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GLMMLasso: An Algorithm for
High-Dimensional Generalized Linear Mixed

Models Using �1-Penalization

Jürg SCHELLDORFER, Lukas MEIER, and Peter BÜHLMANN

We propose an �1-penalized algorithm for fitting high-dimensional generalized linear
mixed models (GLMMs). GLMMs can be viewed as an extension of generalized linear
models for clustered observations. Our Lasso-type approach for GLMMs should be
mainly used as variable screening method to reduce the number of variables below the
sample size. We then suggest a refitting by maximum likelihood based on the selected
variables only. This is an effective correction to overcome problems stemming from the
variable screening procedure that are more severe with GLMMs than for generalized
linear models. We illustrate the performance of our algorithm on simulated as well as
on real data examples. Supplementary materials are available online and the algorithm
is implemented in the R package glmmixedlasso.

Key Words: Coordinate gradient descent; Laplace approximation; Random-effects
model; Variable selection.

1. INTRODUCTION

In recent years, high-dimensional linear regression models have been extensively
studied. The most popular method to achieve sparse estimates is the Lasso (Tibshirani
1996), which uses an �1-penalty. The Lasso is attractive not only in terms of its statistical
properties but also due to its fast computation solving a convex optimization problem.
However, relatively few articles examining high-dimensional regression problems involv-
ing a nonconvex loss function can be cited—for example, Khalili and Chen (2007) and
Städler, Bühlmann, and van de Geer (2010) for Gaussian mixture models; Pan and Shen
(2007) and Witten and Tibshirani (2010) for clustering; and Witten and Tibshirani (2011)
for linear discriminant analysis.

Generalized linear mixed models or GLMMs (McCullagh and Nelder 1989; Breslow
and Clayton 1993; McCulloch and Searle 2001; Molenberghs and Verbeke 2005) are an
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GLMMLASSO 461

extension of generalized linear models by adding random effects to the linear predictor
to accommodate for clustered or overdispersed data. These models have received much
attention in many applications such as biology, ecology, medicine, pharmaceutical science,
and econometrics. Available software packages (lme4 in R, NLMIXED in SAS, among
others) allow to fit a wide range of GLMMs.

In this article, we develop a method for high-dimensional GLMMs. It is based on a
Lasso-type regularization with a cyclic coordinate descent optimization. Due to shrinkage
introduced by �1-penalization, our approach performs in a first step variable screening,
thereby selecting a set of candidate active variables. In other words, the proposed method
primarily aims at reducing the dimensionality of the high-dimensional GLMM. In a second
step, we perform refitting by maximum likelihood (ML) estimation to get accurate parameter
estimates. The idea of such a two-stage approach has been used in linear models (Efron
et al. 2004) and it is related to the adaptive Lasso (Zou 2006) and the thresholded Lasso
(Zhou 2010; van de Geer, Bühlmann, and Zhou 2011). In fact, a two-stage approach is
much more important than for linear models since shrinkage in GLMMs can have a severe
effect on the estimation of variance components (see Sections 4 and 5).

To the best of our knowledge, there does not exist any literature devoted to truly high-
dimensional GLMMs. Some papers focus on penalized variable selection procedures in
generalized mixed models with low-dimensional data: we refer to Yang (2007), Ibrahim
et al. (2010), and Ni, Zhang, and Zhang (2010). Groll and Tutz (in press) have independently
studied the same statistical problem and have also used a Lasso-type approach but with
a focus on rather low-dimensional problems. Few papers focus on variable selection in
generalized additive mixed models (e.g., Xue, Qu, and Zhou 2010; Lai, Huang, and Lee
2012). Schelldorfer, Bühlmann, and van de Geer (2011) presented statistical theory and an
algorithm for high-dimensional Gaussian linear mixed models, where computation is much
easier than in the generalized case.

The main contribution of the present article is the construction and implementation
of an efficient algorithm for �1-penalization in truly high-dimensional GLMMs, called
the GLMMLasso. We use the Laplace approximation (Bates 2011b) and combine it with
efficient coordinate gradient descent (CGD) methods (Tseng and Yun 2009). Our algorithm
is feasible for problems where the number of variables is in the thousands and taking
advantage of sparsity with respect to dimensionality (i.e., only few active variables) is
exploited by an active set strategy.

The rest of the article is organized as follows. In Section 2, we review the GLMM and
introduce the GLMMLasso estimator. In Section 3, we describe the details of the compu-
tational algorithm before advocating the two-stage GLMMLasso estimators in Section 4.
In Sections 5 and 6, we consider the performance of our methods on simulated and real
datasets. The article concludes with a discussion in Section 7. Supplementary materials
including additional simulation examples are available online.

2. GENERALIZED LINEAR MIXED MODELS
AND �1-PENALIZED ESTIMATION

In this section, we first look at the classical GLMM setting where the number of
observations is larger than the number of covariates, that is, p < n. We closely follow
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462 J. SCHELLDORFER, L. MEIER, AND P. BÜHLMANN

Bates (2011a). Second, we consider the high-dimensional framework, that is, n � p, and
present the �1-penalized ML estimator.

2.1 MODEL FORMULATION

Suppose that the observations are not independent but grouped instead. Let r =
1, . . . , N be the grouping index and j = 1, . . . , nr the jth outcome within group r. Denote
by n the total number of observations, that is, n = �N

r=1 nr . Let X be the n × p fixed-
effects design matrix, Z the n × q random-effects design matrix, Y the n-dimensional
random response vector, and B be the q-dimensional vector of random effects. We observe
y of Y whereas B is unobserved. The GLMM is specified by the unconditional distribution
of B and the conditional distribution of Y |B = b:

(i) Yi |B = b are independent for i = 1, . . . , n.

(ii) The distribution of Yi |B = b belongs to the exponential family with density

exp{φ−1(yiξi − b(ξi)) + c(yi,φ)},
where b(.) and c(., .) are known functions. φ is the dispersion parameter (known or
unknown) and ξi is associated with the conditional mean μi := E[Yi |B = b], that is,
ξi = ξi(μi).

(iii) The conditional mean vector μ depends on b through the known link function g and
the linear predictor η = Xβ + Zb, with η = g(μ) componentwise. Here, β is the
unknown p-dimensional parameter vector, called fixed effects, and b the unknown
q-dimensional vector of random effects.

(iv) B ∼ Nq(0,�θ ) where the covariance matrix �θ is parameterized by the unknown
parameter vector θ ∈ Rd . We assume that �θ is positive semidefinite, that is, �θ ≥ 0.
The dimensionality d is typically small, say d ≤ 10.

By using B and �θ in the definition above, we have already defined the random-effects
structure of the GLMM. To be more precise, we have specified which variables have an
additional random effect and how the structure of �θ looks like (e.g., multiple of the identity
or diagonal). A discussion of how to find these structures is beyond the scope of this article.

Let us write �θ in terms of its Cholesky decomposition �θ = �θ�
T
θ and introduce the

(unobserved) random variable U defined by B := �θU where U ∼ Nq(0, 1q). Then the
linear predictor η can be written as η = Xβ + Z�θ u. We estimate the parameters β, θ ,
and φ (if unknown) by the ML method and predict the random effects u.

2.2 LIKELIHOOD FUNCTION

Employing the notation ξi(μi) = ξi(β, θ ), the likelihood function of a GLMM is given
by the following expression:

L(β, θ ,φ) =
�

Rq

n�

i=1

[exp{φ−1(yiξi(β, θ ) − b(ξi(β, θ ))) + c(yi,φ)}]

× 1

(2π )q/2
exp

�
−1

2
�u�2

2

�
du
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GLMMLASSO 463

= 1

(2π )q/2

�

Rq

exp

�
n�

i=1

�
yiξi(β, θ ) − b(ξi(β, θ ))

φ
+ c(yi,φ)

�
− 1

2
�u�2

2

�
du.

(1)

In general, the integral (1) cannot be worked out analytically and numerical approximations
are required (see Skrondal and Rabe-Hesketh 2004; Molenberghs and Verbeke 2005; Jiang
2007).

2.3 THE GLMMLASSO ESTIMATOR

We now turn to the high-dimensional setting where the number of fixed-effect variables p
is much larger than the number of observations n, that is, we study the so-called n � p setup.

Let us assume that the true underlying fixed-effects vector β0 is sparse in the sense
that many coefficients of β0 are zero. To enforce sparsity of our estimator, we advocate a
Lasso-type approach. This means that we add an �1-penalty for the fixed-effects vector β to
the likelihood function. Thus, we are going to consider the following objective function:

Qλ(β, θ ,φ) = −2 log L(β, θ ,φ) + λ�β�1, (2)

where λ ≥ 0 is a regularization parameter. Appropriate choices for λ are discussed in
Section 4.

We aim at estimating the fixed-effect parameter β, the covariance parameter θ , and, if
unknown, the dispersion parameter φ, by

(β̂, θ̂ , φ̂) := arg min
β,θ,φ

Qλ(β, θ ,φ). (3)

We call (3) the GLMMLasso estimator. Since the likelihood function (1) comprises an-
alytically intractable integrals (except for the Gaussian case), some approximations have
to be used. We are going to illustrate the algorithm using the Laplace approximation. For
GLMMs, it is accurate with low computational burden, as advocated by Bates (2011b). A
thorough discussion of the accuracy and limitations of the Laplace approximation can be
found in the article by Joe (2008). Generally, the Laplace approximation is used to calculate
integrals of the form

I =
�

Rq

e−S(u)du, (4)

where S(u) is a known function of a q-dimensional variable u. Let

ũ = arg max
u

− S(u) (5)

(i.e., S �(ũ) = 0), then the Laplace approximation of I is given by

I ≈ ILA = (2π )q/2|S ��(ũ)|−1/2e−S(ũ). (6)

The mode ũ in (5) is calculated by the penalized iterative least squares (PIRLS) algorithm.
It is presented in the literature by Bates (2011b) and described in the online supplementary
materials. The PIRLS algorithm is related to the iterative reweighted least squares (IRLS)
algorithm for obtaining the ML estimator in generalized linear models.
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464 J. SCHELLDORFER, L. MEIER, AND P. BÜHLMANN

It should be noted that ũ depends on β, θ , and φ. From (1) and (6), we deduce that the
Laplace approximation of the objective function Qλ(.) in (2) is

QLA
λ (β, θ ,φ) = −2

n�

i=1

�
yiξi(β, θ ) − b(ξi(β, θ ))

φ
+ c(yi,φ)

�

+ log |(Z�θ )T Wβ,θ ,φ(Z�θ ) + 1q | + �ũ(β, θ ,φ)�2
2 + λ�β�1, (7)

where Wβ,θ ,φ = diag−1(φv(μi(β, θ ))g�(μi(β, θ ))2)ni=1 and v(.) is the known conditional
variance function (McCullagh and Nelder 1989). The estimator (3) is then approximated
by

(β̂
LA

, θ̂
LA

, φ̂LA) := arg min
β,θ,φ

QLA
λ (β, θ ,φ). (8)

We call (8) the GLMMLassoLA estimator. It is the approximation (8) to the objective
function (3) that is optimized to obtain the parameter estimates. Moreover, we would like
to emphasize that (8) is a nonconvex function with respect to (β, θ ,φ) consisting of a
nonconvex loss function and a convex penalty.

3. COMPUTATIONAL ALGORITHM

In this section, we present the computational algorithm to obtain the GLMMLassoLA es-
timator (8). The algorithm is based on ideas by Tseng and Yun (2009) of the (block) CGD
method. The notion of the CGD algorithm is that we cycle through components of the full
parameter vector ψ := (β, θ ,φ) ∈ Rp+d+1 and minimize the objective function QLA

λ (.) only
with respect to one parameter while keeping the other parameters fixed. In doing so, we
calculate a quadratic approximation and perform an indirect line search to ensure that the
objective function decreases. (Block) CGD algorithms are used by Meier, van de Geer, and
Bühlmann (2008), Wu and Lange (2008), Friedman, Hastie, and Tibshirani (2010), and
Breheny and Huang (2011), and are now extremely popular in high-dimensional penalized
regression problems.

We first give an overview of the algorithm that solves minimization problem (8) ex-
actly before considering an approximate algorithm that finds a solution close to the exact
minimizer of (8). Finally, we present some details of the algorithm.

3.1 THE EXACT GLMMLASSO ALGORITHM

We describe here an exact algorithm, called exact GLMMLasso (we notationally omit
the involved Laplace approximation), for the Laplace approximated objective function in
(8). Let us write (7) with a different notation to ease the presentation. For ψ = (β, θ ,φ) ∈
Rp+d+1, define the function

f (ψ) : = −2
n�

i=1

�
yiξi(β, θ ) − b(ξi(β, θ ))

φ
+ c(yi,φ)

�

+ log |(Z�θ )T Wψ (Z�θ ) + 1q | + �ũ(ψ)�2
2.
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GLMMLASSO 465

Now (8) can be written as ψ̂
LA
λ = arg minψQLA

λ (ψ) := f (ψ) + λ�β�1. Let ej be the jth
unit vector and denote by (s) the sth iteration step. Moreover, we let

β (s) :=
�
β

(s)
1 , . . . , β(s)

p

�T
, θ (s) :=

�
θ

(s)
1 , . . . , θ

(s)
d

�T
, φ(s)

be the estimates of β, θ , and φ in the sth iteration. Using the notation

β (s,s−1,βk ) : =
�
β

(s)
1 , . . . , β

(s)
k−1,βk,β

(s−1)
k+1 , . . . , β(s−1)

p

�T
,

θ (s,s−1,θl ) : =
�
θ

(s)
1 , . . . , θ

(s)
l−1, θl , θ

(s−1)
l+1 , . . . , θ

(s−1)
d

�T
,

β (s,s−1;k) : =
�
β

(s)
1 , . . . , β

(s)
k−1,β

(s−1)
k ,β

(s−1)
k+1 , . . . , β(s−1)

p

�T
,

the exact GLMMLasso algorithm is summarized in Algorithm 1.
Particularly in the high-dimensional setting, the calculation of the quadratic approxima-

tion requires a large amount of computing time. Therefore, it is interesting to examine a
much faster approximate algorithm.

3.2 THE (APPROXIMATE) GLMMLASSO ALGORITHM

In the exact Algorithm 1, we consider in Step 1b the mode ũ as a function of the parame-
ters, that is, ũ = ũ(β, θ ,φ). However, the calculation of the derivatives of f (.) with respect
to βk is computationally intensive. This becomes a major issue in the high-dimensional
setting where a substantial amount of computing time is allocated to this particular part
of the algorithm. In addition, the exact GLMMLasso algorithm requires a large number
of outer iterations s. To attenuate these difficulties, we propose a slightly modified version
of Algorithm 1. We suggest performing the quadratic approximation and the inexact line
search while considering ũ as fixed and not depending on βk . Denoting by f (.|ũ) the func-
tion f (.) for which ũ is considered as fixed, the (approximate) GLMMLasso algorithm is
given in Algorithm 2:

We illustrate in the online supplementary materials that the approximate GLMM-
Lasso algorithm speeds up remarkably without losing that much accuracy. Addition-
ally, the approximation emphasizes the importance of a refitting as advocated in the next
section.

3.3 CONVERGENCE BEHAVIOR AND DETAILS OF THE GLMMLASSO ALGORITHM

3.3.1 Numerical Convergence. The convergence of the exact GLMMLasso algorithm
to a stationary point can be proofed using the results presented by Tseng and Yun (2009).
It is worth pointing out that in the low-dimensional framework, the exact GLMMLasso
algorithm with λ = 0 (no penalization) gives the same results as the function glmer in the
R package lme4.

(0) Starting value ψ (0). As starting value for β, we fit a generalized linear model with the
Lasso where the regularization parameter is chosen by cross-validation. The initial
values for θ and φ are then calculated using Steps (2) and (3) in Algorithms 1
and 2.
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466 J. SCHELLDORFER, L. MEIER, AND P. BÜHLMANN

Algorithm 1 Exact GLMMLasso algorithm

(0) Choose a starting value ψ (0) = (β(0), θ (0),φ(0)).

Repeat for s = 1, 2, . . .

(1) (fixed-effect parameter optimization)
For k = 1, . . . , p

a) (Laplace approximation)
Calculate the Laplace approximation

QLA
λ

�
β (s,s−1;k), θ (s−1),φ(s−1)

�
.

b) (Quadratic approximation and inexact line search)
i) Approximate the second derivative

∂2

∂β2
k

f
�
β(s,s−1,βk ), θ (s−1),φ(s−1)���

βk=β
(s−1)
k

by h
(s)
k > 0 as described in the section below.

ii) Calculate the descent direction d
(s)
k ∈ R

d
(s)
k := arg min

d

�
f

�
β(s,s−1;k), θ (s−1),φ(s−1)

�

+ ∂

∂βk

f
�
β(s,s−1,βk ), θ (s−1),φ(s−1)

���
βk=β

(s−1)
k

d

+ 1

2
d2h

(s)
k + λ�β(s,s−1;k) + dek�1

�
.

iii) Choose a step size α
(s)
k > 0 and set β(s,s−1;k+1) = β(s,s−1;k) + α

(s)
k d

(s)
k ek

such that

QLA
λ

�
β (s,s−1;k+1), θ (s−1),φ(s−1)

�
≤ QLA

λ

�
β(s,s−1;k), θ (s−1),φ(s−1)

�
.

(2) (Covariance parameter optimization)
For l = 1, . . . , d

θ
(s)
l = arg min

θl

QLA
λ

�
β (s), θ (s,s−1;θl ),φ(s−1)

�
.

(3) (Dispersion parameter optimization)

φ(s) = arg min
φ

QLA
λ

�
β (s), θ (s),φ

�
.

until convergence.

(i) Choice of h(s)
k . For h

(s)
k we choose the kth diagonal element of the Fisher information of

a generalized linear model. Hence, we use the second derivative of the first summand
in (7). We set cmin ≤ h

(s)
k ≤ cmax for positive constants cmin and cmax (e.g., cmin =

10−5 and cmax = 105) in order that the algorithm converges (Tseng and Yun 2009).
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GLMMLASSO 467

Algorithm 2 (Approximate) GLMMLasso algorithm

Denote by ũ = ũ
�
β (s,s−1;k), θ (s−1),φ(s−1)

�
. Replace in Algorithm 1 i)–iii) by

i�) Approximate the second derivative

∂2

∂β2
k

f
�
β(s,s−1,βk ), θ (s−1),φ(s−1)

��ũ
���

βk=β
(s−1)
k

by h
(s)
k > 0 as described in the section below.

ii�) Calculate the descent direction d
(s)
k ∈ R

d
(s)
k : = arg min

d

�
f

�
β (s,s−1;k), θ (s−1),φ(s−1)

��ũ
�

+ ∂

∂βk

f
�
β (s,s−1,βk ), θ (s−1),φ(s−1)

��ũ
���

βk=β
(s−1)
k

d

+ 1

2
d2h

(s)
k + λ�β(s,s−1;k) + dek�1

�
.

iii�) Choose a step size α
(s)
k > 0 and set β(s,s−1;k+1) = β(s,s−1;k) + α

(s)
k d

(s)
k ek such that

QLA
λ

�
β (s,s−1;k+1), θ (s−1),φ(s−1)

��ũ
�

≤ QLA
λ

�
β (s,s−1;k), θ (s−1),φ(s−1)

��ũ
�
.

(ii) Calculation of d
(s)
k . The value d

(s)
k is the minimizer of the quadratic approximation of

the objective function QLA
λ (.) and analytically given by Tseng and Yun (2009)

d
(s)
k =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

median

�
λ − ∂/∂βkfβk

h
(s)
k

,−βk,
−λ − ∂/∂βkfβk

h
(s)
k

�
if βk penalized

−∂/∂βk
fβk

h
(s)
k

otherwise,

(9)

where fβk
= f (β (s,s−1;k), θ (s−1),φ(s−1)) in Algorithm 1 and fβk

= f (β (s,s−1;k), θ (s−1),

φ(s−1)|ũ) in Algorithm 2.

(iii) Choice of α(s)
k . The step length α

(s)
k is chosen such that the objective function QLA

λ (.) de-
creases. We suggest to use the Armijo rule, which is defined for Algorithm 1 as follows
(and correspondingly for Algorithm 2 with fixed ũ):
Armijo rule: Choose αinit

k > 0 and let α
(s)
k be the largest element of {αinit

k δl}l=0,1,2,.. sat-
isfying

QLA
λ

�
β(s,s−1;k) + α

(s)
k d

(s)
k ek, θ

(s−1),φ(s−1)� ≤ QLA
λ

�
β (s,s−1;k), θ (s−1),φ(s−1)� + α

(s)
k ��k

where �k := ∂/∂βkfβk
d

(s)
k + γ (d (s)

k )2h
(s)
k + λ�β(s,s−1;k) + d

(s)
k ek�1 − λ�β(s,s−1;k)�1.

The choice of the constants comply with the suggestions in Bertsekas (1999), for example,
αinit

k = 1, δ = 0.5, � = 0.1, and γ = 0.
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468 J. SCHELLDORFER, L. MEIER, AND P. BÜHLMANN

3.3.2 Active Set Algorithm. If we assume that the true fixed-effect parameter β0 is
sparse in the sense that many elements are zero, we can reduce the computing time re-
markably by using an active set algorithm. This is also used by Meier, van de Geer, and
Bühlmann (2008), and Friedman, Hastie, and Tibshirani (2010). In particular, we only cycle
through all p coordinates every Dth iteration, otherwise only through the current active set

S(β̂
(s−1)

) = {k : β̂
(s−1)
k �= 0}. Typical values for D are 5 and 10.

An implementation of the algorithm is given in the R package glmmixedlasso and
will be made available on R-Forge (http://r-forge.R-project.org/).

4. THE TWO-STAGE GLMMLASSOLA ESTIMATOR(S)

From the soft-thresholding property of the Lasso in linear models (Tibshirani 1996)
and in Gaussian linear mixed models (Schelldorfer, Bühlmann, and van de Geer 2011),
the fixed-effect estimate β̂ is biased toward zero. In some GLMMs the estimate of the
covariance parameter θ is biased, too. To mitigate these bias problems and the approximation
error induced by using the approximate GLMMLasso algorithm, we advocate a two-
stage procedure. The first step aims at estimating a candidate set of predictors Ŝ and
can be seen as a variable screening procedure. The purpose of the second step is a more
unbiased estimation of the parameters using unpenalized ML estimation based on the
selected variables Ŝ from the first step. The proposed two-stage GLMMLasso algorithm is
summarized in Algorithm 3:

Algorithm 3 Two-stage GLMMLasso algorithm

Stage 1: Compute the GLMMLassoLA estimate (8) and the set Ŝ.

Stage 2: Perform unpenalized ML estimation.

In the next sections, we are going to discuss the specification of the set of variables Ŝ.
We propose two methods from the high-dimensional linear regression framework, and we
do not consider the adaptive Lasso (Zou 2006).

4.1 THE GLMMLASSOLA–MLE HYBRID ESTIMATOR

The LARS–OLS hybrid estimator was examined by Efron et al. (2004) and also used by
Meinshausen and Bühlmann (2006) and Meier, van de Geer, and Bühlmann (2008). In our
context, it becomes a two-stage procedure where the model is refitted including only the
covariates with a nonzero fixed-effect coefficient in β̂ init, where (β̂ init, θ̂ init, φ̂init) denotes
the initial estimate from (8). More specifically, choose Ŝ = Ŝinit := {k : |β̂k,init �= 0}. Then
the GLMMLassoLA–MLE hybrid estimator is given by

(β̂, θ̂ , φ̂)hybrid := arg min
β Ŝinit

,θ,φ

− 2 log L(β Ŝinit
, θ ,φ), (10)

where for S ⊆ {1, . . . , p}, (βS)k = βk if k ∈ S and (βS)k = 0 if k /∈ S.
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GLMMLASSO 469

4.2 THE THRESHOLDED GLMMLASSOLA ESTIMATOR

The thresholded Lasso with refitting in high-dimensional linear regression models was
examined by Zhou (2010) and van de Geer, Bühlmann, and Zhou (2011). We define the
set Ŝthres to be the set of variables that have initial fixed-effect coefficients larger than some
threshold λthres > 0, that is, we choose Ŝ = Ŝthres := {k : |β̂k,init| > λthres}. The thresholded
GLMMLassoLA estimator is then defined by

(β̂, θ̂ , φ̂)thres := arg min
β Ŝthres

,θ ,φ

− 2 log L
�
β Ŝthres

, θ ,φ
�
. (11)

The thresholded GLMMLassoLA estimator involves another regularization parameter λthres,
which is determined by minimizing an information criterion presented in the next section.

4.3 SELECTION OF THE REGULARIZATION PARAMETERS

Estimators (8), (10), and (11) require the choice of the regularization parameters λ and
λthres, respectively. We propose to use the Bayesian information criterion (BIC) and the
Akaike information criterion (AIC), defined by

cn,λ = −2 log L(β̂, θ̂ , φ̂) + a(n) · d̂f λ (12)

where a(n) = log(n) for the BIC and a(n) = 2 for the AIC. Here, d̂f λ = |{1 ≤ k ≤
p : β̂k �= 0}| + dim(θ̂ ) is the sum of of the number of nonzero fixed-effect coefficients
and the number of covariance parameters. The first summand is motivated by the work
of Zou, Hastie, and Tibshirani (2007). The second summand is the approach by Bates
(2010), who proposed that in the classical generalized mixed-effects model the degrees of
freedom are given by the number of unconstrained optimization parameters. Based on our
empirical experience, we suggest for the estimators (8) and (10) the BIC, whereas for (11)
we advocate using the AIC (allowing for a larger number of variables) to select λ first and
then, sequentially, the BIC to select λthres. We will compare the performance of the three
estimators in the next sections.

5. SIMULATION STUDY

In this section, we assess the performance of the GLMMLassoLA estimators (8), (10),
and (11). We compare them with appropriate Lasso, ML, and Penalized Quasi-Likelihood
(PQL; Breslow and Clayton 1993) methods.

In the main text, we only present simulation results for the high-dimensional logistic
mixed model. Simulation studies for the low-dimensional logistic and the Poisson mixed
model are included in the online supplementary materials. At the end of this section, we
compare the GLMMLassoLA estimates in a situation where the number of noise variables
grows successively.

First of all, let us summarize some general conclusions drawn from real data analysis
and the simulation studies:
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470 J. SCHELLDORFER, L. MEIER, AND P. BÜHLMANN

(a) The variable screening performance of the GLMMLasso algorithm is not only attractive
for the high-dimensional setting, but also for low-dimensional data with a relatively
large number of variables (say p > 20).

(b) The GLMMLasso algorithm is numerically as stable as standard R functions like
glmer (Bates 2010) or glmmPQL (Breslow and Clayton 1993; Venables and Ripley
2002) when p < n. On the other hand, glmpath (Park and Hastie 2007) and glmnet
(Friedman, Hastie, and Tibshirani 2010) may fail to converge when high-dimensional
models are misspecified.

(c) The main difference between the logistic and the Poisson mixed model is the shrink-
age of the covariance parameter estimates of the GLMMLassoLA estimator. These
estimates are severely biased in logistic mixed models, in contrast to the Poisson
mixed model. Further differences between these two classes are summarized in the
online supplementary materials.

(d) The number of iterations s substantially differs between the classes of GLMMs and
the dataset.

5.1 PREVIEW FOR THE LOGISTIC MIXED MODEL

In this section, we confine the discussion to the logistic mixed model because it is viewed
as the most challenging model within the class of GLMMs (Molenberghs and Verbeke 2005;
Jiang 2007). As an overview, let us sum up the main findings from the simulation study in
the logistic mixed model:

(i) The GLMMLassoLA estimate from (8) of the covariance parameter θ is notably biased.
In other words, adding an �1-penalty does not only shrink the fixed-effects estimate
β̂, but also the covariance parameter estimate θ̂ .

(ii) In the high-dimensional settings, the GLMMLassoLA–MLE hybrid estimator (10)
performs better in terms of parameter estimation accuracy than the thresholded
GLMMLassoLA estimator (11).

(iii) The more the random effects, the more important it is to use the GLMMLassoLA for
variable screening (instead of a Lasso ignoring the grouping structure).

(iv) The number of total iterations s needed is small, often about 15 iterations.

5.2 HIGH-DIMENSIONAL LOGISTIC MIXED MODEL

In all subsequent simulation schemes (including the online supplementary materials),
we restrict ourselves to the case where the number of observations per cluster is equal,
that is, nr = nC for r = 1, . . . , N . The covariates are generated from a multivariate normal
distribution with mean zero and covariance matrix V with pairwise correlation V kk� =
ρ|k−k�| and ρ = 0.2. Denote by β0 the true fixed effects (wherein (β0)1 is the intercept) and
by s0 the true number of nonzero fixed-effect coefficients.

For the logistic mixed models, the intercept and the first covariate have independent
random effects with different variance parameters. In particular, θ = (θ1, θ2) and covariance
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GLMMLASSO 471

matrix �θ = diag(θ2
1 , , . . . , θ2

1 , θ2
2 , . . . , θ2

2 ) ∈ R2N , that is, q = 2N . We investigate the
following two examples in the high-dimensional setting:

H1: N = 40, nC = 10, n = 400, p = 500, θ2
1 = θ2

2 = 1 and s0 = 5 with β0 =
(0.1, 1,−1, 1,−1, 0, . . . , 0)T .

H2: N = 50, nC = 10, n = 500, p = 1500, θ2
1 = θ2

2 = 1 and s0 = 5 with β0 =
(0.1, 1,−1, 1,−1, 0, . . . , 0)T .

The fitted models are all correctly specified. Hereafter, we denote by oracle the ML
estimate of the model that includes only the variables from the true active set. Let glmmlasso,
hybrid glmmlasso, and thres glmmlasso be the GLMMLassoLA estimates (8), (10), and
(11), respectively. We compare the GLMMLassoLA methods with the standard Lasso for
generalized linear models (which ignore the grouping structure). For that purpose, we use
the glmpath algorithm (Park and Hastie 2007) and the BIC as variable selection criterion.
Then, let hybrid glmpath and thres glmpath be the two-stage procedures based on glmpath
(without random effects).

The results in the form of median and rescaled median absolute deviation (in parentheses)
over 100 simulation runs are shown in Table 1. There, |S(β̂)| denotes the cardinality of
the estimated active set and TP is the number of true positives (selected variables that
are in the true active set). SE is the squared error of the fixed-effect coefficients, that is,
SE= �β̂ − β0�2

2.
Comparing the cardinality of the active set, we see that thres glmmlasso and thres

glmpath have much larger active sets than glmmlasso and glmpath, respectively. This is
largely because we employ the AIC in the first and the BIC in the second stage. This is
outweighed by the advantage that, on average (not shown), the true effects are predominantly
included in thres glmmlasso. The active set of glmmlasso is slightly smaller than that of
glmpath. And yet, the number of TP is similar as for glmpath. Hence, we conclude that the
existence of random effects does affect the variable selection performance of glmpath.

Concerning covariance parameter estimation, we read off from the table that θ̂2
1 and

θ̂2
2 are seriously biased for glmmlasso. This motivates the usage of a two-stage procedure.

The table suggests that the hybrid and the thresholded procedures have improved estimation
accuracy of the random-effects parameters compared to their original counterparts.

Looking at the fixed-effect parameter estimation accuracy, the simulation study reveals
that the glmmlasso estimates are less biased than the corresponding glmpath estimates,
resulting in lower squared error. And the same holds for hybrid glmmlasso and hybrid glm-
path. The fixed-effect parameter estimates of thres glmmlasso and thres glmpath perform
inadequately compared to their hybrid counterparts. As marked by an asterisk in the table,
β2 is not subject to penalization for the GLMMLassoLA estimator since this variable has
a random effect (Schelldorfer, Bühlmann, and van de Geer 2011). Thus, the bias of the
estimate is much smaller than for the other fixed-effect coefficients.

To sum up the simulation study, we first conclude that hybrid glmmlasso outperforms
thres glmmlasso in terms of parameter estimation accuracy, with similar performance
regarding true positives. Second, glmmlasso procedures do outperform glmpath procedures
as variable screening methods.

Of course, glmpath is fitting a wrong model without random effects.
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472 J. SCHELLDORFER, L. MEIER, AND P. BÜHLMANN

Table 1. Simulation results (medians) for the logistic mixed models H1 and H2 (rescaled median absolute
deviations in parentheses). An asterisk (∗) means that the corresponding coefficient is not subject to penalization
in the GLMMLassoLA estimate

Model Method |S(β̂)| TP θ̂2
1 θ̂2

2 β̂∗
1 β̂∗

2 β̂3 β̂4 β̂5 SE

True 5 5 1 1 0.1 1 −1 1 −1
H1 oracle 5 5 0.85 0.86 0.07 1.04 −0.99 0.98 −1.01 0.14

(0) (0) (0.4) (0.59) (0.2) (0.25) (0.22) (0.18) (0.14) (0.088)
glmmlasso 6 5 0.38 0.37 0.06 0.66 −0.3 0.26 −0.34 1.6

(1.48) (0) (0.24) (0.3) (0.14) (0.16) (0.14) (0.14) (0.12) (0.42)
glmpath 7 5 – – 0.04 0.24 −0.21 0.22 −0.28 2.4

(2.22) (0) – – (0.13) (0.12) (0.11) (0.1) (0.1) (0.52)
hybrid glmmlasso 6 5 0.89 0.87 0.08 1.05 −0.99 1 −1.03 0.44

(1.48) (0) (0.43) (0.58) (0.19) (0.25) (0.23) (0.18) (0.16) (0.32)
hybrid glmpath 7 5 0.86 0.87 0.08 1.01 −0.99 0.99 −1.02 0.7

(2.22) (0) (0.42) (0.53) (0.2) (0.28) (0.24) (0.19) (0.16) (0.64)
thres glmmlasso 10 5 1.02 1.11 0.1 1.19 −1.09 1.11 −1.13 1.3

(3.71) (0) (0.7) (0.85) (0.22) (0.29) (0.23) (0.2) (0.19) (0.77)
thres glmpath 10 5 0.91 0.94 0.09 1.11 −1.07 1.11 −1.1 1.1

(2.97) (0) (0.49) (0.59) (0.21) (0.27) (0.25) (0.19) (0.2) (0.73)

H2 oracle 5 5 0.89 0.94 0.11 1.02 −0.98 1.02 −1.02 0.13
(0) (0) (0.4) (0.53) (0.18) (0.25) (0.15) (0.18) (0.16) (0.1)

glmmlasso 6 5 0.39 0.41 0.09 0.66 −0.31 0.27 −0.34 1.6
(1.48) (0) (0.23) (0.28) (0.13) (0.17) (0.1) (0.11) (0.09) (0.27)

glmpath 6.5 5 – – 0.08 0.23 −0.21 0.21 −0.28 2.4
(0.74) (0) – – (0.11) (0.13) (0.08) (0.11) (0.08) (0.34)

hybrid glmmlasso 6 5 0.93 0.96 0.12 1.02 −0.99 1.05 −1.04 0.34
(1.48) (0) (0.44) (0.51) (0.19) (0.26) (0.15) (0.17) (0.16) (0.3)

hybrid glmpath 6.5 5 0.87 0.94 0.12 1.01 −0.99 1.03 −1.04 0.48
(0.74) (0) (0.42) (0.5) (0.18) (0.22) (0.15) (0.18) (0.17) (0.37)

thres glmmlasso 14 5 1.3 1.33 0.16 1.26 −1.16 1.2 −1.22 2
(5.93) (0) (0.87) (0.79) (0.27) (0.27) (0.28) (0.26) (0.24) (1.7)

thres glmpath 13.5 5 0.9 1.03 0.17 1.17 −1.07 1.13 −1.15 1.8
(5.19) (0) (0.52) (0.64) (0.24) (0.25) (0.19) (0.22) (0.21) (1.2)

5.3 LOGISTIC MIXED MODEL WITH A GROWING NUMBER OF NOISE COVARIATES

Here, we assess the performance of glmmlasso and hybrid glmmlasso when the number
of noise variables grows successively. In the low-dimensional setting, we compare them
with the ML estimate computed by the R function glmer (denoted by glmer). In addition,
let p-glmer be the method that performs variable selection in the following way: Eliminate
consecutively (backward selection) all variables with a p-value larger than 5% until the final
model is attained comprising only significant variables. We compare these four methods
in terms of their performance of twice the negative out-of-sample log-likelihood. Let us
fix the following random intercept model design: n = 400, N = 40, nC = 10, θ2 = 1,
β0 = (0, 1,−1, 1,−1). We start with p = 5 (no noise variables) and raise the number of
variables to p = 65. The results over 50 simulation runs are depicted in Figure 1.

The figures show that the negative out-of-sample log-likelihood values for glmer grow
polynomial whereas the likelihoods for the other methods remain fairly constant. The in-
crease in glmer stems from the fact that it overfits the model for a growing number of
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GLMMLASSO 473

Figure 1. Minus twice out-of-sample log-likelihood for a growing number of covariates. The ML estimate
performs badly whereas the GLMMLassoLA estimators remain stable, and they are comparable to the p-glmer in
the low-dimensional framework.

covariates. When focusing on the figures in more detail, we read off that the negative
log-likelihood of glmmlasso increases slightly for larger p whereas the negative log-
likelihood of hybrid glmmlasso remains stable. The rationale for this small increase in
glmmlasso is that the more the noise covariates, the larger the optimal λ, and henceforth the
larger the shrinkage of the fixed effects. And this leads to the increase of the out-of-sample
log-likelihood. hybrid glmmlasso (and also thres glmmlasso) overcomes this problem and
leads to a stable out-of-sample log-likelihood irrespective of p.

5.4 CORRELATED RANDOM EFFECTS

Both from a methodological and an implementational point of view, it is conceptually
possible to use correlated random effects. As an illustration we use the logistic mixed
model H1 with correlated random effects (with unstructured covariance matrix) where we
use a correlation of ρ = 0.5 between the two random effects. The corresponding results
are illustrated in Table 2. The results are very similar to the uncorrelated case. However,
the bias of the correlation estimate seems to be less severe than the bias of the variance
components.
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474 J. SCHELLDORFER, L. MEIER, AND P. BÜHLMANN

Table 2. Simulation results (medians) for the logistic mixed models H1 (rescaled median absolute deviations
in parentheses). An asterisk (∗) means that the corresponding coefficient is not subject to penalization in the
GLMMLassoLA estimate

Model Method |S(β̂)| TP θ̂2
1 θ̂2

2 ρ̂ β̂∗
1 β̂∗

2 β̂3 β̂4 β̂5 SE

True 5 5 1 1 0.5 0.1 1 −1 1 −1
H1 oracle 5 5 0.88 0.94 0.53 0.1 0.97 −1.03 1.02 −1.01 0.14

(0) (0) (0.46) (0.54) (0.37) (0.18) (0.24) (0.17) (0.15) (0.15) (0.1)
glmmlasso 6 5 0.41 0.41 0.63 0.07 0.66 −0.33 0.28 −0.34 1.6

(1.48) (0) (0.22) (0.25) (0.51) (0.14) (0.16) (0.12) (0.11) (0.11) (0.35)

6. ILLUSTRATION

In this section, we illustrate the proposed GLMMLassoLA estimators for Poisson regres-
sion on an extended real dataset with count data.

Data description. We consider the epilepsy data by Thall and Vail (1990) that were
also analyzed by Breslow and Clayton (1993). The data were obtained from a randomized
clinical trial of 59 patients with epilepsy, comparing a new drug (Trt = 1) with placebo
(Trt = 0). The response variable consists of counts of epileptic seizures during the 2 weeks
before each of four clinic visits (V4 = 1 for fourth visit, 0 otherwise). Further covariates
in the analysis are the logarithm of age (Age), the logarithm of 1/4 the number of baseline
seizures (Base), and the interaction of Base and Trt (Base × Trt). The main question of
interest is whether taking the new drug reduces the number of epileptic seizures compared
with placebo. To assess the performance of the proposed procedure with high-dimensional
data, we add U (−1, 1) distributed noise predictors to get a dataset with n = 236, N = 59,
nr = 4 for r = 1, . . . , N, and p = 4000. All predictors are standardized to have mean zero
and standard deviation one.

Model. Model III in Breslow and Clayton (1993) is a two-level GLMM (Bates 2010),
which is an extension of the single-level GLMM introduced in Section 2 for more than one
grouping variable. The model consists of two independent random intercept effects. One
for subject (Level 1, index r) and one for observation (Level 2, index j). Let θ2

sub and θ2
obs be

the corresponding variance parameters. Then the linear predictor can be written as

log(μrj ) = ηrj = xT
rjβ + θsubur + θobsurj r = 1, . . . , 59, j = 1, . . . , 4.

Results. The results of the analysis are presented in Table 3. In the first column, we
show the estimates for Model III without performing variable selection. There, Intercept,
Base, and Trt are significant at the 5% level (indicated by †). If we perform backward
selection using the BIC, we end up with a model including Intercept and Base only. And
this model coincides with the one selected by glmmlasso. hybrid glmmlasso overcomes
the bias problems of glmmlasso and it yields a better model in terms of the BIC. thres
glmmlasso includes additional noise variables, thereby achieving the smallest BIC score
for all models under consideration. Comparing hybrid glmmlasso and thres glmmlasso, the
table suggests that the additional covariates in the latter model reduce the variability while
keeping the fixed-effect estimates unaltered.
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GLMMLASSO 475

Table 3. Results for the epilepsy data. Model III is based on six fixed-effect covariates while the other methods
are based on p = 4000 variables, including 3994 noise covariates. A dagger (†) indicates that the corresponding
coefficient is significant at the 5% level. A double dagger(‡) means that five noise variables are selected, but not
shown in the table. S(β̂) = {k : β̂k �= 0} is the total number of selected variables

Model III glmmlasso hybrid glmmlasso thres glmmlasso

BIC 527.3 571.8 515.5 480.3
S(β̂) 6 2 2 7‡

Intercept 1.58† 1.62 1.58 1.58
Base 0.66† <10−4 0.74 0.75
Trt −0.47† – – –
Base × Trt 0.36 – – –
Age 0.11 – – –
V4 −0.04 – – –
θ̂2

sub 0.21 0.68 0.25 0.28
θ̂2

obs 0.13 0.12 0.13 0.04

7. CONCLUDING REMARKS

We address the problem of estimating high-dimensional GLMMs. While low-
dimensional GLMMs (Bates 2010) and high-dimensional generalized linear models (van de
Geer 2008) have been extensively studied in recent years, little attention has been devoted
to high-dimensional GLMMs. We provide an efficient algorithm for the �1-penalized ML
estimator, called GLMMLasso. It is based on the Laplace approximation, coordinatewise
optimization, and a speeding up approximation. The method should be typically used as a
screening procedure to estimate a small set of important variables. We propose refitting by
ML to get accurate parameter estimates. The second stage is much more important than for
linear models, because �1-shrinkage can lead to severe bias problems for the estimation of
the variance components. Our work is primarily a contribution addressing the numerical
challenges of performing high-dimensional variable selection and parameter estimation in
nonlinear mixed-effects models involving a nonconvex loss function. An implementation of
the algorithm can be found in our R package glmmixedlasso. It will be made available
on R-Forge.

SUPPLEMENTARY MATERIALS

Appendices: Details of the PIRLS algorithm, the comparison of the exact and approximate
GLMMLasso algorithms, and additional simulation studies. (glmmlasso sm.pdf)

Dataset: The extended epilepsy dataset used in Section 6. (epilepsy.txt)
R-package for GLMMLasso: R-package glmmixedlasso containing code to perform

the GLMMLasso algorithm. (glmmixedlasso-0.1-2.tar.gz)

ACKNOWLEDGMENTS

The research is supported in part by the Swiss National Science Foundation (grant no. 20PA21-120043/1,
“Forschergruppe FOR 916”). The authors thank the members of the DFG-SNF Forschergruppe 916 for many

D
ow

nl
oa

de
d 

by
 [E

T
H

 Z
ur

ic
h]

 a
t 0

4:
47

 1
2 

M
ay

 2
01

4 



476 J. SCHELLDORFER, L. MEIER, AND P. BÜHLMANN
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Meinshausen, N., and Bühlmann, P. (2006), “High-Dimensional Graphs and Variable Selection With the Lasso,”
The Annals of Statistics, 34, 1436–1462. [468]

Molenberghs, G., and Verbeke, G. (2005), Models for Discrete Longitudinal Data, New York: Springer.
[460,463,470]

Ni, X., Zhang, D., and Zhang, H. H. (2010), “Variable Selection for Semiparametric Mixed Models in Longitudinal
Studies,” Biometrics, 66, 79–88. [461]

Pan, W., and Shen, X. (2007), “Penalized Model-Based Clustering With Application to Variable Selection,”
Journal of Machine Learning Research, 8, 1145–1164. [460]

Park, M., and Hastie, T. (2007), “L1-Regularization Path Algorithm for Generalized Linear Models,” Journal of

the Royal Statistical Society, Series B, 69, 659–677. [470,471]

D
ow

nl
oa

de
d 

by
 [E

T
H

 Z
ur

ic
h]

 a
t 0

4:
47

 1
2 

M
ay

 2
01

4 



GLMMLASSO 477
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van de Geer, S., Bühlmann, P., and Zhou, S. (2011), “The Adaptive and the Thresholded Lasso for Potentially
Misspecified Models (and a Lower Bound for the Lasso),” Electronic Journal of Statistics, 5, 688–749.
[461,469]

Venables, W. N., and Ripley, B. D. (2002), Modern Applied Statistics With S, New York: Springer. [470]

Witten, D. M., and Tibshirani, R. (2010), “A Framework for Feature Selection in Clustering,” Journal of the

American Statistical Association, 105, 713–726. [460]

——— (2011), “Penalized Classification Using Fisher’s Linear Discriminant,” Journal of the Royal Statistical

Society, Series B, 73, 753–772. [460]

Wu, T., and Lange, K. (2008), “Coordinate Descent Algorithms for Lasso Penalized Regression,” Annals of
Applied Statistics, 2, 224–244. [464]

Xue, L., Qu, A., and Zhou, J. (2010), “Consistent Model Selection for Marginal Generalized Additive Model for
Correlated Data,” Journal of the American Statistical Association, 105, 1517–1530. [461]

Yang, H. (2007), “Variable Selection Procedures for Generalized Linear Mixed Models in Longitudinal Data
Analysis,” unpublished Ph.D. dissertation, North Carolina State University. [461]

Zhou, S. (2010), “Thresholded Lasso for High Dimensional Variable Selection and Statistical Estimation,” arXiv

Preprint arXiv:1002.1583v2. [461,469]

Zou, H. (2006), “The Adaptive Lasso and Its Oracle Properties,” Journal of the American Statistical Association,
101, 1418–1429. [461,468]

Zou, H., Hastie, T., and Tibshirani, R. (2007), “On the ‘Degrees of Freedom’ of the Lasso,” The Annals of Statistics,
35, 2173–2192. [469]D

ow
nl

oa
de

d 
by

 [E
T

H
 Z

ur
ic

h]
 a

t 0
4:

47
 1

2 
M

ay
 2

01
4 


