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Hierarchical Testing in the High-Dimensional Setting
With Correlated Variables

Jacopo MANDOZZI and Peter BÜHLMANN

We propose a method for testing whether hierarchically ordered groups of potentially correlated variables are significant for explaining a
response in a high-dimensional linear model. In presence of highly correlated variables, as is very common in high-dimensional data, it
seems indispensable to go beyond an approach of inferring individual regression coefficients, and we show that detecting smallest groups
of variables (MTDs: minimal true detections) is realistic. Thanks to the hierarchy among the groups of variables, powerful multiple testing
adjustment is possible which leads to a data-driven choice of the resolution level for the groups. Our procedure, based on repeated sample
splitting, is shown to asymptotically control the familywise error rate and we provide empirical results for simulated and real data which
complement the theoretical analysis. Supplementary materials for this article are available online.

KEY WORDS: Familywise error rate; Hierarchical clustering; High-dimensional variable selection; Lassol; Linear model; Minimal true
detection; Multiple testing; Sample splitting.

1. INTRODUCTION

High-dimensional statistical inference where the number p
of (co-)variables might be much larger than the sample size n
has become a key issue in many areas of applications. We focus
here on the linear model

Y = Xβ0 + ε, ε ∼ Nn(0, σ 2I ) (1)

with n × p design matrix X, p × 1 regression vector β0,
and n × 1 response Y, allowing for high-dimensionality with
p � n. Often, the active set of variables carrying the relevant
information

S0 = {j ; β0
j �= 0}

is assumed to be a small subset of all variables, that is, the model
is sparse with many β0

j being equal to zero. Our main goal is
testing of significance of groups of parameters: for a group or
cluster C ⊆ {1, . . . , p},

H0,C : β0
j = 0 for all j ∈ C,

HA,C : β0
j �= 0 for at least one j ∈ C.

Significance testing in the high-dimensional framework is es-
sential when looking beyond point estimation. Wasserman and
Roeder (2009) proposed an approach based on single sample
splitting, and Meinshausen, Meier, and Bühlmann (2009) im-
proved the reliability and power of the method based on multi-
ple sample splitting. Minnier, Tian, and Cai (2011) considered a
perturbation technique, and (modified) bootstrap-type schemes
were analyzed by Chatterjee and Lahiri (2013) and Liu and Yu
(2013). Another line of methods have been proposed using low-
dimensional regularized projections (e.g., on single variables for
individual hypotheses H0,j ) which have some optimality proper-
ties (Bühlmann 2013; Javanmard and Montanari 2014a, 2014b;
van de Geer et al. 2014; Zhang and Zhang 2014). However, in
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CH-8022 Zürich, Switzerland (E-mail: jacopo.mandozzi@libera.ch). Peter
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presence of highly correlated variables, all these methods are
likely to fail for testing individual hypotheses H0,j .

An interesting way to address the fundamental limitation of
identifiability in presence of high correlation or near linear de-
pendence is given by a hierarchical testing scheme proposed by
Meinshausen (2008). First, the variables are grouped in a hierar-
chical way, for example, by hierarchical clustering. At the top of
the hierarchy, the global hypothesis H0,{1,...,p} is tested. If it can
be rejected, a finer partition with clusters {Ck}k is considered,
and for the ones where H0,Ck

can be rejected, one proceeds down
the hierarchy to finer partitions. The method has the powerful
advantage that it automatically goes (from top to bottom in the
hierarchy) to finer resolution with smaller clusters, depending
on signal-strength and the correlation structure among the vari-
ables. At the end, significant clusters can be typically found, and
if the signal for an individual variable is sufficiently strong, even
significance of a single variable can be detected. Meinshausen
(2008) worked out a simple yet powerful way for controlling
the familywise error rate when performing multiple tests in the
hierarchy, assuming that there is a method which leads to valid
p-values for the various hypotheses tests; for example, when
p < n and with Gaussian errors, one can use partial F-tests.

1.1 Our Contribution

As one of our main contributions, we deal here with the
problem to obtain valid p-values for hypotheses H0,C where
C is an arbitrary group of (typically highly correlated) vari-
ables, for the high-dimensional scenario where p � n. We ad-
dress this important and open issue; note that testing the global
null-hypothesis H0,{1,...,p}, in contrast to the “partial” hypothe-
sis H0,C for some C with cardinality 1 < |C| < p, is a rather
different issue and has been addressed before; see Goeman,
van De Geer, and Van Houwelingen 2006. Once we have valid
p-values for H0,C for an arbitrary groups C, we make use of
the method from Meinshausen (2008) leading to nonasymptotic
bounds for strong control of the familywise error rate in a hier-
archical structure. For construction of the p-values, we rely on
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multiple sample splitting (Meinshausen, Meier, and Bühlmann
2009). While this might be suboptimal from a theoretical per-
spective, especially with respect to power, the method seems
to perform well in a larger empirical study for individual hy-
potheses H0,j (j = 1, . . . , p) in terms of reliable control of the
familywise error rate in multiple testing (Dezeure et al. 2014).
We also extend the Shaffer improvement in Meinshausen (2008,
sec. 3.6) to the high-dimensional scenario, increasing the power
of the hierarchical method such that detection of more singletons
than with the method from Meinshausen, Meier, and Bühlmann
(2009) becomes possible.

Our second main contribution is the development of new
methodology and theory for hierarchical inference and testing
of hypotheses, using multiple sample splitting techniques (and
multiple sample splitting is important for reproducibility (Mein-
shausen, Meier, and Bühlmann 2009)). Regarding methodology,
the hierarchical approach allows for a substantially higher num-
ber of so-called minimal true detections (MTDs: significant
smallest groups of variables) than the single variable analog and
has the remarkable property of adaptively selecting a best reso-
lution level (MTDs with the smallest possible cardinality). We
prove strong control of the familywise error rate of the hierar-
chical method under a “zonal assumption” which is weaker than
the standard beta-min condition (used in Meinshausen, Meier,
and Bühlmann 2009), that is, we do not require that all nonzero
coefficients in the regression vector β0 are sufficiently large.
We demonstrate the finite sample behavior of the method with
various empirical results.

We note that recently, Meinshausen (2014) described another
procedure for dealing with highly correlated variables and hier-
archical testing of groups or clusters of variables. His method
is an interesting alternative with the remarkable property that it
does not require (major) regularity assumptions on the design
matrix. The procedure is taking advantage of the special struc-
ture of a linear model while our approach is: (i) more generic
and conceptually applicable to other (e.g., generalized linear)
models, and (ii) computationally much more efficient due to
variable screening in a first stage.

1.2 Outline of the Article

In Section 2 we describe our method for obtaining p-values
for groups of variables and its use for hierarchical testing in high-
dimensional settings. We show in Section 3 that the familywise
error rate (FWER) is strongly controlled, and we describe a Shaf-
fer improvement to increase the method’s power while keeping
control over the FWER. Section 4 is devoted to empirical re-
sults: we show that our procedure improves the single variable
testing method of Meinshausen, Meier, and Bühlmann (2009)
in settings with strong correlation among certain variables, par-
ticularly with respect to minimal true detections (MTDs). In
Section 5 we provide theoretical evidence that the FWER is
controlled even if a “screening assumption” required in Section
3 is not satisfied.

2. DESCRIPTION OF METHOD

Our method is based on four main steps: (i) hierarchical clus-
tering of the variables, (ii) variable screening in a linear model,
(iii) significance testing (with multiplicity adjustment) based

on sample splitting, and (iv) aggregation over multiple sample
splits and hierarchical multiplicity adjustment. See also Section
2.5 for a schematic summary.

2.1 Clustering

In a first step, we construct a hierarchy of clusters. A hi-
erarchy, which can be represented as a tree-graph, T is a set
of clusters {Ck}k with Ck ⊆ {1, . . . , p}: the root node of the
tree {1, . . . , p} contains all variables and for any two clusters
Ck,Ck′ ∈ T , either one cluster is a subset of the other, or they
have an empty intersection. We use the notation pa(C) for the
parent of a cluster C (the smallest superset of C), ch(C) for
the children of a cluster C (all clusters that have C as parent).
Cluster C is called an ancestor of cluster D if D ⊂ C.

As noted by Meinshausen (2008), the hierarchy can be de-
rived from specific domain knowledge or in some other natural
way. The philosophy of the method is that highly correlated vari-
ables (or variables which are nearly linearly dependent) should
end up in a single small cluster: it will then be relatively easy
to identify the cluster as relevant, if it contains at least some
variables from the active set S0. For our empirical results, we
consider standard hierarchical clustering based on correlation
between variables, or a novel hierarchical scheme using canon-
ical correlations between clusters (Bühlmann et al. 2013).

Once the hierarchical structure is given, the method goes on
with a hierarchical version of the multi-sample-splitting pro-
cedure from Meinshausen, Meier, and Bühlmann (2009). The
following two steps, described in Sections 2.2 and 2.3, have
to be repeated for each sample split, indexed by b = 1, . . . , B

where B is the number of sample splits (since B > 1, we use the
terminology multi-sample-splitting).

2.2 Screening

The original data of sample size n are split into two disjoint
groups, N (b)

in and N
(b)
out , that is, a split {1, . . . , n} = N (b)

in ∪ N
(b)
out

is chosen. The groups are chosen of equal size if n is even or
satisfy |N (b)

out| = |N (b)
in | + 1 if n is odd.

Then, using only N (b)
in , estimate with a screening procedure

the set of active predictors Ŝ(b). A prime example is the Lasso
(Tibshirani 1996).

2.3 Testing and Multiplicity Adjustment

By considering for each cluster C in the hierarchy T its
intersection with Ŝ(b), an induced hierarchy with root Ŝ(b) is
given. Due to this construction, assuming that the cardinality
|Ŝ(b)| < n/2, the situation is not high-dimensional anymore.
Therefore, on this induced hierarchy, we can apply testing pro-
cedure similar as in Meinshausen (2008), the difference being
that the hierarchical adjustment is not performed at this stage
but in Section 2.4 after the aggregation over many sample splits.

Based on the other half of the sample N
(b)
out , we use the classical

partial F-test with the full model Ŝ(b) and submodel C ∩ Ŝ(b) for
the null hypothesis H0,C∩Ŝ(b) , where C ∈ T is a given cluster.
Thereby, we implicitly assume that the submatrix XŜ(b) with
columns corresponding to Ŝ(b) is of full rank (since |Ŝ(b)| <

n/2). We then assign the p-value from the partial F-test to the
entire cluster C, although we have only used the variables in
C ∩ Ŝ(b). If a cluster C does not contain selected variables from
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Ŝ(b), we set the p-value to 1. In summary, we define:

pC,(b)

=
{

pC∩S(b)

partial F-test based on Y
N

(b)
out

, X
N

(b)
out ,Ŝ

(b) , if C ∩ Ŝ(b) �= ∅,

1, if C ∩ Ŝ(b) = ∅.
(2)

Then, for C ∈ T define the multiplicity adjusted (nonaggre-
gated) p-value as

p
C,(b)
adj = min

(
pC,(b) |Ŝ(b)|

|C ∩ Ŝ(b)| , 1

)
(3)

if C ∩ Ŝ(b) �= ∅ and p
C,(b)
adj = 1 otherwise.

2.4 Aggregation and Hierarchical Adjustment

By repeating the steps in Section 2.2 and 2.3 for b = 1, . . . , B,
we obtain for each cluster C of the hierarchyT a set of B p-values
p

C,(1)
adj , . . . , p

C,(B)
adj . We aggregate these p-values by considering

their empirical quantile.
For γ ∈ (0, 1) define the aggregated p-values

QC(γ ) = min
{

1, qγ

({
p

C,(b)
adj /γ ; b = 1, . . . , B

})}
,

where qγ (·) is the (empirical) γ -quantile function. Finally, define
the hierarchically adjusted (aggregated) p-values as

QC
h (γ ) = max

D∈T :C⊆D
QD(γ )

such that the hierarchically adjusted (aggregated) p-value of
a cluster C is always bigger than the hierarchically adjusted
(aggregated) p-value of an ancestor cluster. In Section 3 we
show that for any fixed γ ∈ (0, 1) the QC

h (γ ) are correct p-
values. At this stage, γ should be considered as a prespecified
parameter of the method.

Similarly as in Meinshausen, Meier, and Bühlmann (2009),
error control is not guaranteed if we optimize over γ , that is, for
each C we would choose the minimal QC

h (γ ). Nevertheless, it
is possible to eliminate parameter γ by proceeding as follows.
Define

P C = min
{

1, (1 − log γmin) inf
γ∈(γmin,1)

QC(γ )
}
, (4)

for a lower bound γmin ∈ (0, 1) for γ , typically γmin = 0.05.
Then proceed with the hierarchical adjustment of P C by defining

P C
h = max

D∈T :C⊆D
P D.

These values P C
h are the final output of our method: we will

show again in Section 3 that P C
h are a valid p-value controlling

the familywise error rate when testing over all C ∈ T .
Our proposed “top-down”: method is schematically summa-

rized in Section 2.5. In the supplementary material we illustrate a
subideal alternative “bottom-up” approach which is empirically
found to exhibit substantially less power.

2.5 Schematic Summary of the Method

We summarize our proposed method with the following
schematic description.

Step 1: Clustering

{X1, . . . , Xp} clustering−−−−−−−→ T

Repeat for b = 1, . . . , B.
Step 2: Screening

{1, . . . , n} = N

sample split−−−−−−−−→ N
(b)
in ∪ N

(b)
out

screening−−−−−−→ Ŝ(b).

Step 3: Testing and multiplicity adjustment

|Ŝ(b)| < |N (b)
out |

testing−−−−→ pC,(b) multiplicity adjustment−−−−−−−−−−−−−−−−→ p
C,(b)
adj

End of repeating for b = 1, . . . , B.
Step 4: Aggregation and hierarchical adjustment

p
C,(b)
adj

aggregation−−−−−−−−→ QC(γ )

hierarchical adjustment−−−−−−−−−−−−−−−−→ QC
h (γ )

p
C,(b)
adj

aggregation−−−−−−−−→ QC(γ )

elimination of γ−−−−−−−−−−−→ P C
hierarchical adjustment−−−−−−−−−−−−−−−−→ P C

h .

3. FAMILYWISE ERROR RATE CONTROL

We show in this section, that if the variable selection proce-
dure Ŝ satisfies two assumptions, then the p-values QC

h (γ ) and
P C

h defined in Section 2 control the familywise error rate. The
assumptions are:

(A1) Sparsity property: |Ŝ| < n/2.

(A2) δ-Screening property: P [Ŝ ⊇ S0] ≥ 1 − δ,

where 0 < δ < 1.

The sparsity property in (A1) implies that for each sample split
b it holds that |Ŝ(b)| < |N (b)

out |, a condition which is necessary to
apply classical tests. The δ-screening property in (A2) ensures
that all the relevant variables are retained with high probabil-
ity (δ is typically small). While (A1) is the same condition
as in Meinshausen, Meier, and Bühlmann (2009, sec. 3.1), we
consider with (A2) a slight modification of the assumption in
Meinshausen, Meier, and Bühlmann (2009, sec. 3.1) to obtain
nonasymptotic bounds for familywise error rate control. We
provide a relaxation of the screening property (A2) in Section
5.

Example. Consider the Lasso as a variable selection method
Ŝ. Assumption (A1) holds for any value of the regularization
parameter. Assumption (A2) is ensured when requiring the fol-
lowing conditions:

1. The design matrix X satisfies the compatibility condition
with compatibility constant φ2

0 (Bühlmann and van de
Geer 2011, see Equation (6.4)). Furthermore, it is normal-
ized such that each column X(j ) satisfies ‖X(j )‖2

2/n = 1
for all j = 1, . . . , p.

2. A beta-min condition holds (we use here the notation s0 =
|S0|):

min
j∈S0

|β0
j | > 16σ

√
t2 + 2 log(p)

n
s0/φ

2
0 .
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Then, the Lasso with regularization parameter λ =
4σε

√
t2+2 log(p)

n
satisfies (A2) with δ = 2 exp(−t2/2) (Bühlmann

and van de Geer 2011, Lem. 6.2, Thm. 6.1, (2.13)).

Especially when the correlation among the variables is high
(violating the compatibility condition in the example above),
one can hardly expect the Lasso or any other variable selection
method to satisfy (A2) for very small δ. In Section 4 we present
empirical results showing that the hierarchical p-value method
still works well even when the screening property is not satisfied
for a small value δ, and we provide some supporting theoretical
results for this fact in Section 5.

For a given hierarchy T , denote the set of clusters that fulfill
the null hypothesis by

T0 := {C ∈ T : H0,C is fulfilled}.
Furthermore, for some fixed parameter γ ∈ (0, 1) and some
fixed significance level α ∈ (0, 1),

T γ

rej = {C ∈ T : QC
h (γ ) ≤ α}

is the set of rejected clusters based on the p-values QC
h (γ ) and

analogously,

Trej = {C ∈ T : P C
h ≤ α}

is the set of the rejected clusters when considering the p-values
P C

h . The latter does not require to choose or prespecify a pa-
rameter like γ .

Theorem 1. Assume that (A1) and (A2) hold. Then for any
significance level α ∈ (0, 1) and B denoting the number of sam-
ple splits:

1. For any fixed γ ∈ (0, 1), the p-values QC
h (γ ) control the

familywise error rate in the sense that

P (T γ

rej ∩ T0 �= ∅) ≤ α + 1 − (1 − δ)B ≤ α + Bδ.

2. The p-values P C
h control the familywise error rate in the

sense that

P (Trej ∩ T0 �= ∅) ≤ α + 1 − (1 − δ)B ≤ α + Bδ.

A proof is given in the supplementary material. From The-
orem 1, providing nonasymptotic bounds for familywise error
rate control, one can easily derive asymptotic familywise error
control using the assumption

(A2′) Screening property: lim
n→∞ P

[
Ŝ ⊇ S0

] = 1.

Example (continued). For the Lasso, under Assumption 1,
described in the example above, and replacing Assumption 2 by
an asymptotic beta-min condition

min
j∈S0

|β0
j | �

√
log(p)

n
s0/φ

2
0 , (5)

we have that (A2′) holds (as n → ∞, p = pn and s0 = s0;n and
φ2

0 = φ2
0;n are allowed to change with n).

We then have the following result.

Corollary 1. Assume that (A1) and (A2′) hold. Then for any
fixed γ ∈ (0, 1) and significance level α ∈ (0, 1):

lim sup
n→∞

P
(
T γ

rej ∩ T0 �= ∅
)

≤ α

lim sup
n→∞

P (Trej ∩ T0 �= ∅) ≤ α.

3.1 Shaffer Improvement in High-Dimensional Setting

A similar version of the Shaffer improvement as described in
Meinshausen (2008, Section 2.4) can be applied to our method.
The main idea, shown by Shaffer (1986), is that in a hierar-
chical structure, some combinations of null hypothesis can be
excluded a priori, and incorporating constraints on the possible
combinations of null hypotheses can increase the power of the
method.

Consider a binary hierarchy T and a screened set Ŝ ⊂
{1, . . . , p}. The siblings of a cluster C are the children of the
parent of C which are not identical to C, si(C) = ch(pa(C))\C.
Define the effective cluster size |C|Ŝeff of the cluster C ∈ T re-
stricted to the screened set Ŝ as

|C|Ŝeff =
{ |C ∩ Ŝ|, if ∃ E ∈ ch(si(C)) s.t. E ∩ Ŝ �= ∅

|C ∩ Ŝ| + |si(C) ∩ Ŝ|, otherwise.

Note that when no screening is performed (Ŝ = {1, . . . , p})
this definition coincides with the definition of the effective
cluster size in Meinshausen (2008). Moreover, the condition
“∃ E ∈ ch(si(C)) s.t. E ∩ Ŝ �= ∅” is stronger than the condition
“si(C) is not a leaf node” of Meinshausen (2008) and hence, the
improvement given by our definition of restricted cluster size
is bigger than the one given by a straightforward adaption of
Meinshausen (2008).

The Shaffer improvement in the high-dimensional setting is
then given by considering the multiplicity adjustment

p
C,(b)
adj = min

(
pC,(b) |Ŝ(b)|

|C|Ŝ(b)

eff

, 1

)
, (6)

instead of using the multiplicity adjustment in (3).
Obviously, since the effective cluster size is always at least

as big as the cluster size, the Shaffer improvement produces
smaller p-values and hence, increases the power of the method
while the familywise error rate control is still guaranteed, as
described next.

Theorem 2. Assume the hierarchy T is binary. Then, Theo-
rem 1 and Corollary 1 still hold when using the Shaffer improve-
ment (6) as multiplicity adjustment, assuming the conditions of
Theorem 1 or Corollary 1, respectively.

A proof is given in the supplementary material. We note that
an extension of the results in Theorems 1 and 2 to control the
false discovery rate (Benjamini and Hochberg 1995), instead of
the FWER, for hierarchically ordered hypotheses (with corre-
sponding dependent p-values) seems very challenging.

4. EMPIRICAL RESULTS

In this section we study the performance of our hierarchical
method and compare it with the single variable testing method

D
ow

nl
oa

de
d 

by
 [

Ja
co

po
 M

an
do

zz
i]

 a
t 0

2:
48

 0
8 

M
ay

 2
01

6 
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of Meinshausen, Meier, and Bühlmann (2009). Section 4.3 pro-
vides most informative results about our new method, in par-
ticular for understanding the differences in comparison to the
single variable approach.

In a simulation study, we consider both synthetic and semireal
data. The former are used to study special designs where we
expect one of the two methods to perform clearly better. The
semireal data are used to obtain insights of what happens when
the design matrix comes from real high-dimensional datasets.
In our simulation study, all the data are generated from a linear
model

Y = Xβ0 + ε,

where X is a n × p matrix from synthetic (designs 1–3) or real
(designs 4–7) data, β0 is a p × 1 synthetic regression vector, and
ε ∼ Nn(0, σ 2In) is a synthetic noise term. The data are always
standardized such that X has columns with empirical mean zero
and variance one.

We also apply the two different methods to a real dataset in
Section 4.4.

4.1 Implementation of the Method

The implementation of our hierarchical method, and also of
the single variable procedure from Meinshausen, Meier, and
Bühlmann (2009), requires to make some choices. We mostly
consider fairly standard and “easy-to-use” methods; unless there
is some deeper methodological difference, as in our choice of
additionally considering a less standard clustering procedure.

For clustering we consider the recently proposed canonical
correlation clustering of Bühlmann et al. (2013) and the stan-
dard hierarchical clustering (using the R function hclust) with
distance between two covariables set as 1 less the absolute cor-
relation between the covariables, using complete linkage (other
linkages lead to similar results). For variable screening, we use
the Lasso (i.e., Ŝ from the nonzero estimated coefficients from
Lasso) with regularization parameter chosen by 10-fold cross-
validation.

As in Meinshausen, Meier, and Bühlmann (2009), we choose
B = 50 as the number of sample splits. For aggregation, the p-
values P C

h in (4) are computed over a grid of γ -values between
γmin = 0.05 and 1 with grid-steps of size 0.025. For both hier-
archical methods we use the Shaffer improvement described in
Section 3.1. As nominal significance level we always consider
α = 5%.

4.2 Simulation Study With Synthetic and SemiReal Data

We consider 42 scenarios based on 7 designs. For each design
we consider six settings by varying the number of variables p in
the model (p = 200, p = 500, and p = 1000) and the signal-
to-noise ratio (SNR, for each design and choice of p we consider
a low and a high SNR, namely, for p = 200 we use SNR = 4
and SNR = 8, for p = 500 we use SNR = 8 and SNR = 16,
for p = 1000 we use SNR = 16 and SNR = 32). The signal-
to-noise ratio is defined by

SNR =
√

(β0)T XT Xβ0

nσ 2

and our choices of signal-to-noise ratios are avoiding scenar-
ios where the methods have degenerate performance of 0% or
100%, respectively. In designs 1–5 the sparsity s0 is set to be 10,
while in designs 6 and 7 it is set to be 6. The nonzero compo-
nents of β0 are randomly set as β0

j = 1 or β0
j = −1 for j ∈ S0.

The choice of S0 is design-specific and hence, explained with
the descriptions of the designs as follows.

Design 1: equicorrelation. We set n = 100 and generate X from
a centered multivariate normal distribution with equal vari-
ances ρjj = 1 and covariances equal to ρjk = 0.3 between
variables j and k for j �= k ∈ {1, . . . , p}. The 10 active vari-
ables are chosen randomly among the p covariables.

Design 2: high correlation within small blocks. We set n =
100 and generate X from a centered multivariate nor-
mal distribution with covariance ρjk between variables j
and k set as ρjj = 1 for all j, ρj,j+1 = ρj+1,j = 0.9 for
j ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} and ρjk = 0 otherwise.
We choose in each of the 10 two-dimensional blocks
with high correlation one active variable, that is, for j ∈
{1, 3, 5, 7, 9, 11, 13, 15, 17, 19} we choose randomly either
j ∈ S0 or j + 1 ∈ S0.

Design 3: high correlation within large blocks. We set n = 100
and generate X from a centered multivariate normal distribu-
tion with a block diagonal covariance matrix with 10 p/10-
dimensional blocks Bp/10(0.9) defined by (Bp/10(0.9))jj = 1
and (Bp/10(0.9))jk = 0.9 for j �= k. We randomly choose in
each of these p/10-dimensional blocks with high correlation
one active variable.

Design 4: Riboflavin dataset with normal correlation. We con-
sider the Riboflavin dataset (Bühlmann, Kalisch, and Meier
2014) with n = 71 and choose randomly p (i.e., 200, 500, or
1000 depending on the setting) among 4088 covariables in the
whole dataset. The six active variables are chosen randomly
among the p covariables.

Design 5: Breast dataset with normal correlation. We consider
the Breast dataset (van’t Veer et al. 2002) with n = 117 and
choose randomly p (i.e., 200, 500, or 1000 depending on
the setting) among 24,481 covariables in the whole dataset.
The 10 active variables are chosen randomly among the p
covariables.

Design 6: Riboflavin dataset with high correlation. We con-
sider again the Riboflavin dataset as in design 4, but choose
p covariables as follows: a covariable is randomly chosen
among all 4088 covariables in the whole dataset. Then the
nine covariables with the highest absolute correlation with
the first one are chosen to build an “high correlated” 10-
dimensional block. Then another covariable is chosen among
the remaining 4078 covariables of the whole dataset and an-
other “high correlated” 10-dimensional block is analogously
built. We repeat this procedure until we have p covariables.
The six active variables are chosen randomly among the set
{j ; j = 10k + 1, 0 ≤ k ≤ p/10 − 1}.

Design 7: Breast dataset with high correlation. We consider
again the Breast dataset as in design 5, but choose p covari-
ables as follows: a covariable is randomly chosen among all
24,481 covariables in the whole dataset. Then the nine co-
variables with the highest absolute correlation with the first
one are chosen to build an “high correlated” 10-dimensional
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block. Then another covariable is chosen among the re-
maining 24,471 covariables of the whole dataset and an-
other “high correlated” 10-dimensional block is analogously
built. We repeat this procedure until we have p covariables.
The 10 active variables are chosen randomly among the set
{j ; j = 10k + 1, 0 ≤ k ≤ p/10 − 1}.
4.2.1 Performance Measures for Simulation Study. Besides

the familywise error rate, we consider, among other aspects, the
following one-dimensional statistics measuring power (while
Section 4.3 provides a more informative picture by avoiding to
compress to one-dimensional performance measures).

We use two different performance functions. The first one is
defined as

Performance 1 = 1

|S0|
∑

MTD C

1

|C| , (7)

where the sum is over all minimal true detections (which we
denote by “MTD”). Thereby,

A cluster is said to be a MTD if it satisfies all of the following:

• C is a significant cluster, for example, has p-value <5%.
(“Detection”)

• There is no significant subcluster D ⊂ C. (“Minimal”)
• C /∈ T0, that is, there is at least one active variable in C.

(“True”)

The Performance 1 is always between 0 and 1, and it is
exactly 1 when each active variable is selected as a singleton.
Moreover, the contribution to the Performance 1 of MTD C is
independent of the number of active variables that are in C.
Although this penalizes our new method, it reflects the fact that
from P C

h < 5% one can only conclude that there is at least
one active variable in C without having further information
whether there are additional active variables in C and which of
the variables in C are active.

As second performance function we consider a slightly mod-
ified version of the Performance 1, where only MTDs with
cardinality |C| ≤ 20 are considered, and a “bonus” is given for
each MTD, independently from its cardinality (if the latter is at
most 20):

Performance 2 = 1

|S0|
∑

MTD C with |C|≤20

1

2

(
1

|C| + 1

)
. (8)

The Performance 2 is also always between 0 and 1, and it is
again exactly equal to 1 if each active variable is selected as a
singleton.

Moreover, for the single variable method, both performance
measures are the same as only singletons can be selected. Correct
selection of a cluster with more than one variable is less valuable
than a singleton, with both performance measures: Performance
2, however, is putting less emphasis on the size of a selected
cluster. The choice of the bound for the cluster being at most
20 in Performance 2 is motivated by the idea that too large
clusters are “uninteresting” in many practical applications (e.g.,
a genetic pathway consists of about up to 20 genes, and a cluster
would represent a pathway).

4.2.2 Familywise Error Rate Control (FWER). For each of
the 42 scenarios described in Section 4.2 we make 100 inde-

Table 1. Familywise error rate in %: Number of cases with at least
one false selection, out of 100 simulation runs.

Familywise error rate (in %)

Low SNR High SNR

Design p Single Cancorr Hclus Single Cancorr Hclus

200 0 0 0 0 0 0
Equi 500 0 0 0 0 0 0
Corr 1000 0 0 0 0 0 0

High corr 200 1 1 1 0 0 0
Within small 500 7 7 7 0 0 0
Blocks 1000 5 5 5 3 3 3

High corr 200 0 7 6 0 0 0
Within large 500 0 0 0 0 0 0
Blocks 1000 0 0 0 0 0 0

Riboflavin 200 0 0 0 0 0 0
Normal 500 0 0 0 0 0 0
Corr 1000 0 0 0 0 0 0

Breast 200 0 0 0 0 0 0
Normal 500 0 0 0 0 0 0
Corr 1000 0 0 0 0 0 0

Riboflavin 200 0 0 0 0 0 0
High 500 0 0 0 0 0 0
Corr 1000 0 0 0 0 0 0

Breast 200 0 0 0 0 0 0
High 500 0 0 0 0 0 0
Corr 1000 0 0 0 0 0 0

NOTE: The scenarios where the critical value of 5 is overtaken are marked in gray

pendent simulation runs varying only the synthetic noise term ε

and count the number where at least one false selection is made
(i.e., there exists a cluster C ∈ T0 ∩ Trej). According to Theorem
2 we expect this number to be at most 100α = 5 (α = 0.05).

The results illustrated in Table 1 show that for 40 of the 42
scenarios, FWER control holds for all methods, while in one
scenario it doesn’t hold for any method and in one scenario it
doesn’t hold for the hierarchical methods. In 37 out of the 42
scenarios there is no false selection at all. It is not surprising
that the most problematic designs with respect to FWER are the
“high correlation within small blocks”—and “high correlation
within large blocks”—designs, since there each active predictor
is highly correlated with false variables from Sc

0 and hence, it is
rather difficult for our screening method (the Lasso) to guarantee
Ŝ ⊇ S0.

4.2.3 Power: Performance 1. For each of the 42 scenarios
described in Section 4.2 we make 100 simulation runs varying
the synthetic noise term ε and the synthetic regression vector
β0. We then calculate the average Performance 1 in (7), that is,
Performance 1 is averaged over 100 simulation runs.

The results are reported in Table 2. They show that, as ex-
pected, the hierarchical methods provide better results in the
designs where the correlation among the variables is rather high
(designs 2, 3, 6, and 7), while in the other designs the nonhier-
archical method has in general a slightly better performance.
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Table 2. Performance 1, averaged over 100 simulation runs, for the methods “single variable,” “hierarchical with canonical correlation
clustering” and “hierarchical with hclust clustering.”

Performance 1 in %

Low SNR High SNR

Design p Single Cancorr Hclus Single Cancorr Hclus

200 47.9 47.1 44.2 97.7 97.6 97.4
Equi 500 39.7 39.1 37.7 72.8 72.8 72.0
Corr 1000 17.7 17.6 17.4 28.1 27.8 27.9

High corr 200 44.5 54.0 53.7 91.8 96.3 96.3
Within small 500 31.5 37.1 38.3 69.9 73.3 73.5
Blocks 1000 13.1 15.0 15.1 22.6 24.2 24.3

High corr 200 2.9 6.5 6.7 21.7 27.5 27.9
Within large 500 0.6 0.7 1.1 11.7 11.9 12.6
Blocks 1000 0.0 0.0 0.1 4.3 4.3 4.4

Riboflavin 200 23.5 23.3 23.4 56.5 56.3 56.3
Normal 500 15.0 14.7 13.5 37.3 37.5 36.4
Corr 1000 12.0 11.5 10.8 16.3 16.4 16.2

Breast 200 40.5 40.5 39.5 86.5 86.5 86.4
Normal 500 39.5 39.6 38.8 68.1 68.0 67.6
Corr 1000 33.0 32.8 31.2 39.5 39.3 38.1

Riboflavin 200 24.0 24.3 26.0 64.3 65.0 66.0
High 500 28.7 29.2 29.9 61.5 61.1 61.8
Corr 1000 25.2 25.3 25.3 41.3 41.1 40.7

Breast 200 39.8 39.8 41.2 90.9 91.0 91.9
High 500 51.3 51.2 49.9 77.5 77.3 77.8
Corr 1000 47.3 47.3 47.0 58.5 58.4 57.5

Avg. normal corr. 26.0 25.8 25.4 52.9 52.9 52.7

Avg. high corr. 28.7 30.4 30.2 53.6 54.8 54.9

Average 27.5 28.4 28.1 53.3 54.0 54.0

The best and second best methods are marked in dark-gray and light-gray. The average performances in the bottom rows are averages over the corresponding or all scenarios,
respectively

The method based on the hclust clustering is more sensitive
with respect to high correlation among the variables than the
analog based on canonical correlation clustering. In particular,
the method based on the hclust clustering is best in 19 of the
24 scenarios which use designs 2, 3, 6, and 7 while it is the
worst method in 15 of the 18 scenarios where the correlation
is not particularly high. We note that the differences among the
methods are rather small: this is mainly a consequence of our
definition (7) of the Performance 1 and p being large. The biggest
(absolute) difference in the Performance 1 can be found in de-
sign 2 where the hierarchical methods have a performance up to
9.5% higher than the single variable method, while the biggest
deficit of a hierarchical method with respect to the single vari-
able method can be found in design 1 and amounts to 3.7%.
As expected, our results show that in general the Performance
1 (and also the differences between them when considering the
different methods) lowers when p increases. Finally, it is inter-
esting to note that in the scenarios that favor the single variable
method, the Performance 1 of the method with canonical corre-
lation clustering is very close to the Performance 1 of the single
variable method (the difference is at most 0.8%), while in the

other scenarios it might perform much better (differences of up
to 9.5%).

4.2.4 Power: Performance 2. In Table 3 we show the aver-
age Performance 2 of the three considered methods for the 42
different scenarios, that is, for each scenario, Performance 2 is
averaged over 100 simulation runs. While by definition, Perfor-
mances 1 and 2 are the same for the single variable method,
we find for both hierarchical methods that the Performance 2
is generally higher than the Performance 1 (only in one out of
84 cases it is lower and the difference is just 0.1%). This was
expected as the idea of Performance 2 is to give a little extra
reward to each correct selection, independently of the cardinal-
ity of the selected cluster (given the latter is at most 20). In
particular, the method that benefits most from Performance 2
is the hierarchical method with hclust clustering which has
an average Performance 2 of 43.9% while its average Perfor-
mance 1 is 41.0% (average is meant over all scenarios). We also
note that for Performance 2, the difference between the single
variable and the hierarchical methods in the settings with high
correlation is more evident.
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Table 3. Performance 2, averaged over 100 simulation runs, for the methods “single variable,” “hierarchical with canonical correlation
clustering” and “hierarchical with hclust clustering.”

Performance 2 in %

Low SNR High SNR

Design p Single Cancorr Hclus Single Cancorr Hclus

200 47.9 47.3 46.1 97.7 97.7 97.4
Equi 500 39.7 39.2 38.3 72.8 73.0 72.1
Corr 1000 17.7 17.7 17.6 28.1 27.8 28.1

High corr 200 44.5 59.3 60.7 91.8 98.1 98.1
Within small 500 31.5 39.6 44.2 69.9 75.0 76.4
Blocks 1000 13.1 15.7 17.2 22.6 25.2 26.3

High corr 200 2.9 31.1 31.3 21.7 61.3 61.4
Within large 500 0.6 0.6 1.1 11.7 12.0 13.2
Blocks 1000 0.0 0.0 0.1 4.3 4.3 4.4

Riboflavin 200 23.5 23.3 25.2 56.5 56.7 58.7
Normal 500 15.0 14.7 14.2 37.3 37.7 36.9
Corr 1000 12.0 11.5 11.0 16.3 16.5 16.3

Breast 200 40.5 40.5 41.6 86.5 86.6 87.2
Normal 500 39.5 39.6 39.6 68.1 68.0 68.3
Corr 1000 33.0 32.8 31.7 39.5 39.3 38.4

Riboflavin 200 24.0 24.8 31.8 64.3 66.1 69.4
High 500 28.7 29.9 32.8 61.5 61.4 63.7
Corr 1000 25.2 25.3 25.7 41.3 41.1 41.1

Breast 200 39.8 40.0 46.1 90.9 91.4 93.8
High 500 51.3 51.2 51.7 77.5 77.3 78.9
Corr 1000 47.3 47.7 48.3 58.5 58.5 58.1

Avg. normal corr. 26.0 26.0 27.0 52.9 53.1 53.7

Avg. high corr. 28.7 33.2 34.5 53.6 58.1 58.7

Average 27.5 30.1 31.3 53.3 55.9 56.6

The best and second best methods are marked in dark-gray and light-gray. The average performances in the bottom rows are averages over the corresponding or all scenarios,
respectively

Some additional results regarding the variability of both Per-
formance 1 and Performance 2 measures among the 100 differ-
ent simulation runs are given in the supplementary material.

4.3 A More Detailed Consideration

The power results in the previous section are given in terms of
one-dimensional performance functions. Here, we provide more
information on what our new method actually does and how
it performs when looking beyond one-dimensional summary
statistics. On the other hand, to keep the exposition at reasonable
length, we focus on fewer simulation scenarios only.

We consider the “high correlation within small blocks”-
and “high correlation within large blocks”-designs (designs
2 and 3 of Section 4.2) with p = 200, SNR = 8, s0 = 10
with the nonzero components of β0 randomly set as β0

j =
±1 and various values for the nontrivial covariances: ρ ∈
{0, 0.4, 0.7, 0.8, 0.85, 0.9, 0.95, 0.99}. For each of the 16 sce-
narios we make 100 simulation runs varying the synthetic noise
term ε. As results we consider the FWER (portion of runs with

at least a false detection over all 100 runs) and, averaged over
the 100 runs, the number of MTDs and the number of MTDs of
some given cardinality. The results are as shown in Table 4.

FWER control (with nominal level α = 5%) holds for most
settings, even for relatively high values of the fraction of failed
screenings with Ŝ �⊇ S0 (represented by δ in Theorem 1). This
indicates a robustness property of the methods in controlling
FWER, beyond the results of Theorem 1 which requires that δ

is very small.
Looking at the number of MTDs in Table 4, we see that

the hierarchical method dominates the single variable method,
with its superiority increasing with increasing correlation among
the variables. Considering only the singleton detections (MTDs
with cardinality 1), there are 5 scenarios out of 16 where at least
one of the two hierarchical methods is worse than the single
variable method, while in all other scenarios both hierarchical
methods detect at least the same number of singletons as the
single variable method. In general, the difference in the num-
ber of singleton detections of the considered methods is rather
small.
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Table 4. Results of the simulation with the “high correlation within small blocks”- and “high correlation within large blocks”-design with high
SNR (SNR = 8) for different correlations. ρ is the correlation in the design, δ the relative frequency of screenings with Ŝ �⊇ S0, MTD denotes

“minimal true detections,” “3 ≤ | · | ≤ 10” indicates that MTD of cardinality between 3 and 10 are considered, S, C, and H represent the
“single variable,” respectively, “canonical correlation clustering” and “hierarchical with hclust clustering” method

# MTD for given cardinality

FWER # MTD | · | = 1 | · | = 2 3 ≤ | · | ≤ 10 11 ≤ | · | ≤ 20

ρ δ S C H S C H S C H C H C H C H

“High correlation within small blocks”-design with high SNR
0 0.45 0 0 0 9.87 9.87 9.90 9.87 9.86 9.86 0 0.01 0 0.01 0 0
0.4 0.30 0 0 0 10 10 10 10 10 10 0 0 0 0 0 0
0.7 0.06 0 0 0 10 10 10 10 10 10 0 0 0 0 0 0
0.8 0.21 0 0 0 9.85 9.98 9.98 9.85 9.90 9.90 0.08 0.08 0 0 0 0
0.85 0.26 0 0 0 9.26 9.89 9.89 9.26 9.39 9.39 0.48 0.47 0.01 0.03 0.01 0
0.9 0.17 0 0 0 9.59 10 10 9.59 9.67 9.67 0.33 0.33 0 0 0 0
0.95 0.42 0.21 0.21 0.21 8.36 9.81 9.82 8.36 8.36 8.36 1.45 1.45 0 0.01 0 0
0.99 0.89 0.92 0.92 0.92 6.72 8.06 8.06 6.72 6.73 6.73 1.33 1.33 0 0 0 0

“High correlation within large blocks”-design with high SNR
0 0.20 0 0 0 10 10 10 10 10 10 0 0 0 0 0 0
0.4 0.01 0 0 0 9.98 9.98 10 9.98 9.98 9.99 0 0 0 0.01 0 0
0.7 0.22 0 0 0 5.12 6.85 9.60 5.12 5.12 5.10 0.15 0.18 0.67 0.68 0.87 3.54
0.8 0.04 0 0 0 9.23 9.93 10 9.23 9.17 9.14 0 0.03 0.51 0.48 0.25 0.35
0.85 0.21 0 0 0 3.86 9.98 9.98 3.86 3.82 3.84 0.04 0.10 0.85 1.16 5.27 4.88
0.9 0.75 0 0 0 0.06 6.62 7.17 0.06 0.06 0.06 0 0.02 0.20 0.23 6.10 6.05
0.95 0.63 0 0.05 0 1.26 9.94 9.99 1.26 1.25 1.27 0 0.20 0.77 1.61 7.92 6.91
0.99 0.99 0.33 0.88 0.99 3.26 8.55 7.92 3.26 3.26 3.26 0.14 0.18 2.80 2.70 2.35 1.78

We note that the hierarchical method can detect more sin-
gletons than the single variable method because the Shaffer
improvement of Section 3.1 allows for better multiplicity adjust-
ment. For the “high correlation within small blocks” scenarios
with ρ = 0.4 and ρ = 0.7 and the “high correlation within large
blocks” scenario with ρ = 0 all three methods exhibit a perfect
accuracy.

It is interesting to note that for the “high correlation within
small blocks”-designs, where the improvement given by the
hierarchical over the single variable method is smaller than for
the “high correlation within large blocks”-designs, the quality
of the improvement should be considered as very high since
almost all additional discoveries by the hierarchical method have
cardinality 2 only and often sum up to essentially all possible
discoveries. Further results regarding the MTDs for 4 (out of
the 16 considered) scenarios are given in the supplementary
material.

For additional illustration, we show in Figure 1 the dendro-
grams (in gray) for a representative simulation run of the “high
correlation within large blocks”-design with ρ = 0.85, for the
single variable method and the hierarchical method with hclust
clustering. The active variables are labeled in black and truly
detected nonzero variables along the hierarchy are depicted in
black. While the single variable method “only” detects five sin-
gletons, the hierarchical method detects the same five singletons
and achieves five more MTDs (three of which have cardinalities
5 or less and hence, are particularly informative). Figure 2 is
analogous to Figure 1 for a simulation run of the “high corre-
lation within small blocks”-design with ρ = 0.8. It shows that
the hierarchical method improves the results of the single vari-

able method (nine detected singletons) by additionally provid-
ing one MTD of cardinality 2 besides the same nine singletons
of the single variable method. Thus, we provide evidence of
the fact that the hierarchical method has the powerful advan-
tage of automatically going to the finer possible resolution, de-
pending on signal-strength and correlation structure among the
variables.

Finally, we illustrate in Figure 3 the true positive (TPR) rates
and false positive rates (FPR) of the Lasso, the single variable
method and the hierarchical method with hclust clustering as
points in the ROC space.

We note that, as expected from the philosophy of the sin-
gle variable and hierarchical methods to control the FWER,
there is a substantial difference between the FPR of the Lasso
(0.15–0.18) and the FPR of the other two methods which is
always less than 0.03 and equals 0 in most of the cases. For the
“high correlation within small blocks”-design, this improvement
of the FPR has no negative impact on the TPR, while for the
more difficult “high correlation within large blocks”-design, a
TPR comparable to that of the Lasso can only be achieved by
the hierarchical method which significantly improves the TPR
of the single variable method. It has to be remarked that the TPR
and FPR are based on MTDs (regardless from their cardinality),
hence, some care is needed when comparing the TPR and FPR
of the hierarchical with those of the other methods where only
singleton detections are possible. For a detailed analysis, we
refer to Table 4.

In the supplementary material we present the same detailed
analysis as in this section considering the same designs but with
low SNR = 4 signal-to-noise ratio.
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Figure 1. Dendrograms for a representative run of the “large blocks”-design with high SNR (SNR = 8) and ρ = 0.85. The active variables
are labeled in black and the truly detected nonzero variables along the hierarchy are depicted in black.

Figure 2. Dendrograms for a representative run of the “high correlation within small blocks”-design with high SNR (SNR = 8) and ρ = 0.8.
The active variables are labeled in black and the truly detected nonzero variables along the hierarchy are depicted in black.
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Figure 3. True positive rate (TPR) and false positive rate (FPR) for the Lasso (bullet), the single variable method (box), and the hierarchical
method with hclust clustering (cross) for different scenarios as indicated in the header of the plots.

4.4 Real Data Application: Motif Regression

We apply the three methods described in Section 4.1 to a real
dataset about motif regression (Conlon et al. 2003) with n = 287
and p = 195, used in Meinshausen, Meier, and Bühlmann
(2009, sec. 4.3). The single variable method identifies one sin-
gle predictor variable as significant (controlling the familywise
error rate at 5%). The same variable is found to be significant
with the hierarchical method with hclust clustering, while the
hierarchical method with canonical correlation clustering iden-
tifies as significant clusters, in the sense of Section 4.2.1, the
singleton, which is the same single predictor as found by the
other two methods, and a very big cluster of 165 variables. This
is an interesting finding saying that besides the single predictor
variable, there are presumably other motifs, in the large clus-
ter, which play a relevant role. However, there is not enough
information to determine which of the variables in the large
cluster are significant as a single motif.

4.5 Conclusions From the Empirical Results

We have studied error rate control and performance of the
three methods over 42 scenarios. The familywise error rate con-
trol was respected for all methods in 40 out of 42 scenarios, for 2
scenarios it is slightly nonrespected (7 or less runs with at least
a false selection out of 100). Considering Performance 1, we
can see that the single variable method performs slightly better
for settings where the correlation is not particularly high and
the hierarchical methods perform better for settings with high
correlation. If one looks at Performance 2, the disadvantage of
the hierarchical methods in the “normal correlation” settings
gets smaller, while their advantage in the “high correlation”
settings gets more substantial, with an average (over all “high
correlation” scenarios) improvement of 4.5% when consider-
ing canonical correlation clustering and 5.5% when considering
hclust clustering.

Taking a more detailed and informative viewpoint in Sec-
tion 4.3, the hierarchical method dominates the single variable
method in terms of minimal true detections (MTDs), while both
methods detect a similar number of singletons (the hierarchical

method being slightly preferable in this aspect, too). While both
methods exhibit a good performance for the scenario generated
with ρ = 0, the clear superiority of the hierarchical method be-
comes apparent for increasing values of the correlations among
the variables. The empirical findings supporting this statement
are supported with additional results presented in the supple-
mentary material.

Applying the hierarchical methods to a real dataset about
motif regression (Conlon et al. 2003), we obtained an indication
that there might be other potential motifs in a large cluster of
size 165 which could play a significant role.

5. ROBUSTNESS OF THE METHOD WITH RESPECT
TO FAILURE OF VARIABLE SCREENING

The variable screening assumption (A2) seems far from nec-
essary for controlling the FWER as described in Theorem 1.
Table 4 provides empirical support for this fact.

5.1 A Heuristic Explanation

The following argument yields some explanation why the
screening property is a too restrictive assumption. Let us assume
that the screening property fails because the beta-min condi-
tion (5) fails to hold. We then expect rather different selected
sets Ŝ(1), . . . , Ŝ(B), and the resulting p-values p

C,(1)
adj , . . . , p

C,(B)
adj

based on these selected sets are likely to be rather different as
well (since Ŝ(b) �⊇ S0 for most of the b’s): many of them would
not exhibit a small value and thus, when aggregating these p-
values, the resulting aggregated p-value is likely to be nons-
mall. For example, when aggregating with the sample median
(γ = 1/2 in Section 2.4), more than 50% of the p-values would
need to be small such that the aggregated value would be small
as well; and thus, the method only makes rejections if the single
p-values p

C,(1)
adj , . . . , p

C,(B)
adj are stable and a substantial fraction

of them are small (and hence, we expect conservative behavior
with respect to FWER control). We note that failure of (A2) due
to a different reason than failure of the beta-min condition (5),
such as ill-posed correlations among the variables, might lead
to stable p-values where a large fraction of them are spuriously
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small: and in such a circumstance, the method might perform
poorly with respect to controlling the FWER.

5.2 A Mathematical Argument Based on Zonal
Assumptions

We rigorously argue here that failure of the beta-min condition
(5) still leads to control of the FWER, assuming alternative and
weaker zonal assumptions (Bühlmann and Mandozzi 2014).

We partition the active set S0 into sets with corresponding
large and small regression coefficients, respectively,

S0 = S0,large(a) ∪ S0,small(u),

S0,large(a) = {j ; |β0
j | > a}, S0,small(u) = {j ; |β0

j | ≤ u},
where 0 < u < a.

Consider the model (1) with noise vector ε ∼ N (0, σ 2I ). It
can be rewritten as

Y = XŜβ0
Ŝ

+ XŜc

β0
Ŝc + ε,

where Ŝ = Ŝ(I1) ⊆ {1 . . . p}, |Ŝ| ≤ |I2| and XŜ the design sub-
matrix of X with columns corresponding to Ŝ, and I1, I2 denote
the two subsamples such that I1 ∪ I2 = {1, . . . n}. Assume for
the |I2| × |Ŝ| design submatrix XŜ

I2
of X with rows correspond-

ing to I2 and columns corresponding to Ŝ:

rank((XŜ
I2

)T XŜ
I2

) = |Ŝ|. (9)

Then define the following least-square estimates based on the
subsample I2 and using only the variables from Ŝ:

β̂Ŝ
I2

= (
(XŜ

I2
)T XŜ

I2

)−1
(XŜ

I2
)T YI2,

P Ŝ
I2

= XŜ
I2

(
(XŜ

I2
)T XŜ

I2

)−1
(XŜ

I2
)T , QŜ

I2
= II2 − P Ŝ

I2
,

Ŷ Ŝ
I2

= P Ŝ
I2
YI2 = XŜ

I2
β̂Ŝ

I2
, ε̂Ŝ

I2
= QŜ

I2
YI2 = YI2 − Ŷ Ŝ

I2
,

(σ̂ Ŝ
I2

)2 = ‖ε̂Ŝ
I2
‖2

2

|I2| − |Ŝ| .

Theorem 3. Consider any selector Ŝ which is based on the
subsample I1 and satisfies (9). Then, for a q × |Ŝ|-matrix A,(

Aβ̂Ŝ
I2

− Aβ0
Ŝ

)T
(

A
(

XŜ,T
I2

XŜ
I2

)−1
AT

)−1

(Aβ̂Ŝ
I2

− Aβ0
Ŝ
)

q(σ̂ Ŝ
I2

)2

∼ Fq,|I2|−|Ŝ| (λnoncentral)

is noncentral F-distributed with noncentrality parameter

λnoncentral =
q∑

i=1

(BIAS)2
i ,

BIAS = 1

σ

(
A

((
XŜ

I2

)T

XŜ
I2

)−1

AT

)−1/2

×A

((
XŜ

I2

)T

XŜ
I2

)−1 (
XŜ

I2

)T

XŜc

I2
β0

Ŝc .

A proof is given in the supplementary material. Theorem 3
gives the distribution of the partial F-test statistic in the gen-
eral case where a failure of screening is possible. The non-
centrality parameter λnoncentral, however, is unknown in practice.
Clearly, if Ŝ ⊇ S0, then β0

Ŝc
= 0 and the noncentrality parameter

λnoncentral = 0. Thus, if Ŝ is approximately correct for screening
S0, then λnoncentral ≈ 0.

In the following example we show that considering the Lasso
as screening procedure and assuming zonal assumptions on
the active variables, Theorem 3 implies asymptotically valid
p-values when taking a partial F-test with central F-distribution
(i.e., the noncentrality parameter is asymptotically negligible).

5.3 The Lasso as Selector Ŝ and Zonal Assumptions for
β0

For the Lasso, assuming that the compatibility condition holds
with compatibility constant φ2

0 > 0 (Bühlmann and van de Geer
2011, see Equation (6.4)), with probability tending to one:

‖β̂ − β0‖∞ ≤ ‖β̂ − β0‖1 ≤ a (n, p, s0, X, σ )

:= Cσs0

√
log(p)/n/φ2

0

for some C = C(λ) > 0 when choosing the regularization pa-
rameter λ � σ

√
log(p)/n (Bühlmann and van de Geer 2011,

Thm. 6.1). Hence, on an event with high probability, we have
for this a = a(n, p, s0, X, σ ),

Ŝ ⊇ S0,large(a)

(Bühlmann and Mandozzi 2014) and using the partitioning of
S0 it follows that

‖β0
Ŝc‖∞ ≤ u and ‖β0

Ŝc‖0
≤ s0,small(u).

Assuming constants C1, C2, and C3 such that

max
j=1,...,p

(
XT

I2
XI2

)
jj

≤ C1|I2|

max
j,k∈Ŝ

|
(

XŜ,T
I2

XŜ
I2

)−1
|jk ≤ C2|I2|−1

max
j,k=1,...,q

|
(
A
(
XŜ,T

I2
XŜ

I2

)−1
AT
)−1/2|jk ≤ C3|I2|1/2

for each q × |Ŝ|-matrix A with q < |Ŝ|, Ajj ∈ {0, 1} and

Ajk = 0 for j �= k. (10)

It follows for the noncentrality parameter

λnoncentral ≤ q max
i=1,...,q

(BIAS)2
i

≤ q

(
1

σ
C3|I2|1/2|Ŝ|C2|I2|−1|Ŝ|C1|I2|s0,small(u)u

)2

≤
(

C1C2C3

σ
|Ŝ|5/2|I2|1/2s0,small(u)u

)2

.

Now, assuming a more restrictive sparse eigenvalue condition on
the design X we have |Ŝ| ≤ C4s0 for some constant 0 < C4 < ∞
(Zhang and Huang 2008; van de Geer, Bühlmann, and Zhou
2011) and hence, for some constant D = D(C1, C2, C3, C4)

λnoncentral ≤
(

D

σ
s

5/2
0 s0,small(u)

√
nu

)2

,

that is, the noncentrality parameter is negligible for u being at
most of small order o(n−1/2). Note that the inequality above is
implicit in the value u since it involves s0,small(u): of course, we
can give the upper bound

λnoncentral ≤
(

D

σ
s

7/2
0

√
nu

)2

,
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implying that u = o(s−7/2
0 n−1/2) suffices to obtain asymptotic

negligibility of the noncentrality parameter.
We conclude as follows. Assume that (9) and (10) hold and

that the design matrix satisfies a sparse eigenvalue condition
with sparse eigenvalue bounded away from zero. Furthermore,
replace the screening property in (A2) by zonal assumptions for
the regression coefficients:

S0 = S0,large(a) ∪ S0,small(u), with

a = Cσs0

√
log(p)/n/φ2

0 for C > 0 sufficiently large,

u = C̃σ s
−5/2
0 s−1

0,small(u)n−1/2 for C̃ > 0 sufficiently small.

Then, when using the Lasso as selector Ŝ, our hierarchical p-
value method provides asymptotic strong error control of the
familywise error rate.

6. CONCLUSIONS

We propose a method for testing whether (mainly) groups of
correlated variables are significant for explaining a response in a
high-dimensional linear model. In presence of highly correlated
variables (or nearly collinear smaller groups of variables), as
is very common in high-dimensional data, it seems indispens-
able to adopt such a kind of an approach going beyond multiple
testing of individual regression coefficients. The groups of vari-
ables are ordered within a given hierarchy, for example, a cluster
tree, which allows for powerful multiple testing adjustment. It
automatically determines a good resolution level distinguishing
between small and large groups of variables: the former are sig-
nificant if the signal of one or few individual variables in such
a small group is strong and/or the variables are not too highly
correlated; and a large group can be significant even if the sig-
nals of (many) individual variables in the group are weak and
the variables exhibit high correlation among themselves. The
minimal true detections (MTDs) measure the power to detect
significant smallest groups of variables, and our method per-
forms well in terms of MTDs and substantially better than the
analog of a single variable method.

Our procedure is based on repeated sample splitting which
was empirically found to be “robust” and reliable for controlling
Type I errors. We present some theory proving strong control of
the familywise error rate, and our assumptions allow for scenar-
ios beyond the beta-min condition saying that all nonzero regres-
sion coefficients should be sufficiently large. We also provide
empirical results for simulated and real data which complement
the theoretical analysis.

SUPPLEMENTARY MATERIALS

Supplementary material for “Hierarchical Testing in the High-
Dimensional Setting with Correlated Variables”: An alternative
bottom-up hierarchical adjustment. Variability of Performance 1
and Performance 2 in the simulations study. Variability of MTDs
in Section 4.3. Extension of the considerations of Section 4.3
for low SNR. Proofs.

[Received January 2014. Revised September 2014.]
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