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High-Dimensional Inference: Confidence
Intervals, p-Values and R-Software hdi
Ruben Dezeure, Peter Bühlmann, Lukas Meier and Nicolai Meinshausen

Abstract. We present a (selective) review of recent frequentist high-
dimensional inference methods for constructing p-values and confidence
intervals in linear and generalized linear models. We include a broad, com-
parative empirical study which complements the viewpoint from statistical
methodology and theory. Furthermore, we introduce and illustrate the R-
package hdi which easily allows the use of different methods and supports
reproducibility.
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1. INTRODUCTION

Over the last 15 years, a lot of progress has been
achieved in high-dimensional statistics where the num-
ber of parameters can be much larger than sample
size, covering (nearly) optimal point estimation, effi-
cient computation and applications in many different
areas; see, for example, the books by Hastie, Tibshi-
rani and Friedman (2009), Bühlmann and van de Geer
(2011) or the review article by Fan and Lv (2010).
The core task of statistical inference accounting for
uncertainty, in terms of frequentist confidence inter-
vals and hypothesis testing, is much less developed.
Recently, a few methods for assigning p-values and
constructing confidence intervals have been suggested
(Wasserman and Roeder, 2009; Meinshausen, Meier
and Bühlmann, 2009; Bühlmann, 2013; Zhang and
Zhang, 2014; Lockhart et al., 2014; van de Geer et al.,
2014; Javanmard and Montanari, 2014; Meinshausen,
2015).

The current paper has three main pillars: (i) a (se-
lective) review of the development in frequentist high-
dimensional inference methods for p-values and con-
fidence regions; (ii) presenting the first broad, compar-
ative empirical study among different methods, mainly
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for linear models: since the methods are mathemati-
cally justified under noncheckable and sometimes non-
comparable assumptions, a thorough simulation study
should lead to additional insights about reliability
and performance of various procedures; (iii) present-
ing the R-package hdi (high-dimensional inference)
which enables to easily use many of the different
methods for inference in high-dimensional general-
ized linear models. In addition, we include a recent
line of methodology allowing to detect significant
groups of highly correlated variables which could not
be inferred as individually significant single variables
(Meinshausen, 2015). The review and exposition in
Bühlmann, Kalisch and Meier (2014) is vaguely re-
lated to points (i) and (iii) above, but much more focus-
ing on an application oriented viewpoint and covering
much less statistical methodology, theory and compu-
tational details.

Our comparative study, point (ii), mentioned above,
exhibits interesting results indicating that more “sta-
ble” procedures based on Ridge-estimation or ran-
dom sample splitting with subsequent aggregation are
somewhat more reliable for type I error control than
asymptotically power-optimal methods. Such results
cannot be obtained by comparing underlying assump-
tions of different methods, since these assumptions are
often too crude and far from necessary. As expected,
we are unable to pinpoint to a method which is (nearly)
best in all considered scenarios. In view of this, we
also want to offer a collection of useful methods for the
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community, in terms of our R-package hdi mentioned
in point (iii) above.

2. INFERENCE FOR LINEAR MODELS

We consider first a high-dimensional linear model,
while extensions are discussed in Section 3:

Y = Xβ0 + ε,(2.1)

with n × p fixed or random design matrix X, n × 1
response and error vectors Y and ε, respectively. The
errors are assumed to be independent of X (for random
design) with i.i.d. entries having E[εi] = 0. We allow
for high-dimensional settings where p � n. In further
development, the active set or the set of relevant vari-
ables

S0 = {
j ;β0

j �= 0, j = 1, . . . , p
}
,

as well as its cardinality s0 = |S0|, are important quan-
tities. The main goals of this section are the con-
struction of confidence intervals and p-values for
individual regression parameters β0

j (j = 1, . . . , p)

and corresponding multiple testing adjustment. The
former is a highly nonstandard problem in high-
dimensional settings, while for the latter we can use
standard well-known techniques. When considering
both goals simultaneously, though, one can develop
more powerful multiple testing adjustments. The Lasso
(Tibshirani, 1996) is among the most popular proce-
dures for estimating the unknown parameter β0 in a
high-dimensional linear model. It exhibits desirable or
sometimes even optimal properties for point estima-
tion such as prediction of Xβ0 or of a new response
Ynew, estimation in terms of ‖β̂ − β0‖q for q = 1,2,
and variable selection or screening; see, for example,
the book of Bühlmann and van de Geer (2011). For as-
signing uncertainties in terms of confidence intervals
or hypothesis testing, however, the plain Lasso seems
inappropriate. It is very difficult to characterize the dis-
tribution of the estimator in the high-dimensional set-
ting; Knight and Fu (2000) derive asymptotic results
for fixed dimension as sample size n → ∞ and already
for such simple situations, the asymptotic distribution
of the Lasso has point mass at zero. This implies, be-
cause of noncontinuity of the distribution, that standard
bootstrapping and subsampling schemes are delicate
to apply and uniform convergence to the limit seems
hard to achieve. The latter means that the estimator is
exposed to undesirable super-efficiency problems, as
illustrated in Section 2.5. All the problems mentioned
are expected to apply not only for the Lasso but also
for other sparse estimators as well.

In high-dimensional settings and for general fixed
design X, the regression parameter is not identifiable.
However, when making some restrictions on the de-
sign, one can ensure that the regression vector is iden-
tifiable. The so-called compatibility condition on the
design X (van de Geer, 2007) is a rather weak assump-
tion (van de Geer and Bühlmann, 2009) which guaran-
tees identifiability and oracle (near) optimality results
for the Lasso. For the sake of completeness, the com-
patibility condition is described in Appendix A.1.

When assuming the compatibility condition with
constant φ2

0 (φ2
0 is close to zero for rather ill-posed de-

signs, and sufficiently larger than zero for well-posed
designs), the Lasso has the following property: for
Gaussian errors and if λ � √

log(p)/n, we have with
high probability that

∥∥β̂ − β0∥∥
1 ≤ 4s0λ/φ2

0 .(2.2)

Thus, if s0 
 √
n/ log(p) and φ2

0 ≥ M > 0, we have
‖β̂ − β0‖1 → 0 and, hence, the parameter β0 is identi-
fiable.

Another often used assumption, although not neces-
sary by any means, is the so-called beta-min assump-
tion:

min
j∈S0

∣∣β0
j

∣∣ ≥ βmin,(2.3)

for some choice of constant βmin > 0. The result in
(2.2) immediately implies the screening property: if
βmin > 4s0λ/φ2

0 , then

Ŝ = {j ; β̂j �= 0} ⊇ S0.(2.4)

Thus, the screening property holds when assuming
the compatibility and beta-min condition. The power
of the screening property is a massive dimensional-
ity reduction (in the original variables) because |Ŝ| ≤
min(n,p); thus, if p � n, the selected set Ŝ is much
smaller than the full set of p variables. Unfortunately,
the required conditions are overly restrictive and exact
variable screening seems rather unrealistic in practical
applications (Bühlmann and Mandozzi, 2014).

2.1 Different Methods

We describe here three different methods for con-
struction of statistical hypothesis tests or confidence
intervals. Alternative procedures are presented in Sec-
tions 2.3 and 2.5.
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2.1.1 Multi sample-splitting. A generic way for
deriving p-values in hypotheses testing is given by
splitting the sample with indices {1, . . . , n} into two
equal halves denoted by I1 and I2, that is, Ir ⊂
{1, . . . , n} (r = 1,2) with |I1| = �n/2�, |I2| = n −
�n/2�, I1 ∩ I2 = ∅ and I1 ∪ I2 = {1, . . . , n}. The idea
is to use the first half I1 for variable selection and the
second half I2 with the reduced set of selected vari-
ables (from I1) for statistical inference in terms of p-
values. Such a sample-splitting procedure avoids the
over-optimism to use the data twice for selection and
inference after selection (without taking the effect of
selection into account).

Consider a method for variable selection based on
the first half of the sample:

Ŝ(I1) ⊂ {1, . . . , p}.
A prime example is the Lasso which selects all the vari-
ables whose corresponding estimated regression coef-
ficients are different from zero. We then use the sec-
ond half of the sample I2 for constructing p-values,
based on the selected variables Ŝ(I1). If the cardinal-
ity |Ŝ(I1)| ≤ n/2 ≤ |I2|, we can run ordinary least
squares estimation using the subsample I2 and the
selected variables Ŝ(I1), that is, we regress YI2 on

X(Ŝ(I1))
I2

where the sub-indices denote the sample half
and the super-index stands for the selected variables,
respectively. Thereby, we implicitly assume that the

matrix X(Ŝ(I1))
I2

has full rank |Ŝ(I1)|. Thus, from such
a procedure, we obtain p-values Pt-test,j for testing
H0,j : β0

j = 0, for j ∈ Ŝ(I1), from the classical t-tests,
assuming Gaussian errors or relying on asymptotic jus-
tification by the central limit theorem. To be more pre-
cise, we define (raw) p-values

Praw,j =

⎧⎪⎪⎨
⎪⎪⎩

Pt-test,j based on YI2,X(Ŝ(I1))
I2

,

ifj ∈ Ŝ(I1),

1, ifj /∈ Ŝ(I1).

An interesting feature of such a sample-splitting pro-
cedure is the adjustment for multiple testing. For ex-
ample, if we wish to control the familywise error rate
over all considered hypotheses H0,j (j = 1, . . . , p), a
naive approach would employ a Bonferroni–Holm cor-
rection over the p tests. This is not necessary: we only
need to control over the considered |Ŝ(I1)| tests in I2.
Therefore, a Bonferroni corrected p-value for H0,j is
given by

Pcorr,j = min
(
Praw,j · ∣∣Ŝ(I1)

∣∣,1
)
.

In high-dimensional scenarios, p � n > �n/2� ≥
|Ŝ(I1)|, where the latter inequality is an implicit as-
sumption which holds for the Lasso (under weak as-
sumptions), and thus, the correction factor employed
here is rather small. Such corrected p-values control
the familywise error rate in multiple testing when as-
suming the screening property in (2.4) for the selector
Ŝ = Ŝ(I1) based on the first half I1 only, exactly as
stated in Fact 1 below. The reason is that the screening
property ensures that the reduced model is a correct
model, and hence the result is not surprising. In prac-
tice, the screening property typically does not hold ex-
actly, but it is not a necessary condition for constructing
valid p-values (Bühlmann and Mandozzi, 2014).

The idea about sample-splitting and subsequent sta-
tistical inference is implicitly contained in Wasserman
and Roeder (2009). We summarize the whole proce-
dure as follows:

Single sample-splitting for multiple testing of H0,j

among j = 1, . . . , p:

1. Split (partition) the sample {1, . . . , n} = I1 ∪ I2
with I1 ∩ I2 = ∅ and |I1| = �n/2� and |I2| = n −
�n/2�.

2. Using I1 only, select the variables Ŝ ⊆ {1, . . . , p}.
Assume or enforce that |Ŝ| ≤ |I1| = �n/2� ≤ |I2|.

3. Denote the design matrix with the selected set of

variables by X(Ŝ). Based on I2 with data (YI2,X(Ŝ)
I2

),

compute p-values Praw,j for H0,j , for j ∈ Ŝ, from clas-
sical least squares estimation [i.e., t-test which can be
used since |Ŝ(I1)| ≤ |I2|]. For j /∈ Ŝ, assign Praw,j = 1.

4. Correct the p-values for multiple testing: con-
sider

Pcorr,j = min
(
Pj · |Ŝ|,1

)
,

which is an adjusted p-value for H0,j for controlling
the familywise error rate.

A major problem of the single sample-splitting
method is its sensitivity with respect to the choice
of splitting the entire sample: sample splits lead to
wildly different p-values. We call this undesirable phe-
nomenon a p-value lottery, and Figure 1 provides an
illustration. To overcome the “p-value lottery,” we can
run the sample-splitting method B times, with B large.
Thus, we obtain a collection of p-values for the j th
hypothesis H0,j :

P
[1]
corr,j , . . . ,P

[B]
corr,j (j = 1, . . . , p).

The task is now to do an aggregation to a single
p-value. Because of dependence among {P [b]

corr,j ;b =



536 DEZEURE, BÜHLMANN, MEIER AND MEINSHAUSEN

FIG. 1. Histogram of p-values Pcorr,j for a single covariable, in
the riboflavin data set, when doing 50 different (random) sam-
ple splits. The figure is taken from Bühlmann, Kalisch and Meier
(2014).

1, . . . ,B}, because all the different half samples are
part of the same full sample, an appropriate aggrega-
tion needs to be developed. A simple solution is to use
an empirical γ -quantile with 0 < γ < 1:

Qj(γ )

= min
(
emp. γ -quantile

{
P

[b]
corr,j /γ ;b = 1, . . . ,B

}
,

1
)
.

For example, with γ = 1/2, this amounts to taking the
sample median {P [b]

corr,j ;b = 1, . . . ,B} and multiplying
it with the factor 2. A bit more sophisticated approach
is to choose the best and properly scaled γ -quantile in
the range (γmin,1) (e.g., γmin = 0.05), leading to the
aggregated p-value

Pj = min
((

1 − log(γmin)
)

inf
γ∈(γmin,1)

Qj (γ )
)

(2.5)
(j = 1, . . . , p).

Thereby, the factor (1 − log(γmin)) is the price to be
paid for searching for the best γ ∈ (γmin,1). This Multi
sample-splitting procedure has been proposed and an-
alyzed in Meinshausen, Meier and Bühlmann (2009),
and we summarize it below. Before doing so, we re-
mark that the aggregation of dependent p-values as de-
scribed above is a general principle as described in Ap-
pendix A.1.

Multi sample-splitting for multiple testing of H0,j

among j = 1, . . . , p:

1. Apply the single sample-splitting procedure B

times, leading to p-values {P [b]
corr,j ;b = 1, . . . ,B}. Typ-

ical choices are B = 50 or B = 100.
2. Aggregate these p-values as in (2.5), leading

to Pj which are adjusted p-values for H0,j (j =
1, . . . , p), controlling the familywise error rate.

The Multi sample-splitting method enjoys the property
that the resulting p-values are approximately repro-
ducible and not subject to a “p-value lottery” anymore,
and it controls the familywise error rate under the fol-
lowing assumptions:

(A1) The screening property as in (2.4) for the first
half of the sample: P[Ŝ(I1) ⊇ S0] ≥ 1 − δ for some
0 < δ < 1.

(A2) The reduced design matrix for the second half

of the sample satisfies rank(X(Ŝ(I1))
I2

) = |Ŝ(I1)|.
FACT 1 [Meinshausen, Meier and Bühlmann (2009)].

Consider a linear model as in (2.1) with fixed design
X and Gaussian errors. Assume (A1)–(A2). Then, for
a significance level 0 < α < 1 and denoting by B the
number of sample splits,

P

[ ⋃
j∈Sc

0

I (Pj ≤ α)

]
≤ α + Bδ,

that is, the familywise error rate (FWER) is controlled
up to the additional (small) value Bδ.

A proof is given in Meinshausen, Meier and
Bühlmann (2009). We note that the Multi sample-
splitting method can be used in conjunction with any
reasonable, sparse variable screening method fulfill-
ing (A1) for very small δ > 0 and (A2); and it does
not necessarily rely on the Lasso for variable screen-
ing. See also Section 2.1.6. Assumption (A2) typically
holds for the Lasso satisfying |Ŝ(I1)| ≤ |I1| = �n/2� ≤
|I2| = n − �n/2�.

The screening property (A1). The screening property
(A1) with very small δ > 0 is not a necessary condition
for constructing valid p-values and can be replaced by
a zonal assumption requiring the following: there is a
gap between large and small regression coefficients and
there are not too many small nonzero regression coef-
ficients (Bühlmann and Mandozzi, 2014). Still, such a
zonal assumption makes a requirement about the un-
known β0 and the absolute values of its components:
but this is the essence of the question in hypothesis
testing to infer whether coefficients are sufficiently dif-
ferent from zero, and one would like to do such a test
without an assumption on the true values.

The Lasso satisfies (A1) with δ → 0 when assum-
ing the compatibility condition (A.1) on the design X,
the sparsity assumption s0 = o(

√
n/ log(p)) [or s0 =

o(n/ log(p)) when requiring a restricted eigenvalue as-
sumption] and a beta-min condition (2.3), as shown in
(2.4). Other procedures also exhibit the screening prop-
erty such as the adaptive Lasso (Zou, 2006), analyzed



HIGH-DIMENSIONAL INFERENCE: CONFIDENCE INTERVALS, p-VALUES AND R-SOFTWARE HDI 537

in detail in van de Geer, Bühlmann and Zhou (2011),
or methods with concave regularization penalty such
as SCAD (Fan and Li, 2001) or MC+ (Zhang, 2010).
As criticized above, the required beta-min assumption
should be avoided when constructing a hypothesis test
about the unknown components of β0.

Fact 1 has a corresponding asymptotic formula-
tion where the dimension p = pn and the model
depends on sample size n: if (A1) is replaced by
limn→∞P[Ŝ(I1;n) ⊇ S0;n] → 1 and for a fixed number
B , lim supn→∞P[⋃j∈Sc

0
I (Pj ≤ α)] ≤ α. In such an

asymptotic setting, the Gaussian assumption in Fact 1
can be relaxed by invoking the central limit theorem
(for the low-dimensional part).

The Multi sample-splitting method is very generic:
it can be used for many other models, and its ba-
sic assumptions are an approximate screening property
(2.4) and that the cardinality |Ŝ(I1)| < |I2| so that we
only have to deal with a fairly low-dimensional infer-
ence problem. See, for example, Section 3 for GLMs.
An extension for testing group hypotheses of the form
H0,G : βj = 0 for all j ∈ G is indicated in Section 4.1.

Confidence intervals can be constructed based on the
duality with the p-values from equation (2.5). A pro-
cedure is described in detail in Appendix A.2. The idea
to invert the p-value method is to apply a bisection
method having a point in and a point outside of the
confidence interval. To verify if a point is inside the
aggregated confidence interval, one looks at the frac-
tion of confidence intervals from the splits which cover
the point.

2.1.2 Regularized projection: De-sparsifying the
Lasso. We describe here a method, first introduced by
Zhang and Zhang (2014), which does not require an
assumption about β0 except for sparsity.

It is instructive to give a motivation starting with the
low-dimensional setting where p < n and rank(X) =
p. The j th component of the ordinary least squares es-
timator β̂OLS;j can be obtained as follows. Do an OLS
regression of X(j) versus all other variables X(−j) and
denote the corresponding residuals by Z(j). Then

β̂OLS;j = YT Z(j)/
(
X(j))T Z(j)(2.6)

can be obtained by a linear projection. In a high-
dimensional setting, the residuals Z(j) would be equal
to zero and the projection is ill-posed.

For the high-dimensional case with p > n, the idea
is to pursue a regularized projection. Instead of ordi-
nary least squares regression, we use a Lasso regres-
sion of X(j) versus X(−j) with corresponding resid-
ual vector Z(j): such a penalized regression involves

a regularization parameter λj for the Lasso, and hence
Z(j) = Z(j)(λj ). As in (2.6), we immediately obtain
(for any vector Z(j))

YT Z(j)

(X(j))T Z(j)
= β0

j + ∑
k �=j

Pjkβ
0
k + εT Z(j)

(X(j))T Z(j)
,

(2.7)
Pjk = (

X(k))T Z(j)/
(
X(j))T Z(j).

We note that in the low-dimensional case with Z(j) be-
ing the residuals from ordinary least squares, due to or-
thogonality, Pjk = 0. When using the Lasso-residuals
for Z(j), we do not have exact orthogonality and a bias
arises. Thus, we make a bias correction by plugging in
the Lasso estimator β̂ (of the regression Y versus X):
the bias-corrected estimator is

b̂j = YT Z(j)

(X(j))T Z(j)
− ∑

k �=j

Pjkβ̂k.(2.8)

Using (2.7), we obtain

√
n
(
b̂j − β0

j

) = n−1/2εT Z(j)

n−1(X(j))T Z(j)

+ ∑
k �=j

√
nPjk

(
β0

k − β̂k

)
.

The first term on the right-hand side has a Gaussian dis-
tribution, when assuming Gaussian errors; otherwise, it
has an asymptotic Gaussian distribution assuming that
E|εi |2+κ < ∞ for κ > 0 (which suffices for the Lya-
punov CLT). We will argue in Appendix A.1 that the
second term is negligible under the following assump-
tions:

(B1) The design matrix X has compatibility con-
stant bounded away from zero, and the sparsity is s0 =
o(

√
n/ log(p)).

(B2) The rows of X are fixed realizations of i.i.d.
random vectors ∼ Np(0,
), and the minimal eigen-
value of 
 is bounded away from zero.

(B3) The inverse 
−1 is row-sparse with sj =∑
k �=j I ((
−1)jk �= 0) = o(n/ log(p)).

FACT 2 (Zhang and Zhang, 2014; van de Geer et al.,
2014). Consider a linear model as in (2.1) with fixed
design and Gaussian errors. Assume (B1), (B2) and
(B3) (or an �1-sparsity assumption on the rows of

−1). Then√

nσ−1
ε

(
b̂ − β0) = W + , W ∼ Np(0,�),

�jk = n(Z(j))T Z(k)

[(X(j))T Z(j)][(X(k))T Z(k)] ,
‖‖∞ = oP (1).
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[We note that this statement holds with probability
tending to one, with respect to the variables X ∼
NP (0,
) as assumed in (B2)].

The asymptotic implications of Fact 2 are as follows:

σ−1
ε �

−1/2
jj

√
n
(
b̂j − β0

j

) ⇒N (0,1),

from which we can immediately construct a confidence
interval or hypothesis test by plugging in an estimate σ̂ε

as briefly discussed in Section 2.1.4. From a theoretical
perspective, it is more elegant to use the square root
Lasso (Belloni, Chernozhukov and Wang, 2011) for the
construction of Z(j); then one can drop (B3) [or the �1-
sparsity version of (B3)] (van de Geer, 2014). In fact,
all that we then need is formula (2.12)

∥∥β̂ − β0∥∥
1 = oP

(
1/
√

log(p)
)
.

From a practical perspective, it seems to make essen-
tially no difference whether one takes the square root
or plain Lasso for the construction of the Z(j)’s.

More general than the statements in Fact 2, the fol-
lowing holds assuming (B1)–(B3) (van de Geer et al.,
2014): the asymptotic variance σ 2

ε �jj reaches the
Cramér–Rao lower bound, which equals σ 2

ε (
−1)jj
[which is bounded away from zero, due to (B2)], and
the estimator b̂j is efficient in the sense of semi-
parametric inference. Furthermore, the convergence
in Fact 2 is uniform over the subset of the parameter
space where the number of nonzero coefficients ‖β0‖0
is small and, therefore, we obtain honest confidence
intervals and tests. In particular, both of these results
say that all the complications in post-model selection
do not arise (Leeb and Pötscher, 2003), and yet b̂j is
optimal for construction of confidence intervals of a
single coefficient β0

j .
From a practical perspective, we need to choose the

regularization parameters λ (for the Lasso regression of
Y versus X) and λj [for the nodewise Lasso regressions
(Meinshausen and Bühlmann, 2006) of X(j) versus all
other variables X(−j)]. Regarding the former, we advo-
cate a choice using cross-validation; for the latter, we
favor a proposal for a smaller λj than the one from CV,
and the details are described in Appendix A.1.

Furthermore, for a group G ⊆ {1, . . . , p}, we can test
a group hypothesis H0,G : β0

j = 0 for all j ∈ G by con-
sidering the test-statistic

max
j∈G

σ−1
ε �

−1/2
jj

√
n|b̂j | ⇒ max

j∈G
�

−1/2
jj |Wj |,

where the limit on the right-hand side occurs if the
null-hypothesis H0,G holds true. The distribution of

maxj∈G |�−1/2
jj Wj | can be easily simulated from de-

pendent Gaussian random variables. We also remark
that sum-type statistics for large groups cannot be eas-
ily treated because

∑
j∈G |j | might get out of control.

2.1.3 Ridge projection and bias correction. Related
to the desparsified Lasso estimator b̂ in (2.8) is an ap-
proach based on Ridge estimation. We sketch here the
main properties and refer to Bühlmann (2013) for a de-
tailed treatment.

Consider

β̂Ridge = (
n−1XT X + λI

)−1
n−1XT Y.

A major source of bias occurring in Ridge estimation
when p > n comes from the fact that the Ridge estima-
tor is estimating a projected parameter

θ0 = PRβ0, PR = XT (XXT )−X,

where (XXT )− denotes a generalized inverse of XXT .
The minor bias for θ0 then satisfies

max
j

∣∣E[β̂Ridge;j ] − θ0
j

∣∣ ≤ λ
∥∥θ0∥∥

2λmin�=0(
̂)−1,

where λmin�=0(
̂) denotes the minimal nonzero eigen-
value of 
̂ (Shao and Deng, 2012). The quantity can
be made small by choosing λ small. Therefore, for
λ ↘ 0+ and assuming Gaussian errors, we have that

σ−1
ε

(
β̂Ridge − θ0) ≈ W, W ∼Np(0,�R),(2.9)

where �R = (
̂ + λ)−1
̂(
̂ + λ)−1/n. Since

θ0

PR;jj
= β0

j + ∑
k �=j

PR;jk

PR;jj
β0

k ,

the major bias for β0
j can be estimated and corrected

with

∑
k �=j

PR;jk

PR;jj
β̂k,

where β̂ is the ordinary Lasso. Thus, we construct a
bias-corrected Ridge estimator, which addresses the
potentially substantial difference between θ0 and the
target β0:

b̂R;j = β̂Ridge;j
PR;jj

− ∑
k �=j

PR;jk

PR;jj
β̂k,

(2.10)
j = 1, . . . , p.
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Based on (2.9), we derive in Appendix A.1 that

σ−1
ε �

−1/2
R;jj

(
b̂R;j − β0

j

)

≈ �
−1/2
R;jj Wj/PR;jj

+ σ−1
ε �

−1/2
R;jj R;j , W ∼ Np(0,�R),(2.11)

|R;j | ≤ Rbound;j

:= max
k �=j

∣∣∣∣PR;jk

PR;jj

∣∣∣∣(log(p)/n
)1/2−ξ

,

with the typical choice ξ = 0.05. Sufficient conditions
for deriving (2.11) are assumption (B1) and that the
sparsity satisfies s0 = O((n/ log(p))ξ ) for ξ as above.

Unlike as in Fact 2, the term R;j is typically not
negligible and we correct the Gaussian part in (2.11)
by the upper bound Rbound;j . For example, for testing
H0,j : β0

j = 0 we use the upper bound for the p-value

2
(
1 − �

(
σ−1

ε �
−1/2
R;jj |PR;jj |(|b̂R;j | − Rbound;j

)
+
))

.

Similarly, for two-sided confidence intervals with cov-
erage 1 − α we use

[b̂R;j − cj , b̂R;j + cj ],
cj = Rbound;j + σε�

1/2
R;jj /|PR;jj |�−1(1 − α/2).

For testing a group hypothesis for G ⊆ {1, . . . , p},
H0,G : β0

j = 0 for all j ∈ G, we can proceed simi-
larly as at the end of Section 2.1.2: under the null-
hypotheses H0,G, the statistic σ−1

ε maxj∈G �
−1/2
R;jj ·

|b̂R;j | has a distribution which is approximately
stochastically upper bounded by

max
j∈G

(
�

−1/2
R;jj |Wj |/|PR;jj | + σ−1

ε �
−1/2
R;jj |R;j |);

see also (2.11). When invoking an upper bound for
Rbound;j ≥ |R;j | as in (2.11), we can easily simu-
late this distribution from dependent Gaussian random
variables, which in turn can be used to construct a p-
value; we refer for further details to Bühlmann (2013).

2.1.4 Additional issues: Estimation of the error vari-
ance and multiple testing correction. Unlike the Multi
sample-splitting procedure in Section 2.1.1, the despar-
sified Lasso and Ridge projection method outlined in
Sections 2.1.2–2.1.3 require to plug-in an estimate of
σε and to adjust for multiple testing. The scaled Lasso
(Sun and Zhang, 2012) leads to a consistent estimate of
the error variance: it is a fully automatic method which
does not need any specification of a tuning parame-
ter. In Reid, Tibshirani and Friedman (2013), an em-
pirical comparison of various estimators suggests that

the estimator based on a residual sum of squares of a
cross-validated Lasso solution often yields good finite-
sample performance.

Regarding the adjustment when doing many tests for
individual regression parameters or groups thereof, one
can use any valid standard method to correct the p-
values from the desparsified Lasso or Ridge projection
method. The prime examples are the Bonferroni–Holm
procedure for controlling the familywise error rate and
the method from Benjamini and Yekutieli (2001) for
controlling the false discovery rate. An approach for
familywise error control which explicitly takes the de-
pendence among the multiple hypotheses is proposed
in Bühlmann (2013), based on simulations for depen-
dent Gaussian random variables.

2.1.5 Conceptual differences between the methods.
We briefly outline here conceptual differences while
Section 2.5 presents empirical results.

The Multi sample-splitting method is very generic
and in the spirit of Breiman’s appeal for stability
(Breiman, 1996a, 1996b), it enjoys some kind of stabil-
ity due to multiple sample splits and aggregation; see
also the discussion in Sections 2.1.6 and 2.4. The dis-
advantage is that, in the worst case, the method needs a
beta-min or a weaker zonal assumption on the underly-
ing regression parameters: this is somewhat unpleasant
since a significance test should find out whether a re-
gression coefficient is sufficiently large or not.

Both the desparsified Lasso and Ridge projection
procedures do not make any assumption on the under-
lying regression coefficient except sparsity. The for-
mer is most powerful and asymptotically optimal if
the design were generated from a population distribu-
tion whose inverse covariance matrix is sparse. Fur-
thermore, the convergence is uniform over all sparse
regression vectors and, hence, the method yields hon-
est confidence regions or tests. The Ridge projection
method does not require any assumption on the fixed
design but does not reach the asymptotic Cramér–Rao
efficiency bound. The construction with the additional
correction term in (A.3) leads to reliable type I error
control at the cost of power.

In terms of computation, the Multi sample-splitting
and Ridge projection method are substantially less de-
manding than the desparsified Lasso.

2.1.6 Other sparse methods than the Lasso. All the
methods described above are used “in default mode” in
conjunction with the Lasso (see also Section 2.2). This
is not necessary, and other estimators can be used.
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For the Multi sample-splitting procedure, assump-
tions (A1) with δ → 0 and (A2) are sufficient for
asymptotic correctness; see Fact 1. These assump-
tions hold for many reasonable sparse estimators when
requiring a beta-min assumption and some sort of
identifiability condition such as the restricted eigen-
value or the compatibility condition on the design ma-
trix X; see also the discussion after Fact 1. It is un-
clear whether one could gain substantially by using
a different screening method than the Lasso. In fact,
the Lasso has been empirically found to perform rather
well for screening in comparison to the elastic net (Zou
and Hastie, 2005), marginal correlation screening (Fan
and Lv, 2008) or thresholded Ridge regression; see
Bühlmann and Mandozzi (2014).

For the desparsified Lasso, the error of the estimated
bias correction can be controlled by using a bound for
‖β̂ − β0‖1. If we require (B2) and (B3) [or an �1 spar-
sity assumption instead of (B3)], the estimation error
in the bias correction, based on an estimator β̂ in (2.8),
is asymptotically negligible if

∥∥β̂ − β0∥∥
1 = oP

(
1/
√

log(p)
)
.(2.12)

This bound is implied by (B1) and (B2) for the Lasso,
but other estimators exhibit this bound as well, as
mentioned below. When using such another estima-
tor, the wording “desparsified Lasso” does not make
sense anymore. Furthermore, when using the square
root Lasso for the construction of Z(j), we only need
(2.12) to obtain asymptotic normality with the

√
n con-

vergence rate (van de Geer, 2014).
For the Ridge projection method, a bound for ‖β̂ −

β0‖1 is again the only assumption such that the proce-
dure is asymptotically valid. Thus, for the correspond-
ing bias correction, other methods than the Lasso can
be used.

We briefly mention a few other methods for which
we have reasons that (A1) with very small δ > 0 and
(A2), or the bound in (2.12) hold: the adaptive Lasso
(Zou, 2006) analyzed in greater detail in van de Geer,
Bühlmann and Zhou (2011), the MC+ procedure with
its high-dimensional mathematical analysis (Zhang,
2010), or methods with concave regularization penalty
such as SCAD (Fan and Li, 2001) analyzed in broader
generality and detail in Fan, Xue and Zou (2014). If the
assumptions (A1) with small δ > 0 and (A2) fail for
the Multi sample-splitting method, the multiple sam-
ple splitting still allows to check the stability of the
p-values P

[b]
corr,j across b (i.e., across sample splits). If

the variable screening is unstable, many of the P
[b]
corr,j

(across b) will be equal to 1, therefore, the aggregation
has a tendency to produce small p-values if most of
them, each from a sample split, are stable and small.
See also Mandozzi and Bühlmann (2015), Section 5.
In connection with the desparsified method, a failure
of the single sufficient condition in (2.12), when using,
for example, the square root Lasso for construction of
the Z(j)’s, might result in a too large bias. In absence
of resampling or Multi sample splitting, it seems dif-
ficult to diagnose such a failure (of the desparsified or
Ridge projection method) with real data.

2.2 hdi for Linear Models

In the R-package hdi, available on R-Forge (Meier,
Meinshausen and Dezeure, 2014), we provide imple-
mentations for the Multi sample-splitting, the Ridge
projection and the desparsified Lasso method.

Using the R functions is straightforward:
> outMssplit
<- multi.split(x = x, y = y)

> outRidge
<- ridge.proj(x = x, y = y)

> outLasso
<- lasso.proj(x = x, y = y)

For users that are very familiar with the proce-
dures, we provide flexible options. For example, we
can easily use an alternative model selection or an-
other “classical” fitting procedure using the argu-
ments model.selector and classical.fit in
multi.split. The default options should be satis-
factory for standard usage.

All procedures return p-values and confidence in-
tervals. The Ridge and desparsified Lasso methods re-
turn both single testing p-values as well as multiple
testing corrected p-values, unlike the Multi sample-
splitting procedure which only returns multiple testing
corrected p-values. The confidence intervals are for in-
dividual parameters only (corresponding to single hy-
pothesis testing).

The single testing p-values and the multiple testing
corrected p-values are extracted from the fit as follows:
> outRidge$pval
> outRidge$pval.corr

By default, we correct for controlling the familywise
error rate for the p-values pval.corr.

Confidence intervals are acquired through the usual
confint interface. Below we extract the 95 % confi-
dence intervals for those p-values that are smaller than
0.05:
> confint(outMssplit,
parm = which(outMssplit$pval.corr
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<= 0.05),
level = 0.95)

Due to the fact that the desparsified Lasso method is
quite computationally intensive, we provide the option
to parallelize the method on a user-specified number of
cores.

We refer to the manual of the package for more de-
tailed information.

2.3 Other Methods

Recently, other procedures have been suggested for
construction of p-values and confidence intervals.

Residual-type bootstrap approaches are proposed
and analyzed in Chatterjee and Lahiri (2013) and Liu
and Yu (2013). A problem with these approaches is the
nonuniform convergence to a limiting distribution and
exposure to the super-efficiency phenomenon, that is,
if the true parameter equals zero, a confidence region
might be the singleton {0} (due to a finite amount of
bootstrap resampling), while for nonzero true param-
eter values, the coverage might be very poor or a big
length of the confidence interval.

The covariance test (Lockhart et al., 2014) is another
proposal which relies on the solution path of the Lasso
and provides p-values for conditional tests that all rel-
evant variables enter the Lasso solution path first. It is
related to post-selection inference, mentioned in Sec-
tion 7.1.

In Javanmard and Montanari (2014), a procedure
was proposed that is very similar to the one described
in Section 2.1.2, with the only difference being that Z
is picked as the solution of a convex program rather
than using the Lasso. The method is aiming to relax
the sparsity assumption (B3) for the design.

A conservative Group-bound method which needs
no regularity assumption for the design, for example,
no compatibility assumption (A.1), has been proposed
by Meinshausen (2015). The method has the capacity
to automatically determine whether a regression coef-
ficient is identifiable or not, and this makes the proce-
dure very robust against ill-posed designs. The main
motivation of the method is in terms of testing groups
of correlated variables, and we discuss it in more detail
in Section 4.1.

While all the methods mentioned above are con-
sidered in a comparative simulation study in Sec-
tion 2.5, we mention here some others. The idea of
estimating a low-dimensional component of a high-
dimensional parameter is also worked out in Belloni
et al. (2012), Belloni, Chernozhukov and Kato (2015),
bearing connections to the approach of desparsifying

the Lasso. Based on stability selection (Meinshausen
and Bühlmann, 2010), Shah and Samworth (2013) pro-
pose a version which leads to p-values for testing
individual regression parameters. Furthermore, there
are new and interesting proposals for controlling the
false discovery rate, in a “direct way” (Bogdan et al.
2013, 2014; Barber and Candès, 2015).

2.4 Main Assumptions and Violations

We discuss here some of the main assumptions, po-
tential violations and some corresponding implications
calling for caution when aiming for confirmatory con-
clusions.

Linear model assumption. The first one is that the
linear (or some other) model is correct. This might be
rather unrealistic and, thus, it is important to interpret
the output of software or a certain method. Consider a
nonlinear regression model

random design : Y0 = f 0(X0) + η0,

fixed design : Y = f 0(X) + η,

where, with some slight abuse of notation, f 0(X) =
f 0(X1), . . . , (f

0(Xn))
T . We assume for the random

design model, η0 is independent from X0, E[η0] = 0,
E[f 0(X0)] = 0, E[X0] = 0, and the data are n i.i.d.
realizations of (X0, Y0); for the fixed design model,
the n × 1 random vector η has i.i.d. components with
E[ηi] = 0. For the random design model, we con-
sider

Y0 = (
β0)T X0 + ε0,

ε0 = f 0(X0) − (
β0)T X0 + η0,(2.13)

β0 = argminβ E
[(

f 0(X0) − βT X0
)2]

[where the latter is unique if Cov(X0) is positive
definite]. We note that E[ε0|X0] �= 0 while E[ε0] =
0 and, therefore, the inference should be uncondi-
tional on X and is to be interpreted for the pro-
jected parameter β0 in (2.13). Furthermore, for cor-
rect asymptotic inference of the projected parame-
ter β0, a modified estimator for the asymptotic vari-
ance of the estimator is needed; and then both the
Multi sample-splitting and the desparsified Lasso are
asymptotically correct (assuming similar conditions
as if the model were correct). The Multi sample-
splitting method is well suited for the random de-
sign case because the sample splitting (resampling
type) is coping well with i.i.d. data. This is in con-
trast to fixed design, where the data is not i.i.d. and
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the Multi sample-splitting method for a misspeci-
fied linear model is typically not working anymore.
The details are given in Bühlmann and van de Geer
(2015).

For a fixed design model with rank(X) = n, we can
always write

Y = Xβ0 + ε, ε = η

for many solutions β0. For ensuring that the inference
is valid, one should consider a sparse β0, for exam-
ple, the basis pursuit solution from compressed sensing
(Candes and Tao, 2006) as one among many solutions.
Thus, inference should be interpreted for a sparse so-
lution β0, in the sense that a confidence interval for
the j th component would cover this j th component
of all sufficiently sparse solutions β0. For the high-
dimensional fixed design case, there is no misspecifi-
cation with respect to linearity of the model; misspec-
ification might happen, though, if there is no solution
β0 which fulfills a required sparsity condition. The de-
tails are given again in Bühlmann and van de Geer
(2015).

The assumption about constant error variance might
not hold. We note that in the random design case of a
nonlinear model as above, the error in (2.13) has non-
constant variance when conditioning on X, but, uncon-
ditionally, the noise is homoscedastic. Thus, as out-
lined, the inference for a random design linear model is
asymptotically valid (unconditional on X) even though
the conditional error distribution given X has noncon-
stant variance.

Compatibility or incoherence-type assumption. The
methods in Section 2.1 require an identifiability as-
sumption such as the compatibility condition on the
design matrix X described in (A.1). The procedure in
Section 4.1 does not require such an assumption: if a
component of the regression parameter is not identifi-
able, the method will not claim significance. Hence,
some robustness against nonidentifiability is offered
with such a method.

Sparsity. All the described methods require some
sparsity assumption of the parameter vector β0 [if the
model is misspecified, this concerns the parameter β0

as in (2.13) or the basis pursuit solution]; see the dis-
cussion of (A1) after Fact 1 or assumption (B1). Such
sparsity assumptions can be somewhat relaxed to re-
quire weak sparsity in terms of ‖β0‖r for some 0 < r <

1, allowing that many or all regression parameters are
nonzero but sufficiently small (cf. van de Geer, 2015;
Bühlmann and van de Geer, 2015).

When the truth (or the linear approximation of the
true model) is nonsparse, the methods are expected
to break down. With the Multi sample-splitting pro-
cedure, however, a violation of sparsity might be de-
tected, since for nonsparse problems, a sparse variable
screening method will be typically unstable with the
consequence that the resulting aggregated p-values are
typically not small; see also Section 2.1.6.

Finally, we note that for the desparsified Lasso, the
sparsity assumption (B3) or its weaker version can be
dropped when using the square root Lasso; see the dis-
cussion after Fact 2.

Hidden variables. The problem of hidden variables
is most prominent in the area of causal inference (cf.
Pearl, 2000). In the presence of hidden variables, the
presented techniques need to be adapted, adopting
ideas from, for example, the framework of EM-type
estimation (cf. Dempster, Laird and Rubin, 1977), low-
rank methods (cf. Chandrasekaran, Parrilo and Willsky,
2012) or the FCI technique from causal inference (cf.
Spirtes, Glymour and Scheines, 2000).

2.5 A Broad Comparison

We compare a variety of methods on the basis of
multiple testing corrected p-values and single test-
ing confidence intervals. The methods we look at are
the multiple sample-splitting method MS-Split (Sec-
tion 2.1.1), the desparsified Lasso method Lasso-
Pro (Section 2.1.2), the Ridge projection method
Ridge (Section 2.1.3), the covariance test Covtest (Sec-
tion 2.3), the method by Javanmard and Montanari
Jm2013 (Section 2.3) and the two bootstrap proce-
dures mentioned in Section 2.3 [Res-Boot corresponds
to Chatterjee and Lahiri (2013) and liuyu to Liu and Yu
(2013)].

2.5.1 Specific details for the methods. For the esti-
mation of the error variance, for the Ridge projection
or the desparsified Lasso method, the scaled Lasso is
used as mentioned in Section 2.1.4.

For the choice of tuning parameters for the nodewise
Lasso regressions (discussed in Section 2.1.2), we look
at the two alternatives of using either cross-validation
or our more favored alternative procedure (denoted by
Z&Z) discussed in Appendix A.1.

We do not look at the bootstrap procedures in con-
nection with multiple testing adjustment due to the fact
that the required number of bootstrap samples grows
out of proportion to go far enough in the tails of the dis-
tribution; some additional importance sampling might
help to address such issues.
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Regarding the covariance test, the procedure does
not directly provide p-values for the hypotheses we
are interested in. For the sake of comparison though,
we use the interpretation as in Bühlmann, Meier and
van de Geer (2014).

This interpretation does not have a theoretical rea-
soning behind it and functions more as a heuristic.

Thus, the results of the covariance test procedure
should be interpreted with caution.

For the method Jm2013, we used our own implemen-
tation instead of the code provided by the authors. The
reason for this is that we had already implemented our
own version when we discovered that code was avail-
able and our own version was (orders of magnitude)
better in terms of error control. Posed with the dilemma
of fair comparison, we stuck to the best performing al-
ternative.

2.5.2 Data used. For the empirical results, simu-
lated design matrices as well as design matrices from
real data are used. The simulated design matrices are
generated ∼ Np(0,
) with covariance matrix 
 of the
following three types:

Toeplitz: 
j,k = 0.9|j−k|,

Exp.decay:
(

−1)

j,k = 0.4|j−k|/5,

Equi.corr: 
j,k ≡ 0.8 for all j �= k,


j,j ≡ 1 for all j.

The sample size and dimension are fixed at n = 100
and p = 500, respectively. We note that the Toeplitz
type has a banded inverse 
−1, and, vice-versa, the
Exp.decay type exhibits a banded 
. The design matrix
RealX from real gene expression data of Bacillus Sub-
tilis (n = 71,p = 4088) was kindly provided by DSM
(Switzerland) and is publicly available (Bühlmann,
Kalisch and Meier, 2014). To make the problem some-
what comparable in difficulty to the simulated designs,
the number of variables is reduced to p = 500 by tak-
ing the variables with highest empirical variance.

The cardinality of the active set is picked to be one
of two levels s0 ∈ {3,15}.

For each of the active set sizes, we look at 6 different
ways of picking the sizes of the nonzero coefficients:

Randomly generated : U(0,2),U(0,4),U(−2,2),

A fixed value : 1,2 or 10.

The positions of the nonzero coefficients as columns
of the design X are picked at random. Results where
the nonzero coefficients were positioned to be the first

s0 columns of X can be found in the supplemental arti-
cle (Dezeure et al., 2015).

Once we have the design matrix X and coefficient
vector β0, the responses Y are generated according to
the linear model equation with ε ∼ N (0,1).

2.5.3 p-values. We investigate multiple testing cor-
rected p-values for two-sided testing of the null hy-
potheses H0,j : β0

j = 0 for j = 1, . . . , p. We report the
power and the familywise error rate (FWER) for each
method:

Power = ∑
j∈S0

P[H0,j is rejected]/s0,

FWER = P
[∃j ∈ Sc

0 : H0,j is rejected
]
.

We calculate empirical versions of these quantities
based on fitting 100 simulated responses Y coming
from newly generated ε.

For every design type, active set size and coefficient
type combination we obtain 50 data points of the em-
pirical versions of “Power” and “FWER,” from 50 in-
dependent simulations. Thereby, each data point has a
newly generated X, β0 (if not fixed) and active set po-
sitions S0 ∈ {1, . . . , p}; thus, the 50 data points indi-
cate the variability with respect to the three quantities
in the data generation (for the same covariance model
of the design, the same model for the regression pa-
rameter and its active set positions). The data points
are grouped in plots by design type and active set size.

We also report the average number of false positives
AVG(V) over all data points per method next to the
FWER plot.

The results, illustrating the performance for various
methods, can be found in Figures 2, 3, 4 and 5.

2.5.4 Confidence intervals. We investigate confi-
dence intervals for the one particular setup of the
Toeplitz design, active set size s0 = 3 and coefficients
β0

j ∼ U [0,2] (j ∈ S0). The active set positions are cho-
sen to be the first s0 columns of X. The results we show
will correspond to a single data point in the p-value re-
sults.

In Figure 6, 100 confidence intervals are plotted for
each coefficient for each method. These confidence in-
tervals are the results of fitting 100 different responses
Y resulting from newly generated ε error terms.

For the Multi sample-splitting method from Sec-
tion 2.1.1, if a variable did not get selected often
enough in the sample splits, there is not enough in-
formation to draw a confidence interval for it. This is
represented in the plot by only drawing confidence in-
tervals when this was not the case. If the (uncheckable)
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FIG. 2. Familywise error rate (FWER), average number of false positive [AVG(V)] and power for multiple testing based on various methods
for a linear model. The desired control level for the FWER is α = 0.05. The average number of false positives AVG(V) for each method is
shown in the middle. The design matrix is of type Toeplitz, and the active set size being s0 = 3 (top) and s0 = 15 (bottom).

FIG. 3. See caption of Figure 2 with the only difference being the type of design matrix. In this plot, the design matrix type is Exp.decay.

FIG. 4. See caption of Figure 2 with the only difference being the type of design matrix. In this plot, the design matrix type is Equi.corr.
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FIG. 5. See caption of Figure 2 with the only difference being the type of design matrix. In this plot, the design matrix type is RealX.

beta-min condition (2.3) would be fulfilled, we would
know that those confidence intervals cover zero.

For the bootstrapping methods, an invisible confi-
dence interval is the result of the coefficient being set
to zero in all bootstrap iterations.

2.5.5 Summarizing the empirical results. As a first
observation, the impact of the sparsity of the problem
on performance cannot be denied. The power clearly
gets worse for s0 = 15 for the Toeplitz and Exp.decay
setups. The FWER becomes too high for quite a few

methods for s0 = 15 in the cases of Equi.corr and Re-
alX.

For the sparsity s0 = 3, the Ridge projection method
manages to control the FWER as desired for all setups.
In the case of s0 = 15, it is the Multi sample-splitting
method that comes out best in comparison to the other
methods. Generally speaking, good error control tends
to be associated with a lower power, which is not too
surprising since we are dealing with the trade-off be-
tween type I and type II errors. The desparsified Lasso
method turns out to be a less conservative alternative

FIG. 6. Confidence intervals and their coverage rates for 100 realizations of a linear model with fixed design of dimensions n = 100,
p = 500. The design matrix was of type Toeplitz and the active set was of size s0 = 3. The nonzero coefficients were chosen by sampling once
from the uniform distribution U [0,2]. For each method, 18 coefficients are shown from left to right with the 100 estimated 95%-confidence
intervals drawn for each coefficient.The first 3 coefficients are the non-zero coefficients in descending order of value. The other 15 coefficients,
to the right of the first 3, were chosen to be those coefficients with the worst coverage. The size of each coefficient is illustrated by the height of
a black horizontal bar. To illustrate the coverage of the confidence intervals, each confidence interval is either colored red or black depending
on the inclusion of the true coefficient in the interval. Black means the true coefficient was covered by the interval. The numbers written above
the coefficients are the number of confidence intervals, out of 100, that covered the truth. All confidence intervals are on the same scale such
that one can easily see which methods have wider confidence intervals. To summarize the coverage for all zero coefficients Sc

0 (including
those not shown on the plot), the rounded average coverage of those coefficients is given to the right of all coefficients.
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with not perfect but reasonable FWER control as long
as the problem is sparse enough (s0 = 3). The method
has a slightly too high FWER for the Equi.corr and Re-
alX setups, but FWER around 0.05 for Toeplitz and
Exp.decay designs. Doing the Z&Z tuning procedure
helps the error control, as can be seen most clearly in
the Equi.corr setup.

The results for the simulations where the positions
for the nonzero coefficients were not randomly chosen,
presented in the supplemental article (Dezeure et al.,
2015), largely give the same picture. In comparison to
the results presented before, the Toeplitz setup is eas-
ier while the Exp.decay setup is more challenging. The
Equi.corr results are very similar to the ones from be-
fore, which is to be expected from the covariance struc-
ture.

Looking into the confidence interval results, it is
clear that the confidence intervals of the Multi sample-
splitting method and the Ridge projection method are
wider than the rest. For the bootstrapping methods, the
super-efficiency phenomenon mentioned in Section 2.3
is visible. Important to note here is that the smallest
nonzero coefficient, the third column, has very poor
coverage from these methods.

We can conclude that the coverage of the zero coef-
ficients is decent for all methods and that the coverage
of the nonzero coefficients is in line with the error rates
for the p-values.

Confidence interval results for many other setup
combinations are provided in the supplemental article
(Dezeure et al., 2015). The observations are to a large
extent the same.

3. GENERALIZED LINEAR MODELS

Consider a generalized linear model

Y1, . . . , Yn independent,

g
(
E[Yi |Xi = x]) = μ0 +

p∑
j=1

β0
j x(j),

where g(·) is a real-valued, known link function. As
before, the goal is to construct confidence intervals and
statistical tests for the unknown parameters β0

1 , . . . , β0
p ,

and maybe μ0 as well.

3.1 Methods

The Multi sample-splitting method can be modified
for GLMs in an obvious way: the variable screening
step using the first half of the data can be based on

the �1-norm regularized MLE, and p-values and con-
fidence intervals using the second half of the sam-
ple are constructed from the asymptotic distribution
of the (low-dimensional) MLE. Multiple testing cor-
rection and aggregation of the p-values from multiple
sample splits are done exactly as for linear models in
Section 2.1.1.

A desparsified Lasso estimator for GLMs can be
constructed as follows (van de Geer et al., 2014): The
�1-norm regularized MLE θ̂ for the parameters θ0 =
(μ0, β0) is desparsified with a method based on the
Karush–Kuhn–Tucker (KKT) conditions for θ̂ , leading
to an estimator with an asymptotic Gaussian distribu-
tion. The Gaussian distribution can then be used to con-
struct confidence intervals and hypothesis tests.

3.2 Weighted Squared Error Approach

The problem can be simplified in such a way that
we can apply the approaches for the linear model from
Section 2. This can be done for all types of general-
ized linear models (as shown in Appendix A.3), but
we restrict ourselves in this section to the specific case
of logistic regression. Logistic regression is usually fit-
ted by applying the iteratively reweighted least squares
(IRLS) algorithm where at every iteration one solves a
weighted least squares problem (Hastie, Tibshirani and
Friedman, 2009).

The idea is now to apply a standard l1-penalized fit-
ting of the model, build up the weighted least squares
problem at the l1-solution and then apply our linear
model methods on this problem.

We use the notation π̂i , i = 1, . . . , n for the estimated
probability of the binary outcome. π̂ is the vector of
these probabilities.

From Hastie, Tibshirani and Friedman (2009), the
adjusted response variable becomes

Yadj = Xβ̂ + W−1(Y − π̂),

and the weighted least squares problem is

β̂new = argminβ(Yadj − Xβ)T W(Yadj − Xβ),

with weights

W =

⎛
⎜⎜⎜⎜⎜⎝

π̂1(1 − π̂1) 0 . . . 0

0 π̂2(1 − π̂2)
. . .

...
...

. . .
. . . 0

0 . . . 0 π̂n(1 − π̂n)

⎞
⎟⎟⎟⎟⎟⎠

.

We rewrite Yw = √
WYadj and Xw = √

WX to get

β̂new = argminβ(Yw − Xwβ)T (Yw − Xwβ).
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The linear model methods can now be applied to Yw

and Xw , thereby the estimate σ̂ε has to be set to the
value 1. We note that in the low-dimensional case, the
resulting p-values (with unregularized residuals Zj )
are very similar to the p-values provided by the stan-
dard R-function glm.

3.3 Small Empirical Comparison

We provide a small empirical comparison of the
methods mentioned in Sections 3.1 and 3.2. When ap-
plying the linear model procedures, we use the nam-
ing from Section 2.5. The new GLM-specific methods
from Section 3.1 are referred to by their linear model
names with a capital G added to them.

For simulating the data, we use a subset of the vari-
ations presented in Section 2.5.2. We only look at
Toeplitz and Equi.corr and an active set size of s0 = 3.
The number of variables is fixed at p = 500, but the
sample size is varied n ∈ {100,200,400}. The coeffi-
cients were randomly generated:

Randomly generated : U(0,1),U(0,2),U(0,4).

The nonzero coefficient positions are chosen randomly
in one case and fixed as the first s0 columns of X in the
other.

For every combination (of type of design, type of co-
efficients, sample size and coefficient positions), 100
responses Y are simulated to calculate empirical ver-
sions of the “Power” and “FWER” described in Sec-
tion 2.5.3. In contrast to the p-value results from Sec-
tion 2.5.3, there is only one resulting data point per
setup combination (i.e., no additional replication with
new random covariates, random coefficients and ran-
dom active set). For each method, there are 18 data

points, corresponding to 18 settings, in each plot. The
results can be found in Figure 7.

Both the modified GLM methods as well as the
weighted squared error approach work adequately. The
Equi.corr setup does prove to be challenging for Lasso-
ProG.

3.4 hdi for Generalized Linear Models

In the hdi R-package (Meier, Meinshausen and
Dezeure, 2014) we also provide the option to use the
Ridge projection method and the desparsified Lasso
method with the weighted squared error approach.

We provide the option to specify the family of the
response Y as done in the R-package glmnet:
> outRidge

<- ridge.proj(x = x, y = y,
family = ’’binomial’’)

> outLasso
<- lasso.proj(x = x, y = y,

family = ’’binomial’’)
p-values and confidence intervals are extracted in

the exact same way as for the linear model case; see
Section 2.2.

4. HIERARCHICAL INFERENCE IN THE
PRESENCE OF HIGHLY CORRELATED VARIABLES

The previous sections and methods assume in some
form or another that the effects are strong enough to
enable accurate estimation of the contribution of indi-
vidual variables.

Variables are often highly correlated for high-
dimensional data. Working with a small sample size,
it is impossible to attribute any effect to an individual

FIG. 7. Familywise error rate (FWER) and power for multiple testing based on various methods for logistic regression. The desired control
level for the FWER is α = 0.05. The design matrix is of type Toeplitz in the top plot and Equi.corr in the bottom plot. If the method name
contains a capital G, it is the modified glm version, otherwise the linear model methods are using the weighted squared error approach.
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variable if the correlation between a block of variables
is too high. Confidence intervals for individual vari-
ables are then very wide and uninformative. Asking
for confidence intervals for individual variables thus
leads to poor power of all procedures considered so far.
Perhaps even worse, under high correlation between
variables the coverage of some procedures will also
be unreliable as the necessary conditions for correct
coverage (such as the compatibility assumption) are
violated.

In such a scenario, the individual effects are not gran-
ular enough to be resolved. However, it might yet still
be possible to attribute an effect to a group of variables.
The groups can arise naturally due to a specific struc-
ture of the problem, such as in applications of the group
Lasso (Yuan and Lin, 2006).

Perhaps more often, the groups are derived via hi-
erarchical clustering (Hartigan, 1975), using the cor-
relation structure or some other distance between the
variables. The main idea is as follows. A hierarchy
T is a set of clusters or groups {Ck;k} with Ck ⊆
{1, . . . , p}. The root node (cluster) contains all vari-
ables {1, . . . , p}. For any two clusters Ck,C�, either one
cluster is a subset of the other or they have an empty
intersection. Usually, a hierarchical clustering has an
additional notion of a level such that, on each level, the
corresponding clusters build a partition of {1, . . . , p}.
We consider a hierarchy T and first test the root node
cluster C0 = {1, . . . , p} with hypothesis H0,C0 : β1 =
β2 = · · · = βp = 0. If this hypothesis is rejected, we
test the next clusters Ck in the hierarchy (all clusters
whose supersets are the root node cluster C0 only): the
corresponding cluster hypotheses are H0,Ck

: βj = 0 for
all j ∈ Ck . For the hypotheses which can be rejected,
we consider all smaller clusters whose only supersets
are clusters which have been rejected by the method
before, and we continue to go down the tree hierarchy
until no more cluster hypotheses can be rejected.

With the hierarchical scheme in place, we still need
a test for the null hypothesis H0,C of a cluster of vari-
ables. The tests have different properties. For example,
whether a multiplicity adjustment is necessary will de-
pend on the chosen test. We will describe below some
methods that are useful for testing the effect of a group
of variables and which can be used in such a hierar-
chical approach. The nice and interesting feature of the
procedures is that they adapt automatically to the level
of the hierarchical tree: if a signal of a small cluster of
variables is strong, and if that cluster is sufficiently un-
correlated from all other variables or clusters, the clus-
ter will be detected as significant. Vice-versa, if the sig-
nal is weak or if the cluster has too high a correlation

with other variables or clusters, the cluster will not be-
come significant. For example, a single variable cannot
be detected as significant if it has too much correlation
to other variables or clusters.

4.1 Group-Bound Confidence Intervals Without
Design Assumptions

The Group-bound proposed in Meinshausen (2015)
gives confidence intervals for the �1-norm ‖β0

Ck
‖1 of a

group Ck ⊆ {1, . . . , p} of variables. If the lower-bound
of the 1−α confidence interval is larger than 0, then the
null hypothesis β0

Ck
≡ 0 can be rejected for this group.

The method combines a few properties:

(i) The confidence intervals are valid without an
assumption like the compatibility condition (A.1). In
general, they are conservative, but if the compatibility
condition holds, they have good “power” properties (in
terms of length) as well.

(ii) The test is hierarchical. If a set of variables can
be rejected, all supersets will also be rejected. And
vice-versa, if a group of variables cannot be rejected,
none of its subsets can be rejected.

(iii) The estimation accuracy has an optimal detec-
tion rate under the so-called group effect compatibility
condition, which is weaker than the compatibility con-
dition necessary to detect the effect of individual vari-
ables.

(iv) The power of the test is unaffected by adding
highly or even perfectly correlated variables in Ck to
the group. The compatibility condition would fail to
yield a nontrivial bound, but the group effect compat-
ibility condition is unaffected by the addition of per-
fectly correlated variables to a group.

The price to pay for the assumption-free nature of the
bound is a weaker power than with previously dis-
cussed approaches when the goal is to detect the effect
of individual variables. However, for groups of highly
correlated variables, the approach can be much more
powerful than simply testing all variables in the group.

We remark that previously developed tests can
be adapted to the context of hierarchical testing of
groups with hierarchical adjustment for familywise er-
ror control (Meinshausen, 2008); for the Multi sample-
splitting method, this is described next.

4.2 Hierarchical Multi Sample-Splitting

The Multi sample-splitting method (Section 2.1.1)
can be adapted to the context of hierarchical testing
of groups by using hierarchical adjustment of fami-
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lywise error control (Meinshausen, 2008). When test-
ing a cluster hypotheses H0,C , one can use a modi-
fied form of the partial F -test for high-dimensional
settings; and the multiple testing adjustment due to
the multiple cluster hypotheses considered can be
taken care of by a hierarchical adjustment scheme pro-
posed in Meinshausen (2008). A detailed description of
the method, denoted here by Hier. MS-Split, together
with theoretical guarantees is given in Mandozzi and
Bühlmann (2015).

4.3 Simultaneous Inference with the Ridge or
Desparsified Lasso Method

Simultaneous inference for all possible groups can
be achieved by considering p-values Pj of individual

hypotheses H0,j : β0
j = 0 (j = 1, . . . , p) and adjusting

them for simultaneous coverage, namely, Padjusted,j =
Pj · p. The individual p-values Pj can be obtained by
the Ridge or desparsified Lasso method in Section 2.

We can then test any group hypothesis H0,G :
β0

j = 0 for all j ∈ G by simply looking whether
minj∈G Padjust,j ≤ α, and we can consider as many
group hypotheses as we want without any further mul-
tiple testing adjustment.

4.4 Illustrations

A semi-real data example is shown in Figure 8,
where the predictor variables are taken from the Ri-
boflavin data set (Bühlmann, Kalisch and Meier, 2014)

FIG. 8. A visualization of the hierarchical testing scheme as described in the beginning of Section 4, for the examples described in Sec-
tion 4.4. One moves top-down through the output of a hierarchical clustering scheme, starting at the root node. For each cluster encountered,
the null hypothesis that all the coefficients of that particular cluster are 0 is tested. A rejection is visualized by a red semi-transparent circle
at a vertical position that corresponds to the size of the cluster. The chosen significance level was α = 0.05. The children of significant
clusters in the hierarchy are connected by a black line. The process is repeated by testing the null hypotheses for all those children clusters
until no more hypotheses could be rejected. The ordering of the hierarchy in the horizontal direction has no meaning and was chosen for
a clean separation of children hierarchies. The hierarchical clustering and orderings are the same for all 6 plots since the design matrix
was the same. Two different examples were looked at (corresponding to top and bottom row, resp.) and four different methods were applied
to these examples. The desparsified Lasso and the Ridge method gave identical results and were grouped in the two plots on the left, while
results from the hierarchical Multi sample-splitting method are presented in the middle column and the results for the Group-bound method
are shown in the right column. In example 1, the responses were simulated with 2 clusters of highly correlated variables of size 3 having
coefficients different from zero. In example 2, the responses were simulated with 2 clusters of highly correlated variables of sizes 11 and 21
having coefficients different from zero. More details about the examples can be found in Section 4.4.
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(n = 71,p = 4088) and the coefficient vector is taken
to have entries 0, except for 2 clusters of highly cor-
related variables. In example 1, the clusters both have
size 3 with nonzero coefficient sizes equal to 1 for all
the variables in the clusters and Gaussian noise level
σ = 0.1. In example 2, the clusters are bigger and have
different sizes 11 and 21; the coefficient sizes for all
the variables in the clusters is again 1, but the Gaussian
noise level here is chosen to be σ = 0.5.

In the first example, 6 out of the 6 relevant vari-
ables are discovered as individually significant by the
Lasso-Pro, Ridge and MS-Split methods (as outlined
in Sections 2.1.1–2.1.2), after adjusting for multiplic-
ity.

In the second example, the methods cannot reject
the single variables individually any longer. The re-
sults for the Group-bound estimator are shown in the
right column. The Group-bound can reject a group of
4 and 31 variables in the first example, each containing
a true cluster of 3 variables. The method can also de-
tect a group of 2 variables (a subset of the cluster of 4)
which contains 2 out of the 3 highly correlated vari-
ables. In the second example, a group of 34 variables
is rejected with the Group-bound estimator, containing
16 of the group of 21 important variables. The smallest
group of variables containing the cluster of 21 that the
method can detect is of size 360. It can thus be detected
that the variables jointly have a substantial effect even
though the null hypothesis cannot be rejected for any
variable individually. The hierarchical Multi sample-
splitting method (outlined in Section 4.2) manages to
detect the same clusters as the Group-bound method. It
even goes one step further by detecting a smaller sub-
cluster.

We also consider the following simulation model.
The type of design matrix was chosen to be such that
the population covariance matrix 
 is a block-diagonal
matrix with blocks of dimension 20 × 20 being of the
same type as 
 for Equi.corr (see Section 2.5.2) with
off-diagonal ρ instead of 0.8. The dimensions of the
problem were chosen to be p = 500 number of vari-
ables, n = 100 number of samples and noise level
σ = 1. There were only 3 nonzero coefficients cho-
sen with three different signal levels U [0,2], U [0,4]
and U [0,8] being used for the simulations. Aside from
varying signal level, we studied the two cases where in
one case all the nonzero coefficients were contained in
one single highly correlated block and in the other case
each of those variables was in a different block. We

FIG. 9. The power for the rejection of the group-hypothesis of all
variables (top) and the power for the rejection of the group-hypoth-
esis of the variables in blocks highly correlated with S0 variables
(bottom). The design matrix used is of type Block Equi.corr which
is similar to the Equi.corr setup in that 
 is block diagonal with
blocks (of size 20 × 20) being the 
 of Equi.corr. The power is
plotted as a function of the correlations in the blocks, quantified
by ρ. The Ridge-based method loses power as the correlation be-
tween variables increases, while the group bound, Hier. MS-Split
and Lasso-Pro methods can maintain power close to 1 for both
measures of power.

look at 3 different measures of power. One can define
the power as the fraction of the 100 repeated simula-
tions that the method managed to reject the group of
all variables G = 1, . . . , p. This is shown at the top in
Figure 9. Alternatively, one can look at the rejection
rate of the hypothesis for the group G that contains all
variables in the highly correlated blocks that contain a
variable from S0. This is the plot at the bottom in Fig-
ure 9. Finally, one can look at the rejection rate of the
hypothesis where the group G contains only the vari-
ables in S0 (of size 3 in this case). The type I error we
define to be the fraction of the simulations in which the
method rejected the group hypothesis H0,Sc

0
where all

regression coefficients are equal to zero. These last two
measures are presented in Figure 10.

The power of the Ridge-based method (Bühlmann,
2013) drops substantially for high correlations. The
power of the Group-bound stays close to 1 at the
level of the highly correlated groups (Block-power)
and above (Power G = 1, . . . , p) throughout the en-
tire range of correlation values. The Lasso-Pro and
MS-Split perform well here as well. The power of the
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FIG. 10. The power for the rejection of the group-hypothesis
of all S0 variables (top) and type I error rate corresponding to
the rejection of the group-hypothesis of all Sc

0 variables (bottom)
for the design matrix of type Block Equi.corr when changing the
correlation ρ between variables. The design matrix type is de-
scribed in detail in the caption of Figure 9 and in the text. The
desparsified Lasso, Hier. MS-Split and the Ridge-based method lose
power as the correlation between variables increases, while the
Group-bound cannot reject the small group of variables S0 (3 in
this case). The desparsified Lasso and MS-Split methods also ex-
ceed the nominal type I error rate for high correlations (as the de-
sign assumptions break down), whereas the Ridge-based method
and the Group-bound are both within the nominal 5% error rate
for every correlation strength.

Group-bound is 0 when attempting to reject the small
groups H0,S0 . The type I error rate is supposedly con-
trolled at level α = 0.05 with all three methods. How-
ever, the Lasso-Pro and the hierarchical MS-Split meth-
ods fail to control the error rates, with the type I er-
ror rate even approaching 1 for large values of the cor-
relation. The Group-bound and Ridge-based estimator
have, in contrast, a type I error rate close to 0 for all
values of the correlation.

For highly correlated groups of variables, trying to
detect the effect of individual variables has thus two in-
herent dangers. The power to detect interesting groups
of variables might be very low. And the assumptions
for the methods might be violated, which invalidates
the type I error control. The assumption-free Group-
bound method provides a powerful test for the group
effects even if variables are perfectly correlated, but
suffers in power, relatively speaking, when variables
are not highly correlated.

4.5 hdi for Hierarchical Inference

An implementation of the Group-bound method is
provided in the hdi R-package (Meier, Meinshausen
and Dezeure, 2014).

For specific groups, one can provide a vector or a list
of vectors where the elements of the vector specify the
desired columns of X to be tested for. The following
code tests the group hypothesis if the group contains
all variables:
> group

<- 1:ncol(x)
> outGroupBound

<- groupBound(x = x, y = y,
group = group, alpha = 0.05)

> rejection
<- outGroupBound > 0

Note that one needs to specify the significance
level α.

One can also let the method itself apply the hierar-
chical clustering scheme as described at the beginning
of Section 4.

This works as follows:
> outClusterGroupBound

<- clusterGroupBound(x = x,
y = y, alpha = 0.05)

The output contains all clusters that were tested for
significance in members. The corresponding lower
bounds are contained in lowerBound.

To extract the significant clusters, one can do
> significant.cluster.numbers

<- which
(outClusterGroupBound
$lowerBound > 0)

> significant.clusters
<- outClusterGroupBound$members

[[significant.cluster.numbers]]
The figures in the style of Figure 8 can be achieved

by using the function plot on outCluster-
GroupBound.

Note that one can specify the distance matrix used
for the hierarchical clustering, as done for hclust.

To test group hypotheses H0,G for the Ridge and
desparsified Lasso method as described in Section 4.3,
one uses the output from the original single parameter
fit, as illustrated for the group of all variables:
> outRidge

<- ridge.proj(x = x, y = y)
> outLasso

<- lasso.proj(x = x, y = y)
> group
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<- 1:ncol(x)
> outRidge$groupTest(group)
> outLasso$groupTest(group)

To apply a hierarchical clustering scheme as done
in clusterGroupBound, one calls cluster-
GroupTest:
> outRidge$clusterGroupTest

(alpha = 0.95)
To summarize, the R-package provides functions to

test individual groups as well as to test according to a
hierarchical clustering scheme for the methods Group-
bound, Ridge and desparsified Lasso. An implementa-
tion of the hierarchical Multi sample-splitting method
is not provided at this point in time.

5. STABILITY SELECTION AND ILLUSTRATION
WITH HDI

Stability selection (Meinshausen and Bühlmann,
2010) is another methodology to guard against false
positive selections, by controlling the expected number
of false positives E[V ]. The focus is on selection of a
single or a group of variables in a regression model, or
on a selection of more general discrete structures such
as graphs or clusters. For example, for a linear model in
(2.1) and with a selection of single variables, stability
selection provides a subset of variables Ŝstable such that
for V = |Ŝstable ∩ Sc

0| we have that E[V ] ≤ M , where
M is a prespecified number.

For selection of single variables in a regression
model, the method does not need a beta-min assump-
tion, but the theoretical analysis of stability selection
for controlling E[V ] relies on a restrictive exchange-
ability condition (which, e.g., is ensured by a restric-
tive condition on the design matrix). This exchange-
ability condition seems far from necessary though
(Meinshausen and Bühlmann, 2010). A refinement
of stability selection is given in Shah and Samworth
(2013).

An implementation of the stability selection proce-
dure is available in the hdi R-package. It is called in
a very similar way as the other methods. If we want to
control, for example, E[V ] ≤ 1, we use
> outStability

<- stability
(x = x, y = y, EV = 1)

The “stable” predictors are available in the element
select.

The default model selection algorithm is the Lasso
(the first q variables entering the Lasso paths). The

option model.selector allows to apply a user de-
fined model selection function.

6. R WORKFLOW EXAMPLE

We go through a possible R workflow based on the
Riboflavin data set (Bühlmann, Kalisch and Meier,
2014) and methods provided in the hdi R-package:
> library(hdi)
> data(riboflavin)

We assume a linear model and we would like to in-
vestigate which effects are statistically significant on a
significance level of α = 0.05. Moreover, we want to
construct the corresponding confidence intervals.

We start by looking at the individual variables. We
want a conservative approach and, based on the re-
sults from Section 2.5, we choose the Ridge projection
method for its good error control:
> outRidge
<- ridge.proj

(x = riboflavin$x,
y = riboflavin$y)

We investigate if any of the multiple testing cor-
rected p-values are smaller than our chosen signifi-
cance level:
> any(outRidge$pval.corr <= 0.05)
[1] FALSE

We calculate the 95% confidence intervals for the
first 3 predictors:
> confint(outRidge,parm=1:3,
level=0.95)

lower upper
AADK_at -0.8848403 1.541988
AAPA_at -1.4107374 1.228205
ABFA_at -1.3942909 1.408472

Disappointed with the lack of significance for test-
ing individual variables, we want to investigate if we
can find a significant group instead. From the proce-
dure proposed for the Ridge method in Section 4, we
know that if the Ridge method can not find any signifi-
cant individual variables, it would not find a significant
group either.

We apply the Group-bound method with its cluster-
ing option to try to find a significant group:
> outClusterGroupBound
<- clusterGroupBound

(x = riboflavin$x,
y = riboflavin$y,
alpha = 0.05)

> significant.cluster.numbers
<- which(outClusterGroupBound
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$lowerBound
> 0)

> significant.clusters
<- outClusterGroupBound

$members
[[significant.cluster.numbers]]

> str(significant.clusters)
num [1:4088] 1 2 3 4 5 6 7 8 9 10...

Only a single group, being the root node of the clus-
tering tree, is found significant.

These results are in line with the results achievable
in earlier studies of the same data set in Bühlmann,
Kalisch and Meier (2014) and van de Geer et al.
(2014).

7. CONCLUDING REMARKS

We present a (selective) overview of recent de-
velopments in frequentist high-dimensional inference
for constructing confidence intervals and assigning
p-values for the parameters in linear and generalized
linear models. We include some methods which are
able to detect significant groups of highly correlated
variables which cannot be individually detected as sin-
gle variables. We complement the methodology and
theory viewpoints with a broad empirical study. The
latter indicates that more “stable” procedures based on
Ridge estimation or sample splitting with subsequent
aggregation might be more reliable for type I error
control, at the price of losing power; asymptotically,
power-optimal methods perform nicely in well-posed
scenarios but are more exposed to fail for error con-
trol in more difficult settings where the design or de-
gree of sparsity are more ill-posed. We introduce the
R-package hdi which allows the user to choose from
a collection of frequentist inference methods and eases
reproducible research.

7.1 Post-Selection and Sample Splitting Inference

Since the main assumptions outlined in Section 2.4
might be unrealistic in practice, one can consider a dif-
ferent route.

The view and “POSI” (Post-Selection Inference)
method by Berk et al. (2013) makes inferential state-
ments which are protected against all possible submod-
els and, therefore, the procedure is not exposed to the
issue of having selected an “inappropriate” submodel.
The way in which Berk et al. (2013) deal with mis-
specification of the (e.g., linear) model is closely re-
lated to addressing this issue with the Multi sample
splitting or desparsified Lasso method; see Section 2.4

and Bühlmann and van de Geer (2015). The method by
Berk et al. (2013) is conservative, as it protects against
any possible submodel, and it is not feasible yet for
high-dimensional problems. Wasserman (2014) briefly
describes the “HARNESS” (High-dimensional Agnos-
tic Regression Not Employing Structure or Sparsity)
procedure: it is based on single data splitting and mak-
ing inference for the selected submodel from the first
half of the data. When giving up on the goal to infer
the true or best approximating parameter β0 in (2.13),
one can drop many of the main assumptions which are
needed for high-dimensional inference.

The “HARNESS” is related to post-selection in-
ference where the inefficiency of sample splitting
is avoided. Some recent work includes exact post-
selection inference, where the full data is used for se-
lection and inference: it aims to avoid the potential in-
efficiency of single sample splitting and to be less con-
servative than “POSI”, thereby restricting the focus to
a class of selection procedures which are determined
by affine inequalities, including the Lasso and least an-
gle regression (Lee et al., 2013; Taylor et al., 2014;
Fithian, Sun and Taylor, 2014).

Under some conditions, the issue of selective infer-
ence can be addressed by using an adjustment factor
(Benjamini and Yekutieli, 2005): this could be done by
adjusting the output of our high-dimensional inference
procedures, for example, from the hdi R-package.

APPENDIX

A.1 Additional Definitions and Descriptions

Compatibility condition (Bühlmann and van de Geer,
2011, page106). Consider a fixed design matrix X. We
define the following:

The compatibility condition holds if for some φ0 > 0
and all β satisfying ‖βSc

0
‖1 ≤ 3‖βS0‖1,

‖βS0‖2
1 ≤ βT 
̂βs0/φ

2
0, 
̂ = n−1XT X.(A.1)

Here βA denotes the components {βj ; j ∈ A} where
A ⊆ {1, . . . , p}. The number φ0 is called the compati-
bility constant.

Aggregation of dependent p-values. Aggregation of
dependent p-values can be generically done as fol-
lows.

LEMMA 1 [Implicitly contained in Meinshausen,
Meier and Bühlmann (2009)]. Assume that we have
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B p-values P (1), . . . ,P (B) for testing a null-hypothesis
H0, that is, for every b ∈ {1, . . . ,B} and any 0 < α < 1,
PH0[P (b) ≤ α] ≤ α. Consider for any 0 < γ < 1 the
empirical γ -quantile

Q(γ )

= min
(
empirical γ -quantile

{
P (1)/γ, . . . ,P (B)/γ

}
,

1
)
,

and the minimum value of Q(γ ), suitably corrected
with a factor, over the range (γmin,1) for some posi-
tive (small) 0 < γmin < 1:

P = min
((

1 − log(γmin)
)

min
γ∈(γmin,1)

Q(γ ),1
)
.

Then, both Q(γ ) [for any fixed γ ∈ (0,1)] and P are
conservative p-values satisfying for any 0 < α < 1,
PH0[Q(γ ) ≤ α] ≤ α or PH0[P ≤ α] ≤ α, respectively.

Bounding the error of the estimated bias correction
in the desparsified Lasso. We will argue now why the
error from the bias correction∑

k �=j

√
nPjk

(
β̂k − β0

k

)

is negligible. From the KKT conditions when using the
Lasso of X(j) versus X(−j), we have (Bühlmann and
van de Geer, 2011, cf. Lemma 2.1)

max
k �=j

2
∣∣n−1(X(k))T Z(j)

∣∣ ≤ λj .(A.2)

Therefore,∣∣∣∣√n
∑
k �=j

Pjk

(
β̂k − β0

k

)∣∣∣∣
≤ √

nmax
k �=j

|Pjk|
∥∥β̂ − β0∥∥

1

≤ 2
√

nλj

∥∥β̂ − β0∥∥
1

(
n−1(X(j))T Z(j))−1

.

Assuming sparsity and the compatibility condition
(A.1), and when choosing λj � √

log(p)/n, one can
show that (n−1(X(j))T Z(j))−1 = OP (1) and ‖β̂ −
β0‖1 = OP (s0

√
log(p)/n) [for the latter, see (2.2)].

Therefore, ∣∣∣∣√n
∑
k �=j

Pjk

(
β̂k − β0

k

)∣∣∣∣

≤ OP

(√
ns0

√
log(p)/nλj

)

= OP

(
s0 log(p)n−1/2),

where the last bound follows by assuming λj �√
log(p)/n. Thus, if s0 
 n1/2/ log(p), the error from

bias correction is asymptotically negligible.
Choice of λj for desparsified Lasso. We see from

(A.2) that the numerator of the error in the bias correc-
tion term (i.e., the Pjk’s) is decreasing as λj ↘ 0; for
controlling the denominator, λj should not be too small
to ensure that the denominator [i.e., n−1(X(j))T Z(j)]
behaves reasonable (staying away from zero) for a
fairly large range of λj .

Therefore, the strategy is as follows:

1. Compute a Lasso regression of X(j) versus all
other variables X(−j) using CV, and the corresponding
residual vector is denoted by Z(j).

2. Compute ‖Z(j)‖2
2/((X

(j))T Z(j))2 which is the
asymptotic variance of b̂j /σε , assuming that the error
in the bias correction is negligible.

3. Increase the variance by 25%, that is, Vj =
1.25‖Z(j)‖2

2/((X
(j))T Z(j))2.

4. Search for the smallest λj such that the corre-
sponding residual vector Z(j)(λj ) satisfies

∥∥Z(j)(λj )
∥∥2

2/
((

X(j))T Z(j)(λj )
)2 ≤ Vj .

This procedure is similar to the choice of λj advocated
in Zhang and Zhang (2014).

Bounding the error of bias correction for the Ridge
projection. The goal is to derive the formula (2.11).
Based on (2.9), we have

σ−1
ε �

−1/2
R;jj

(
b̂R;j − β0

j

)

≈ �
−1/2
R;jj Wj/PR;jj

+ σ−1
ε �

−1/2
R;jj R;j , W ∼Np(0,�R),

|R;j | ≤ max
k �=j

∣∣∣∣PR;jk

PR;jj

∣∣∣∣
∥∥β̂ − β0∥∥

1.

In relation to the result in Fact 2 for the despar-
sified Lasso, the problem here is that the behaviors
of maxk �=j |P −1

R;jjPR:jk| and of the diagonal elements
�R;jj are hard to control, but, fortunately, these quan-
tities are fixed and observed for fixed design X.

By invoking the compatibility constant for the de-
sign X, we obtain the bound for ‖β̂ − β0‖1 ≤ s04λ/φ0

in (2.2) and, therefore, we can upper-bound

|R;j | ≤ 4s0λ/φ2
0 max

k �=j

∣∣∣∣PR;jk

PR;jj

∣∣∣∣.
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Asymptotically, for Gaussian errors, we have with high
probability

|R;j | = O

(
s0

√
log(p)/nmax

k �=j

∣∣∣∣PR;jk

PR;jj

∣∣∣∣
)

(A.3)

≤ O

((
log(p)/n

)1/2−ξ max
k �=j

∣∣∣∣PR;jk

PR;jj

∣∣∣∣
)
,

where the last inequality holds due to assuming s0 =
O((n/ log(p))ξ ) for some 0 < ξ < 1/2. In practice, we
use the bound from (A.3) in the form

Rbound;j := max
k �=j

∣∣∣∣PR;jk

PR;jj

∣∣∣∣(log(p)/n
)1/2−ξ

,

with the typical choice ξ = 0.05.

A.2 Confidence Intervals for Multi Sample-Splitting

We construct confidence intervals that satisfy the du-
ality with the p-values from equation (2.5), and, thus,
they are corrected already for multiplicity:

(1 − α)% CI

= Those values c for which the p-value ≥
α for testing the null hypothesis H0,j : β = c,

= Those c for which the p-value resulting from

the p-value aggregation procedure is ≥ α,

= {c|Pj ≥ α},
=

{
c|(1 − logγmin) inf

γ∈(γmin,1)
Qj (γ ) ≥ α

}
,

= {
c|∀γ ∈ (γmin,1) : (1 − logγmin)Qj (γ ) ≥ α

}
,

= {
c|∀γ ∈ (γmin,1) :

min
(
1, emp. γ quantile

(
P

[b]
corr;j

)
/γ

) ≥
α/(1 − logγmin)

}
,

= {
c|∀γ ∈ (γmin,1) :

emp. γ quantile
(
P

[b]
corr;j

)
/γ ≥

α/(1 − logγmin)
}
,

=
{
c|∀γ ∈ (γmin,1) :

emp. γ quantile
(
P

[b]
corr;j

) ≥ αγ

(1 − logγmin)

}
.

We will use the notation γ [b] for the position of
P

[b]
corr;j in the ordering by increasing the value of the

corrected p-values P
[i]
corr;j , divided by B .

We can now rewrite our former expression in a form
explicitly using our information from every sample
split

(1 − α)% CI

=
{
c|∀b = 1, . . . ,B : (γ [b] ≤ γmin

)

∨
(
P

[b]
corr;j ≥ αγ [b]

(1 − logγmin)

)}

=
{
c|∀b = 1, . . . ,B : (γ [b] ≤ γmin

)

∨
(
c ∈ the

(
1 − αγ [b]

(1 − logγmin)|Ŝ[b]|
)

· 100% CI for split b

)}
.

For single testing (not adjusted for multiplicity), the
corresponding confidence interval becomes

(1 − α)% CI

=
{
c|∀b = 1, . . . ,B : (γ [b] ≤ γmin

)

∨
(
c ∈ the

(
1 − αγ [b]

(1 − logγmin)

)

· 100% CI for split b

)}
.

If one has starting points with one being in the con-
fidence interval and the other one outside of it, one
can apply the bisection method to find the bound in
between these points.

A.3 Weighted Squared Error Approach for General
GLM

We describe the approach presented in Section 3.2 in
a more general way. One algorithm for fitting general-
ized linear models is to calculate the maximum likeli-
hood estimates β̂ by applying iterative weighted least
squares (McCullagh and Nelder, 1983).

As in Section 3.2, the idea is now to apply a stan-
dard l1-penalized fitting of the model, then build up
the weighted least squares problem at the l1-solution
and apply our linear model methods on this problem.

From McCullagh and Nelder (1983), using the no-
tation ẑi = g−1((Xβ̂)i), i = 1, . . . , n, the adjusted re-
sponse variable becomes

Yi,adj = (Xβ̂)i + (Yi − ẑi )
∂g(z)

∂z

∣∣∣∣
z=ẑi

,

i = 1, . . . , n.
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We then get a weighted least squares problem

β̂new = argminβ(Yadj − Xβ)T W(Yadj − Xβ),

with weights

W−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
∂g(z)

∂z

)2∣∣∣∣
z=ẑ1

V (ẑ1) 0

0
(

∂g(z)

∂z

)2∣∣∣∣
z=ẑ2

V (ẑ2)

...
. . .

0 . . .

. . . 0

. . .
...

. . . 0

0
(

∂g(z)

∂z

)2∣∣∣∣
z=ẑn

V (ẑn)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with variance function V (z).
The variance function V (z) is related to the variance

of the response Y . To more clearly define this relation,
we assume that the response Y has a distribution of the
form described in McCullagh and Nelder (1983):

fY (y; θ,φ) = exp
[(

yθ − b(θ)
)
/a(φ) + c(y,φ)

]
,

with known functions a(·), b(·) and c(·). θ is the
canonical parameter and φ is the dispersion parameter.

As defined in McCullagh and Nelder (1983), the
variance function is then related to the variance of the
response in the following way:

Var(Y ) = b′′(θ)a(φ) = V
(
g−1(Xβ0))a(φ).

We rewrite Yw = √
WYadj and Xw = √

WX to get

β̂new = argminβ(Yw − Xwβ)T (Yw − Xwβ).

The linear model methods can now be applied to Yw

and Xw , thereby the estimate σ̂ε has to be set to the
value 1.
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