : , n}, define the function gn,ψ :Xn→Xn

gn,ψ.x1, : : : , xn/ := .xψn, 1, : : : , xψn,n/, .x1, : : : , xn/∈Xn, .3:6/

where xψn,i := .x1
ψ1.i/

, : : : , xd
ψd.i/

/. The diagram (3.7) illustrates the mapping gn,ψ:

x1
:::

xn

∣∣∣∣∣∣∣
x1

1 · · · xd
1 xψn,1

:::
:::

gn,ψ−→ :::

x1
n · · · xd

n xψn,n

∣∣∣∣∣∣∣
x1
ψ1.1/

· · · xd
ψd.1/

:::
:::

x1
ψ1.n/

· · · xd
ψd.n/

.3:7/

Define

Bn :={ψ :{1, : : : , n}→{1, : : : , n}|ψ is a function}; .3:8/

then for a subset An⊆Bd
n we call the family of functions

g := .gn,ψ/ψ∈An .3:9/

a resampling method. In the following two sections we formulate the bootstrap and permutation
tests in terms of this resampling method.

3.2.1. Permutation test
The permutation test is based on the resampling (3.9) with An= .Sn/d , where Sn is the set of
permutations on {1, : : : , n}. More precisely, we have the following definition.

Definition 5 (permutation test for dHSIC). Assume setting 1 and α∈ .0, 1/. For allψ∈ .Sn/d ,
let gn,ψ be defined as in expression (3.6). Moreover, for n∈{2d, 2d+1, : : :}, let R̂n :Xn×R→
[0, 1] be the resampling distribution functions defined for all t∈R by

R̂n.x1, : : : , xn/.t/ := 1
.n!/d

∑
ψ∈.Sn/d

1{n ̂dHSICn{gn,ψ.x1,:::,xn/}�t}: .3:10/

Then the α-permutation test for dHSIC is defined by ϕn := 0 for n∈ {1, : : : , 2d− 1}, and for
n∈{2d, 2d+1, : : :} by

ϕn.x1, : : : , xn/ :=1{n ̂dHSICn.x1,:::, xn/>R̂n.x1,:::, xn/−1.1−α/}:

Given that the resampling method has a group structure and additionally satisfies for all X with
PX ∈H0 that

gn,ψ.X1, : : : , Xn/ is equal in distribution to .X1, : : : , Xn/,

where X1, X2, : : :∼IID PX, it can be shown that tests of this form have valid level. For the
permutation test for dHSIC both these properties are satisfied; hence it has valid level.

Proposition 3 (permutation test for dHSIC has valid level). Assume setting 1 and let H0 and
HA be defined as in expressions (3.1) and (3.2). Then for all α∈ .0, 1/ the α-permutation test for
dHSIC has valid level α when testing H0 against HA.

A proof is given in the on-line appendix D.3. It is important to note that the level property from
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proposition 3 is for the finite sample setting and does not depend on the asymptotic behaviour
of the test statistics.

The size of the set .Sn/d is given by .n!/d ; therefore computing expression (3.10) quickly
becomes infeasible. For implementation purposes we generally use a Monte Carlo approximated
version, and the details are given in Section 4.2. Surprisingly, it can be shown that, whenever
the probability distribution PX is continuous, the Monte Carlo approximated permutation test
also has valid level; see proposition B.4 and the comments thereafter in the on-line appendix.

Remark 2 (pointwise consistency of the permutation test). Given the similarity between
bootstrap and permutation tests, it seems likely that the permutation test for dHSIC is consistent,
also. The proof of theorem 5 in Section 3.2.2, however, cannot be easily extended. A more
promising approach would be to proceed similarly to Romano (1989), as the test statistics
considered there are closely related to dHSIC; see expression (5.1), and expression (D.2) in the
on-line appendix. The essential idea there is to use the theory of empirical processes (see the on-
line appendix D.1) to prove the assumptions of Lehmann and Romano (2005), theorem 15.2.3.
Unfortunately, we could not extend the results in Romano (1989) from Vapnik–Chervonenkis
classes of sets to the required classes of functions. Although many results extend more or less
directly (see the on-line appendix D.1), the difficulties lie in proving a similar representation
for Sn to that given in the display of Romano (1989), proof of proposition 3.1, as well as a
result similar to Romano (1989), lemma 5.1. As a side remark, extending the empirical process
approach that was given in Romano (1988) to give an alternative proof of theorem 5 would
require a uniform Donsker property for the unit ball of the RKHS.

3.2.2. Bootstrap test
The bootstrap test is based on the resampling (3.9) with An=Bd

n.

Definition 6 (bootstrap test for dHSIC). Assume setting 1 and α∈ .0, 1/. For all ψ∈Bd
n

let the function gn,ψ be defined as in expression (3.6). Moreover, for n∈ {2d, 2d+ 1, : : :}, let
R̂n :Xn×R→ [0, 1] be the resampling distribution functions defined for all t∈R by

R̂n.x1, : : : , xn/.t/ := 1
nnd

∑
ψ∈Bd

n

1{n ̂dHSICn{gn,ψ.x1,:::,xn/}�t}:

Then the α-bootstrap test for dHSIC is defined by ϕn := 0 for all n∈ {1, : : : , 2d− 1}, and for
n∈{2d, 2d+1, : : :} by

ϕn.x1, : : : , xn/ :=1{n ̂dHSICn.x1,:::, xn/>R̂n.x1,:::, xn/−1.1−α/}:

Unlike for the permutation test, the bootstrap resampling method no longer exhibits a group.
We cannot therefore expect the bootstrap test to have valid level. However, it is possible to show
that it has pointwise asymptotic level and even pointwise consistency. The reason that this can
be done is that the resampling method in the bootstrap test is connected to the empirical prod-
uct distribution P̂X1

n ⊗ : : :⊗ P̂Xd

n . The following theorem proves that the bootstrap test for
dHSIC has pointwise asymptotic level.

Theorem 4 (bootstrap test for dHSIC has pointwise asymptotic level). Assume setting 1
and let H0 and HA be defined as in expressions (3.1) and (3.2). Then for all α∈ .0, 1/ the
α-bootstrap test for dHSIC has pointwise asymptotic level α when testing H0 against HA.

A proof is given in the on-line appendix D.4. We now establish that the bootstrap test for
dHSIC is consistent.
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Theorem 5 (consistency of the bootstrap test for dHSIC). Assume setting 1 and let H0 and
HA be defined as in expressions (3.1) and (3.2). Then for all α∈ .0, 1/ the α-bootstrap test is
pointwise consistent when testing H0 against HA.

A proof is given in the on-line appendix D.4. Similarly to the permutation test, the size of the
set .Bn/d is nnd which grows quickly. Again, we may use a Monte Carlo approximated version;
see Section 4.2. In Chwialkowski et al. (2014) a similar consistency analysis has been performed
for a wild bootstrap approach on time series.

3.3. Gamma approximation
We showed in theorem 2 that the asymptotic distribution of n ̂dHSICn equals(

2d

2

) ∞∑
i=1

λiZ
2
i : .3:11/

The essential idea behind the gamma approximation (see also Kankainen (1995) and Gretton
et al. (2005)) is that a distribution of the form Σ∞i=1λiZ

2
i can be approximated fairly well by

a gamma distribution with matched first and second moments (see Satterthwaite (1946) for
basic empirical evidence). The intuition is that the gamma distribution would be correct if the
sequence of eigenvalues λi from the integral operator contains only a finite number of non-
zero values, which implies that it is a good approximation as long as the sequence of λi decays
sufficiently fast. This has, however, been shown only empirically and no guarantees in the large
sample limit are available. In fact, it is rather unlikely that such guarantees even exist as it is not
difficult to find choices of λi for which expression (3.11) is not a gamma distribution. It is not as
simple, however, to show that such values of λi can actually occur as solutions of the defining
integral equation. Nevertheless, the approximation seems to work well for small d (see Section
5), and the test can be computed much faster than the other approaches.

The gamma distribution with parametersα andβ is denoted by gamma.α,β/ and corresponds
to the distribution with density

f.x/= xα−1exp.x=β/

βαΓ.α/
,

where Γ.t/= ∫∞
0 xt−1exp.−x/ dx is the gamma function. The first two moments of the gamma

.α,β/-distributed random variable Y are given by E.Y/=αβ and var.Y/=αβ2. To match the
first two moments we define for X1, X2, : : :∼IID PX ∈H0 the two parameters

αn.PX/ :=E. ̂dHSICn/2=var. ̂dHSICn/,

βn.PX/ :=nvar. ̂dHSICn/=E. ̂dHSICn/:

Then we use the approximation

n ̂dHSICn.X1, : : : , Xn/∼gamma{αn.PX/,βn.PX/}: .3:12/

The following two propositions give expansions of the involved moments in terms of the kernel.

Proposition 4 (mean of ̂dHSIC). Assume setting 1. Then under H0 it holds that, as n→∞,

E. ̂dHSICn/= 1
n
− 1

n

d∑
r=1

∏
j �=r

E{kj.X
j
1, X

j
2/}+ d−1

n

d∏
j=1

E{kj.X
j
1, X

j
2/}+O.n−2/:

A proof is given in the on-line appendix D.5
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Proposition 5 (variance of ̂dHSIC). Assume setting 1. Then under H0 it holds that

var. ̂dHSICn/=2
.n−2d/!

n!
.n−2d/!

.n−4d+2/!

{
d∏

j=1
e1.j/+ .d−1/2

d∏
j=1

e0.j/2+2.d−1/
d∏

j=1
e2.j/

+
d∑

j=1
e1.j/

∏
r �=j

e0.r/2−2
d∑

j=1
e1.j/

∏
r �=j

e2.r/−2.d−1/
d∑

j=1
e2.j/

∏
r �=j

e0.r/2

+∑
j �=l

e2.j/e2.l/
∏

r �=j, l

e0.r/2
}
+O.n−5=2/

as n→∞ and where, for all j∈{1, : : : , d},

e0.j/=E{kj.X
j
1, X

j
2/},

e1.j/=E{kj.X
j
1, X

j
2/2},

e2.j/=E
X

j
1
[E

X
j
2
{kj.X

j
1, X

j
2/}2]:

A proof is given in the on-line Appendix D.5. On the basis of these two propositions we need
only a method to estimate the terms e0.j/, e1.j/ and e2.j/ for all j∈{1, : : : , d}. One could use
a U-statistic (C.1) in the on-line appendix for each expectation term as this would not add any
bias. It turns out, however, that a computationally more efficient V-statistic also does not add
any asymptotic bias in this particular case. This is due to theorem C.6 in the on-line appendix
describing that the bias of a V-statistic is of order O.n−1/ and hence is consumed by the error
terms in propositions 4 and 5. The V-statistics for these terms are given for all .x1, : : : , xn/∈Xn by

ê0.j/.x1, : : : , xn/ := 1
n2

n∑
i1,i2=1

kj.x
j
i1

, x
j
i2

/,

ê1.j/.x1, : : : , xn/ := 1
n2

n∑
i1,i2=1

kj.x
j
i1

, x
j
i2

/2,

ê2.j/.x1, : : : , xn/ := 1
n3

n∑
i2=1

{
n∑

i1=1
kj.x

j
i1

, x
j
i2

/

}2

:

On the basis of these terms we define the estimators Ên and v̂arn for the mean and variance of
̂dHSICn respectively by replacing all appearances of e0.j/, e1.j/ and e2.j/ in propositions 4 and

5 by ê0.j/, ê1.j/ and ê2.j/. We use the plug-in estimators

α̂n.x1, : : : , xn/ := Ên.x1, : : : , xn/2

v̂arn.x1, : : : , xn/
,

β̂n.x1, : : : , xn/ := n v̂arn.x1, : : : , xn/

Ên.x1, : : : , xn/
,

.3:13/

and then define the following hypothesis test.

Definition 7 (gamma-approximation-based test for dHSIC). Assume setting 1 and α∈ .0, 1/.
Let Fn.x1, : : : , xn/ be the distribution function that is associated with the gamma{α̂n.x1, : : : , xn/,
β̂n.x1, : : : , xn/} distribution, where α̂n and β̂n are defined as in expression (3.13). Then the α–
gamma approximation based test for dHSIC is defined by ϕn :=0 for all n∈{1, : : : , 2d−1}, and
for n∈{2d, 2d+1, : : :} by

ϕn.x1, : : : , xn/ :=1{n ̂dHSICn.x1,:::, xn/>Fn.x1,:::, xn/−1.1−α/}:
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4. Implementation

We now discuss an efficient implementation of the tests proposed and briefly comment on the
choice of kernel. All methods are available in the R package dHSIC in the Comprehensive R
Archive Network.

4.1. dHSIC-estimator
The dHSIC-estimator ̂dHSIC can be computed in quadratic time; see algorithm 1 in Table 2.
Here, 1k×l denotes a k× l matrix of 1s, the functions Sum and ColumnSum take the sums of all
elements in a matrix and its columns respectively and an asterisk denotes the elementwise mul-
tiplication operator. The variables term1, term2 and term3 are related to the three components
of the sum in definition 4, after changing the order of products and sums.

4.2. Resampling tests
From the definition of R̂n we see that the permutation and bootstrap test involve .n!/d or nnd

evaluations of ̂dHSIC respectively. Instead of computing R̂n explicitly we can use the Monte
Carlo approximation; see definition B.1 in the on-line appendix. The p-value is then given by

p̂n.x1, : : : , xn/ := 1+|{i∈{1, : : : , B} : ̂dHSIC{gn,ψi
.x1, : : : , xn/}� ̂dHSIC.x1, : : : , xn/}|

1+B
,

where .ψi/i∈N is a sequence drawn from the uniform distribution on An (i.e. on .Sn/d for the
permutation test and on Bd

n for the bootstrap test). The test then rejects the null hypothesis
whenever p̂n.x1, : : : , xn/�α. Further details including critical values are provided in the on-line
appendix B. Davison and Hinkley (1997) suggested the use of B between 99 and 999.

4.2.1. Permutation test
The Monte Carlo approximated version of the permutation test for dHSIC evaluates ̂dHSIC
only B times (for B random permutations) instead of .n!/d times. The corresponding test (with
the p-value as in Section 4.2 above) has valid level for any finite B: as in the proof of proposition 3
the resampling method g for the permutation test is a resampling group satisfying the invariance
conditions (B.1) and (B.2) in the on-line appendix. Proposition B.4 there then shows that the
Monte Carlo approximated permutation test has valid level for any finite B, given that we have
continuous random variables as input. Algorithm 1 in the on-line appendix B implements the
p-value and the critical value for the Monte Carlo approximated permutation test.

Table 2. Algorithm 1 computing the dHSIC V-estimator

1 Procedure dHSIC.x1, : : : , xn/
2 for j=1 : d do
3 Kj← Gram matrix of kernel kj given x1, : : : , xn
4 term1←1n×n; term2←1; term3← .2=n/11×n
5 for j=1 : d do
6 term1 ← term1 Å Kj

7 term2 ← .1=n2/term2 Sum.Kj/

8 term3 ← .1=n/term3 Å ColumnSum.Kj/

9 dHSIC← .1=n2/ Sum.term1/+ term2− Sum.term3/
10 return dHSIC
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4.2.2. Bootstrap test
Similarly, the Monte Carlo approximated version of the bootstrap test for dHSIC evaluates
̂dHSIC only B times (for B random draws with replacement) instead of nnd times. One can

show that the corresponding test (with the p-value as in Section 4.2 above) still has pointwise
asymptotic level and is pointwise consistent if both n and B go to∞. This follows from a standard
concentration inequality argument (e.g. Lehmann and Romano (2005), theorem 11.2.18 and
example 11.2.13). Algorithm 1 in the on-line appendix B implements the p-value and the critical
value for the Monte Carlo approximated bootstrap test.

4.3. Gamma approximation test
Implementing the α–gamma approximation test consists of four steps (see Section 3.3).

Step 1: for all j∈{1, : : : , d} implement the estimators ê0.j/, ê1.j/, ê2.j/.
Step 2: compute the estimates Ên.x1, : : : , xn/ and v̂arn.x1, : : : , xn/.
Step 3: using expression (3.13) compute the estimates α̂n.x1, : : : , xn/ and β̂n.x1, : : : , xn/.
Step 4: compute the .1−α/-quantile of the gamma{α̂n.x1, : : : , xn/, β̂n.x1, : : : , xn/} dis-
tribution.

The hypothesis test rejects H0 if n ̂dHSICn.x1, : : : , xn/ is larger than the .1−α/-quantile of the
gamma{α̂n.x1, : : : , xn/, β̂n.x1, : : : , xn/} distribution calculated in the last step.

4.4. Choice of kernel
The choice of the kernel determines how well certain types of dependence can be detected
and therefore influences the practical performance of dHSIC (see simulation 4 in Section 5.3).
For continuous data a common choice is a Gaussian kernel as defined in expression (2.1). It is
characteristic, which ensures that all the above results hold. In particular, any type of dependence
can be detected in the large sample limit. We use the median heuristic for choosing the bandwidth
σ by requiring that median{‖xi−xj‖2Rm : i<j}=2σ2. This heuristic performs quite well in many
practical applications. It may be possible, however, to extend alternative approaches from two-
sample testing to independence testing (e.g. Gretton, Sejdinovic, Strathmann, Balakrishnan,
Pontil, Fukumizu and Sriperumbudur (2012)). For discrete data, we choose a trivial kernel
defined by k.x, y/ :=1{x=y}.

In practice, it is, moreover, possible and potentially beneficial also to consider other (poten-
tially non-characteristic) kernels that are chosen in such a way that they are particularly powerful
in detecting certain types of dependences.

5. Experiments

5.1. Competing methods
For comparisons we consider an approach, which has been suggested by Beran and Millar
(1987) and Romano (1986), page 27. For testing the joint independence of d real-valued random
variables X1, : : : , Xd , they considered the test statistic

̂BMRn := supa∈Rd |P̂n.Aa/− P̂
⊗
n .Aa/|, .5:1/

where Aa := .−∞, a1]× .−∞, a2]× : : :× .−∞, ad ] is a subset of Rd , P̂n := .1=n/Σn
i=1δXi is the

empirical joint measure and P̂
⊗
n :=Πd

j=1{.1=n/Σn
i=1δX

j
i
} is the empirical product measure. Usu-

ally, expression (5.1) cannot be computed exactly and must be approximated. We may choose
a distribution μ with full support on Rd , for example, and compute the supremum over C<∞
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randomly chosen a1, : : : , aC∼IID μ. In our experiments, we mainly choose C=n since, for con-
sistency, C must grow with n and since then the computational complexity is O.dn2/, which
equals the computational complexity of dHSIC; see Section 4.1. As neither Beran and Millar
(1987) nor Romano (1986) provided any other suggestion, we choose μ to be the d-dimensional
Gaussian distribution with parameters estimated by maximum likelihood. The test itself is then
based on a bootstrap procedure, which was described in Section 3.2.2. In the remainder of this
section, we refer to this test as BMR-C.

Furthermore, we consider a multiple pairwise version of the two-variable HSIC test. To test
for joint independence we use the following testing sequence.

Step 1: use HSIC to test whether Xd is independent of [X1, : : : , Xd−1],
Step 2: use HSIC to test whether Xd−1 is independent of [X1, : : : , Xd−2],
:::

Step d−1: use HSIC to test whether X2 is independent of X1.

Finally, we account for the increased familywise error rate by using the Bonferroni correction,
i.e. we perform all tests at level α=.d−1/ and reject the null hypothesis if any of the individual
tests rejects the null hypothesis. In what follows we simply denote this method as HSIC. We
have mentioned in Section 1 that the Bonferroni correction is often conservative: this becomes
particularly evident if this procedure is combined with a permutation-test-based HSIC. In that
case it can be shown that the smallest possible p-value after the Bonferroni correction is given
by .d−1/=.B+1/ and hence for B=100 the test will not be able to reject the null hypothesis at
a level of 5% if d> 6.

5.2. Causal inference
In causal discovery, one estimates the causal structure from an observed joint distribution. Here,
we consider additive noise models (Peters et al., 2014) with additive non-linear functions and
Gaussian noise (Bühlmann et al., 2014); these are special cases of structural equation models
(Pearl, 2009). Assume that the distribution PX=P.X1,:::,Xd/ is induced by d structural equations

Xj := ∑
k∈PAj

f j,k.Xk/+Nj, j∈{1, : : : , d}, .5:2/

with PAj being the parents of j in the associated directed acyclic graph (DAG) G0. The noise
variables N1, : : : , Nd are normally distributed and are assumed to be jointly independent. An im-
portant question in causality is whether the causal structure, in this case G0, can be inferred from
the observational distribution PX. Whereas this is impossible for general structural equation
models (e.g. Peters et al. (2014), proposition 9), the additive noise structure renders the graph
identifiable, i.e., if f j,k are assumed to be non-linear, any other additive noise model (5.2) with
a structure that is different from G0 cannot induce the distribution PX (see Peters et al. (2014),
corollary 31, for the full result). In other words, using conditional means as functions in the
structural equation model, the corresponding residual variables will not be jointly independent.

We therefore propose the following DAG verification method for structure learning using
generalized additive model regression (Wood and Augustin, 2002).

Given observations X1, : : : , Xn and a candidate DAG G:

(a) use generalized additive model regression (Wood and Augustin, 2002) to regress each
node Xj on all its parents PAj and denote the resulting vector of residuals by resj;

(b) perform a d-variable joint independence test (e.g. dHSIC) to test whether .res1, : : : , resd/

is jointly independent;
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(c) if .res1, : : : , resd/ is jointly independent, then the DAG G is not rejected.

We can furthermore estimate the correct DAG by performing the verification method for
all possible DAGs with the correct number of nodes. In practice, we expect this method to
accept also supergraphs of the correct graph G0, which can be overcome by a variable selection
method. Since this work concentrates on the dependence structure among the residuals, we
instead consider only fully connected DAGs in the experiments (Section 5.3.4). In practice, we
do not want to iterate over all possible graphs. A more efficient method, which is based on a
similar idea, is the regression with subsequent independence test algorithm that was described in
Peters et al. (2014), section 4.1. Also the computationally efficient causal additive model method
(Bühlmann et al., 2014) could be equipped with a joint independence test as a model check.

One issue deserves further attention. (We thank one of the referees for pointing this out.) In
the regression step (a), we obtain only an approximation of the correct function, which results
in estimated and thus dependent residuals rather than the true noise values. We show that this
does not affect the asymptotic ordering of ̂dHSIC; see theorem E.2 in the on-line appendix
E. If we are interested in asymptotically valid p-values, we can perform sample splitting; see
proposition E.3 in the on-line appendix E.

The DAG verification method described above can also be used to construct a statistical test
for a more general causal hypothesis. For example, the causal hypothesis ‘X is a causal ancestor
of Y’ can in principle be tested by applying the DAG verification method to all DAGs satisfying
this ancestor relationship. One then reports the largest of the p-values appearing in step (b) of
the DAG verification method. This test has, asymptotically, the correct size if there is indeed
an underlying additive noise model that generated the data (again, using sample splitting, for
example). Under a (minor) model misspecifcation, i.e., if the additive noise assumption does
not hold, we might still find p-values that are much larger for the correct causal statement than
for the reversed statement, e.g. ‘Y is a causal ancestor of X’ (see Peters et al. (2011)).

5.3. Results
We structure the experimental results into five parts: level analysis, power analysis, run time
analysis and causal inference on simulated and a real data set.

5.3.1. Level analysis
We consider an example with fixed PX ∈H0 (simulation 1) and simulate m=1000 independent
realizations of X1, : : : , Xn∼IID PX for various sample sizes n and check how often each of the
three hypothesis tests reject the null hypothesis.

Simulation 1 (testing level—three continuous variables). Consider X1, X2, X3∼IID N .0, 1/;
then for X= .X1, X2, X3/ it holds that

PX=PX1⊗PX2 ⊗PX3 ∈H0,

where H0 is the null hypothesis defined in expression (3.1). Set α= 0:05, B= 25 and n ∈
{100, 200, : : : ,1000}. The rejection rates for the corresponding three hypothesis tests (permu-
tation, bootstrap and gamma approximation) based on m= 1000 repetitions are plotted in
Fig. 1.

A further simulation using discrete variables is given in the on-line appendix F.1. In both
simulations we obtain similar results. We collect the most important observations.
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(a) (b)

(c)

Fig. 1. Simulation 1 (testing level—three continuous variables)—rejection rates, based on m D 1000 rep-
etitions, for each of the three hypothesis tests based on dHSIC; (the test has valid level if the rejection rate
does not lie far above the dotted line at 0.05): (a) permutation; (b) bootstrap; (c) gamma

(a) The permutation test achieves level α. This corresponds to what has been proved in the
previous section. As mentioned above, this result is rather surprising as it does not depend
on the choice of B, which in simulation 1 is very small (B=25).

(b) The bootstrap test achieves level α in most cases, even though we proved only that it has
pointwise asymptotic level. This is due to the conservative choice of the p-value in the
Monte Carlo approximation of the bootstrap test.

(c) The gamma-approximation-based test, at least in these two examples, has level close to
α but often slightly exceeds the required level. For larger values of d the gamma approxi-
mation seems to break down. For instance, if we perform simulation 1 with 10 variables
instead of three the rejection rate for a sample size of n=100 is 0:40 and even for n=200
it is still 0:21. The bootstrap test in contrast is not affected in this way (in the same setting
we obtain 0.03 for n=100 and 0.04 for n=200).

5.3.2. Power analysis
Assessing the power of a test requires us to choose an alternative. In this section, we consider
several generative models on X1, : : : , Xd inducing different types of dependences and assess how
well our method can detect that PX �=PX1⊗ : : :⊗PXd

.
We begin by showing two examples: one favouring dHSIC (simulation 3); another favouring

the multiple-testing approach using HSIC d− 1 times (simulation 2). In both simulations we
use the BMR-C test with C=n as reference. Using a BMR-C test with C=1000 (which is not
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(a) (b)

(c)

Fig. 2. Simulation 2 (comparing power—single edge)—rejection rates, based on mD1000 repetitions, for
each of the three hypothesis tests (the example (in particular the chosen order of variables) is constructed
to favour the pairwise testing approach (HSIC); nevertheless, it performs only slightly better than dHSIC) (�,
dHSIC; 4, HSIC; �, BMR-n): (a) permutation; (b) bootstrap; (c) gamma

shown here) brings only marginal improvements which are not sufficient to beat HSIC in either
simulation.

Simulation 2 (comparing power—single edge). For an additive noise model over random
variables X1, : : : , Xd ,

Xj := ∑
k∈PAj

f j,k.Xk/+Nj, j∈{1, : : : , d},

with corresponding DAG G, we sample data in the following way. The noise variables are
Gaussian with a standard deviation sampled uniformly between

√
2 and 2. Nodes without

parents follow a Gaussian distribution with standard deviation sampled uniformly between
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(a) (b)

(c)

Fig. 3. Simulation 3 (comparing power—full DAG)—rejection rates, based on mD1000 repetitions, for each
of the three hypothesis tests (as expected, dHSIC outperforms the competing method HSIC that is based on
pairwise independence tests) (�, dHSIC; 4, HSIC; �, BMR-n): (a) permutation; (b) bootstrap; (c) gamma

5
√

2 and 5×2. The functions f j,k are sampled from a Gaussian process with Gaussian kernel
and bandwidth 1. Here we choose d=4, let G be the graph that contains 1→2 as a single edge
and use m=1000 repetitions to compute rejection rates (Fig. 2). We expect this setting to favour
the multiple-testing approach: because of the order of the variables, it tests X1 against X2.

Simulation 3 (comparing power—full DAG). We simulate the data as described in simulation
2 but this time using a (randomly chosen) full DAG G over d=4 variables, i.e. every pair of two
nodes is connected (Fig. 3). We expect that this setting favours dHSIC. Additionally, we fixed
n=100, varied d and used m=1000 repetitions (Fig. 4).

We have restricted ourselves to comparing dHSIC with methods that are also capable of
capturing all types of possible dependences. One should, however, keep in mind that although
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Fig. 4. Simulation 3 (comparing power—full DAG)—rejection rates, based on bootstrap (B D100; nD100)
(BMR-C suffers from the curse of dimensionality and the pairwise HSIC approach cannot reject H0 for d>6):
�, dHSIC; 4, HSIC; �, BMR-n; }, BMR-1000

dHSIC is in general capable of capturing any type of dependence, it might not be the best
method when additional information about the dependence structure is available. For example,
consider a distribution that is Markov and faithful with respect to a known graphical chain
X1→X2→: : :→Xd . A user might model the dependences by additive noise models but is
not sure whether this is the correct model class. It might be useful (in terms of power) to use
pairwise independence tests of the residuals instead of a joint independence test. (We thank one
of the referees for pointing out the example of known orderings.) Another example is the three-
variable interaction test by Sejdinovic et al. (2013), which has increased power for a specific type
of dependence between three variables. The price to pay is that it is no longer possible to detect
all potential dependences.

Finally, we analyse the influence of the choice of kernel on the empirical power (simulation
4). In this paper, we have mainly used the Gaussian kernel with median heuristic bandwidth. As
mentioned in Section 4.4 this choice is not necessarily optimal. Using the Taylor expansion of
the Gaussian kernel we obtain for all x, y∈Rd that

k.x, y/=1− 1
2σ2

d∑
j=1

.xj−yj/2+ 1
4σ4

d∑
j,k=1

.xj−yj/2.xk−yk/2+O.σ−6/,

as σ→∞. Therefore, it can be shown by using either the representation in definition 3 or that
in proposition 2 that for large σ dHSIC using the Gaussian kernel is approximately given by
dHSIC using the kernel

k̃.x, y/ := 1
4σ4

d∑
j,k=1

.xj−yj/2.xk−yk/2:

Such a kernel can, however, only detect pairwise dependence structures, and since the importance
of this term becomes more prominent as the size of the bandwidth increases we expect the power
of our dHSIC test to decrease when analysing dependences that have an additional dependence
structure beyond a pairwise dependence. The following simulation illustrates this empirically
on the basis of three dependences: a pairwise dependence, a more complex dependence due
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(a) (b)

(c)

Fig. 5. Simulation 4 (comparing power—bandwidth)—rejection rates with nD100 for various bandwidths σ
in the Gaussian kernel, based on mD1000 repetitions, of the permutation test (B D100) for data containing
only a pairwise dependence, for data from a random non-linear Gaussian structural equation model and
for dependent but pairwise independent data (the rejection rates resulting from the median heuristic are
0:30, 0:82 and 1 respectively) ( , 95% confidence intervals for the bandwidth selected by using the median
heuristic): (a) pairwise dependence; (b) mixed dependence; (c) pairwise independence

to a random non-linear Gaussian structural equation model and a dependence on three vari-
ables which is pairwise independent (Fig. 5). A further simulation analysing the differences in
empirical power between sparse and dense alternatives is given in the on-line appendix F.2.

Simulation 4 (comparing power—bandwidth). We consider three dependences and analyse
the behaviour of the empirical power of the dHSIC permutation test (B=100) based on different
bandwidths for the Gaussian kernel. The first is generated by the linear Gaussian structural
equation model

Xj=H + "j, H , "1, : : : , "4∼IID N .0, 4/,

and hence the only dependence is due to the confounder H . For the second dependence we use
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(a) (b)

Fig. 6. Run time analysis: (a) varying number of variables and fixed sample size (nD100) and (b) varying
sample size and fixed number of variables (d D10): , dHSIC; , HSIC; , 95% error region

(a) (b)

Fig. 7. Causal inference (m D 1000 repetitions): (a) how often the methods estimate the correct DAG (�,
dHSIC; 4, HSIC; �, BMR-n); (b) average structural intervention distance SID (small is good) between the
correct and estimated DAG (Peters and Bühlmann, 2015) (from left to right, dHSIC, HSIC and BMR-n)

the same as in simulation 3, which has a more evolved dependence structure due to potential
chains of ancestors. The third dependence has probability density

f.x1, x2, x3/=
{

2ϕ.x1/ϕ.x2/ϕ.x3/ if x1, x2, x3 �0, or ∃!j∈{1, 2, 3} : xj �0,
0 otherwise,

where ϕ is the standard normal density. The resulting distribution is, in particular, pairwise
independent. For all examples we use a sample size of n= 100 and m= 1000 repetitions. The
resulting plots are given in Fig. 5.

5.3.3. Run time analysis
The computational complexity for the dHSIC test statistic is O.dn2/ as can be seen from the
considerations in Section 4.1. The multiple-testing approach for HSIC computes HSIC d− 1
times, which appears to result in the same computational complexity. But since the dimension
of the input variables for the HSIC tests generally depends on d, as well (at least in common
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(a) (b)

Fig. 8. Real world data example: (a) p-values (on a log-scale), for each DAG over three nodes, from the
DAG verification method (�, dHSIC; 4, HSIC; �, BMR-1000) (even for small p-value thresholds, dHSIC
can reject all incorrect models, whereas the competing HSIC method cannot); (b) graphical representation
of DAG 25

settings such as for the Gaussian kernel), the overall complexity is O.d2n2/. We numerically test
these computational complexities by two simulations. In the first simulation we fix n and vary
d; in the second simulation we fix d and vary n. The results are presented in Fig. 6. It might
be possible to reduce computational complexity by using linear time approximation methods
as described by Zhang et al. (2017) for the pairwise HSIC. (We thank one of the referees for
pointing this out.)

5.3.4. Causal inference (simulated data)
We now apply both tests to the DAG verification method that was described in Section 5.2. As
in simulation 2, we simulate data from an additive noise model. Here, we randomly choose a
fully connected DAG G over d=4 nodes and choose Gaussian-distributed noise variables with
standard deviation sampled uniformly between 1=5 and

√
2=5 instead of

√
2 and 2. We then

report how often (out of m=1000) the largest p-value leads to the correct DAG. Because of its
computational advantage, we use the tests based on the gamma approximation for dHSIC and
the pairwise HSIC, which work reasonably well for four nodes (strictly speaking, we use only
the relative size of the p-values). Most of the time was spent computing the results for BMR-n
as we were forced to use a bootstrap test (B=100) since no approximation is available for this
test. The proposed dHSIC recovers the correct DAG in more cases than the pairwise approach
and in even more cases than BMR-n (Fig. 7).

5.3.5. Causal inference (real data example)
We now apply the DAG verification method (see Section 5.2) to real world data. Given 349 mea-
surements of the variables altitude, temperature and sunshine (the data set is taken from Mooij
et al. (2016), pair0001.txt and pair0004.txt), we try to determine the correct causal structure out
of 25 possible DAGs. We use permutation-based versions (with B=1000) of the dHSIC-test, the
multiple-testing approach for HSIC and the BMR-1000 test and apply them to every possible
DAG and compare the resulting p-values. The result is shown in Fig. 8(a).
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Fig. 8(b) shows DAG 25: the DAG with the largest p-value. On the basis of physical back-
ground knowledge, we expect altitude to affect both sunshine and temperature. The effect of
temperature on sunshine could be due to intermediate latent variables such as clouds or fog.
Fig. 8(a) illustrates that the dHSIC-based test can reject all incorrect models, even for very
low p-value thresholds. This is different for the competing HSIC and BMR-1000 methods. For
example, DAG 12 has a p-value of about 0:01 but contains an edge from sunshine to altitude,
which is clearly the wrong causal direction.

6. Summarizing remarks

We analyse a measure of joint dependence between d variables, called the d-variable HSIC.
We propose an estimator of dHSIC based on a computationally attractive V-statistic and de-
rive its asymptotic distribution. This enables us to construct three different hypothesis tests:
a permutation test (definition 5), a bootstrap test (definition 6) and a test based on a gamma
approximation (definition 7).

We prove several properties for these tests. First and foremost we establish that the boot-
strap test achieves pointwise asymptotic level (theorem 4) and that it is consistent for detecting
any fixed alternative with asymptotic power equal to 1 (theorem 5). For the permutation test,
we show that it achieves a valid level (proposition 3) and, in particular, this property carries
over to the Monte Carlo approximated version of the permutation test. Regarding the gamma-
approximation-based test, we derive asymptotic expansions of the mean and variance of the
dHSIC-estimator (proposition 4 and proposition 5) which serve as the main basis in the con-
struction of the approximation. Although this test has no guarantees on level and consistency,
it is computationally very fast and was found to perform well in numerical experiments.

Various simulations illustrate the advantages of dHSIC over a pairwise approach with HSIC
and a traditional test that we call BMR-C. Notably, dHSIC is computationally less expensive
than HSIC and also BMR-C if C grows larger than n. Moreover, when the dimension d is
large the pairwise HSIC approach with Monte Carlo approximation (for fixed B) cannot reject
the null hypothesis and BMR-C seems to suffer substantially from the curse of dimensionality.
We also outline applications for model selection in causal inference which are based on joint
independence testing of error terms in structural equation models. In our numerical experiments
on real and simulated data, dHSIC outperforms both the other methods.
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