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Jiang, Lugosi and Vayatis, and Zhang ought to be congratulated for their different
works on the original AdaBoost algorithm with early stopping (Jiang), an ¢;-penalized
version of boosting (Lugosi and Vayatis), and a convex minimization method which can
be viewed as an £o-penalized version of boosting (Zhang).

1. A motivation for combining trees with boosting. The interesting and com-
mon part of all three papers is that Bayes risk consistency can be achieved by a linear
or convex combination of simple classifiers. The most prominent examples, exhibiting
good performance in a variety of datasets, are combinations of small or moderate-sized
classification trees. Each of the trees is low-dimensional, but by linear or convex addition
of trees we obtain a combined classifier whose complexity is (much) larger.

A problem with single classification trees is that they are often inflexible or cannot
be constructed large enough for optimal classification performance. We show in Figure 1
the test set misclassification loss (0-1 loss) for n» = 100 i.i.d. realizations of (X,Y) in the
model

X = (X1,...,X19) ~ Uniform([—0.5,0.5]'%), Y € {~1,1} with P[Y = 1] = p(X),

10
logit(p(z)) = log(p(z)/(1 — p(z))) = 50 Z - (1)

The trees are constructed in a greedy way (as usual) optimizing the Gini index fitting
criterion. We tuned the size of a classification tree by the minimal number of observations
that fall into the terminal nodes, and the largest trees are constructed under the constraint
that there are at least two observations per terminal node. We see in Figure 1 that on
average, the largest classification trees have about 10 or 11 terminal nodes. We also see
that the test set error is smallest at our largest tree, but we cannot make the trees larger
(more complex) to potentially decrease the test set error (we could enlarge them a bit
by requiring at least one observation per terminal node, but this turns out to be rather
unstable with low predictive power). This has to do with two things: first, it is the
constrained nature of trees with splits parallel to coordinate axes; secondly, a greedily
constructed classification tree is restrictive and hence involving much fewer degrees of
freedom (less complexity) than when constructed in a non-greedy way. Regarding the first
issue, other proposals with splits that are not parallel to axes have been proposed, cf. Kim
and Loh (2001); the second issue is more difficult, but recently some progress has been
made in constructing trees in a more exhaustive, less greedy way (Geman and Jedynak,
2001). The second remedy is non-trivial and with much higher computational costs.



Perhaps a conceptually simpler way, if we are concerned only with good classifica-
tion performance, is given by boosting (AdaBoost which may be read as “ad a boost”)
which “boosts” a single classification tree to make it more flexible and more complex.
Figure 1 also shows how much the test set error could be improved by using LogitBoost
(with the log-likelihood loss function) with stumps, namely by about 30%. Thus, from
a practical point of view, linear or convex combinations of trees overcome the limitation
of “bounded” complexity of single trees. Moreover, as we understand from rigorous re-
sults in the Ly-boosting case with the squared error loss (Bithlmann and Yu, 2003), the
increase of complexity is in a very gradual fashion (much slower than counting the number
of the terms) which allows adaptation to problems of different complexity. Last but not
least, boosting has also been found to have excellent performance in a wide range of real
datasets. The papers under discussion are justifying such combination procedures which
seem to act intelligently with the curse of dimensionality.
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Figure 1: Test set misclassification errors in model (1). Left panel: classification trees
with varying minimal numbers of observations per terminal nodes, displayed as a function
of average number of terminal nodes; the lower right circle corresponds to classification
trees with at least 2 observations per terminal node. Right panel: LogitBoost with stumps
as a function of boosting iterations.

2. Boosting (with early stopping) versus regularized boosting. Jiang ana-
lyzes the original AdaBoost algorithm with early stopping, whereas versions of regularized
boosting are considered by Lugosi and Vayatis (¢; constrained boosting) and also Zhang
(£2 penalized boosting).

Computational advantage of boosting (with early stopping). The original boosting
scheme specifies explicitly the numerical algorithm for optimization to be greedy, in con-
trast to many other classical statistical estimation schemes which are defined through
an ideal optimization of an objective function. And we believe this original version of
boosting (with early stopping) has an important computational advantage for coping with
high-dimensional complex datasets with dimension of the predictor in the thousands. We
think that it is exactly for such problems where boosting (using a learner which does
variable selection) plays a significant role, since more traditional methods become very



difficult to use and tune; for the latter, forward variable selection is still feasible, but as-
signing various smoothing parameters for selected predictors or terms is very difficult (see
also the end of this section).

£1-constrained boosting is Lasso. The ¢;1-constrained boosting algorithm proposed by
Lugosi and Vayatis can be understood as seeking a combination of base learners with an
£1-constraint on the combination weights, that is, one minimizes the empirical risk A, (f)
under the constraint E;-V:l w; < X (notation as in Lugosi and Vayatis). This is best known
in the statistics community as the Lasso method (Tibshirani, 1996), or also as basis pursuit
(Chen et al., 1999) in signal processing.

Efficient computation of Lasso or basis pursuit is in general a non-trivial issue (Chen
et al., 1999; Osborne et al., 2000). A notable point is that Lasso solutions are usu-
ally not computed using greedy algorithms which are in danger to be overly greedy and
can get stuck in suboptimal solutions. Lugosi and Vayatis use in their examples the
MarginBoost.L; algorithm from Mason et al. (2000) which is a gradient descent, greedy
forward method, very similar to boosting, and it normalizes the £1-norm of the weights
along the way. Interestingly, this MarginBoost.L; algorithm can be used for many base
learners and is not restricted to specialized problems like linear regression or expansions
from an over-complete wavelet basis. Lugosi and Vayatis do not discuss to what extent
the MarginBoost.L; algorithm yields approximate solutions to Lasso-type problems or
whether the MarginBoost.L; algorithm corresponds exactly to the ¢;-constrained boost-
ing for which theoretical results are proven by Lugosi and Vayatis. In particular, at first
sight, it seems that the greedy nature of the MarginBoost.L; algorithm used by Lugosi and
Vayatis for their regularized boosting is in conflict with the non-greedy Lasso algorithms
in Chen et al. (1999) and Osborne et al. (2000).

Using the LARS (least angle regression) algorithm for finite linear regression mod-
els, Efron et al. (2002) recently makes a connection between Lasso and boosting with
infinitesimal shrinkage factor (or e-boosting), or equivalently, linking non-greedy linear
programming algorithms for Lasso with greedy, gradient descent methods for boosting
with infinitesimal steps: e-boosting (or “stagewise” as called by Efron et al. (2002)) adds
normalized base learners to the current fit by an infinitesimal amount € (but fixed among
the boosting iterations). Under some positive cone conditions, Efron et al. (2002) show
that Lasso and e-boosting are equivalent. In practice, the € or infinitesimal amount of
shrinkage has to be chosen as a small constant as has been advocated by Friedman (2001).
However, this is worth noting that e-boosting is not the same as MarginBoost.L1, but we
believe they are closely related.

Although this connection in the finite predictor (or finite base learner) case is intrigu-
ing, it is unclear how to generalize the LARS algorithm to the infinite base learner case.
(One such example is trees, although for a given n, there are only finitely many possible
trees with any fixed number of terminal nodes and split points in the middle between
observations. However, this finite number is already equal to dim.(predictor) - (n — 1) for
stumps and even much bigger for larger trees; asymptotically, it is infinite). This infinite
base learner scenario is the most relevant to the success of boosting with empirical datasets
because the base learner fitted at each step is taken from a pool of infinitely many base
learners. For this case, we believe boosting (with small steps) provides the most flexible
solution and, in some sense, generalizes LARS from the finite learner case. It is interesting



to note that the convergence analysis of Zhang and Yu (2003) suggests that small step
sizes are necessary for the convergence of the boosting algorithm as the iteration goes to
infinity. For good statistical performance however, we almost always stop before conver-
gence and we believe that boosting is in general different from ¢;-constrained boosting or
MarginBoost.L;. This difference can also been seen in the experiments provided by Lugosi
and Vayatis on AdaBoost and MarginBoost.L;.

£a-reqularization is Ridge. Zhang proposes convex combination of base learners: his
way of estimation and regularization is via the more established ¢s-penalty. Because of
the £o-penalty, his algorithm can be viewed as a Ridge method. In general, the solution is
not expected to be sparse, an interesting exception is the case with the SVM loss function.
On the other hand, boosting with a base learner that does variable selection can be shown
to have the interesting feature to do variable selection and assigning varying amount of
degrees of freedom to different selected variables (e.g. in a linear model) or terms in an
expansion (e.g. in fitting an additive model). The same holds for Lasso in linear models
due to the “equivalence” of e-boosting and Lasso (Efron et al., 2002); we believe that it is
also true for more general models.

Adaptivity of boosting (with early stopping). We have shown in Biithlmann and Yu
(2003) that boosting with the squared error loss function, which we called LesBoost, adapts
to higher order smoothness for curve estimation in nonparametric regression. For example,
when using cubic smoothing splines as base learners with a fixed conventional smoothing
parameter \g, LyBoost with a suitable number of boosting iterations achieves the minimax
optimal MSE rates over Sobolev classes. Even though we are using a cubic smoothing
spline as a base learner, LoBoost achieves a faster MSE rate than O(n~%/®) (the optimal
rate for the Sobolev class of degree 2) if the underlying true function is in the Sobolev
space of degree larger than 2 (essentially more than twice differentiable). With non-
boosted smoothing splines, we would only get the minimax optimal MSE rates when
knowing the smoothness of the underlying function. Thus, LoBoost has the interesting
theoretical property to adapt automatically to higher order smoothness, and interestingly,
this is achieved by a greedy forward algorithm!

Because of the connection between the £o-penalized convex combination algorithm of
Zhang, when used with the squared error loss, and the classical smoothing splines, we
doubt that this adaptivity holds for Zhang’s /s-regularized boosting algorithm. It remains
to be seen whether the /;-constrained boosting has this adaptivity, but we conjecture that
it does due to its connection to e-boosting.

3. Final remarks. Jiang solved the problem of consistency for original boosting
with early stopping which we think is a very effective statistical methodology and at
the same time computationally feasible for high-dimensional data-sets. Breiman (2000)
pointed already at the issue of consistency for AdaBoost but Jiang was the first to prove
consistency of AdaBoost. Since we believe that boosting (with early stopping) is very
useful in general, we have followed up on Jiang’s work. In Biithlmann (2002), consistency
of LyBoost (with early stopping) is proved for regression or probability estimation in
classification (which is more general than Bayes risk consistency). More recently, Zhang
and Yu (2003) showed consistency of boosting with early stopping under general loss
functions.

Lugosi and Vayatis present elegant consistency theorems which work under “minimal”
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assumptions. Since they analyze £1-constrained boosting, we may think that their result
also hints at consistency for Lasso-type methods in classification.

Zhang’s work has an interesting part on implementing loss functions for classification,

providing comnsistency for Ridge-type methods in classification.

In summary, the three papers under discussion present some important recent under-

standings of boosting, as a result of the joint efforts of the statistics and the machine
learning communities. We believe that this interaction of statistics and machine learning
is bearing or will bear fruits on understanding many other procedures such as support
vector machines and independent component analysis.
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