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�0-PENALIZED MAXIMUM LIKELIHOOD FOR SPARSE DIRECTED
ACYCLIC GRAPHS

BY SARA VAN DE GEER AND PETER BÜHLMANN

ETH Zürich

We consider the problem of regularized maximum likelihood estima-
tion for the structure and parameters of a high-dimensional, sparse directed
acyclic graphical (DAG) model with Gaussian distribution, or equivalently,
of a Gaussian structural equation model. We show that the �0-penalized max-
imum likelihood estimator of a DAG has about the same number of edges as
the minimal-edge I-MAP (a DAG with minimal number of edges represent-
ing the distribution), and that it converges in Frobenius norm. We allow the
number of nodes p to be much larger than sample size n but assume a sparsity
condition and that any representation of the true DAG has at least a fixed pro-
portion of its nonzero edge weights above the noise level. Our results do not
rely on the faithfulness assumption nor on the restrictive strong faithfulness
condition which are required for methods based on conditional independence
testing such as the PC-algorithm.

1. Introduction. Directed acyclic graphs (DAGs) and corresponding directed
graphical models are key concepts for causal inference; see, for example, the books
by Spirtes, Glymour and Scheines (2000) and Pearl (2000). From an estimation
point of view, a first step consists of estimating the Markov equivalence class of
the true underlying causal DAG based on observational data, and from this, one can
infer identifiable causal effects and lower bounds for all causal effects [Maathuis,
Kalisch and Bühlmann (2009)]. This strategy has been applied to, and to a certain
extent validated using high-throughput, and hence high-dimensional, data in biol-
ogy [Maathuis et al. (2010)]. It is of primary importance to understand limitations
and potential of methods in terms of subtle and often uncheckable assumptions,
and in this respect, our results here shed new light.

We focus here on the problem of estimating the Markov equivalence class of
DAGs, or more generally of a so-called minimal-edge I-MAP, in the setting of ob-
servational Gaussian data where the number p of variables or nodes in the DAG
may greatly exceed sample size n. We consider the �0-penalized maximum likeli-
hood estimator, and we relate and compare our new results and conditions to the
popular PC-algorithm [Spirtes, Glymour and Scheines (2000)] and its theoretical
analysis. To the best of our knowledge, the latter is so far the only work providing
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theoretical guarantees for inferring the Markov equivalence class of DAGs in the
high-dimensional setting. We emphasize that the popular �1-norm regularization
of the likelihood is inappropriate here, leading to an objective function which is
not constant over equivalent DAGs encoding the same distribution. On the other
hand, �0-penalization leads to invariant scores over equivalent DAGs. The com-
putational difficulties are primarily due to the nonconvex constraint that the di-
rected graph should be acyclic, and the additional issue with the �0- in comparison
to, for example, �1-norm penalization is, surprisingly, rather in favor of the for-
mer. A computationally feasible algorithm for exact �0-penalized maximum likeli-
hood estimation for the Markov equivalence class of DAGs has been proposed by
Silander and Myllymäki (2006); for larger graphs, with more than about 20 nodes,
approximate algorithms can be used [Chickering (2002), Hauser and Bühlmann
(2012)]. More details are given in Section 2.1.

1.1. Relation to other work. We analyze the �0-penalized maximum likeli-
hood estimator for the equivalence class of DAGs in the Gaussian setting. Pi-
oneering work for the low-dimensional case on this problem has been done by
Chickering (2002) who proved consistency of the BIC-score and provided an al-
gorithm, called greedy equivalent search (GES), which greedily proceeds in the
space of Markov equivalence classes. While the GES-algorithm can also be used
in the high-dimensional scenario [Hauser and Bühlmann (2012)], the asymptotic
consistency of BIC is established only for the case with a fixed distribution (with
p < ∞) where the sample size n → ∞. Chickering’s first significant analysis does
not provide any insights for the high-dimensional case with its subtle interplay of
signal strength, noise level and identifiability conditions.

Robins et al. (2003) present refined analyses for causal inference under the view
point of uniform consistency as sample size n → ∞. There, problematic issues
with the so-called faithfulness condition (see Section 1.2) arise, and Zhang and
Spirtes (2003) introduce the notion of strong faithfulness [see (2)], as a way to
address some of the raised major problems. None of these works consider high-
dimensional inference, but their pointing to the faithfulness condition and its ver-
sion are important.

Kalisch and Bühlmann (2007) provide consistency results of the PC-algorithm
[Spirtes, Glymour and Scheines (2000)] for estimating the Markov equivalence
class of DAGs based on Gaussian observational data, in the high-dimensional,
sparse setting. One of the conditions used is a restricted version of strong faith-
fulness in (2). Our analysis with the penalized MLE is completely different and
circumvents faithfulness and strong faithfulness conditions which are often very
restrictive as shown by Uhler et al. (2013); see also below.

The theoretical high-dimensional analysis presented here is very different and
more challenging than for multivariate regression or covariance estimation, due
to the unknown order among the variables. For known order, as, for example, in
time series problem, Shojaie and Michailidis (2010) present results for estimation



538 S. VAN DE GEER AND P. BÜHLMANN

of high-dimensional DAGs; but the case with unknown order considered in the
present paper requires major new theoretical ideas and development.

1.2. Directed graphical and structural equation models. Consider the follow-
ing model. There is a DAG D0 whose p nodes correspond to random variables
X1, . . . ,Xp: assume that

X1, . . . ,Xp ∼ Np(0,�0) with density f�0(·),
(1)

Np(0,�0) is Markovian with respect to D0,

where the Markov property can be understood as the factorization property where
the joint Gaussian density f�0(x1, . . . , xp) can be factorized as

f�0(x1, . . . , xp) =
p∏

j=1

f�0(xj |xpa(j))

with pa(j) denoting the set of parents of node j ; cf. Lauritzen (1996).
It is well known that, in general, there exists another DAG D such that the dis-

tribution N (0,�0) is Markovian with respect to D. Assuming faithfulness (see
below), the set of all such other DAGs build the so-called Markov equivalence
class E (D0) which can be characterized in terms of a chain graph with undirected
and directed edges; cf. Andersson, Madigan and Perlman (1997). The Markov
equivalence class E (D0) can be identified from the observational data distribution

N (0,�0) under the assumption of faithfulness.

Definition of faithfulness; cf. Spirtes, Glymour and Scheines (2000): For a
DAG D, a distribution P is called faithful with respect to D if and only if all
conditional independences are encoded by the DAG D.

Faithfulness is stronger than a Markov assumption: the latter allows us to infer
some conditional independences from the DAG while the former requires that all
of them can be inferred from the DAG (i.e., only the ones which are entailed by
a Markov condition). Failure of faithfulness is “rare,” having Lebesgue measure
zero, if the edge weights (the coefficients in the equivalent linear structural equa-
tion model) are chosen from a distribution which is absolutely continuous with
respect to Lebesgue measure. However, for statistical estimation, we often require
sufficiently strong detectability of conditional dependencies, given by the notion
of strong faithfulness.

Definition of strong faithfulness in the Gaussian case [Zhang and Spirtes
(2003)]: For a DAG D, a Gaussian distribution P is called τ -strongly faithful with
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respect to D if and only if

P is faithful with respect to D and

min
{∣∣Parcorr(Xj ,Xk|XS)

∣∣;Parcorr(Xj ,Xk|XS) �= 0,(2)

S ⊆ {1, . . . , p} \ {j, k}, j, k ∈ {1, . . . , p} (j �= k)
} ≥ τ.

A typical requirement is strong faithfulness with τ 	 √
sparsity · log(p)/n, see

also below for the PC-algorithm. Strong faithfulness can be viewed as a condition
of “signal strength” in terms of nonzero partial correlations. As shown in Uhler
et al. (2013), strong faithfulness is a very restrictive condition for many DAGs,
and the same applies to a slightly weaker restricted strong faithfulness assumption;
cf. Uhler et al. (2013); see also Section 4.3.2. At the same time, it is essentially
unavoidable for any algorithm for inferring the Markov equivalence class E (D0)

which relies on conditional independence testing. The most prominent example is
the PC-algorithm [Spirtes, Glymour and Scheines (2000)]: consistent estimation
for the Markov equivalence class E (D0) is proved in Kalisch and Bühlmann (2007)
for the Gaussian case assuming a strong faithfulness condition. The results in this
paper for the �0-penalized MLE do not require a strong faithfulness condition as
in (2) (nor the slightly weaker restricted strong faithfulness condition): the reason
is that the method is not relying on conditional independence testing but rather on
penalized parameter estimation in terms of a linear structural equation model, as
we explain next.

A Gaussian DAG model as in (1) can always be equivalently represented as a
linear structural equation model,

Xj = ∑
k∈pa(j)

β0
kjXk + εj (j = 1, . . . , p),(3)

where ε1, . . . , εn are independent, εj ∼ N (0, |ω0
j |2) and εj independent of

{Xk;k ∈ pa (j)}; note that pa(j) = paD0
(j) depends on the true DAG D0.

2. The setting and the estimator. We use here and in the sequel a terminol-
ogy which does not rely on the standard language from graphical modeling since
the required basics for the Gaussian case [see models (1) and (3)] can be developed
in a straightforward way.

We consider n i.i.d. observations from the structural equation model (3) which
is equivalent to model (1). We denote by X := (X1, . . . ,Xp) the n×p data matrix
with n i.i.d. rows, each of them being N (0,�0)-distributed, where �0 is a non-
singular covariance matrix. The relations between the variables in a row can be
represented as

X = XB0 + E,(4)

where B0 := (β0
k,j ) is a p×p matrix with β0

j,j = 0 for all j , and where E as an n×
p matrix of noise vectors E := (ε1, . . . , εp), with εj independent of Xk whenever
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β0
k,j �= 0.1 Furthermore, E has n i.i.d. rows which are N (0,�0)-distributed, with

�0 := diag(|ω0
1|2, . . . , |ω0

p|2) a p × p diagonal matrix.
Model (4) implies that

�0 = [
(I − B0)

−1]T
�0

[
(I − B0)

−1]
.

We call (B0,�0) a DAG corresponding to �0.2 The set of edges of this DAG
is denoted by s0 := sB0 := {(k, j) :β0

k,j �= 0}, and in fact, β0
k,j �= 0 encodes for a

directed edge k → j . We will assume in Condition 3.4 that (B0,�0) is sparse, in
the sense that its number of (directed) edges s0 is small.

As we described in Section 1.2 with the concept of a Markov equivalence class,
there are several DAGs (B̃0, �̃0) describing the same �0 and thus the same Gaus-
sian distribution P = N (0,�0). Throughout this paper, (B0,�0) is defined as a
DAG with a minimal number of edges (and it may not be unique). We call such a
DAG a minimal-edge I-MAP.3

REMARK 2.1. We call two DAGs, (B1,�1) and (B2,�2), equivalent if
	(B1,�1) = 	(B2,�1) and if in addition they have the same number of edges.4

In our analysis, we will identify DAGs which are in the same equivalence class.
Thus, our aim is to estimate an arbitrary member of the equivalence class of
(B0,�0), by a suitable member in the equivalence class of (B̂, �̂0).

2.1. The �0-penalized maximum likelihood estimator. We use a penalized
maximum likelihood procedure to estimate the DAG (B0,�0). Let

�n := XT X/n

be the empirical covariance matrix based on the observations X. Given a p × p

nonsingular covariance matrix �, with inverse 	 := �−1, the minus log-likelihood
is proportional to

ln(	) := trace(	�n) − log det(	).

We consider inverse covariance matrices that can be represented as a DAG. That
is, we let

	 := 	(B,�) := (I − B)�−1(I − B)T ,

1Note that in relation to the true DAG D0 in model (3), β0
k,j = 0 for k /∈ paD0

(j). We do not make
such explicit constraints here since we aim for a smallest DAG representing the distribution of X.

2This deviates from the classical definition where the DAG is only a (directed acyclic) graph; we
use the short terminology “DAG” for the whole graphical model with the distribution and the graph
encoded by the coefficient matrix B and the error variances �.

3It is a minimal I-MAP [Spirtes, Glymour and Scheines (2000), Section 2.3.1] with the additional
property that it has minimal number of edges.

4This definition is not the same as for a Markov equivalence class. Assuming faithfulness, both
definitions coincide.
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where (B,�) is a DAG. The latter means that � is a positive diagonal matrix
and that, up to a permutation π of the rows and columns, B can be written as a
lower-diagonal matrix.

The �0-penalized maximum likelihood estimator is

	̂ = arg min
B,�

{
ln(	) + λ2sB :	 = 	(B,�),

(5)
for some DAG (B,�) with B ∈ B

}
.

Here sB is the number of nonzero elements in B (corresponding to the number of
edges in the DAG) and λ ≥ 0 is a tuning parameter. The estimator is denoted by
	̂ := 	(B̂, �̂). It has ŝ := s

B̂
edges. The collection B is the set of all edge weights

B of DAGs (B,�) which have at most αn/ logp incoming edges (parents) at
each node, where α > 0 is given (see Condition 3.3), or a subset thereof. We will
discuss this restriction in Section 4.2. We throughout assume B0 ∈ B, that is, that
the restrictions one puts on the edge weights are correct.

The �0-penalty in the estimator ensures that the penalized likelihood remains the
same among all equivalent representations, for example, among all DAGs from the
same Markov equivalence class or among the equivalence class described in Re-
mark 2.1 above. This would not be true when choosing, for example, an �1-norm
penalization ‖B‖1 := ∑

k,j |βk,j |. From a computational point of view, the main
difficulty is the optimization over the space of DAGs B: current algorithms are tai-
lored for the �0-penalty (see next paragraph), and in this sense, optimization of the
�0-penalized log-likelihood is better tractable than using an �1-norm regulariza-
tion. For problems with up to about p ≈ 20 nodes, dynamic programming can be
used [Silander and Myllymäki (2006)], while for large-scale applications, greedy
equivalent search has been reported to perform well [Chickering (2002), Hauser
and Bühlmann (2012)].

The dynamic programming method [Silander and Myllymäki (2006)] is opti-
mizing the �0-penalized negative log-likelihood in (5) over the space of all DAGs
with B ∈ B. It crucially relies on the assumption that the objective function, called
the score, can be decomposed locally such that score(D) = ∑p

j=1 g(Xj ,XpaD(j))

for some function g(·), where g(Xj ,XpaD(j)) involves only data from the variables
j and paD(j). The �0-penalized score is decomposable, whereas, say, �1-norm pe-
nalization does not lead to a decomposable score. The greedy equivalent search
algorithms [Chickering (2002), Hauser and Bühlmann (2012)] are greedily op-
timizing the objective function in (5) in the space of equivalence classes, a much
smaller space than the space of DAGs. The greedy steps are forward, backward and
turning edges moves such that the score is improved most when stepping from one
Markov equivalence class to another one: this can be done very efficiently without
enumerating all DAG members in the equivalence class. Such greedy equivalent
search algorithms rely crucially on the fact that the objective score function is con-
stant within an equivalence class and that the score is decomposable: again, this is
true with �0-penalization but fails for �1-norm regularization.
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The previous paragraph already gives a good reason why �0-penalization is to
be preferred over the �1-norm analogue, namely, that the computational techniques
are tailored and surprisingly easier for the former than the latter (�1-norm regular-
ization would require to search over the whole space of DAGs, and the dynamic
programming trick mentioned above cannot be used). Furthermore, �1-norm reg-
ularization is usually motivated as a convex relaxation, and this is not true in our
context since the DAG constraint in (5) for the matrix B ∈ B remains to cause that
the optimization problem is nonconvex. In addition, the price to pay, in a standard
regression problem with an �1-norm regularization, is a bias which should be fur-
ther controlled with, for example, adaptive �1-norm regularization [Zou (2006)] or
thresholding [van de Geer, Bühlmann and Zhou (2011)]. We have not considered
a theoretical analysis of the �1-norm penalized maximum likelihood estimator of
a DAG. We believe this not to be more difficult than the �0-norm penalized maxi-
mum likelihood estimator although the proofs (see Section 7.1 for an outline) may
need different arguments.

2.1.1. The main results and their implications. We show in Theorem 3.1 that
with a choice of the tuning parameter λ2 of order logp/n((p/s0) ∨ 1), the num-
ber of edges ŝ of the estimator is of the same order of magnitude as the number
of edges s0 of a true underlying minimal-edge I-MAP. Moreover, we show that
B̂ and �̂ converges in Frobenius norm to some B̃0 and �̃0, respectively, where
	(B̃0, �̃0) = 	0 is a representation of the true DAG with s̃ edges (see Section 2.2),
and with s̃ of the same order of magnitude as s0. The rate of convergence is of or-
der λ2s0. To arrive at this result, we need that at least a fixed proportion of the
nonzero coefficients of any representation of the true DAG is above the “noise
level,” the latter being of order

√
logp/n(

√
p/s0 ∨ 1) (see Condition 3.5): in anal-

ogy to regression, we call this the “beta-min” condition. Some of our other condi-
tions are trivially satisfied when p = O(n/ log(n)) is sufficiently small.

The “noise level” indicates two regimes for (n,p, s0). If s0 is at least of the
order of p (or larger), then the “noise level” is of the order

√
log(p)/n which is

small even if p is very large relative to n. This scenario is often realistic saying
that a fixed nonzero proportion of the nodes has at least one parent: we call it the
standard sparsity regime. The other scenario is for s0 � p, corresponding to very
sparse DAGs, which we call the ultra-high sparsity regime. The reason for the two
different noise level scenarios is that we estimate p error variances in �0: when
s0 � p, the term from estimating these error variances is dominating.

When making a more stringent “beta-min” condition and choosing the regu-
larization parameter of larger order than the “noise level” [or the same order if
s0 = O(1)], we can recover the minimal-edge I-MAP.

The �0-penalized MLE can be easily adapted to the case where the noise vari-
ances in �0 are known up to a scalar, for example, when all noise variances are
known to be equal but their value is unknown. Then, the true DAG can be identified
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from the distribution [Peters and Bühlmann (2012)]. We show that in this case, un-
der an identifiability condition on the noise variances, the �0-penalized maximum
likelihood estimator finds the representation (and hence the true DAG) with the
prescribed noise variances, and the rate of convergence for the Frobenius norm is
of order λ2s0; see Theorem 5.1. We assume in this context that p is sufficiently
smaller than n/ logn.

REMARK 2.2. If the minimal-edge I-MAP can be inferred and assuming in
addition the faithfulness condition (but not requiring strong faithfulness) (see Sec-
tion 1.2), we can recover the true underlying Markov equivalence class. This then
allows us to derive bounds for causal inference, exactly along the lines of Maathuis,
Kalisch and Bühlmann (2009).

2.2. Permutations and the order of the variables. Model (4) can be written as

Xj = Xβ0
j + εj , j = 1, . . . , p,

with β0
j the j th column of B0. Let us write for any vector β ∈ R

p ,

‖Xβ‖2 := βT �0β, ‖Xβ‖2
n := βT �nβ.

For a permutation π of {1, . . . , p}, which plays the role of an order of the variables,
we let B̃0(π) be the matrix obtained by doing a Gram–Schmidt orthogonaliza-
tion for ‖ · ‖, starting with Xπp and finishing by projecting Xπ1 on Xπ2, . . . ,Xπp .
Moreover, we let �̃0(π) be the diagonal matrix of the error variances. Note thus
that B̃0(π) is lower-diagonal after permutation of its rows and columns. Further-
more,

	0 = 	0
(
B̃0(π), �̃0(π)

) ∀π.

The set of incoming edges at node j [nonzero coefficients of the j th column
of B̃0(π)] is denoted by S̃j (π), and we let s̃j (π) := |S̃j (π)|. Moreover, we let
s̃(π) = ∑p

j=1 s̃j (π) be the total number of edges of B̃0(π). Thus, s̃(π) = s
B̃0(π)

.

Let B̂—or one of the members in its equivalence class—be lower-diagonal after
permutation π̂ , and define B̃0 := B0(π̂). The number of edges of B̃0 is denoted by
s̃ = s̃(π̂ ). The DAGs (B̂, �̂) and (B̃0, �̃0) share the same lower-diagonal structure
(but not necessarily the same set of zero coefficients). We will show that s̃ := s̃(π̂)

is with large probability of the same order of magnitude as s0; see Theorem 3.1.
Thus if the true DAG (B0,�0) is sparse, then with large probability the DAG
(B̃0(π̂), �̃0(π̂)) is sparse as well, which means that on average, the number of
incoming edges at a node is small.

Note that π̂ is a random permutation and that there are in total a large number
(namely p!) permutations. Analytical control over these p! permutations requires
a very different technique than dealing with known order [Shojaie and Michailidis
(2010)] or with multivariate regression or covariance estimation problems. We ex-
plain this in more detail in Section 7.4.1.
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2.2.1. AR(1)-model as an example. Suppose the true DAG is a directed chain
from Xp along Xp−1, . . . ,X2 to X1 with a corresponding structural equation
model [AR(1)-model],

Xp = εp,

Xj = β0Xj+1 + εj (j = 1, . . . , p − 1),

where ε ∼ N (0,�0) with �0 = diag(1 − (β0)2, . . . ,1 − (β0)2,1) and |β0| < 1.
The error variances are chosen such that Var(Xj ) = 1 for all j . The covariance
matrix is of Toeplitz form (�0)ij = (β0)|i−j | and the model satisfies the directed
global Markov property which is equivalent to the concept of d-separation; cf.
Lauritzen (1996), Section 3.2.2.

Therefore, we have that projecting

Xπj
on Xπj+1, . . . ,Xπp (j = 1, . . . , p − 1)

leads to at most two nonzero regression coefficients in every column of B̃0(π) (cor-
responding to the largest index k1 < πj and smallest index k2 > πj if πj+1, . . . , πp

contains indices smaller and larger than πj ; or corresponding to the largest k < πj

if πj+1, . . . , πp contains only smaller indices than πj ; or corresponding to the
smallest k > πj if πj+1, . . . , πp contains only larger indices than πj ). Thus, we
have that s̃j (π) ≤ 2 for all j and all π , and hence Condition 3.4, given below,
holds.

The absolute values of the nonzero coefficients in B̃0(π) = (β̃0
k,j (π)) decrease

monotonely as the index-distance d(j) = mink=j+1,...,p |πk −πj | increases. Thus,
for fixed j and whenever d(j) > 
 for some (large) value of 
, there are at
most two [since s̃j (π) ≤ 2] coefficients with |β̃0

k,j (π)| ≤ C(
) for some value

C(
) (which decreases as 
 increases and which depends on β0). Therefore,
clearly, there are at most 2(�p/
� + 1) coefficients (edges) whose values satisfy
|β̃0

k,j (π)| ≤ C(
), and all other nonzero coefficients (at least p − �p/
� − 2)5

are larger than C(
). For example, 
 = 3 which implies that there are at most
2(�p/3� + 1) edges with nonzero coefficients being smaller than C(
 = 3), and
at least p −�p/3�− 2 edges with nonzero coefficients larger than C(
 = 3). This
implies that Condition 3.5, given below, holds with a value C(
 = 3) of order 1.

3. Conditions and main result. We write �0 =: (σk,j ), and we let σ 2
j :=

σj,j , j = 1, . . . , p.

CONDITION 3.1. For some constant σ 2
0 , it holds that

max
1≤j≤p

σ 2
j ≤ σ 2

0 .

5There are at least p − (�p/
� + 1) indices (nodes) j with d(j) ≤ 
; and there is at least one
nonzero coefficient (edge) from all of them except one (the starting node). The value C = C(
) can
be chosen appropriately, for any fixed 
.
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CONDITION 3.2. The smallest eigenvalue �2
min of �0 is nonzero; see also (6).

CONDITION 3.3. For a given constant α > 0, it holds that for any B =
(β1, . . . , βp) ∈ B, where B is as in (5), that sβj

≤ αn/ logp for all j = 1, . . . , p,
where for a vector β ∈ R

p we denote the cardinality of its support set by sβ :=
#{βk �= 0}.

CONDITION 3.4. For some constant α̃ and any permutation π , and all j ,

s̃j (π) ≤ α̃n/ logp,

where s̃j (π) = sβ̃0
j

is the number of incoming edges of the DAG (B̃0(π), �̃0(π))

at node j ; see also (7).

CONDITION 3.5. There exist constants 0 ≤ η1 < 1 and 0 < η2
0 < 1 − η1, such

that for any permutation π , the DAG (B̃0(π), �̃0(π)) [which has s̃(π) edges] has
at least (1 − η1)s̃(π) edges (k, j) with |β̃0

k,j (π)| > √
logp/n(

√
p/s0 ∨ 1)/η0.

Following Bühlmann and van de Geer (2011), we refer to Condition 3.5 as the
“beta-min” condition. It is a “kind of replacement” of the strong faithfulness condi-
tion in (2) that is required for consistency of the PC algorithm and variants thereof;
see Section 1.2. A detailed discussion about the assumptions is given in Section 4.

In the current section, we will present an asymptotic formulation for clarity.
We will provide a nonasymptotic result in Section 7. Our results depend on �0
via the constants σ0, �min, η1 on the further constants γ0 := (α, α̃, η0) used in the
conditions and on α0 where 1 − α0 is the confidence level of the statement.

We assume that we can take γ0 sufficiently small. Moreover, we state the results
with α0 := (4/p) ∧ 0.05 to avoid digressions concerning the confidence level. Ex-
plicit expressions can be found in Theorem 7.4, where we simplified the situation
by assuming n is sufficiently large and logp/n is sufficiently small.

With the notation z = O(1) we mean that z can be bounded by a constant de-
pending only on σ0 and �min. Moreover, with z 	 1 we mean z = O(1) and 1/z =
O(1). Furthermore, the Frobenius norm is defined as ‖B‖F = (

∑p
j,k=1 |βk,j |2)1/2

for a p × p matrix B with elements βk,j .

THEOREM 3.1. Assume Conditions 3.1, 3.2, 3.3, 3.4 and 3.5, with γ0 :=
(α, α̃, η0) sufficiently small, but allowing 1/‖γ0‖1 = O(1). Let 1 − α0 be the con-
fidence level, with α0 := (4/p) ∧ 0.05. Then for a choice

λ2 	 logp

n

(
p

s0
∨ 1

)
,

it holds that with probability at least 1 − α0,

‖B̂ − B̃0‖2
F + ‖�̂ − �̃0‖2

F = O
(
λ2s0

)
,
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where (B̃0, �̃0) are defined in Section 2.2, and

ŝ 	 s̃ 	 s0.

The proof is given in Section 7. Theorem 7.4 gives some explicit bounds.

REMARK 3.1. Note that if the true permutation π0 defined by B̃0(π0) = B0 is
known, then from (multiple) regression theory the optimal rate of convergence in
Frobenius norm will be of order (p + s0) logp/n (with p logp/n being a lower
bound due to estimating the p residual variances). Hence, Theorem 3.1 says that
this rate can also be achieved when not knowing π0. As in a multiple regression
setup, a natural normalization of the Frobenius norm is to divide it by p. With this
normalized norm, the estimator is consistent when the average number of incoming
edges s0/p is of small order n/ logp.

REMARK 3.2. If the beta-min condition (Condition 3.5) holds with η1 = 0
and with very small values for η0 := η0(π), namely of order 1/s̃(π), then one
obtains the screening property: all edges in (B̃0, �̃0) are then with large probability
also present in (B̂, �̂).

Moreover, by taking λ2 := λ2(s0) very large (of order s0 logp/n), one can ob-
tain with large probability that ŝ ≤ s0. In other words, by imposing a strong beta-
min condition, which is severe if s0 is large, one recovers with high probability
the edges of the minimal-edge I-MAP exactly. However, in Theorem 3.1, we do
not use such values for η0 and λ, but instead λ2 	 logp/n [when p = O(s0)] and
η0 	 1. Thus, we generally do not recover the true edges. This is the price for deal-
ing with a large p situation and an s0 possibly growing in n. Such problems do not
show up in asymptotics with p fixed.

4. A discussion of the conditions.

4.1. Bounds for the noise variances. For all π and j and for any βj with
βj,j = 0, we have ‖Xj − Xβj‖ = ‖Xβ−

j ‖ where β−
k,j = −βk,j for k �= j and

β−
j,j = 1. It follows that for any π and j ,∣∣ω̃0

j (π)
∣∣2 = ∥∥Xj − Xβ̃0

j (π)
∥∥2 ≥ �2

min

with �2
min the smallest eigenvalue of �0. Moreover, clearly |ω̃0

j (π)|2 ≤ σ 2
j . Hence,

Conditions 3.1 and 3.2 imply that for all π and j

0 < �2
min ≤ ∣∣ω̃0

j (π)
∣∣2 ≤ σ 2

0 .

Furthermore, �2
min > 0 is implied by

min
j

∣∣ω0
j

∣∣2 > 0,(6)

since det(�0) = det(�0) = ∏p
j=1 ω0

j . Thus, Condition 3.2 is equivalent to (6).
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4.2. Overfitting. Condition 3.3 will ensure that the penalized minus log-
likelihood cannot become minus infinity. If n or more edges are allowed at a
node, say at node j , the estimator will overfit the data at this node, giving a
residual variance ω̂2

j = 0. The penalized minus log-likelihood is proportional to∑p
j=1 log ω̂2

j + λ2ŝ which will be −∞ if one allows that ω̂j vanishes. Note that
the penalty as such does not prevent this type of overfitting. Therefore, we need a
restriction on the class of possible DAGs, and Condition 3.3 serves this purpose.
We will show in Lemma 7.5 that Conditions 3.1, 3.2 and 3.3 imply that for an ap-
propriate constant K0 > 0, it holds for all j that ω̂j ≥ 1/K0 with large probability.

4.3. The beta-min condition. One may circumvent the beta-min condition if
one allows for edges with weights below some noise level λ∗ to be set to zero.
Here, λ∗ := √

logp/n/η∗
0 for some suitable η∗

0 > 0. Instead of trying to estimate
the true DAG (B0,�0), one now aims at estimating its best sparse approxima-
tion (B∗

0 ,�∗
0), which is defined as follows. Let for any DAG (B,�), and for

	 = 	(B,�), the weights B	(π) be obtained by doing the Gram–Schmidt or-
thogonalization for ‖ · ‖� , where � = 	−1 and ‖Xβ‖2

� := βT �β , β ∈ R
p . Thus

B	(π) is lower-diagonal after the permutation π of its rows and columns, and for
appropriate �	(π), the DAG (B	(π),�	(π)) satisfies

	 = 	
(
B	(π),�	(π)

)
.

Let s	(π) := sB	(π) be the number of edges of B	(π). Connecting this with our
previous notation, we note that

B	0(π) = B̃0(π), �	0(π) = �̃0(π), s	0(π) = s̃(π).

Let now for some constant η∗
0 > 0,

s∗
	(π) := #

{
(k, j) :

∣∣β	,k,j (π)
∣∣ >

√
logp/n

(√
p/s	(π) ∨ 1

)
/η∗

0
}
.

We then take

	∗
0 := arg min

{
l(	) :	 = (B,�) a DAG, s∗

	(π) ≥ (
1 − η∗

1
)
s	(π),∀π

}
,

where 0 ≤ η∗
1 < 1 and l(	) = trace(	�0) − log det(	) = Eln(	) is the theoret-

ical counterpart of the minus log-likelihood. [Note that 	0 := �−1
0 is the overall

minimizer of l(	).] We let (B∗
0 ,�∗

0) be a solution of

	∗
0 = 	∗

0
(
B∗

0 ,�∗
0
)

with the minimum number of edges. With constants η∗
0 and η∗

1 sufficiently small,
one may replace 	0 = 	0(B0,�0) by 	∗

0 = 	∗
0(B

∗
0 ,�∗

0) in our analysis. In this
way, one can avoid the beta-min condition, provided that the bias term that will
now appear in the bounds is small enough.
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4.3.1. The beta-min condition and the number of edges. We further note that
Conditions 3.1, 3.2 and 3.5 imply Condition 3.4 with

α̃ = σ 2
0 η2

0

�2
min(1 − η1)

.(7)

This is because for all j ,

(1 − η1)s̃j (π)

η2
0

logp

n
≤ ∥∥β̃0

j (π)
∥∥2

2 ≤ ∥∥Xβ̃0
j (π)

∥∥2
/�2

min ≤ σ 2
0 /�2

min.

4.3.2. The strong beta-min condition in comparison to strong faithfulness.
The beta-min condition as stated in Condition 3.5 is of a rather weak form. In
order to make a (vague) relation to strong faithfulness, which focuses on exact
edge recovery, we consider the stronger version as discussed in Remark 3.2. As
written in this remark, recovery of a minimal-edge I-MAP is guaranteed with
a value for the lower bound on the weights of the nonzero edges of the order
s0

√
log(p)/n = p

√
log(p)/n assuming s0 	 p: such a value in the beta-min con-

dition is reasonable in the regime p = o(
√

n/ log(n)).
Although this seems rather restrictive at first sight, the PC-algorithm necessar-

ily requires restricted strong faithfulness [Uhler et al. (2013) cf.] for consistent
estimation of the Markov equivalence class. Such a restricted strong faithfulness
assumption has been analyzed when assuming i.i.d. sampling of the nonzero edge
weights. It holds when assuming an upper bound on the growth of the dimension.
The best dimensionality range is achieved for bounded-degree trees which restricts
p = o(

√
n/ log(n)) to the same order of magnitude as above while for other graphs

the constraint on p can be much stronger, for example, p = o(log(n)) for certain
bipartite graphs [Uhler et al. (2013), Section 5.1].

The beta-min Condition 3.5 is not directly comparable to the (restricted) strong
faithfulness assumption. Therefore, we cannot make a direct comparison between
our penalized maximum likelihood estimator and the PC-algorithm. The AR(1)
model in Section 2.2.1 is an example where the beta-min condition holds with a
value of order 1. We can extend the analysis to an AR(k) model with fixed k ≥ 2:
using analogous reasoning as for the AR(1) in Section 2.2.1, the beta-min condi-
tion holds for a value of order 1. The theory from Uhler et al. (2013) regarding
strong faithfulness cannot be used for AR(k) models since the corresponding edge
weights involve k values which are the same throughout the whole graph, that is,
no i.i.d. sampling.

We will discuss in Section 5 the case where the error variances are the same,
that is, �0 = ω0I . We then only need a beta-min condition for the true underlying
DAG instead of all permutations (see the discussion after Theorem 5.1). Thus, for
the scenario p = o(

√
n/ log(n)) in the equal variance case, the beta-min condition

is very reasonable for any DAG. This is in sharp contrast to the constraint arising
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from restricted strong faithfulness: if the underlying DAG is say a certain bipar-
tite graph, the corresponding dimensionality for consistent edge recovery is very
severe, see above.

Finally, we note that when focusing on bounding false positive selections as in
Theorem 3.1, the �0-penalized MLE is justified for the p � n setting.

4.4. The high sparsity regime where s0 � p. The reason why we see a term
p/s0 ∨ 1 appearing in the tuning parameter λ2 (see Theorem 3.1) and in the beta-
min condition (Condition 3.5) is due to the estimation of the p unknown variances,
which gives a term of order p logp/n in our bounds for the squared Frobenius
norm. If s0 � p, the true DAG has many disconnected components, and in fact it
then has many isolated points. The variables in one component are uncorrelated
with those in another component. We see this in the zeroes in the matrix �0. The
connected components and isolated points are easily detected by �n, assuming that
nonzero correlations are at least

√
logp/n/ηc in absolute value for an appropriate

(sufficiently small) constant ηc. Then we can do the analysis connected component
by connected component. To summarize, the situation p = O(s0) appears to be
the most interesting. Alternatively, when the noise variances �0 are known up to a
scalar (e.g., if it is known that all noise variances are equal), we need not estimate
these variances anymore, and the term of order p logp/n does not appear in the
bounds, provided an identifiability condition on the noise variances holds and p is
sufficiently smaller than n/ logn. This will be shown in the next section.

5. The case of equal variances. Suppose that the noise variances {|ω0
j |2}pj=1

are known up to a multiplicative scalar. To simplify the exposition, let us assume
that

ω0
1 = · · · = ω0

p = 1.

The �0-penalized maximum likelihood estimator now becomes

B̂ := arg min
{
trace

(
(I − B)(I − B)T �n

) + λ2sB : (B, I ) a DAG,B ∈ B
}
,(8)

where B is as in (5).
The main Theorem 3.1 as well as the remarks in Section 3.2 apply to the esti-

mator (8) as well, assuming exactly the same Conditions 3.1–3.5.
For the case where p = O(n/ log(n)) is sufficiently small, we obtain consistent

estimation of the true underlying DAG, and we gain in comparison to the main
Theorem 3.1 by excluding the additional factor (p/s0 ∨1). We make the following
assumptions.

CONDITION 5.1. There exists a constant ηω > 0 such that for all �̃0(π) �= I ,

1

p

p∑
j=1

(∣∣ω̃0
j (π)

∣∣2 − 1
)2

> 1/ηω.
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CONDITION 5.2. There exists a constant α∗ such that

p ≤ α∗n/ logn.

We call Condition 5.1 the “omega-min” condition. It leads to identification of
the DAG with equal variances. Condition 5.2 ensures that the rate of convergence
is fast enough to ensure that eventually we choose the right permutation. Note that
it implies Conditions 3.3 and 3.4, with α = α̃ = α∗.

Let π0 be defined by B̃0(π0) = B0. Since B0 is identifiable from the ob-
servational distribution N (0,�0) [Peters and Bühlmann (2012)] (see also Sec-
tion 2.1.1), π0 corresponds to the unique true ordering of the variables.

THEOREM 5.1. Assume Conditions 3.1 and 3.2 and Conditions 5.1 and 5.2.
Let α0 := (4/p) ∧ 0.05. Then for γ∗ := (α∗, ηω) suitably small, but allowing
1/‖γ∗‖1 = O(1), and for λ2 	 logp/n, it holds with probability at least 1 − α0,
that π̂ = π0, and

‖B̂ − B0‖2
F + λ2ŝ = O

(
λ2s0

)
.

The proof is given in Section 7.6.
Thus, we find ŝ = O(s0), but we do not show ŝ 	 s0. To establish the latter, one

again needs a beta-min condition, but this time only on the DAG (B0, I ), and not
on any of the other representations (B̃0(π), �̃0(π)) with π �= π0. This is a much
simplified and weaker assumption than in Condition 3.5. Furthermore, since π̂ =
π0 with large probability, a refit of the model using a (de-coupled) penalized node-
wise regression with parents according to π̂ will with large probability recover the
edges under the standard conditions for such a method [e.g., a node-wise Lasso
will with large probability recover the edges under the condition that for all j ,

|β0
k,j | >

√
s̃j (π0) log(p)/n/η0 for some sufficiently small η0 > 0].

5.1. The non-Gaussian case. To avoid technical digressions in our proofs, we
assume a Gaussian distribution for the observations where zero correlations mean
independence. We use in Lemma 7.4 that if for some ε̃j , Eε̃j = 0, then also the
conditional expectation of ε̃j given variables Xk that are uncorrelated with ε̃j is
zero. In the non-Gaussian case, this is no longer true. However, one can still de-
rive similar results, along a line of proof that does not use conditioning but instead
concentration inequalities for averages of products of random variables (empiri-
cal covariances). This means that our results go through for observations which
are sub-Gaussian. The proofs then rely on concentration inequalities of Bernstein-
type. The main adjustments of our proofs are then as follows. We assume that the
rows of X form an i.i.d. sequence of sub-Gaussian vectors as defined in Loh and
Wainwright (2012) and replace Theorem 7.3 by their Lemma 15. In Lemma 7.4
we assume ε and Z are sub-Gaussian and uncorrelated, and replace the empirical
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squared norm ‖Xβ‖2
n := [∑n

i=1(Xβ)2
i /n] by the theoretical squared norm ‖Xβ‖2.

We can then apply similar arguments as used in Lemma 15 of Loh and Wainwright
(2012). In Lemma 7.1, we no longer use the empirical squared norm but instead
the theoretical one. Theorem 7.2 needs virtually no adjustments.

6. Conclusions. We establish the first results of the �0-penalized MLE for
estimation of the minimal-edge I-MAP (the smallest DAG which can generate the
data-generating distribution) in the high-dimensional sparse setting. Thereby, we
avoid the faithfulness condition, and the strong faithfulness assumption (2) or its
restricted version; cf. Uhler et al. (2013); the latter is necessary for consistency of
the PC-algorithm [Spirtes, Glymour and Scheines (2000)]. The (restricted) strong
faithfulness condition is typically very strong [Uhler et al. (2013)] and hence, our
results contribute in relaxing such very restrictive assumptions.

Our main assumption is the beta-min Condition 3.5 (which implies the sparsity
Condition 3.4; see Section 4.3.1): as an example, the AR(1)-model in Section 2.2.1
fulfills it, even if p � n. The noise level is of the order

√
log(p)/n(p/s0 ∨ 1): the

additional factor (p/s0 ∨ 1) occurs due to estimation of p variances in �0. How-
ever, the interesting scenario is for the case where s0 ≥ const. p since s0 � p cor-
responds to a DAG where most nodes are isolated having no edges to other nodes;
thus, for s0 ≥ const. p, we obtain the usual noise level of the order

√
log(p)/n, as

in high-dimensional regression problems.
For the equal variance case with p = O(n/ log(n)) sufficiently small, our result

in Theorem 5.1 (and its comment below) is most clear in that we essentially only
require the beta-min Condition 3.5 for the true DAG B0, that is, a substantially
relaxed assumption, and the identifiability Condition 5.1 for the error variances:
we can then recover the true underlying unique DAG B0. Thus, we have identified
an important class of models where estimation of the order of variables and the
true underlying DAG is possible without requiring the badly limiting (restricted)
strong faithfulness condition (2).

7. Proofs.

7.1. A brief outline of the proofs. We first consider the proof of Theorem 3.1
which treats the case of unknown variances {(ω0

j )
2}. In Lemma 7.1 of Section 7.2,

we present a bound for
∑p

j=1[(ω̃0
j )

2/ω̂2
j − 1]2 and for

∑p
j=1 ‖X(β̂j − β̃0

j )‖2
n using

the empirical norm ‖v‖n := [∑n
i=1 v2

i /n]1/2, v ∈ R
n. The result follows from a

straightforward manipulation of likelihoods, but it is assumed there that one is on
the part of the probability space where the random components behave well. The
study of these random components is deferred to Sections 7.4.1, 7.4.2 and 7.4.3.
First, the bound of Lemma 7.1 is refined because it involves the number of edges
s̃ of the DAG formed by using the random permutation π̂ that the penalized maxi-
mum likelihood estimator chooses. Section 7.3 presents the tools to deal with this
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by exploiting the beta-min condition. The idea here is that if the Frobenius norm
between B̂ and B̃ is small, the number of edges of B̃ cannot be much larger than
those of B̂ .

A substantial part of the proof of Theorem 3.1 goes into showing that with large
probability we are on a set of the form

⋂3
k=0 Tk where the random components be-

have well. Let us first discuss T1. Here, a uniform inequality holds for the empirical
correlation between the projections and error terms in a Gram–Schmidt orthogo-
nalization. For a fixed permutation π it is rather standard to control these empirical
correlations. The new element is that we have to control them uniformly over all
permutations π in order to show that T1 has large probability. We do this in Sec-
tion 7.4.1, where the arguments used are explained just before Theorem 7.1. In the
set T2 all empirical variances of the error terms in a Gram–Schmidt orthogonaliza-
tion are close to their expectations. We show in Section 7.4.2 that uniformly over
all π this is true with large probability. The set T3 gives bounds for ‖β‖2 in terms
of ‖Xβ‖n and the number of nonzero coefficients in β . We show in Theorem 7.3
that T3 has large probability. This makes it possible to move from empirical norms
to Frobenius norms and moreover shows that with large probability the {ω̂2

j } are
bounded away from zero. The latter event is defined as the set T0.

For the proof of Theorem 5.1 where the variances (ω0
j )

2 are all known to be
equal to one, we use the same structure. We assume that we are on the set

⋂3
k=1 Tk ,

and use straightforward manipulations of likelihoods.

7.2. Bounds on a subset of the probability space. We present some explicit
bounds assuming we are on a set of the form

⋂3
k=0 Tk , where the sets Tk are defined

below. Then we show in Sections 7.4.1, 7.4.2 and 7.4.3 that each Tk , k = 0, . . . ,3,
has large probability for an appropriate choice of the constants and of the param-
eters λ1, λ2 and λ3 involved in the definition of these sets. In fact, we will show
that one can take λ1 	 λ2 	 λ3 	 √

logp/n.
Let for some constant K0 > 0,

T0 := {
ω̂2

j ∧ 1/ω̂2
j ≥ 1/K2

0 ,∀j
}
.

Let us write Xk ⊥ ε̃j if Xk and ε̃j are independent. For all π and j , define ε̃j (π) =
Xj −Xβ̃0

j (π), and B̃j (π) := {βj :Xk ⊥ ε̃j (π),∀βk,j �= 0}. Moreover, let B̃(π) :=
{B = (β1, . . . , βp) ∈ B :βj ∈ B̃j (π) ∀j}. For some δ1 > 0 and some λ1 > 0, write

T1 :=
{

2
p∑

j=1

∣∣ε̃T
j (π)X

(
βj − β̃0

j (π)
)∣∣/n

≤ δ1

p∑
j=1

∥∥X(
βj − β̃0

j (π)
)∥∥2

n

+ λ2
1
(
s + s̃(π)

)
/δ1,∀B = (β1, . . . , βp) ∈ B̃(π) ∀π

}
.
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We let for some λ2 > 0,

T2 :=
{ p∑

j=1

(‖ε̃j (π)‖2
n − |ω̃0

j (π)|2
|ω̃0

j (π)|2
)2

≤ 4λ2
2
(
p + s̃(π)

)
,∀π

}
,

where we recall the notation ‖v‖2
n := vT v/n, v ∈ R

n. Finally, for some δ3 > 0 and
some λ3 > 0, let T3 be the set

T3 := {‖Xβ‖n ≥ [δ3 − λ3
√

sβ]‖β‖2,∀β
}
.

Recall that sβ := #{βk �= 0}.

LEMMA 7.1. Define (B̃0, �̃0) := (B0(π̂),�0(π̂)) and s̃ := s
B̃0

. Assume that

Condition 3.1 holds. Suppose we are on
⋂2

k=0 Tk with 0 < δ1 < 1/K2
0 and 0 <

δ2 < 1/(2K4
0σ 4

0 ). Take the tuning parameter λ2 > λ2
1/δ1 + λ2

2/δ2. Then

(
1

K2
0

− δ1

) p∑
j=1

∥∥X(
β̂j − β̃0

j

)∥∥2
n +

(
1

2K4
0σ 4

0

− δ2

) p∑
j=1

( ω̂2
j − |ω̃0

j |2
|ω̂j |2

)2

+
(
λ2 − λ2

1

δ1
− λ2

2

δ2

)
ŝ

≤ λ2s0 + λ2
2(p + s̃)

δ2
+ λ2

1s̃

δ1
.

PROOF. Let ε̃ := ε̃(π̂). We apply the basic inequality

ln(	̂) + λ2ŝ ≤ ln(	0) + λ2s0

or equivalently

p +
p∑

j=1

log ω̂2
j + λ2ŝ ≤

p∑
j=1

‖εj‖2
n

|ω0
j |2

+
p∑

j=1

log
∣∣ω0

j

∣∣2 + λ2s0,

which gives, using log(det(�0)) = ∑p
j=1 log |ω0

j |2 = ∑p
j=1 log |ω̃0

j |2,

p∑
j=1

log
( ω̂2

j

|ω̃0
j |2

)
+ λ2ŝ ≤

p∑
j=1

(‖εj‖2
n

|ω0
j |2

− 1
)

+ λ2s0.

Since ω̂2
j ≥ 1/K2

0 (since we are on T0) and |ω̃0
j |2 ≤ σ 2

0 (by Condition 3.1), we

know that |ω̃0
j |2/ω̂2

j ≤ K2
0σ 2

0 . But then, using log(1 + x) ≤ x − x2/(2(1 + c)2),
−1 < x ≤ c, we get

log
( ω̂2

j

|ω̃0
j |2

)
= − log

( |ω̃0
j |2

|ω̂j |2
)

≥ −
( |ω̃0

j |2
|ω̂j |2 − 1

)
+ 1

2K4
0σ 4

0

( |ω̃0
j |2

|ω̂j |2 − 1
)2

.
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We plug this back into the basic inequality to get

p∑
j=1

ω̂2
j − |ω̃0

j |2
|ω̂j |2 + 1

2K4
0σ 4

0

( ω̂2
j − |ω̃0

j |2
|ω̂j |2

)2

+ λ2ŝ ≤
p∑

j=1

(‖εj‖2
n

|ω0
j |2

− 1
)

+ λ2s0.

Rewrite this to
p∑

j=1

‖X(β̂j − β̃0
j )‖2

n

ω̂2
j

+ 1

2K4
0σ 4

0

p∑
j=1

( ω̂2
j − |ω̃0

j |2
|ω̂j |2

)2

+ λ2ŝ

≤ 2
p∑

j=1

ε̃T
j X(β̂j − β̃0

j )/n

ω̂2
j

+
p∑

j=1

(‖εj‖2
n

|ω0
j |2

− 1
)

−
p∑

j=1

(‖ε̃j‖2
n − |ω̃0

j |2
|ω̂j |2

)
+ λ2s0.

We now apply

p∑
j=1

(‖ε̃j‖2
n − |ω̃0

j |2
|ω̂j |2

)

=
p∑

j=1

(‖ε̃j‖2
n − |ω̃0

j |2
|ω̃0

j |2
)

+
p∑

j=1

(‖ε̃j‖2
n − |ω̃0

j |2
|ω̃0

j |2
)( |ω̃0

j |2 − ω̂2
j

ω̂2
j

)
.

But, by the Cauchy–Schwarz inequality and using that we are on T2,∣∣∣∣∣
p∑

j=1

(‖ε̃j‖2
n − |ω̃0

j |2
|ω̃0

j |2
)( |ω̃0

j |2 − ω̂2
j

ω̂2
j

)∣∣∣∣∣
≤

( p∑
j=1

(‖ε̃j‖2
n − |ω̃0

j |2
|ω̃0

j |2
)2

)1/2( p∑
j=1

( |ω̃0
j |2 − ω̂2

j

ω̂2
j

)2
)1/2

≤ 2
√

(p + s̃)λ2
2

( p∑
j=1

( |ω̃0
j |2 − ω̂2

j

ω̂2
j

)2
)1/2

≤ (p + s̃)λ2
2

δ2
+ δ2

p∑
j=1

( |ω̃0
j |2 − ω̂2

j

ω̂2
j

)2

.

Invoking trace(	0�n) = trace(	̃0�n), that is,

p∑
j=1

‖εj‖2
n/

∣∣ω0
j

∣∣2 =
p∑

j=1

‖ε̃j‖2
n/

∣∣ω̃0
j

∣∣2,
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and using that we are on T1, we see that

(
1

K2
0

− δ1

) p∑
j=1

∥∥X(
β̂j − β̃0

j

)∥∥2
n

+
(

1

2K4
0σ 4

0

− δ2

) p∑
j=1

( ω̂2
j − |ω̃0

j |2
|ω̂j |2

)2

+
(
λ2 − λ2

1

δ1

)
ŝ

≤ λ2s0 + λ2
2(p + s̃)

δ2
+ λ2

1s̃

δ1
. �

7.3. Exploiting the beta-min condition.

LEMMA 7.2. Let s̃ = s
B̃

be the number of edges of B̃0 and ŝ = s
B̃0

be the

number of edges of B̂ . Suppose that for some λ̃,

‖B̂ − B̃0‖F ≤ λ̃
√

s̃

and that for some constant 0 ≤ η1 < 1 and 0 < η2
2 < 1 − η1

#
{∣∣β̃0

j,k

∣∣ ≥ λ̃/η2
} ≥ (1 − η1)s̃.

Then ŝ ≥ (1 − η1 − η2
2)s̃.

PROOF. Let

N := {
(k, j) :

∣∣β̃0
k,j

∣∣ ≥ λ̃/η2
}
, M := {

(k, j) :
∣∣β̂k,j − β̃0

k,j

∣∣ ≥ λ̃/η2
}
.

Then for (k, j) ∈ N ∩ Mc it holds that

|β̂k,j | ≥
∣∣β̃0

k,j

∣∣ − ∣∣β̂k,j − β̃0
k,j

∣∣ > 0,

so that ŝ ≥ |N ∩ Mc|. Since ‖B̂ − B̃0‖F ≤ λ̃
√

s̃, we must have∑
(k,j)∈N ∩M

∣∣β̂k,j − β̃0
k,j

∣∣2 ≤ ∑
(k,j)

∣∣β̂k,j − β̃0
k,j

∣∣2 = ‖B̂ − B̃0‖2
F ≤ λ̃2s̃,

whereas ∑
(k,j)∈N ∩M

∣∣β̂k,j − β̃0
k,j

∣∣2 ≥ |N ∩ M|λ̃2/η2
2.

Hence |N ∩ M| ≤ η2
2 s̃. This gives∣∣N ∩ Mc

∣∣ = |N | − |N ∩ M| ≥ (1 − η1)s̃ − η2
2 s̃ = (

1 − η1 − η2
2
)
s̃. �
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LEMMA 7.3. Suppose that for some δB > 0, δs > 0, λ0 > 0 and λ one has

δB‖B̂ − B̃0‖2
F + λ2δs ŝ ≤ λ2s0 + λ2

0s̃,

where s̃ ≥ s0. Let λ̃2δB ≥ λ2 + λ2
0 and assume that

#
{∣∣β̃0

j,k

∣∣ ≥ λ̃/η2
} ≥ (1 − η1)s̃.

Then

δB‖B̂ − B̃0‖2
F +

(
λ2δs − λ2

0

1 − η2
1 − η2

2

)
ŝ ≤ λ2s0

and ŝ ≥ (1 − η1 − η2
2)s0.

PROOF. Since s̃ ≥ s0, we find that

δB‖B̂ − B̃0‖2
F ≤ (

λ2 + λ2
0
)
s̃ ≤ δBλ̃2s̃.

This gives by Lemma 7.2 that ŝ ≥ (1 − η1 − η2
2)s̃. But then

δB‖B̂ − B̃0‖2
F +

(
λ2δs − λ2

0

1 − η1 − η2
2

)
ŝ ≤ λ2s0. �

7.4. The sets Tk , k = 0,1,2,3.

7.4.1. The set T1.

LEMMA 7.4. Let Z be a fixed n × m matrix and ε1, . . . , εn be independent
N (0, σ 2

0 )-distributed random variables. Then for all t > 0

P

(
sup

‖Zβ‖n≤1

∣∣εT Zβ
∣∣/n ≥ σ0(

√
2m/n +

√
2t/n)

)
≤ exp[−t].

PROOF. Assume without loss of generality that ZT Z/n = I and define Vk :=
εT Zk/(σ0

√
n). Then V1, . . . , Vp are independent and N (0,1)-distributed. It fol-

lows that for all N ∈ {2,3, . . .}, that E|V 2
k |N = (2N)!/(2NN !) ≤ N !. But then by

Bernstein’s inequality [see Bennett (1962)], for all t > 0,

P

(
m∑

k=1

(
V 2

k − EV 2
k

) ≥ 2
√

tm + 2t

)
≤ exp[−t].(9)

Now use that
∑m

j=1 EV 2
k = m. We get

P

(
m∑

k=1

V 2
k ≥ m + 2

√
tm + 2t

)
≤ exp[−t].
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But m + 2
√

tm + 2t ≤ (
√

2m + √
2t)2. Furthermore,

sup
‖Zβ‖n≤1

∣∣εT Zβ
∣∣/n = σ0√

n

√√√√ m∑
k=1

V 2
k /n.

�

We are dealing now with the problem of uniformly controlling over all permu-
tations π . We consider the local structure at each node of a DAG (B̃0(π), �̃0(π))

with B̃0(π) =: (β̃0
k,j (π)). Let S̃j (π) be the set of incoming edges at node j .

Given S̃j (π), the vector Xβ̃0
j (π) is the projection in L2(P ) of Xj on the linear

space spanned by {Xk}k∈S̃j (π)
. Moreover, ε̃j (π) is the anti-projection ε̃j (π) =

Xj − Xβ̃0
j (π). In other words (for j fixed) if the parents S̃j (π) at node j are

given, then the coefficients β̃0
k,j (π) and noise term ε̃j (π) are given as well. Also,

the set of variables Xk that are independent of ε̃j is then given. Recall that
B̃j (π) := {βj :Xk ⊥ ε̃j (π),∀βk,j �= 0}. Thus, for each fixed j , if S̃j (π) is given

then the local situation (ε̃j (π), β̃0
j (π), B̃j (π)) at node j is given.

Let �j(m) be the collection of all permutations giving DAGs (B̃0(π), �̃0(π))

with edges (S̃1(π), . . . , S̃p(π)) with |S̃j (π)| = m. If for some m ∈ {0,1, . . . , p},
we know that π ∈ �j(m); that is, we know that node j has m parents, so then
there are at most

(p
m

)
possibilities for the local situation at node j .

THEOREM 7.1. Assume Condition 3.1. Then for all t > 0,

P

(
max

π
sup

B∈B̃(π)

2
p∑

j=1

∣∣ε̃T
j (π)X

(
βj − β̃0

j (π)
)∣∣/n − δ1

p∑
j=1

∥∥X(
βj − β̃0

j (π)
)∥∥2

n

≥ 4σ 2
0 (sB + s̃(π))

nδ1
+ σ 2

0 (t + 2 logp)(sB + s̃(π))

nδ1

)

≤ exp[−t].

PROOF. Let Aj(π) be the event

Aj(π) :=
{
∃βj ∈ B̃j (π) : sup

‖X(βj−β̃0
j (π))‖n≤1

∣∣ε̃T
j (π)X

(
βj − β̃0

j (π)
)∣∣/n

≥ σ0

(√
2(sβj

+ s̃j (π))

n
+

√
2(t + s̃j (π) logp + 2 logp)

n

)}
.

Then by Lemma 7.4, for all t > 0, π and j

P
(
Aj(π)

) ≤ exp
[−(

t + s̃j (π) logp + 2 logp
)]

.
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We now let π vary over all permutations such that |S̃j (π)| = m. We then get

P

( ⋃
π∈�j (m)

Aj (π)

)
≤

(
p

m

)
exp

[−(t + m logp + 2 logp)
] ≤ exp

[−(t + 2 logp)
]
.

Next, we let π vary over all permutations. We get

P

(⋃
π

Aj (π)

)
≤

p∑
m=1

max
1≤m≤p

P

( ⋃
π∈�j (m)

Aj (π)

)

≤ p exp
[−(t + 2 logp)

]
≤ exp

[−(t + logp)
]
.

Finally

P

( p⋃
j=1

⋃
π

Aj (π)

)
≤ p max

j
P

(⋃
π

Aj (π)

)
≤ p exp

[−(t + logp)
] ≤ exp[−t].

Now, we use that for all δ1 > 0,

2σ0

p∑
j=1

(√
2(sj + s̃j )

n
+

√
2(t + s̃j + 2 logp)

n

)∥∥X(
βj − β̃0

j

)∥∥
n

≤ δ1

p∑
j=1

∥∥X(
βj − β̃0

j

)∥∥2
n + 4σ 2

0 (s + s̃)

nδ1
+ 4σ 2

0 (t + 2 logp)(s + s̃)

nδ1
,

where s = ∑p
j=1 sj , s̃ = ∑p

j=1 s̃j . �

7.4.2. The set T2.

THEOREM 7.2. Assume Condition 3.4. Then for all t > 0,

P

(
∃π :

p∑
j=1

(‖ε̃j (π)‖2
n − |ω̃0

j (π)|2
|ω̃0

j (π)|2
)2

≥ 8
(

pt + (1 + 8α̃)s̃(π) logp + 2p logp

n

)
+ 8

(
4p(t2 + log2 p)

n2

))

≤ 2 exp[−t].

PROOF. Define

Zj(π) := ‖ε̃j (π)‖2
n − |ω̃0

j (π)|2
|ω̃0

j (π)|2 .
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Using the same argument as in (9), we see that for each π , and for all t > 0,

P

(∣∣Zj(π)
∣∣ ≥ 2

(√
t

n
+ t

n

))
≤ 2 exp[−t].

Define Zj (π) := |Zj(π)|/2aj (π), where

aj (π) =
(√

t + s̃j (π) logp + log(1 + p) + logp

n

+ t + s̃j (π) logp + log(1 + p) + logp

n

)
.

It follows that

P

(
max

1≤j≤p
max

0≤m≤p
max

π∈�j (m)
Zj (π) ≥ 1

)

≤ 2p(p + 1)

(
p

m

)
exp

[−(
t + m logp + log(1 + p) + logp

)]
≤ 2 exp[−t].

Invoking log(1 + p) ≤ 2 logp, we see that with probability at least 1 − 2 exp[−t],
it holds that for all permutations π and all j ,

∣∣Zj(π)
∣∣ ≤ 2

√
t + s̃j (π) logp + 2 logp

n
+ t + s̃j (π) logp + 2 logp

n
,

which implies
p∑

j=1

∣∣Zj(π)
∣∣2 ≤ 4

p∑
j=1

(√
t + s̃j (π) logp + 2 logp

n
+ t + s̃j (π) logp + 2 logp

n

)2

≤ 8
(

pt + s̃(π) logp + 2p logp

n

)

+ 8
(4pt2 + 8

∑p
j=1 s̃2

j (π) log2 p + 4p log2 p

n2

)
.

Next, we insert that for all j , s̃j (π) ≤ α̃n/(logp), to find
p∑

j=1

s̃2
j (π) log2 p ≤

n∑
j=1

(
α̃n/(logp)

)
s̃j (π) log2 p = α̃s̃(π)n logp.

We then arrive at
p∑

j=1

∣∣Zj(π)
∣∣2 ≤ 8

(
pt + (1 + 8α̃)s̃(π) logp + 2p logp

n

)

+ 8
(

4p(t2 + log2 p)

n2

)
. �
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7.4.3. The sets T3 and T0.

THEOREM 7.3. Assume Conditions 3.1 and 3.2. For all t > 0, with probability
at least 1 − 2 exp[−t],

‖Xβ‖n ≥
[
3�min/4 −

√
2(t + logp)

n
− 3σ0

√
sβ logp

n

]
‖β‖2,

uniformly in all β ∈ R
p .

PROOF. We follow here the arguments used in Raskutti, Wainwright and Yu
(2010), which we slightly adjust to the style of the present paper. They show that
for δ′

3 = 1/4 [in fact for δ′
3 = o(1) as n → ∞], and for all r > 0,

E inf‖β‖1≤r,‖Xβ‖=1
‖Xβ‖n ≥ 1 − δ′

3 − 3σ0

√
logp

n
r.

Hence, for all 1 ≤ m ≤ p,

E inf
sβ≤m,‖β‖2=1

‖Xβ‖n ≥ (
1 − δ′

3
)
�min − 3σ0

√
m logp

n
.

Apply the concentration inequality given in Massart (2003) to find that for all
t > 0,

P

([
E inf

sβ≤m,‖β‖2=1
‖Xβ‖n

]
−

[
inf

sβ≤m,‖β‖2=1
‖Xβ‖n

]
≥

√
2t

n

)
≤ 2 exp[−t].

Thus

P

([(
1 − δ′

3
)
�min − 3σ0

√
m logp

n

]
−

[
inf

sβ≤m,‖β‖2=1
‖Xβ‖n

]
≥

√
2t

n

)
≤ 2 exp[−t]

and hence

P

(
∃β :

[(
1 − δ′

3
)
�min − 3σ0

√
sβ logp

n

]
‖β‖2 − ‖Xβ‖n ≥

√
2(t + logp)

n
‖β‖2

)

≤ 2 exp[−t]. �

LEMMA 7.5. Assume Conditions 3.1, 3.2, 3.3 and 3.4 and that

1/K0 := 3�min/4 −
√

2(t + logp)

n
− 3σ0

√
α + α̃ > 0.

Let for some t > 0,

T̃3 :=
{
‖Xβ‖n ≤

[
3�min/4 −

√
2(t + logp)

n
− 3σ0

√
sβ logp

n

]
‖β‖2,∀β

}
.
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Then P(T̃3) ≥ 1 − 2 exp[−t] and one has on T3, for all B = (β1, . . . , βp) ∈ B and
all π and all j , ∥∥X(

βj − β̃0
j (π)

)∥∥
n ≥ ∥∥βj − β̃0

j (π)
∥∥

2/K
2
0 .(10)

Moreover, on T̄3, also ω̂2
j ≥ 1/K2

0 for all j .

PROOF. Theorem 7.3 states that P(T̃3) ≥ 1 − 2 exp[−t]. Result (10) follows
immediately, since sβj

+ sβ̃0
j

≤ (α + α̃)n/ logp. For the last result, we define

β̂−
k,j := −β̂k,j for k �= j and β̂−

j,j = 1. Then on T̃3,

ω̂2
j = ∥∥Xβ̂−

j

∥∥2
n ≥ ∥∥β̂−

j

∥∥2
2/K

2
0 ≥ 1/K2

0 . �

7.5. Collecting the results.

LEMMA 7.6. Define (B̃0, �̃0) := (B0(π̂),�0(π̂)). Assume Conditions 3.1,
3.2, 3.3, 3.4 and 3.5. Suppose we are on

⋂3
k=0 Tk with 0 < δ1 < 1/K2

0 and
0 < δ2 < 1/(2K4

0σ 4
0 ) and δ3 − λ3

√
α + α̃

√
n/ logp ≥ 1/K0 > 0. Take the tuning

parameter λ2 > λ2
1/δ1 + λ2

2/δ2. Let

δB ≤ 1

K2
0

(
1

K2
0

− δ1

)
, δW ≤ 1

K2
0

(
1

2K4
0σ 4

0

− δ2

)
,

δs ≤
(

1 − λ2
1

λ2δ1
− λ2

2

λ2δ2

)
, λ2

0 := (p/s0 + 1)λ2
2

δ2
+ λ2

1

δ1
.

Let λ̃2δB := λ2 + λ2
0, and η2

2 := η2
0λ̃

2n/ logp = η2
0(λ

2 + λ2
0)(n/ logp)/δ2

B . As-
sume (

λ2δs − λ2
0

1 − η1 − η2
2

)
:= λ2δη > 0.

Then

δB‖B̂ − B̃0‖2
F + δW‖�̂ − �̃0‖2

F + λ2δηŝ ≤ λ2s0

and ŝ ≥ (1 − η1 − η2
2)s̃ ≥ (1 − η1 − η2

2)s0.

PROOF. This follows from Lemmas 7.1 and 7.3. �

LEMMA 7.7. Assume Conditions 3.1, 3.2, 3.3 and 3.4, with

3�min/4 −
√

2(t + logp)

n
− 3σ0

√
α + α̃ ≥ 1/K0 > 0.
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Take

λ2
1 := 4σ 2

0 (1 + t + 2 logp)

logp

logp

n
,

λ2
2 := 4

(
3 + 8α̃ + (t + 2 logp)

logp
+ 4(t2 + log2 p)

n logp

)
logp

n
,

λ2
3 := 9σ 2

0
logp

n
, δ3 := 3

4
�min −

√
2(t + logp)

n
.

Then

P

( 3⋂
k=0

Tk

)
≥ 1 − 5 exp[−t].

PROOF. This follows from combining Theorems 7.1, 7.2 and Lemma 7.5. �

THEOREM 7.4. Assume Conditions 3.1, 3.2, 3.3, 3.4 and 3.5. Let us take t =
logp, giving α0 = 4/p (suppose p is large). Take n sufficiently large, and logp/n

bounded. Let

c1 := 96, c2 := 3840,

c = 4
(

(p/s0 + 1)c2σ
2
0

�4
min

+ c1σ
2
0

�2
min

)
+ 2

(
c1σ

2
0

�2
min

+ c2σ
2
0

�4
min

)
.

Some possible choices for the constants are

α = α̃ = �2
min

288σ 2
0

, K0 := 2

�min
,

δ1 := �2
min

8
, δ2 := �4

min

64σ 4
0

, δ3 := �min

2
,

λ2 := c
logp

n
, λ2

1 = 12σ 2
0

logp

n
, λ2

2 = 60
logp

n
, λ2

3 = 9σ 2
0

logp

n
.

Then

δB = �4
min

32
, δW = �6

min

256σ 4
0

, δs =
(

1 − c1σ
2
0

c�2
min

− c2σ
4
0

c�4
min

)
.

We let

λ2
0 :=

(
(p/s0 + 1)c2σ

4
0

�4
min

+ c1σ
2
0

�2
min

)
logp

n
,

λ̃2 =
(
c + (p/s0 + 1)c2σ

4
0

�4
min

+ c1σ
2
0

�2
min

)
32

�4
min

logp

n
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and

δη = 1

2
, η1 = 0, 2η2

0 =
(
c + (p/s0 + 1)c2σ

4
0

�4
min

+ c1σ
2
0

�2
min

)−1

,

η2
2 = η2

0

(
c + (p/s0 + 1)c2σ

4
0

�4
min

+ c1σ
2
0

�2
min

)
32

�4
min

.

PROOF. This follows from using some bounds and exact choices in Lemmas
7.6 and 7.7. In particular, with λ2 = c logp/n, we take λ̃2 = (λ2 + λ2

0)/δB . With
η1 = 0 and δη = 1/2, the equation

(
λ2δs − λ2

0

1 − η2
2

)
= λ2

2

gives

c

(
1 − c1σ

2
0

c�2
min

− c2σ
4
0

c�4
min

)

−
(

(p/s0 + 1)c2σ
4
0

�4
min

+ c1σ
2
0

�2
min

)

×
(

1 − η1 − η2
0

(
c + (p/s0 + 1)c2σ

4
0

�4
min

+ c1σ
2
0

�2
min

))−1

= c

2
.

With

2η2
0 =

(
c + c2σ

4
0

�4
min

+ c1σ
2
0

�2
min

)−1

we have to solve for c

c

(
1 − c1σ

2
0

c�2
min

− c2σ
4
0

c�4
min

)
− 2

(
(p/s0 + 1)c2σ

4
0

�4
min

+ c1σ
2
0

�2
min

)
= c

2
.

This yields

c = 4
(

(p/s0 + 1)c2σ
4
0

�4
min

+ c1σ
2
0

�2
min

)
+ 2

(
c1σ

2
0

�2
min

+ c2σ
4
0

�4
min

)
. �

7.6. Proof of Theorem 5.1. We investigate what happens on the set
⋂3

k=1 T3

defined in Section 7.2. The results in Section 7.4 say that
⋂3

k=1 Tk has probability
at least 4 exp[−t] for a proper choice of the constants and parameters involved.
Theorem 5.1 then follows directly.
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LEMMA 7.8. Assume Conditions 3.1, 5.1 and 5.2. Suppose we are on⋂3
k=1 Tk , with

λ2 > λ2
1/δ1,

δ3 − λ3
√

2α∗ ≥ 1

K0
> 0

and (
1

2σ 4
0

− δ2

)
≥ ηω

(
2λ2

1

δ2
+ λ2

1

δ1
+ λ2

)
α∗n

logp
.(11)

Then π̂ = π0 and(
1 − δ1

K2
0

)
‖B̂ − B0‖2

F +
(
λ2 − λ2

1

δ1

)
ŝ ≤

(
λ2 + λ2

1

δ1

)
s0.

PROOF. We have
p∑

j=1

‖Xj − Xβ̂j‖2
n + λ2ŝ ≤

p∑
j=1

‖εj‖2
n + λ2s0 =

p∑
j=1

‖ε̃j‖2
n

|ω̃0
j |2

.

So we find
p∑

j=1

∥∥X(
β̂j − β̃0

j

)∥∥2
n + λ2ŝ

≤ 2
p∑

j=1

ε̃T
j X

(
β̂j − β̃0

j

)
/n +

p∑
j=1

‖ε̃j‖2
n

(
1

|ω̃0
j |2

− 1
)

+ λ2s0.

We have
p∑

j=1

‖ε̃j‖2
n

(
1

|ω̃0
j |2

− 1
)

=
p∑

j=1

‖ε̃j‖2
n − |ω̃0

j |2
|ω̃0

j |2
(∣∣ω̃0

j

∣∣2 − 1
) +

p∑
j=1

(
1 − ∣∣ω̃0

j

∣∣2)
.

We know that

log
(
det(�0)

) =
p∑

j=1

log
∣∣ω̃0

j

∣∣2 =
p∑

j=1

log
∣∣ω0

j

∣∣2 = 0,

since |ω0
j |2 = 1 for all j . Moreover

log(1 + x) ≤ x − 1

2(1 + c)2 x2, −1 < x ≤ c.

So, since |ω̃0
j |2 ≤ σ 2

0 ,

log
∣∣ω̃0

j

∣∣2 ≤ (∣∣ω̃0
j

∣∣2 − 1
) − 1

2�4
0

(∣∣ω̃0
j

∣∣2 − 1
)2

.
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Hence

0 ≤
p∑

j=1

(∣∣ω̃0
j

∣∣2 − 1
) − 1

2σ 4
0

p∑
j=1

(∣∣ω̃0
j

∣∣2 − 1
)2

.

This gives
p∑

j=1

(
1 − ∣∣ω̃0

j

∣∣2) ≤ − 1

2σ 4
0

p∑
j=1

(∣∣ω̃0
j

∣∣2 − 1
)2

.

Therefore
p∑

j=1

∥∥X(
β̂j − β̃0

j

)∥∥2
n + 1

2σ 4
0

p∑
j=1

(∣∣ω̃0
j

∣∣2 − 1
)2 + λ2ŝ

≤ 2
p∑

j=1

ε̃T
j X

(
β̂j − β̃0

j

)
/n + λ2s0 +

p∑
j=1

‖ε̃j‖2
n − |ω̃0

j |2
|ω̃0

j |2
(∣∣ω̃0

j

∣∣2 − 1
)

≤ 2
p∑

j=1

ε̃T
j X

(
β̂j − β̃0

j

)
/n + λ2s0 + λ2

2p

δ2
+ δ2

p∑
j=1

(∣∣ω̃0
j

∣∣2 − 1
)2

,

where we invoked that we are on the set T2. We find
p∑

j=1

∥∥X(
β̂j − β̃0

j

)∥∥2
n +

(
1

2σ 4
0

− δ2

) p∑
j=1

(∣∣ω̃0
j

∣∣2 − 1
)2 + λ2ŝ

≤ 2
p∑

j=1

ε̃T
j X

(
β̂j − β̃0

j

)
/n + λ2s0 + λ2

2p

δ2
.

This gives in a next step, using that we are on T1,

(1 − δ1)

p∑
j=1

∥∥X(
β̂j − β̃0

j

)∥∥2
n +

(
1

2σ 4
0

− δ2

) p∑
j=1

(∣∣ω̃0
j

∣∣2 − 1
)2 + λ2ŝ

≤ λ2
2(p + s̃)

δ2
+ λ2

1(s̃ + ŝ)

δ1
+ λ2s0.

Hence, using that we are on T3 and invoking Condition 5.2,

1

K2
0

(1 − δ1)‖B̂ − B0‖2
F +

(
1

2σ 4
0

− δ2

) p∑
j=1

(∣∣ω̃0
j

∣∣2 − 1
)2 +

(
λ2 − λ2

1

δ1

)
ŝ

≤ λ2
2(p + s̃)

δ2
+ λ2

1s̃

δ1
+ λ2s0

≤
(

2λ2
2

δ2
+ λ2

1

δ1
+ λ2

)
p2,
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where we use that s̃ ≤ p2 and s0 ≤ p2 (and also p ≤ p2). Since (using again
Condition 5.2) p logp/n ≤ α∗, and

p∑
j=1

(|ω̃j |2 − 1
)2

> p/ηω if π̂ �= π0,

find that if π̂ �= π0,(
1

2σ 4
0

− δ2

)
p

ηω

<

(
2λ2

2

δ2
+ λ2

1

δ1
+ λ2

)
α∗

n

logp
,

which is in contradiction with Condition 5.1 and the further, condition (11) im-
posed in this lemma. So we must have π̂ = π0, and thus ω̃0

j = 1 for all j . The

result now follows from restarting the proof with ω̃0
j = 1 for all j plugged in. �
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