
Volatility Estimation with Functional Gradient Descent for

Very High-Dimensional Financial Time Series

Francesco Audrino
University of Southern Switzerland

and
Peter Bühlmann

ETH Zürich, Switzerland

June 2002
(Revised Version)

Abstract

We propose a functional gradient descent algorithm (FGD) for estimating volatil-
ity and conditional covariances (given the past) for very high-dimensional financial
time series of asset price returns. FGD is a kind of hybrid of nonparametric statistical
function estimation and numerical optimization. Our FGD algorithm is computa-
tionally feasible in multivariate problems with dozens up to thousands of individual
return series. Moreover, we demonstrate on some synthetic and real data-sets with
dimensions up to 100, that it yields significantly, much better predictions than more
classical approaches such as a constant conditional correlation GARCH-type model.
Since our FGD algorithm is constructed from a generic algorithm, the technique can
be adapted to other problems of learning in very high dimensions.

Heading: High-dimensional volatility estimation

1



1 Introduction

Returns of asset prices in a portfolio generate a multivariate time series, often in dozens
or hundreds of dimensions. Denote by Pt,i the price of asset i at time t and its returns by
Xt,i = (Pt,i − Pt−1,i)/Pt−1,i. The multivariate time series {Xt,i; t = 1, . . . , n, i = 1, . . . , d}
is usually assumed to be stationary and most of the modeling and prediction effort is on
the multivariate (squared) volatility

Vt = Covd×d(Xt|Ft−1), Xt = (Xt,1, . . . , Xt,d)
T , (1.1)

where Ft−1 denotes the information up to time t− 1, the σ-algebra generated by {Xs; s ≤
t − 1}. Besides the genuine interest of volatility in finance, Vt is a key quantity because
the following model often yields a reasonable approximation,

Xt = ΣtZt, (1.2)

where ΣtΣ
T
t = Vt and Zt are i.i.d. multivariate innovations with uncorrelated components

and componentwise variances equal to one. Due to the enormous complexity of Vt as
a function of the past Ft−1 for d in the hundreds, the problem of predicting such high-
dimensional Vt received only little attention, particularly when (nonlinear) methods are
used which take cross-dependencies between the time series and auto-dependences from
past values into account. Predicting truly high-dimensional volatility in (1.1) raises huge
challenges in computational and modeling issues due to the well known curse of dimen-
sionality. Previous work on multivariate volatility models has been given by Bollerslev
(1990), Engle et al. (1990), Lin (1992) and Engle and Kroner (1995) in the framework of
GARCH-type models, and by Harvey et al. (1994), Aguilar and West (2000) and Chib et
al. (1999) within the stochastic volatility (state space model) framework. In the GARCH-
type framework, only very simple models (Bollerslev, 1990) are feasible in high dimensions,
whereas with stochastic volatility models, only Chib et al. (1999) present an example with
dimensionality as large as 40 which is still far lower than the degree of multivariateness
we can deal with here and which often occurs in practice.

We propose here a version of functional gradient descent (FGD), a recent technique
from the area of machine learning (Breiman, 1999; Mason et al., 1999; Friedman et al.,
2000; Friedman, 2001). Our FGD method is based on the likelihood-framework of a-priori
very general GARCH-type models. FGD has mainly influenced the thinking around so-
called Boosting (Freund and Schapire, 1996) which is a machine learning technique for
the classification problem (predicting labels or classes from many explanatory variables).
Some important modifications of more standard FGD algorithms are necessary to make
the approach successful in the very different field here of high-dimensional financial time
series.

It is well known that the multivariate approach is needed in many areas such as risk
management and portfolio analysis. For example, the study of a portfolio

Pt =
d∑

i=1

αt,iPt,i

with time-changing weights requires the multivariate approach. More generally, the aim
is often to estimate the conditional distribution of a “pay-out” function

ψt(Pt,1, . . . , Pt,d)

2



given the information Ft−1, where ψt could also be nonlinear. To do so, it suffices to
estimate the distribution of Xt given Ft−1; and this boils mainly down to estimating
the volatility matrix Vt when assuming a model as in (1.2) (estimating the innovation
distribution of Zt is then easily done via estimated residuals).

Mainly for conceptual purposes, we present in section 3 FGD for volatility estimation
in univariate time series. The method produces accurate results and is better than classical
GARCH prediction. But as argued above, the merit is mainly for very high-dimensional
problems where there is virtually no other competitive alternative method; this will be
discussed in section 4. Numerical results are illustrated on real and simulated data.

2 The generic functional gradient descent algorithm

We are presenting here the main idea of functional gradient descent (FGD) in the frame-
work of general regression. Consider data (Y1, X1), . . . , (Yn, Xn), where Yi is the response
and Xi the predictor (explanatory) variable. For simplicity, we assume here that Yi is
univariate (e.g. taking values in R) and Xi is p-dimensional (e.g. taking values in R

p).
The aim is to estimate a function F (x) such as F (x) = IE[Y |X = x], F (x) = Var(Y |X =

x) or F (x) = IP[Y = 1|X = x] if Y ∈ {0, 1} is binary. The function F (·) can often be
represented as the minimizer (in function space) of an expected loss function λ(y, f),

F (·) = argminF IE[λ(Y, F (X))]

As an example, F (x) = IE[Y |X = x] can be represented as the minimizer of such an
expected loss with λ(y, f) = |y − f |2/2. The functional gradient descent estimate of F (·)
is then constructed from a constrained minimization of the empirical risk

n−1
n∑

i=1

λ(Yi, F (Xi)).

The constraints require that the solution F̂ (·) is an additive expansion of “simple esti-
mates”,

F̂M (·) =
M∑

m=0

ŵmf̂m(·). (2.1)

The “simple estimates” are given from a statistical procedure S, called the base learner,
where

SX(U)(x) denotes the predicted value at x ∈ R
p from the base learner S,

using the response vector U = (U1, . . . , Un) ∈ R
n and predictor variablesX = (X1, . . . , Xn) ∈

R
pn. Typically, SX(U)(x) is an estimate of IE[U1|X1 = x]. It is often constructed from

(constrained or penalized) least squares fitting

SX(U)(·) = argminf

n∑

i=1

(Ui − f(Xi))
2.

3



It could be the fit from a base learner such as a regression tree, a projection pursuit or a
neural net.

The constraints in the additive expansion in (2.1) are automatically built in when
proceeding with the following generic FGD algorithm, cf. Friedman (2001).

Generic functional gradient descent (FGD)

Step 1 (initialization). Specify the starting function F̂0(·) and set m = 1.

Step 2 (projection of gradient to base learner). Compute the negative gradient

Ui = −
∂λ(Yi, F )

∂F
|F=F̂m−1(Xi)

, i = 1, . . . , n,

evaluated at the previous estimate F̂m−1(·) and the data points. Then, fit the negative
gradient vector with a base learner S

f̂m(·) = SX(U)(·).

The vector (f̂m(X1), . . . , f̂m(Xn))T can be viewed as a kind of projection of the negative
gradient to the base learner.

Step 3 (line search). Perform a one-dimensional optimization for the step-length when
up-dating F̂m−1 with f̂m,

ŵm = argminw

n∑

i=1

λ(Yi, F̂m−1(Xi) + wf̂m(Xi)).

Up-date

F̂m(·) = F̂m−1(·) + ŵmf̂m(·).

Step 4 (iteration and stopping). Increase m by one an iterate Steps 2 and 3 until stopping
with m = M . This produces the FGD estimate

F̂M (·) = F̂0(·) +
M∑

m=1

ŵmf̂m(·).

The stopping value M is chosen with the following cross-validation scheme: split the (in-
sample) data into two sets, the first of size 0.7 · n used as training set and the second of
size 0.3 · n as test set (this can also be used when the data are dependent). The optimal
value of M is then chosen to optimize a cross-validated measure for test set prediction.

An instructive example is FGD with the quadratic loss function λ(y, f) = |y − f |2/2.
Then, the negative gradient in Step 2 becomes Ui = Yi − F̂m−1(Xi) (i = 1, . . . , n) which
is the ordinary residual vector in iteration m. The estimated function f̂m is the result of
fitting the residuals U1, . . . , Un versus the predictor variables X1, . . . , Xn. The line search
in Step 3 becomes trivial with ŵm ≡ 1, assuming that also f̂m was fitted by least squares
(possibly nonlinear or penalized). Therefore, FGD wit the quadratic loss function amounts

4



to iterative refitting of residuals and F̂M (·) = F̂0(·) +
∑M

m=1 f̂m(·), where each f̂m(·) is
from fitting the current residuals versus Xi. For M = 1 (refitting the residuals once), the
procedure has already been proposed by Tukey (1977) under the name “twicing”. For this
special case with the quadratic loss function and if the base learner is a linear projection
(onto some known basis functions), the most simple example being the least squares fit
in a linear model, FGD wouldn’t do anything since the residual vector (U1, . . . , Un) is
orthogonal to the projection space and f̂m ≡ 0 for all m = 1, 2, . . .. But as soon as the
learner is not a linear projection, FGD with the quadratic loss (and also with other loss
functions) is an interesting way to estimate functions, particularly if the predictor space
is high-dimensional, cf. Bühlmann and Yu (2001). FGD with a more general loss function
may still be interpreted as iteratively fitting generalized residuals (negative gradient in
Step 2) with a base learner.

Remark 1. Initialization in Step 1 was so far believed to be of negligible importance:
an initial function often proposed is F̂0 ≡ Y n. But we will see in section 3, from an
empirical point of view, that initialization does play an important role in the application
of volatility estimation.

Remark 2. The line search in Step 3 guarantees that the empirical risk is monotonely
decreasing with every iteration. It is exactly the same as used for finite-dimensional
parameter optimization, cf. Nocedal and Wright (1999).

Remark 3. Stopping in Step 4 is important. Typically, the algorithm would fit the
data perfectly as iterations tend to infinity, cf. Bühlmann and Yu (2001). Early stopping
can be viewed as a regularization device which is very effective in complex model fitting.
We find empirically that estimating M by the simple 70%-30% cross-validation scheme
works well.

Numerical optimization has advanced to faster converging algorithms than steepest
gradient methods. However, in our setting the slow “convergence” (note that we do not
iterate until convergence) is very helpful in getting good regularization properties.

The name “functional gradient” suggests that we are doing gradient descent in function
space. Contrary to a gradient descent scheme for a finite-dimensional parameter where
the gradient is also of the same finite dimension, the negative gradient in Step 2 is an
n-dimensional vector which can be interpreted as the values of an infinite-dimensional
function (as n gets larger, the gradient-vector has higher dimension). This also indicates
why we fit this n-dimensional negative gradient-vector by a base learner in order to have
a more smooth approximation which is better in terms of predictive power (analogous
to curve estimation by some sort of “smoothing”). FGD can be formulated in terms of
infinite-dimensional function spaces: we are searching for the “direction” f (in function
space) such that Λ(F̂m−1 + εf) most rapidly decreases, for small value of ε, where Λ(F ) =
n−1∑n

i=1 λ(Yi, F (Xi)). Viewing Λ as a functional on lin(F), the set of linear combinations
of functions in a suitable class of base learners F , the desired direction is the negative
functional derivative −dΛ(F, ·), where

dΛ(F, x) = lim
ε↘0

Λ(F + εI1[x]) − Λ(F )

ε
, x ∈ R

p,

where I1[·] denotes the indicator function. We are restricted to choose f ∈ F and can-
not choose f as −dΛ(F, x). Instead, we search for an f minimizing ‖ − dΛ(F ) − f‖2,

5



where ‖g‖2 = n−1∑n
i=1 g(Xi)

2. This is equivalent to fit the negative gradient vector
(U1, . . . , Un)T in Step 2 with the base learner S fitted by least squares producing f̂m ∈ F .

Why should we use FGD at all? In very high-dimensional settings, particularly in
connection with tree-structured base learners (see section 2.1), it is a computationally
feasible method aiming to improve the starting function. The algorithm is greedy, never
adjusting any of the previously fitted terms, producing a sequence of estimated models or
predictions

F̂0 ≺ F̂1 . . . ≺ F̂m ≺ F̂m+1 . . . , (2.2)

where “≺” denotes “less complex” (fewer estimated parameters involved). Thus, FGD
traces out a sequence of estimated predictions, and it is feasible to optimize such a one-
dimensional sequence via choosing a stopping value M . The more classical approach would
be to consider a set of models Γ, then fit every model G ∈ Γ and finally select the model
Gopt which optimizes a model-fitting criterion such as Akaike’s information criterion (AIC).
This approach often becomes computationally intractable in high dimensions (unless the
model class Γ is very simple). For example, alternatively to our approach in section 4,
we may wish to fit a multivariate GARCH model, more specifically a BEKK(1,1) model
(Engle and Kroner, 1995) with d = 10 individual series. Very many of the hundreds of
parameters would have to be set to zero in order to avoid overfitting; but this becomes an
intractable model-selection problem with more than 1073 models to fit and check (when
using a classical strategy for selecting the best subset of non-zero parameters with say the
AIC criterion). Our approach with d up to 100 − 1000 goes much beyond the order of
magnitude of d = 10. The big question is of course whether a one-dimensional sequence of
predictions as in (2.2) is good. Answering such a question from a theoretical point of view
in general is very difficult and not developed so far. In a more simple setting, Bühlmann
and Yu (2001) prove an asymptotic rate-optimality result for FGD with the quadratic loss
function λ in one-dimensional function estimation of unknown smoothness. Thus, in such
low-dimensional toy problems, FGD achieves some optimality criterion asymptotically.
Good empirical performance of FGD, particularly in the area of classification with boosting
(Freund and Schapire, 1996; Friedman et al., 2000; Friedman, 2001), and the asymptotic
results in univariate function estimation mentioned above support evidence that FGD is
a good strategy. These arguments are further strengthened by the fact that there are
not many other methods whose computational costs remains manageable in very high-
dimensional, large scale problems.

2.1 Choice of the base learner

The base learner in Step 2 of the functional gradient descent algorithm, producing the
additive terms f̂m(·), obviously determines the FGD estimate F̂M (·). The base learner
should be “weak”, i.e. not too complex (not involving too many parameters to be esti-
mated), so that FGD would not immediately produce an overfitted estimate in the first
iteration. By adding further additive terms with every iteration, we increase complex-
ity or dimensionality of the FGD estimate F̂M . However, this increase in complexity is
not linear and performing further iterations typically changes complexity only by “small”
amounts; for example, it is shown for certain cases to become exponentially diminishing as
FGD iterations grow (Bühlmann and Yu, 2001). As usual, a bias-complexity trade-off is

6



present: the complexity of the base learner and the number of FGD iterations determine
the trade-off in a somewhat unusual way, see also Bühlmann and Yu (2001).

Often, decision trees are used as base learners. Particularly in high dimensions, they
have the ability to do variable selection by choosing just a few of the explanatory variables
for prediction. We will consider here decision trees but also projection pursuit (Friedman
and Stuetzle, 1981) as base learners which are both nonlinear. The choice of decision trees
or projection pursuit learners should not be regarded as exclusive: others could be tried
out and compared using some form of cross-validation. It is often desirable to make a
base learner sufficiently “weak”, i.e. of sufficiently low complexity. A simple but effective
solution to achieve this is via shrinkage towards zero: the up-date ŵmf̂m(·) in Step 3 of
the FGD algorithms is then replaced by

νŵmf̂m(·), 0 < ν ≤ 1. (2.3)

Obviously, this reduces the variance (a complexity measure) by the factor ν 2.

3 Univariate volatility estimation with FGD

Having a univariate time series of observed prices P0, P1, . . . , Pn of an asset, we consider
their returns Xt = (Pt − Pt−1)/Pt−1, or Xt = log(Pt/Pt−1) alternatively, and assume
stationarity at least in a suitable time-window. The equi-distant time-spacing ∆t = t −
(t− 1) = 1 is often one business day. Our working model for the time series of such price
returns is

Xt = σtZt, σ
2
t = F (Xt−1, Xt−2, . . .), (3.1)

where the innovations Zt are i.i.d. with IE[Zt] = 0, Var(Zt) = 1 and Zt independent from
{Xs; s < t}; the function F : R

∞ → R
+ is assumed a priori to be very general. It is later

the FGD estimate which constrains F (·) to be of a more particular, but often still rather
general form.

For FGD, we assume that F : R
p → R

+ with p finite; but we allow the starting function
F̂0(·) to depend on the whole past of the time series. We choose the loss-function λ(·, ·)
from the maximum-likelihood framework with innovations Zt ∼ N (0, 1):

λ(y, f) = − log(f−1/2ϕ(yf−1/2)) =
1

2

(
log(f) +

y2

f
+ log(2π)

)
.

(Of course, we could drop the log(2π) term which would then represent a simpler, equiv-
alent loss function). This, because with Gaussian innovations in (3.1), the negative log-
likelihood (conditional on the first p values) is

−
n∑

t=p+1

log
(
F (Xt−1

t−p )−1/2ϕ(XtF (Xt−1
t−p )−1/2)

)
,

where X t−1
t−p = Xt−1, . . . , Xt−p. The partial derivative of the loss-function is

∂λ(y, f)

∂f
= (f−1 − y2f−2)/2

7



and the FGD algorithm from section 2 can now be used.
As a starting function, we propose to use the fit from a GARCH(1,1) model (Bollerslev,

1986)

F̂0(Xt−1, Xt−2, . . .) = α̂0 + α̂1X
2
t−1 + β̂F̂0(Xt−2, Xt−3, . . .), (3.2)

with parameters estimates α̂0, α̂1, β̂ from parametric maximum-likelihood in the GARCH(1,1)
model with Gaussian innovations.

Summarizing, the FGD algorithm for univariate volatility estimation then looks as
follows.

FGD for univariate volatility

Step 1 (initialization). Choose the starting function F̂0(·) from (3.2) and denote by F̂0(t) =
F̂0(X

t−1
1 ). Set m = 1.

Step 2 (projection of gradient to base learner). Compute the negative gradient

Ut = (X2
t F̂m−1(t)

−2 − F̂m−1(t)
−1)/2, t = p+ 1, . . . , n

Then, fit the negative gradient vector with a base learner, using always the first p time-
lagged predictor variables (i.e. X t−1

t−p is the predictor for Ut)

f̂m(·) = SX(U)(·).

Steps 3 and 4. As in the generic FGD algorithm, generally with shrinkage as in (2.3) and
with stopping value M which optimizes the cross-validated log-likelihood.

The important issue is that the starting function F̂0(·) matters a lot for obtaining
good volatility estimates. We illustrate this in Figure 3.1 by one simulation from the
model (3.3) with sample size n = 1000. The out-sample OS-L2 losses with nout = 1000
(see section 3.1 below) are 174.5 (FGD with tree as in the Appendix and constant starting
function F̂0(x) ≡ S2 being the empirical overall variance), 95.5 (classical GARCH(1,1)
prediction) and 70.5 (FGD with tree as in the Appendix and starting function from a
GARCH(1,1) fit). We also compare the results from our optimal FGD algorithm with a
semi-nonparametric (SNP) model (Gallant and Tauchen, 1989) which yielded 94.2 for the
OS-L2 loss. Similar results can also be obtained for real data, see section 3.2.

Also, it is advisable to allow for shrinkage in Step 3. Regarding the base learner S, we
have considered regression trees (Breiman at al., 1984) and projection pursuit regression
(Friedman and Stuetzle, 1981). With regression trees, the FGD algorithm for univariate
volatility estimation can be further modified to achieve additional marginal improvements:
the version is described in the Appendix.

3.1 Numerical results for simulated data

We simulate from the following model,

Xt = σtZt, σ
2
t = F (Xt−1, σ

2
t−1),

F (x, σ2) = (0.1 + 0.2 |x| + 0.9x2) · (0.8 exp(−1.5 |x| |σ|)) + (0.4x2 + 0.5σ2)3/4, (3.3)

8



FGD starting with constant

simulated conditional variance

ou
ts

am
pl

e 
er

ro
rs

1 2 3 4 5 6

-1
0

1
2

3
4

GARCH(1,1)

simulated conditional variance

ou
ts

am
pl

e 
er

ro
rs

1 2 3 4 5 6

-1
0

1
2

3
4

SNP

simulated conditional variance

ou
ts

am
pl

e 
er

ro
rs

1 2 3 4 5 6

-1
0

1
2

3
4

FGD starting with GARCH

simulated conditional variance

ou
ts

am
pl

e 
er

ro
rs

1 2 3 4 5 6

-1
0

1
2

3
4

Figure 3.1: Outsample errors σ̂2
t − σ2

t versus true σ2
t in simulated model (3.3). Top left:

FDG with trees using constant starting function F̂0(x) ≡ S2 (empirical marginal variance);
Top right: GARCH(1,1) prediction; Bottom left: SNP prediction; Bottom right: FGD
with trees using the GARCH(1,1) fit as starting function.

where Zt ∼ N (0, 1) is as in (3.1).
For quantifying the goodness of fit, we consider various measures:

out-sample negative log-likelihood:
nout∑

t=1

λ(Yt, F̂ (Y t−1
1 )), (3.4)

IS-L2 =
n∑

t=1

|σ2
t − F̂ (Xt−1

1 )|2 (in-sample loss), (3.5)

OS-L2 =
nout∑

t=1

|σ2
t − F̂ (Y t−1

1 )|2 (out-sample loss), (3.6)

where Y1, . . . , Ynout
are new test observations, independent from but with the same distri-

bution as the data X1, . . . , Xn; the estimated function F̂ (·) is based on the training data
X1, . . . , Xn only. Both, the IS- and OS-L2 statistics are interesting measures in simula-
tions, but we can’t evaluate them for real data. The out-sample negative log-likelihood is a
more generally applicable measure for out-sample performance. Table 3.1 shows the result
for 50 independent realizations from model (3.3). Sample size is n = 1000 and test-set size
is nout = 1000. For this case, FGD with trees as in the Appendix is better than FGD with
projection pursuit, and both FGD techniques outperform the predictions from classical
GARCH(1,1) and SNP models. The differences in the out-sample log-likelihood are small
despite that the actual differences in volatility are substantial. This phenomenon is well
known and occurs because the out-sample log-likelihood measures quality for predicting
future returns and not future volatilities; the former is much more noisy than the latter.

9



Model
Performance measure

OS −log-likelihood IS-L2 OS-L2

GARCH(1,1) 1656.363 119.169 111.478

SNP 1659.077 128.9728 122.059

FGD with tree using p = 1, ν = 0.1, L = 3 1654.361 96.4853 89.5336

FGD with tree using p = 2, ν = 0.1, L = 5 1654.541 100.8058 93.2175

FGD with PPR using p = 2, ν = 0.05, S = 2 1656.178 117.686 109.755

Table 3.1: Goodness of fit measures (on average) for fifty simulations from model (3.3)
with sample size n = 1000. Out-sample performances OS-L2 and negative log-likelihood
as in (3.4)-(3.6) are evaluated with test-set of size nout = 1000. Notation: number of
lagged values (p), shrinkage factor (ν), number of terminal nodes (L) and number of ridge
functions (S).

Thus, similar out-sample log-likelihoods (or other prediction losses) with different meth-
ods are not implying that the methods are similar in terms of the differences between
estimated and true volatility, as observed in Table 3.1.

3.2 One real data example

We consider now negative daily log-returns of the DJIA index during the period December
22, 1993 until November 24, 1999 (1500 days). We obtain the following values for the
out-sample negative log-likelihood (3.4), where the first 1000 observations were used for
estimation and the remaining 500 served as a test set: 758.5 (FGD with tree as in the
Appendix and (not advocated) constant starting function F̂0(x) ≡ S2 being the empirical
overall variance), 750.1 (classical GARCH(1,1) prediction), 749.5 (SNP prediction) and
746.4 (FGD with tree as in the Appendix and starting function from a GARCH(1,1) fit).
Clearly for real data we can not evaluate the out-sample OS-L2 losses and it is harder
to detect differences for volatility prediction between the models (see the discussion at
the end of section 3.1). We will show in section 4.3.2 how testing can be used to judge
whether out-sample log-likelihoods (or other losses) are significantly different, even when
they appear to be similar.

We also investigate here the functional behavior of the estimated volatility from our
FGD method in comparison with the one from a GARCH(1,1) model. The estimated
conditional variances and the news impact curve (Engle and Ng, 1993) for a GARCH(1,1)
and a FGD fit are illustrated in Figure 3.2. We find that the differences are not big for
this data set. However, we also see (for this example only to a minor extent), that the
FGD method is capable to model asymmetry, a feature which can be very important for
other data. Thus, our FGD method with regression trees as base learners allows good
news and bad news to have a different impact on volatility, while the standard GARCH
model does not; of course, other models such as EGARCH (Nelson, 1991) would also
allow for asymmetries. Starting with a symmetric, centered around zero, news impact

10



estimated GARCH(1,1) conditional variance

es
tim

at
ed

 F
G

D
 c

on
di

tio
na

l v
ar

ia
nc

e

2 4 6 8

2
4

6
8

News impact curve

X_{t-1}

vo
la

til
ity

-5 0 5

1.
0

1.
5

2.
0

2.
5

Figure 3.2: Left: estimated FGD conditional variances (with regression trees as base
learners) versus estimated GARCH(1,1) conditional variances for a test-set of nout = 500
daily negative log-returns of DJIA index. Right: news impact curve for the GARCH(1,1)
model (solid line) and for the optimal FGD model with trees (dotted line) evaluated at
the level of the unconditional variance of the stock return.

curve (from GARCH(1,1)), we build asymmetries adding constant parameters (different for
every terminal node in the regression tree) as described by the algorithm in the Appendix.
In the particular example shown in Figure 3.2, we see that, as we expect, bad news have
slightly more impact on volatility in our FGD method than in the GARCH(1,1) model.
Exactly the contrary happens if we consider good news (we remind here the reader that
we consider negative log-returns).

4 Volatility estimation for high multivariate time series

In the multivariate set-up, we have time series of asset prices {Pt,i; t = 0, 1, . . . , n, i =
1, . . . , d}. Their returns are defined as

Xt,i = (Pt,i − Pt−1,i)/Pt−1,i, t = 1, . . . , n.

As mentioned already in section 1, the challenging problem is prediction of the multivariate
volatility matrix

Vt = Covd×d(Xt|Ft−1), Xt = (Xt,1, . . . , Xt,d)
T

in dimensions in the hundreds. FGD becomes a powerful strategy to construct computable
and good predictions for Vt.

11



We assume stationarity (at least within a suitable time-window). Our working model is
a generalization of the constant conditional correlation (CCC) GARCH model (Bollerslev,
1990),

Xt = ΣtZt, (4.1)

where we assume the following:

(A1) (innovations) {Zt}t∈Z is a sequence of i.i.d. multivariate innovations with spherical
distribution (e.g. multivariate normal) having mean zero and covariance matrix
Cov(Zt) = Id. Moreover, Zt is independent from Ft−1 = {Xs; s ≤ t− 1}.

(A2) (CCC construction) The conditional covariance matrix Vt = Cov(Xt|Ft−1) = ΣtΣ
T
t

is almost surely positive definite for all t. The typical element of Vt is vt,ij =
ρij(vt,iivt,jj)

1/2 (i, j = 1, . . . , d). The parameter ρij = Corr(Xt,i, Xt,j |Ft−1) equals
the constant conditional correlation and hence −1 ≤ ρij ≤ 1, ρii = 1.

(A3) (functional form) The conditional variances are of the form

vt,ii = σ2
t,i = Var(Xt,i|Ft−1) = Fi({Xt−j,k; j = 1, 2, . . . , k = 1, . . . , d})

where Fi takes values in R
+.

Note that (A2) can be represented in matrix form as

Vt = ΣtΣ
T
t = DtRDt,

Dt = diag(σt,1, . . . , σt,d), R = [ρij ]
d
i,j=1.

For estimating the functions Fi(·) in (A3), we propose FGD and restrict Fi(·) : R
pd →

R
+ with p finite, i.e. involving the first p lagged multivariate observations. Estimation of

the correlations can be easily done via empirical moments of residuals.
To proceed with a FGD technique, we first specify a suitable loss function. Assuming

multivariate normality of the innovations Zt, the negative log-likelihood (conditional on
the first p variables) is

−
n∑

t=p+1

log
(
(2π)−d/2det(Vt)

−1/2 exp(−XT
t V

−1
t Xt/2)

)

=
n∑

t=p+1

(
log(det(Dt)) +

1

2
(D−1

t Xt)
TR−1(D−1

t Xt)

)
+ n′d log(2π)/2 + n′ log(det(R))/2

where Dt is diagonal with elements
√
Fi(X

t−1
t−p) and n′ = n − p. This motivates the

following loss function

λR(Y, f) = log(det(D(f)) +
1

2
(D(f)−1Y)TR−1(D(f)−1Y) +

1

2
log(det(R)) +

d

2
log(2π),

D(f) = diag(f1, . . . , fd). (4.2)

(The terms d log(2π)/2 and log(det(R))/2 are constants and could be dropped). As pointed
out with the subscript, the loss function depends on the unknown correlation matrix R.

12



Our FGD algorithm will be constructed iteratively by estimating R and using the loss
function with the estimated R to get an estimate for all Fi’s.

Having a (previous) estimate F̂ = (F̂1, . . . , F̂d), we then construct the following esti-
mate for the correlation matrix R. Build the residuals

ε̂t,i = Xt,i/F̂i(Xt−1, . . .)
1/2, t = p+ 1, . . . , n

and define

R̂ = (n− p)−1
n∑

t=p+1

ε̂tε̂
T
t , ε̂t = (ε̂t,1, . . . , ε̂t,d)

T . (4.3)

The partial derivatives of the loss function are

∂λR(Y, f)

∂fi
= (fi −

d∑

j=1

γijyiyj

f
3/2
i f

1/2
j

)/2, i = 1, . . . , d, (4.4)

where [γij ]
d
i,j=1 = R−1. This will be used when computing negative gradients (see Step 2

in the generic FGD algorithm) for every component i = 1, . . . , d.
As a starting function, we propose to use the fit from a CCC-GARCH(1,1) model

(Bollerslev, 1990) which is of the form (4.1) with (A3) specified to

Fi(Xt−1, Xt−2, . . .) = σ2
t,i = α0,i + α1,iX

2
t−1,i + β0,iσ

2
t−1,i, i = 1, . . . , d. (4.5)

For d large, the estimates are constructed with maximum likelihood from the d individual
series. This ignores the more general correlation structure in R, causing some statis-
tical decrease in efficiency, but gaining the advantage that the individual estimates are
computable (in parallel) in very high dimensions d.

The FGD algorithm for multivariate volatility looks as follows.

FGD for multivariate volatility

Step 1 (initialization). Choose the starting function F̂i,0(·) and denote by F̂i,0(t) =

F̂i,0(Xt−1,Xt−2, . . .) (i = 1, . . . , d). Compute R̂0 as in (4.3) using F̂0. Set m = 1.

For every component i = 1, . . . , d, do the following.

Step 2i (projection of component gradients to base learner). Compute the negative gradient

Ut,i = −
∂λR̂m−1

(Xt,F)

∂Fi
|
F=F̂m−1(t), t = p+ 1, . . . , n.

This is explicitly given in (4.4). Then, fit the negative gradient vector Ui = (Up+1,i, . . . , Un,i)
T

with a base learner, using always the first p time-lagged predictor variables (i.e. Xt−1
t−p is

the predictor for Ut,i)

f̂m,i(·) = SX(Ui)(·).

13



Step 3i (line search). Perform one-dimensional optimization for the step-length,

ŵm,i = argmin
n∑

t=p+1

λR̂m−1
(Xt, F̂m−1(t) + wf̂m,i(X

t−1
t−p)).

(F̂m−1(t) + wf̂m,i(·) is defined as the function which is constructed by adding in the ith
component only). This can be expressed more explicitly by using (4.2).

Step 4 (up-date). Select the best component as

i∗m = argmini

n∑

t=p+1

λR̂m−1
(Xt, F̂m−1(t) + ŵm,if̂m,i(X

t−1
t−p)).

Up-date

F̂m(·) = F̂m−1(·) + ŵm,i∗m f̂m,i∗m(·).

Then, compute the new estimate R̂m according to (4.3) using F̂m.

Step 5 (iteration). Increase m by one and iterate Steps 2–4 until stopping with m = M .
This produces the FGD estimate

F̂M (·) = F̂0(·) +
M∑

m=1

ŵm,i∗m f̂m,i∗m(·).

As in the generic algorithm, the stopping value M is chosen to optimize the cross-validated
log-likelihood.

Note that shrinkage as in (2.3) is often useful in Steps 2–4. As in the univariate case, the
starting function F̂0(·) matters a lot for obtaining good volatility estimates.

A crucial difference to the multivariate (multi-class) FGD algorithm from Friedman et
al. (2000), who propose to cycle through the dimensions in a systematic way one after
the other, is that our construction is with candidate components in Steps 2i and 3i and
choosing the component i∗ in Step 4 which brings the most substantial improvement (“the
steepest direction”) in a single FGD iteration. Cycling through in a systematic way forces
to add complexity of the FGD estimate for every component: but this isn’t realistic if
one time series is “of simpler structure” than others. We illustrate this for one realization
of a 3-dimensional model as in (4.1): the volatilities are given by F1 and F2 from (4.8)
below with fixed parameters α1 = 0.1, α2 = 0.5, α3 = 0.2, α4 = 0.75, α5 = 0.5 and F3

from (4.9) below with fixed parameters α1 = 0.1, α2 = 0.9, α3 = −1.5, α4 = 0.5. Table
4.1 impressively demonstrates that choosing the best component i∗ brings substantial
improvements for the third series. The goodness of fit criteria used here are the following.
The out-sample negative log-likelihood function (the out-sample loss λ) is, similarly to
(3.4),

n+nout∑

t=n+1

λR̂(Xt, F̂(t)), (4.6)

where the estimates denoted by a “̂” are based on the training data X1, . . . ,Xn. The
other criteria are the univariate in- and out-sample L2-losses from (3.5) and (3.6).

14



Model
Performance measure

OS −log-lik.
IS-L2 OS-L2

series1 series2 series3 series1 series2 series3

CCC-GARCH(1,1) 3268.6 207.38 207.02 193.84 147.55 173.68 200.35

FGD with trees
3052.2 151.62 169.60 224.19 88.351 123.33 241.77using systematic

cycling

FGD with trees
3053.5 153.89 154.20 191.95 90.646 121.36 195.58selecting best

component i∗

Table 4.1: Goodness of fit measures for one three-dimensional realization of size n = 1000
from model (4.1) with Zt ∼ N3(0, I) and individual conditional variances defined by (4.8)
and (4.9). Out-sample negative log-likelihood as in (4.6) and individual OS-L2 as in (3.6)
are evaluated with test-set of size nout = 1000.

4.1 Base learners with variable selection

Regarding the base learner S, we have considered regression trees (Breiman at al., 1984).
Fitting regression trees for the components in our multivariate FGD (Step 2i) can be
modified as in the univariate setting described in the Appendix. In very high dimensions,
it is essential to use a base learner which selects only a few variables from a huge predictor
space. Decision trees have this property: when having L terminal nodes, the decision tree
base learner selects at most L − 1 different explanatory variables. In combination with
FGD, we would then add to the starting function F̂0 an additive correction involving at
most M(L− 1) different variables which may be much lower than dp which is the number
of the p lagged predictor variables in every of the d time series.

4.2 Computational cost and parallelization

The computational complexity of our multivariate FGD algorithm (without initialization)
is

Md · complexity(S) +Md · complexity(line search) +M · complexity(R̂)

The complexity of the estimate R̂ in (4.3) is quadratic in the dimension d but the com-
putational cost of this moment estimator is not substantial relative to the other tasks.
The numerical line search has to be done Md times which can contribute substantially to
computing time when d is in the hundreds, M up to 100 (which is most often big enough)
and n around 1000 (which is at the upper range when using daily financial data, due to
possible non-stationarity). Likewise, the base learner has to be fitted Md times. When
d gets large, we encounter in addition that fitting of the base learner becomes typically
more costly (complexity(S) also depends on d). For example with S a decision tree, the
computational complexity of S grows linearly in d. However, for d in the range of 100,
M up to 100 and n about 1000, the total complexity is still feasible when using decision
trees.

15



When d is in the order of 1000, the simple implementation of the FGD algorithm
becomes quickly computationally expensive. Fortunately, it is very easy to implement a
parallel version. Searching the best component i∗m in Steps 2i and 3i requires consideration
of all components i = 1, . . . , d: this can be parallelized immediately, reducing the com-
putational cost a lot. Furthermore, when using trees as base learner in high dimensions,
their fitting, which requires visiting all components i = 1, . . . , d could also be substantially
parallelized. While this is a bit more sophisticated, parallelization of the Steps 2i and 3i

is immediate. Such simple parallelizations make our FGD algorithm immediately feasible
in dimensions d in the thousands.

4.3 Numerical results

4.3.1 100-dimensional simulated data

We simulate a 100-dimensional series of sample size n = 1000 from model (4.1) with
Zt ∼ N100(0, I) and various volatility functions Fj . One such function is the classical
GARCH(1,1) volatility

σ2
t,i = Fi(Xt−1,i, σ

2
t−1,i) where

Fi(x, σ
2) = α0 + α1x

2 + βσ2, where

α0 ∼ Unif([0, 0.2]), α1 ∼ Unif([0.05, 0.15]), β ∼ Unif([0.8, 0.84]) (4.7)

and α0, α1, β mutually independent. Another function is from a threshold model

σ2
t,i = Fi(Xt−1,i, σ

2
t−1,i) where

Fi(x, σ
2) =





α1 + α2x
2 , if x ≤ d1 = 0,

0.2 + α3x
2 + α4σ

2 , if x > d1 = 0 and σ2 ≤ d2 = 0.5,
0.8 + α5σ

2 , if x > d1 = 0 and σ2 > d2 = 0.5,
where

α1 ∼ Unif([0, 0.3]), α2 ∼ Unif([0.4, 0.6]), α3 ∼ Unif([0.1, 0.3]),

α4 ∼ Unif([0.6, 0.8]), α5 ∼ Unif([0.4, 0.6]) (4.8)

(α1, . . . , α5 mutually independent). A third and a fourth function, in which we also allow
for one cross-terms, are

σ2
t,i = Fi(Xt−1,i, Xt−1,j , σ

2
t−1,i) where

Fi(x, y, σ
2) = (α1 + 0.2 |y| + α2x

2) · (0.8 exp(α3 |x| |σ|)) + (0.4x2 + α4σ
2)3/4,

α1 ∼ Unif([0.05, 0.15]), α2 ∼ Unif([0.8, 0.95]),

α3 ∼ Unif([−1.6,−1.4]), α4 ∼ Unif([0.4, 0.6]) (4.9)

(α1, . . . , α4 mutually independent), and

σ2
t,i = Fi(Xt−1,i, Xt−1,j , σ

2
t−1,i) where

Fi(x, y, σ
2) = (0.1 + α1 |y|

3) · exp(α2x
2) + α3(σ

2)3/4,

α1 ∼ Unif([0.1, 0.2]), α2 ∼ Unif([−0.1, 0]), α3 ∼ Unif([0.8, 0.9]) (4.10)

16



(α1, α2, α3 mutually independent), where the component j ∈ {1, . . . , d} \ i is chosen ran-
domly. Each of the volatility functions Fi is randomly chosen with probability 1/4, inde-
pendent of each other, to generate 100 such functions in total. Note that also the coeffi-
cients in these functions are randomly chosen. The constant conditional correlation matrix
R is chosen to mimic the one of real log-returns. This model is “fairly close” to a CCC-
GARCH(1,1) model since half of the volatility functions involve only auto-dependence (no
dependence on a cross-series in (4.7) and (4.8)), a quarter of them actually being linear
GARCH-type, and the other half involve only one other cross-series.

The results are displayed in Table 4.2 and Figure 4.1 (test set size is nout = 1000).

Individual OS-L2 performances

CCC-GARCH(1,1)

Op
tim

al 
FG

D

0 1000 2000 3000 4000

0
10

00
20

00
30

00
40

00

Individual OS-L2 performances

CCC-GARCH(1,1)

Op
tim

al 
FG

D

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

Individual OS-L2 performances

CCC-GARCH(1,1)

Op
tim

al 
FG

D

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

Relative gain with FGD

CCC-GARCH(1,1)

Re
lat

ive
 ga

in 
(in

 %
)

0 1000 2000 3000 4000

-1
0

0
10

20

Figure 4.1: Individual OS-L2 measures as in (3.6) for one 100-dimensional realization of
size n = 1000 as described above. First three panels: performance of CCC-GARCH(1,1)
on x-axis and of FGD with trees on y-axis with the line indicating equal performance,
on different scales. Lower right panel: relative gains with FGD with trees of individual
OS-L2 measures (see 3.6) on y axis versus performance of CCC-GARCH(1,1) on x-axis.

We observe only a small gain of FGD with trees over the CCC-GARCH(1,1) prediction
with respect to the negative log-likelihood, because the signal to noise level is low, but a
more substantial gain when looking at individual outsample L2-losses as in (3.6) where

17



Model
Performance measure

OS −log-lik. ave(OS-L
(j)
2 ) max gain in OS-L2 min gain in OS-L2

CCC-GARCH(1,1) 121636.8 447.7096 − −

FGD with tree
119884.8
(1.4%)

413.5867
(7.6%)

27.3% −12.1%using p = 2,
ν = 0.5, L = 5

Table 4.2: Goodness of fit measures for one 100-dimensional realization of size n = 1000
as described above. The measures are defined as in (4.6), as the average over all d = 100
individual series as in (3.6) and the extremal relative individual gains with respect to (3.6);
test-set size is nout = 1000 and relative gains with FGD over CCC-GARCH(1,1) are given
in parentheses.

the observation noise is not present. Of course, we cannot expect to learn in all d = 100
components with sample size n = 1000 (or here in all 75 components which are not of
linear GARCH(1,1)-type). On average, the OS-L2 gain over all d = 100 components is
7.6%: this gain will generally decrease when dimension d increases and keeping sample
size n fixed. However, we also see from Figure 4.1, that FGD mainly improves (in absolute
terms) at those components where the CCC-GARCH(1,1) predictions are poorest. This
is consistent with the intuition that functional gradient descent improves the “hardest”
cases. Regarding the relative gains with FGD: they range from -12.1 to 27.3% (but only
in two out of 100 cases there is a loss) and quite many large relative gains are realized
where the CCC-GARCH predictions are fairly low (see lower right panel of Figure 4.1).

4.3.2 A seven-dimensional real data example

We consider also real daily return data from seven financial indices. The dimensionality
d = 7 is “mid-range” allowing for a representation of the results which is easy to survey.
FGD will also turn out to be useful in such orders of dimensions. The data comprises 1500
daily returns from the US DJIA, the French CAC40, the German DAX, the Italian BCI,
the Dutch CBS, the British FTAS and the Japanese NIKKEI index, during the period
January 31, 1990 until September 9, 1996: we use the first 1000 time points for training
(fitting) and the remaining 500 for out-sample testing (evaluation).

We consider two goodness of fit measures for such real data. One is the negative out-
sample log-likelihood in (4.6). Alternatively, we also look at the individual out-sample
prediction L2 losses,

OS-PL2 =
1500∑

t=1001

|X2
t,i − F̂i(t)|

2 (i = 1, . . . , d).

The IS-PL2 is defined analogously using the training sample only. The results are given
in Table 4.3.

With real data, differences in the out-sample negative log-likelihood or OS-PL2 can
be small between different methods; see also the discussion at the end of section 3.1. The

18



Performance measure

CCC-GARCH(1,1) FGD with trees

OS −log-lik. IS-PL2 OS-PL2 OS −log-lik. IS-PL2 OS-PL2

global 4369.81 4357.46

DJIA 3127.25 451.817 3091.49 448.297

CAC40 17138.9 6781.32 17009.1 6734.14

DAX 19931.6 5826.86 19931.6 5826.86

BCI 25135.4 2942.45 25135.4 2942.45

CBS 7437.44 3087.85 7437.44 3087.85

FTAS 10714.2 777.266 10714.2 777.266

NIKKEI 61011.8 5345.68 60603.8 5303.75

Table 4.3: Goodness of fit measures for a seven-dimensional real data example. The
optimal parameters in FGD with trees are p = 3 lagged values, shrinkage ν = 0.5 and
L = 3 terminal nodes.

out-sample criterion is here generally denoted by

nout∑

t=1

Lt,

where Lt is the out-sample loss for out-sample prediction at time t depending on a tech-
nique or model, i.e. Lt = Lt,model (we first consider Lt = λR̂(Xt, F̂(t)), the multivariate
negative out-sample log-likelihood). The differences between two models with respect to
out-sample performance is then

∆(model1,model2) =
nout∑

t=1

Dt, Dt = Lt,model1
− Lt,model2

.

We aim to test whether IE[Dt] = 0 against one- (or two-) sided alternatives. We consider
versions of the t- and sign-test, adapted to the case of dependent observations Dt.

The t-type test statistic is

n
1/2
out

D

σ̂D,∞
, D = n−1

out

T∑

t=1

Dt,

σ̂2
D,∞ = 2πf̂D(0) (4.11)

where f̂D(0) is an estimate of fD(0) = (2π)−1∑
k Cov(D0, Dk), the spectral density at

frequency zero of the process {Dt}t, where we assume that {Dt}t is stationary and suitably
regular, so that

n
1/2
out(D − IE[Dt]) ⇒ N (0, σ2

D,∞)

19



t-type test sign-type test

-0.88 (0.189) -1.73 (0.042)

Table 4.4: Test-statistics and P -values (in parentheses) for one-sided testing for differences
in multivariate out-sample negative log-likelihood of the FGD with trees and the CCC-
GARCH predictions. Negative test-statistics favor the FGD method.

From this, we obtain asymptotically the standard normal distribution of the test-statistic
in (4.11) under the null-hypothesis and hence the ingredients to perform the test.

The sign-type test statistic is

n
1/2
out

W − 1/2

σ̂W,∞
, W = n−1

out

T∑

t=1

I1[Dt>0],

σ̂2
D,∞ = 2πf̂D(0) (4.12)

where f̂W (0) is an estimate of the spectral density at frequency zero of the process
{I1[Dt>0]}t, where we assume that {I1[Dt>0]}t is stationary and suitably regular, so that the
central limit theorem holds. This then implies that the test-statistic in (4.12) is asymptot-
ically standard normal under the null-hypothesis H0 : p = IP[Dt > 0] = 1/2 which allows
to perform the test. For both tests, estimation of the spectral density at zero is done via
smoothing the periodogram.

We apply both tests for comparing the FGD with trees and the CCC-GARCH pre-
dictions. The alternative is one-sided where FGD with trees has lower out-sample loss.
The results are given in Table 4.4. Thus, the small difference of 0.3% in the out-sample
log-likelihoods of FGD and CCC-GARCH(1,1) from Table 4.3 turns out to be significant
at the 5%-level for the sign-type test.

Moreover, we see that our multivariate FGD algorithm with candidate components
improves three series (DJIA, CAC40 and NIKKEI), leaving the estimates for the other
four series unchanged. We can consider these three series individually and perform the
same t-type and sign-type tests for the univariate out-sample negative log-likelihood given
by (3.4). The results are summarized in Table 4.5.

t-type test sign-type test

DJIA -0.39 (0.349) -0.49 (0.311)

CAC40 -1.75 (0.040) -2.26 (0.012)

NIKKEI -1.71 (0.043) -0.10 (0.460)

Table 4.5: Test-statistics and P -values (in parentheses) for one-sided testing for differences
in individual univariate out-sample negative log-likelihood of the FGD with trees and the
CCC-GARCH predictions. Negative test-statistics favor the FGD method.

On the level of individual series, mainly the CAC40 index return series is significantly
improved by FGD modeling.

20



5 Conclusions

We have presented an FGD algorithm which is a technique for estimation of the conditional
covariance matrix in (1.1). It is computationally feasible in multivariate problems with
several hundreds up to thousands of return series, and regularization to protect against
overfitting is simple. This is not the case for other multivariate methods such as for
example the multivariate GARCH-type BEKK(1,1) model (Engle and Kroner, 1995) or the
multivariate SNP model (Gallant and Tauchen, 1989): for our real multivariate example of
section 4.3.2 with dimension d = 7, both models involve already more than 100 parameters
which are likely to overfit (and searching for a best among all sparse parameterizations is
combinatorially not manageable).

We have demonstrated on some data-sets (synthetic and real) that our FGD algorithm
significantly outperforms the predictions from the CCC-GARCH(1,1) model (Bollerslev,
1990). The latter model has generated the starting functions in our FGD and hence, it is
not so surprising that we could observe improvements. This seems generally the attractive
feature of FGD. We choose a reasonable model for generating (estimating) the starting
functions in FGD, and then we try – often successfully – to improve the initial basis model
with a couple FGD iterations. According to the heuristics of a steepest functional gradient,
the improvements with FGD are mainly expected at those components where the initial
basis model performs poorly, as we demonstrated on a 100-dimensional data-set.

Our method is constructed from a generic algorithm: hence, other FGD procedures can
be derived for learning in other, typically very high-dimensional, problems. Thus, FGD is
not necessarily restricted to the framework of constant conditional correlation (CCC).

Appendix

When using regression tree base learners in FGD, we can take advantage of the fact that the
learner is a partitioning method which allows a more (statistically) efficient implementation
for fitting with respect to the best improvement of the loss function λ.

FGD with tree learners
(Formulated with response variables Yi and explanatory variables Xi, see section 3).

Modified steps 2 and 3. Given a negative gradient vector U , fit a regression tree to U by
least squares. This produces a partition {R1, . . . ,Rk} of the predictor space R

p

∪k
j=1Rj = R

p, Ri ∩Rj = ∅ (i 6= j).

(I.e., the partition is such that
∑n

i=1(Ui −
∑k

j=1 β̂jI1[Xi∈Rj ])
2 is minimal). Then, proceed

with line searches for all k partition cells,

γ̂m,j = argminγ

∑

i;Xi∈Rj

λ(Yi, F̂m−1(Xi) + γI1[Xi∈Rj ]), j = 1, . . . , k.

Finally, up-date

F̂m(x) = F̂m−1(x) +
k∑

j=1

γ̂m,jI1[x∈Rj ].

This is the same generic tree algorithm as in Friedman (2001).

21



References

[1] Aguilar, O. and West, M. (2000). Bayesian dynamic factor models and variance matrix
discounting for portfolio allocation. J. of Business and Economic Statistics 18, 338–
357.

[2] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. of
Econometrics 31, 307–327.

[3] Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates:
a multivariate generalized ARCH model. The Review of Economics and Statistics 72,
498–505.

[4] Breiman, L. (1999). Prediction games & arcing algorithms. Neural Computation 11,
1493-1517.

[5] Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984). Classification and
Regression Trees. Wadsworth, Belmont (CA).

[6] Bühlmann, P. and Yu, B. (2001). Boosting with the L2-loss: regression and classifi-
cation. Preprint, ETH Zürich.

[7] Chib, S., Nardari, F. and Shephard, N. (1999). Analysis of high dimensional multi-
variate stochastic volatility models. Preprint, University of Oxford.

[8] Engle, R.F. and Kroner, K.F. (1995). Multivariate simultaneous generalized ARCH.
Econometric Theory 11, 122–150.

[9] Engle, R.F. and Ng, V.K. (1993). Measuring and Testing the Impact of News on
Volatility. J. of Finance 48, 1749–1778.

[10] Engle, R.F., Ng, V.K. and Rothschild, M. (1990). Asset pricing with a factor ARCH
covariance structure: empirical estimates for treasury bills. J. Econometrics 45, 231–
238.

[11] Freund, Y. and Schapire, R.E. (1996). Experiments with a new boosting algorithm. In
Machine Learning: Proc. Thirteenth International Conference, pp. 148–156. Morgan
Kauffman, San Francisco.

[12] Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine.
Annals of Statistics 29, 1189–1232.

[13] Friedman, J.H., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: a
statistical view of boosting. Annals of Statistics 28, 337–407 (with discussion).

[14] Friedman, J.H. and Stuetzle, W. (1981). Projection pursuit regression. J. American
Statistical Association 76, 817–823.

[15] Gallant, A.R. and Tauchen, G. (1989). Seminonparametric estimation of conditionally
constrained heterogeneous processes: asset pricing applications. Econometrica 57,
1091–1120.

22



[16] Harvey, A.C., Ruiz, E. and Shephard, N. (1994). Multivariate stochastic variance
models. Rev. Economic Studies 61, 247–264.

[17] Lin, W.-L. (1992). Alternative estimators for factor GARCH models – a Monte Carlo
comparison. J. Applied Econometrics 7, 259–279.

[18] Mason, L., Baxter, J. Bartlett, P. and Frean, M. (1999). Functional gradient tech-
niques for combining hypotheses. In Advances in Large Margin Classifiers. MIT Press.

[19] Nelson, D.B. (1991). Conditional heteroskedasticity in asset returns: a new approach.
Econometrica 59, 347–370.

[20] Nocedal, J. and Wright, S.J. (1999). Numerical Optimization. Springer, New York.

[21] Tukey, J.W. (1977). Exploratory data analysis. Addison-Wesley, Reading, MA.

23


