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Summary

Accurately identifying differentially expressed genes frommicroarray data is not a trivial task, partly because of

poor variance estimates of gene expression signals. Here, after analyzing 380 replicated microarray

experiments, we found that probesets have typical, distinct variances that can be estimated based on a

large number of microarray experiments. These probeset-specific variances depend at least in part on the

function of the probed gene: genes for ribosomal or structural proteins often have a small variance, while

genes implicated in stress responses often have large variances. We used these variance estimates to develop

a statistical test for differentially expressed genes called EVE (external variance estimation). The EVE algorithm

performs better than the t-test and LIMMA on some real-world data, where external information from

appropriate databases is available. Thus, EVE helps to maximize the information gained from a typical

microarray experiment. Nonetheless, only a large number of replicateswill guarantee to identify nearly all truly

differentially expressed genes. However, our simulation studies suggest that even limited numbers of

replicates will usually result in good coverage of strongly differentially expressed genes.
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Introduction

In all living organisms, the number of active genes in any

given cell at any given time is much lower than the total

number of genes. Cellular identity and physiology depends

largely on the particular subsets of expressed genes.

Therefore, determination of gene activity is a central

question in biology. Many techniques exist to measure

gene activity, but microarrays are currently the method of

choice to profile transcript abundance at a genome-wide

scale (Stoughton, 2005). In recent years, microarray tech-

nology has not only become more robust but also much

more affordable for many laboratories. The growing body

of published microarray studies called for common exper-

imental annotations, which were established with MIAME

(Minimum Information About a Microarray Experiment)

and domain-specific extensions such as MIAME-Plant

(Brazma et al., 2001; Zimmermann et al., 2006). Several

public databases exist that permit online queries on

thousands of annotated microarray experiments, including

Array-Express, Genevestigator and NASCarrays (Brazma

et al., 2003; Craigon et al., 2004; Zimmermann et al., 2005).

For the model plant Arabidopsis, the Affymetrix ATH1

GeneChip�microarray is probably themost commonly used

(Hennig et al., 2003; Redman et al., 2004; Zimmermannet al.,

2005). For example, the ATH1 array was used for the

AtGenExpress project to establish an expression map of

Arabidopsis and forms the basis for the Genevestigator

software (Altmann et al., 2004; Schmid et al., 2005). The

ATH1 array has 22 746 probesets, which probe the transcript

abundance of 23311 genes (TAIR annotation of 5 April 2006).

Studies using microarrays can have many different

designs, but most often the biologist looks for genes

differentially expressed between a control and a treatment,

a mutant or a transgenic plant. Such studies possibly

represent the simplest of any microarray experiments.

However, the identification of differentially expressed genes

is not a trivial problem (Cui and Churchill, 2003; Smyth et al.,
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2003), because microarray data are often noisy and in

addition suffer from the ‘curse of dimensionality’: thousands

of genes (variables) are measured for only few cases

(replicates). The low number of replicates in combination

with the use of a multiple-testing-adjusted P-value strongly

reduces the power to identify differentially expressed genes.

In particular, a two-sample t-test often does not perform

satisfactorily with real-world data because the limited num-

ber of replications does not permit accurate estimation of the

variance.

Studies to detect differentially expressed genes aim to

identify sets of genes that possibly play are role in the

various regulatory mechanisms of control and treatment,

and differential expression of genes is typicallymeasured on

an individual level, i.e. by quantifying the univariate asso-

ciation of individual genes to a treatment variable or class

label. However, genes frequently interact, and gene expres-

sion signals are usually not independent. Genetic interaction

and specific regulatory pathways, which are major causes

for lack of gene expression signal independence, cannot be

detected with simple tests for differential expression, and

are modeled at a later stage of the analysis.

In general, the identification of differentially expressed

genes includes three steps: (i) normalization to minimize

systematic errors (bias), (ii) transformation to minimize the

variance–mean dependence of the probe intensities, and

(iii) statistical testing for significant differences between

signal means. For microarrays manufactured by Affyme-

trix, which have multiple probes for every tested transcript,

calculation of probeset summaries constitutes an addi-

tional step. The combination of multiple measurements for

each transcript into a single summary signal per probeset

is not trivial, and multiple algorithms have been proposed

to this end. In plant biology, GCRMA (Wu et al., 2004) is

possibly the most widely accepted, but MAS5 (Liu et al.,

2002) and RMA (Irizarry et al., 2003) are commonly used as

well. While MAS5 does not involve any transformation of

signals and thus has a very strong variance–mean depen-

dence, RMA and GCRMA involve log transformation that

efficiently stabilizes the variance. Even better variance

stabilization can be obtained using the vsn algorithm

(Huber et al., 2002).

To increase statistical power in data sets with few

replicates, regularization techniques that ‘borrow’ statistical

information across genes are often applied to improve

variance estimation. To this end, several approaches have

been proposed (Efron et al., 2001; Kendziorski et al., 2003;

Tusher et al., 2001). One very popular implementation of this

idea is the LIMMA algorithm (Smyth, 2004). LIMMA uses

expression data for other genes to obtain a modified

(shrinkage) estimate of the variance of the gene of interest.

Other approaches include pooling of variances across genes

with similar variances (Jain et al., 2003; Newton et al., 2001;

Quackenbush, 2002; Rocke and Durbin, 2001). Here, differ-

entially expressed genes are identified based on a Z test

with pooled variance estimates.

Although this approach often works quite well, it is not

necessarily biologically reasonable that variance estimates

can be combined for different genes. From a biologist’s

point of view, it is muchmore reasonable to assume that the

measurement for each transcript has a specific variance that

depends on (i) the probe properties of the microarray, and

(ii) the transcriptional and post-transcriptional control of the

gene (biological noise; Chubb et al., 2006; Newman et al.,

2006). One approach along this line suggests the use of

available microarray data from Gene Expression Omnibus

(GEO) to obtain an estimate of the gene-specific variance

(Kim and Park, 2004). For each gene, estimates are pooled

across different experiments (not genes) to obtain a more

reliable estimate of the variance, which will improve statis-

tical power when used in tests, particularly for studies with

low replicate numbers.

One disadvantage of the GEO-adjusted algorithm relies

on invariant gene-specific variances, which are rarely

encountered in real life. Here, we propose EVE (external

variance estimates) as an extension of the original GEO-

adjusted algorithm. We derived sets of gene-specific vari-

ance estimators from many experiments with few replicates

each, and include possible dependencies on the signal

intensity. Using a large database of microarray experiments,

we have implemented EVE for Arabidopsis ATH1microarray

data, and provide gene-specific variance estimators. We find

that, in situations with few available replicates, EVE outper-

forms both conventional t-tests and LIMMA.

Results and discussion

Estimation of probe-set-specific variances from databases

In order to improve power when identifying differentially

expressed genes, Kim and Park (2004) suggested obtaining

gene-specific variances from a large database of microarray

experiments. Because variances of gene expression mea-

surements depend not only on the gene but also on

the detection method, we prefer to use the term probeset-

specific variance rather than gene-specific variance. Large

databases often contain experiments that involve diverse

tissues and organs with widely varying gene expression

activities. Therefore, extracted probeset-specific variances

may reflect tissue effects rather than the variation of repli-

cated measurements. The GEO-adjusted approach used

either aglobal variance estimatebasedonall data or apooled

variance estimate based on experimental sets. These exper-

imental sets usually combined data from only one type of

tissue but different treatments, genotypes or clinical states

of normal and tumour samples. The relative performance of

both estimators was heavily influenced by the database

composition (Kim and Park, 2004). Because the detection of
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differentially expressed genes requires an estimator of the

variation in replicated measurements, we use neither global

nor pooled variances but instead variances derived exclu-

sively from biological replicates combining only data from

one typeof tissue, treatment andgenotype.Whencombining

these variance estimates from many experiments with few

replicates each, a reliable estimate of the gene-specific

variance can be obtained (see Experimental procedures).

This approach is much more realistic and biologically justi-

fied than the originally proposed GEO-adjusted method.

Various probe-level analysis methods exist for Affymetrix

GeneChip microarrays, and different methods give different

summary signals. Similarly, the variance in replicated exper-

iments depends on the probe-level analysis method. This is

visualized using a published data set that contains four

replicates for each of two Arabidopsis genotypes (Vandepo-

ele et al., 2005). Varianceswere calculated for every probeset

based on four replicates per sample after processing the raw

data with GCRMA, RMA or MAS5. Variances were compared

using heat plots (Figure 1), and the spreading of data points

off the diagonal shows the effect of the processingalgorithm.

Probeset-specific variances were often similar for RMA- and

GCRMA-processed data but differed considerably for MAS5-

processed data. Together, these results demonstrate that

probeset-specific variances often depend on the probe-level

analysis method used. In the remainder of this study, we

mainly focus on GCRMA-processed data, and present some

results for data processed by MAS5, RMA or vsn.

We calculated probeset-specific variances for each of 258

duplicated and 131 triplicated experiments in the AtGen-

Express data set (Altmann et al., 2004; Schmid et al., 2005),

and extracted conservative estimates for the overall probe-

set-specific variance (see Experimental procedures).

Dominating functional categories differ between the

high-variance and low-variance ranges

The concept of using gene- or probeset-specific variances to

detect differentially expressed genes relies on the biological

notion that some genes tend to show stronger variation

between replicate samples than others. To test this

assumption we identified the 500 probesets with the largest

mean variance and the 500 probesets with the smallest

mean variance, and analyzed the distribution of the probed

genes in gene ontology (GO) categories. We found that

several GO categories were highly enriched among the low-

or high-variance genes (Figure 2). Genes with high variance

vary strongly between replicates. Many of these genes

function in responses to stress or biotic and abiotic stimuli

(Figure 2a) and often encode membrane proteins (Fig-

ure 2c). In contrast, genes with small variance vary only

weakly between replicates. Many of these genes function in

ribosomal protein synthesis (Figure 2a) and often encode

proteins with structural functions or components of the

ribosome (Figure 2b,c). Together, these results meet the

intuitive expectations of many biologists, and confirm our

hypothesis that variability of expression measures between

replicates has a strong gene-specific component.

Probeset-specific variances often vary depending

on the expression level

In microarray experiments, it has often been observed that

variance depends on signal intensity, as evident in funnel-

shaped MA plots. This is biologically plausible because

signals can be derived with greater precision for strong

than for weak signals. In contrast to MA plots, which

visualize the variance for many probesets under a single

experimental condition, we consider the variance for a

single probeset under many experimental conditions. In

this case, the variance–mean relationship is not obvious,

and the benefit of traditional variance stabilization methods

is not clear. To explore the variance–mean relationship, we

constructed a heat plot of the probeset-specific variance

versus the mean from the 380 reference experiments in the

AtGenExpress database (Figure 3a). On a genome-wide

level, there is no clear correlation between signal means

and variances. Next, we tested whether the signal variance

is independent of the signal mean for each probeset. We

fitted a linear model for variance versus mean and cor-

rected for multiple testing according to the method

described by Benjamini and Hochberg (1995): 16 086

probesets had a slope significantly different from zero

(P < 0.05). Although the slope was predominantly positive,

there were also probesets with negative slopes for variance

versus mean (Figure 3b). For comparison, there were

22 190, 14 116 and 10 996 probesets with a slope signifi-

cantly different from zero (P < 0.05) when MAS5, RMA or

vsn, respectively, were used for normalization, transfor-

mation and calculation of probeset summaries. Together

these results established that (independent of the data-

processing algorithm), the probeset-specific variance is

often not constant but a function of the signal mean.
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Figure 1. Probeset-specific variances for replicated microarray experiments

depend on the algorithm generating summary signals.

Variances were calculated for every probeset based on four replicates per

sample after processing the raw data with GCRMA, RMA or MAS5. Rank-

transformed variances are displayed as heat plots. (a) RMA versus GCRMA;

(b) MAS5 versus GCRMA; (c) MAS5 versus RMA. Data points cluster along the

diagonal if probeset-specific variances are independent of the processing

algorithm. Data were obtained from Vandepoele et al. (2005).
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Recursive partitioning versus global variance estimation

Because replicate variances are usually not independent of

signal intensities, we calculated the probeset-specific vari-

ance in two ways: (i) we averaged all available variances,

and (ii) we used classification and regression trees as

implemented in the recursive partitioning algorithm rpart

(Breiman et al., 1984; Therneau and Atkinson, 1997) to par-

tition the set of variances according to signal intensities (see

Experimental procedures for details). Both procedures are

equivalent for genes whose replicate variance does not

depend on the signal intensity and where no partitioning

takes place.

In the recursive partitioning, the signal intensity region is

recursively broken into smaller intervals in which replicate

variances are assumed to be constant. The original region is

split in such a way that replicate variances show little

variation within each of the selected intervals. In contrast,

average replicate variances differ largely between intervals.

With this partitioning algorithm, a non-linear dependency

between replicate variances and signal intensities can be

modeled.

Table 1 shows the frequency of nodes generated by rpart.

About 650 probesets have replicate variances that are

independent of signal intensity (no partitioning), but the

majority of probesets have replicate variances that can be

(a)

(b)

(c)

Figure 2. Genes with large and small probeset-

specific variances belong to different functional

categories.

For each probeset, the minimal and maximal

replicate variance observed in the 380 reference

experiments of the AtGenExpress data set

(Altmann et al., 2004; Schmid et al., 2005) was

determined. Five hundred probesets with the

largest variance and 500 with the smallest aver-

age variance were selected and analyzed for

representation of Gene Ontology (GO) catego-

ries. Probabilities were determined by a hyper-

geometric test with multiple testing corrections

(Bonferroni). Displayed are log-likelihoods for

enrichment of the biological process (a), mole-

cular function (b) and cellular localization

(c) categories. Red bars denote the most signi-

ficant enrichments for each gene set.
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partitioned in two or three signal intensity regions. Next, we

analyzed the effect of the data pre-processing algorithm.

Although vsn helps to increase the number of probesets that

do not require partitioning to 1900, even with vsn the large

majority of probesets require partitioning in up to five bins.

When averaged over all probesets, the degree of partitioning

(i.e. the number of bins created) depends on the spread of

signal intensities observed for any given probeset as

measured by max(signal) – min(signal) for both GCRMA- and

vsn-processed data (Table 1). Together, these results dem-

onstrate that, for most probesets, it is preferable not to pool

all variances but only those in certain signal intensity

regions obtained by partitioning the data.

EVE outperforms the t-test and LIMMA

Due to small sample size, sample variances are often poorly

estimated in microarray data, which leads to inflated t-sta-

tistics and reduced power of t-tests. Like Kim and Park

(2004), we therefore reasoned that detecting differentially

expressed genes using the estimated probeset-specific

variances should increase power. Because we use an

external variance estimate, we call our algorithm EVE. In

contrast to a conventional t-test, which estimates both

population mean and variance from the sample data, EVE

estimates only the population mean from the sample data

and uses the tabulated probeset-specific variance from

external data to detect differentially expressed genes by

Z-tests.

Receiver–operator curves (ROC) based on simulated data

(see Experimental procedures) illustrate the advantage of a

priori knowledge of variances (Figure 4). For all settings, EVE

outperformed the standard t-test. Because estimation of the

variance by the t-test is particularly poor for low numbers of

replicates, it is plausible that the difference between the

t-test and EVE was greatest for two or three replicates (see

Zien et al., 2003). In contrast, if 10 replicates were simulated,

the performance of EVE and the t-test was more similar.

Nonetheless, in real-world experiments, there are rarely

more than four replicates for microarray data.

To establish whether EVE has advantages for real-world

research, we tested the performance of EVE on real exper-

imental data. However, a major problem with real-world

data is that the truth is usually not known a priori, i.e. it is not

known which genes are differentially expressed and which

are not. We choose two strategies to allow at least a partial

characterization of EVE’s performance on real data despite

the lack of a ‘gold standard’.

First, we used a permutation test to estimate the propor-

tion of false-positive hits returned by EVE using the same

data set with four replicates described before (Vandepoele

et al., 2005). From the complete data set, we generated all

possible subsets representing experiments with two, three

or four replicates from treatment and control each by

sampling without replacement. Then we determined the

number of probesets classified as differentially expressed by

EVE using multiple-testing correction according to the

method described by Benjamini and Hochberg (1995) and

a P-value threshold of 0.05 (Table 2). To estimate the

number of false positives, we generated all possible subsets

from the data that contain a balanced mixture of wild-type

and transgenic samples (i.e. both subsets contain equal

numbers of treatment and control samples), and again

determined the number of probesets classified as differen-

tially expressed by EVE (Table 2). This was performed

separately for GCRMA- and vsn-processed data, and we

observed satisfying false-discovery rates of between 2% and

5% in all cases, demonstrating the validity of our approach

for real-world biological data. Because EVE consistently

identified more differentially expressed genes when using

vsn-processed data at similar false-discovery rates, it is likely

that data processing by vsn increases the power of detection

of differentially expressed genes.

Second, we tested how many of the differentially

expressed genes could be identified when only two or three

replicates were used, in comparison to using all four

replicates. Again all possible subsets representing experi-

ments with two, three or four replicates were generated by

sampling without replacement. Identification rates were
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Figure 3. Relationship of probeset-specific variance and signal mean.

(a) Probeset-specific variances and means were calculated for the 380

reference experiments in the AtGenExpress data set and displayed as a heat

plot.

(b) Histogram of the slopes obtained when a linear model for variance versus

mean was fitted for every probeset.

Table 1 Partitioning of replicate variances according to signal

intensities

Bin size Signal rangea nGCRMA nMAS5 nRMA nvsn

1 4.4 (1.8)/2.6 (1.4) 649 147 1005 1909

2 5.2 (2.6)/3.1 (1.8) 11 076 13 656 12 318 12 397

3 5.6 (2.8)/3.5 (1.8) 8665 7875 7986 6860

4 5.8 (2.8)/3.6 (1.7) 2265 1065 1397 1535

5 6.4 (2.9)/3.4 (1.8) 152 66 104 108

6 7.0 (2.6)/5.3 3 1 0 1

aMedian (MAD) for GCRMA/vsn.
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calculated as themean ratio of identified probesets based on

n replicates (n = 2, 3 or 4) relative to identified probesets

based on four replicates (Figure 5a). For three replicates, the

identification rate for EVE dropped to about 60%, and for two

replicates the identification rate dropped further to about

40%. In contrast, with three replicates, LIMMA identified just

40% of the originally identified probesets (found with four

replicates) and the t-test identified 10%. With only two

replicates available, LIMMA found 10%, while the t-test

usually identified none of the probesets identified with four

replicates. Similarly, when only probesets that were identi-

fied by all three algorithms were used as the ‘gold standard’,

EVE performed considerably better for two and three

replicates than the t-test or LIMMA (Figure 5b). Thus, for

this data set, EVE clearly out-performed the t-test in detect-

ing affected probesets with reduced sample size. In addition,

EVE with only two replicates performed similarly, on aver-

age, to LIMMA with three replicates.

However, a comprehensive and fair comparison of all

three algorithms should include three different ‘gold stan-

dards’. These three ‘gold standards’ should consist of the

probesets identified by either LIMMA, the t-test or EVE based

on all available data. In general, results of all three

algorithms corresponded quite well (Figure 5c–e). Similarly

to the previous results, EVE identified 40% of the standard

probesets using just two replicates regardless whether the

standard was LIMMA, the t-test or EVE. When three

replicates were used, this number increased to about 60%.

Again, both the t-test and LIMMA performed poorly with two

replicates and generally worse than EVE with three repli-

cates. Very similar results were obtained when vsn instead

of GCRMA was used to process the data (not shown).

Notably, evenwhen all available data were used, EVE did not

identify all probesets identified by LIMMA or the t-test and

vice versa. Because we do not know which of the probesets

identified by any algorithm are true-positive and which are

false-positive results, we cannot decide whether ‘missed’

probesets are caused by false negatives in one algorithm or

by false positives in the other. However, the permutation

experiments (Table 2) resulted in acceptably small false-

discovery rates, suggesting that most of the probesets

exclusively identified by EVE represent true signals.

Conclusions

Efficiently identifying differentially expressed genes from

microarray data is a non-trivial task that is usually compli-

cated by low replicate numbers and large gene numbers.

Therefore, the statistical power of standard procedures is

often limited, and non-conservative multiple testing proce-

dures can lead to many false positives. Themajor obstacle is

correct estimation of the variance based on low replicate

numbers. Several algorithms have been proposed to over-

come these problems, and LIMMA is currently among the

most popular. Nonetheless, t-tests and derived variants

such as ANOVA are also commonly used. Analyzing sev-

eral hundreds of replicated experiments, we found that

Figure 4. Performance of EVE on simulated data.

The simulation of data was based on the probeset-specific variance estimates

(assuming a Normal distribution), and included 1000 randomly selected

differentially expressed genes with signal log ratios (SLR) of 0.4, 0.6, 1 or 2,

respectively. Shown are receiver–operator curves (ROC) for the t-test (broken

lines) and EVE (solid lines) for various numbers of replicates randomly drawn

from the simulated data sets. Colors represent two (black), three (red), four

(green), five (blue) and ten (pink) replicates.
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probesets have typical, distinct variances that depend, at

least in part, on the biological function of the probed gene:

genes for ribosomal or structural proteins often have small

variances, while genes implicated in stress responses often

have large variances. This is entirely reasonable from a

biological point of view, and strongly justifies the use of the

probeset-specific variances for detecting differentially

expressed genes, as similarly suggested in another recent

study (Kim and Park, 2004). However, in contrast to the

approach by Kim and Park, who used pseudo-replicates

throughout, our approach is based only on real replicates

and is thus much more realistic. We found that external

variance estimation performs better than the t-test and

LIMMA on real-world data. In contrast to LIMMA and some

other algorithms for detecting differentially expressed

genes, EVE is much better biologically justified. Here, we

implemented EVE as proof of principle for the Arabidopsis

ATH1 microarray. In the near future, similar large data sets

are expected to become available for other species. This will

make EVE an attractive option for data analyses in a growing

number of experimental settings. Nonetheless, it must be

kept inmind that, although the variances used in EVE help to

‘borrow’ statistical power from hundreds of external micro-

arrays, they are not necessarily an appropriate estimate for

the actual variance in every experiment. In other words, EVE

helps to maximize the information gained from a typical

microarray experiment, but does not change the rule that

only a large number of replicates will guarantee identifica-

tion of nearly all truly differentially expressed genes. How-

ever, our simulation studies suggest that if one is willing to

Table 2 Estimation of false-positive rates

for EVE

Replicates

vsn GCRMA

Number of

different

probesetsa FPb FDRc

Number of

different

probesetsa FPb FDRc

2 1682 (492) 70 (87) 4.1% (5.2%) 1343 (328) 51 (56) 3.8% (4.2%)

3 2724 (838) 56 (79) 2.0% (2.3%) 2140 (586) 58 (73) 2.7% (3.4%)

4 3864 196 (288) 5.1% (7.5%) 3065 142 (193) 4.6% (6.3%)

aNumber of positive hits (P < 0.05); median (MAD) of multiple sample permutations.
bNumber of false-positive hits; median (MAD) of multiple sample permutations.
cFalse-discovery rate; median (MAD) of multiple sample permutations.
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Figure 5. Performance of EVE on real-world data.

GCRMA-basedmicroarray data from Vandepoele et al. (2005) with four replicates were analyzedwith a standard t-test (white bars), LIMMA (light-gray bars) and EVE

(partitioned variances) (dark-gray bars). Alternatively, all possible subsets representing experiments with two or three replicates were generated by sampling

without replacement. In all cases, probesets were counted if P < 0.05 after multiple-testing correction according to the method described by Benjamini and

Hochberg (1995).

(a) Fraction of probesets identified by the t-test, LIMMA or EVE with two or three replicates, compared to the number of probesets identified by the same algorithm

with four replicates.

(b–e) Fraction of probesets identified by the t-test, LIMMA or EVE with two, three or four replicates compared to the number of probesets identified by the t-test (c),

LIMMA (d), EVE (e) or by all three tests (b) with four replicates. Values are means + SD.
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ignore genes that have only weakly altered expression, even

limited numbers of replicates will usually result in a good

coverage of truly differentially expressed genes.

Experimental procedures

Microarray data

Data for determining probeset-specific variances were obtained

from 380 reference experiments of the AtGenExpress data set (Alt-

mann et al., 2004; Schmid et al., 2005). The AtGenExpress project

compiled a large set of experiments that used the Arabidopsis ATH1

array, including 249 experiments with duplicated measurements

and 131 experiments with triplicated experiments. The names of the

cel-files from the 909 arrays that were used here are listed in Sup-

plementary Table S1 and are available for download at the TAIR FTP

server (http://www.arabidopsis.org).

Data for testing the algorithm were taken from Vandepoele et al.

(2005). All Affymetrix *.CEL files were processed using GCRMA (Wu

et al., 2004), MAS5 (Liu et al., 2002), vsn (Huber et al., 2002) and

RMA (Irizarry et al., 2003).

Software

All data processing was performed using the statistic package R

(version 2.5.0) that is freely available at http://www.r-project.org/

(Ihaka and Gentleman, 1996). Data display was performed using R

and Sigmaplot 8.0 (SPSS; http://www.sigmaplot.com). An R script

for using EVE, tabulated variances and partitioning data are

available at http://www.pb.ethz.ch/downloads. For better user

convenience, the R script can not only be used for processed data

but accepts cel files as input that can be processed with either

GCRMA or vsn. Additional material, including raw data used for this

analysis, is available from the authors upon request.

Partitioning and pooling of variances

We used a data set of 380 experiments consisting of duplicated and

triplicated measurements. For every probeset, j, mij and sij
2 denote

the sample mean and sample variance of the signal intensity in the

ith experiment consisting of ni replicates, respectively. We used a

recursive partitioning algorithm from the rpart R package (Breiman

et al., 1984) to partition the variances sij
2 according to mij, with the

minbucket option set to 50, i.e. constructing bins wherein sij
2 is

modeled to be constant with respect to mij when varying i. To

accommodate varying numbers of replicates ni, weights wi were

defined as:

wi ¼ ðni � 1Þ=
X

ðnk � 1Þ

The pooled sample variance sjpool
2 was calculated for every

probeset j according to:

s 2

jpool ¼
X

ððni � 1Þ � s2ij Þ=
X

ðni � 1Þ ¼
X

ðwi � s2ij Þ

Because observed variances are frequently considerably larger

than the pooled variance sjpool
2, which is based on the mean, and

because sij
2 were often not normally distributed (not shown), we

calculated for every probeset a robust conservative estimate sjpool,q
2

of the variance as the 80th percentile of all sji
2.

Similarly, pooled variances were calculated for every probeset for

every bin created by rpart as sjpool,b
2, where b = 1 … B, and B is the

total number of bins.

The external estimation of variance algorithm

In the commonly used t-test, both sample mean and variance are

estimated from the data. Because the variance is used in the

denominator when calculating the t-statistic, incorrect estimates of

the sample variance can easily inflate the t-statistic. In contrast,

incorrect estimates of the sample mean affect the t-statistic much

less (Appendix S1). In contrast to the t-test, the Z-test relies on

known sample variances obtained from other sources. Because the

estimation of the variance in the t-test depends heavily on sample

size, the t-test and the Z-test perform similarly with large sample

sizes, but the Z-test is much more powerful than the t-test for small

sample sizes. Summarizing, in EVE, for every probeset these steps

are performed:

(i) calculate the sample means T and C from the replicated

measurements for treatment and control;

(ii) use these means to extract two conservative probeset-specific

variances sjpool,bT
2, sjpool,bC

2 as above, one for treatment with T in bT

and one for control with C in bC;

(iii) calculate the Z statistic

Z ¼ ðT � CÞ=rT�C

where rT)C
2 = r

2 (1/N + 1/M), withN andM the numbers of replicates

for treatment and control, respectively [the value r
2 is conserva-

tively estimated as max(sjpool,bT
2, sjpool,bC

2) from (ii)];

(iv) determine a P-value (Z is (0,1) normal).

Subsequently, multiple-testing correction (FDR) is performed

using p.adjust from the R package stats. The Benjamini–Hochberg

procedure for controlling the FDR is not guaranteed to be valid

under arbitrary dependence among tests, but some theoretical

justifications for certain dependencies have been worked out

(Benjamini and Yekutieli, 2001).

Simulation study

First, control signal intensities were simulated for each probeset i by

drawing n times from N(li,ri
2), where the signal mean li is drawn

from U (1 … 16) (the range of signal intensities returned by

GCRMA), ri
2 is the variance tabulated for probeset i and signal mean

li, and with n = 2 … 10 in nine independent analyses. Second,

treatment signal intensities were simulated for each probeset i by

drawing n times from N(li + F,ri
2), where F > 0 for 1000 randomly

selected probesets and F = 0 for the remaining probesets. In four

independent simulations, F was 0.4, 0.6, 1 or 2, respectively, corre-

sponding to fold changesof 1.3, 1.5, 2 and 4.Next, the simulated data

were analyzed with the t-test and EVE. Receiver–operator curves

(ROC) were constructed to display sensitivity versus specificity.

Assignment of genes to functional categories

The means of the variances observed for each probeset were deter-

mined, and the 500 probesetswith the largestmean variance and the

500 probesets with the smallest mean variance were selected.

Probed genes fromboth setswere grouped into collapsed functional

gene ontology categories (obtained from http://www.arabidopsis.

org). The significance of enrichment was estimated based on the

hypergeometric test and multiple testing corrections according to

the method described by Benjamini and Hochberg (1995).
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