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1 Introduction

Extensive theory has been established in recent years for causal inference based on
directed acyclic graph (DAG) models. A popular method for estimating a DAG model
from observational data employs partial correlation testing to infer the conditional
independence relations in the model. In this paper, we apply algebraic geometry and
singularity theory to analyze partial correlations in the Gaussian case. The objects of
our study are algebraic hypersurfaces in the parameter space of a given graph that
encode conditional independence statements.

We begin with definitions for graphical models in statistics. A DAG is a pair
G = (V, E) consisting of a set V of nodes and a set E of directed edges with no
directed cycle. We usually take V = {1, 2, . . . , p} and associate random variables
X1, X2, . . . , X p with the nodes. Directed edges are denoted by (i, j) or i → j . The
skeleton of a DAG G is the underlying undirected graph obtained by removing the
arrowheads. A node i is an ancestor of j if there is a directed path i → · · · → j , and
a configuration i → k, j → k is a collider at k. Finally, we assume that the vertices
are topologically ordered, that is, (i, j) ∈ E implies i < j .

Every DAG G specifies a Gaussian graphical model as follows. The adjacency
matrix AG is a strictly upper triangular matrix whose entry in row i and column j is a
parameter ai j if (i, j) ∈ E and is zero if (i, j) �∈ E . The Gaussian graphical model is
defined by the structural equation model X = AT

G X + ε, where X = (X1, . . . , X p)
T .

We assume that ε ∼ N (0, I ), where I is the p× p-identity matrix. Then the concen-
tration matrix of this model equals

K = (AG − I )(AG − I )T .

Since det(K ) = 1, the covariance matrix � = K−1 is equal to the adjoint of K . The
entries of the symmetric matrices K and � are polynomials in the parameters ai j . Our
parameter space for this DAG model will always be a full-dimensional subset � of
R
|E |.
For any subset S ⊂ V and distinct elements i, j in V \S, we represent the conditional

independence statement i⊥⊥ j | S by an almost-principal minor of either K or �. By
this we mean a square submatrix whose sets of row and column indices differ in exactly
one element. To be precise, i ⊥⊥ j | S holds for the multivariate normal distribution
with concentration matrix K if and only if the submatrix Ki R, j R is singular, where
R = V \(S ∪ {i, j}) and i R = {i} ∪ R. The determinant det(Ki R, j R) is a polynomial
in (ai j )(i, j)∈E . We are interested in the hypersurface in R

|E | defined by the vanishing
of this polynomial. Indeed, the partial correlation corr(i, j |S) is up to sign equal to
the algebraic expression

det(Ki R, j R)
√

det(Ki R,i R) · det(K j R, j R)
. (1)

Since the principal minors under the square root sign are strictly positive,
corr(i, j |S) = 0 if and only if det(Ki R, j R) = 0. If this holds for all a ∈ R

|E |,
then i⊥⊥ j | S for G and we say that i is d-separated from j given S. This translates
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into a combinatorial condition on the graph G as follows [16, §2.3.4]. An undirected
path P from i to j d-connects i and j given S if

(a) Every noncollider on P is not in S;
(b) Every collider on P is in S or an ancestor of a node in S.

If G has no path that d-connects i and j given S, then i and j are d-separated given
S, and det(Ki R, j R) ≡ 0 as a function of a. The weight of a path P is the product of
all edge weights ars along this path. It was shown in [17, Eq. (11)] that the numerator
det(Ki R, j R) in (1) is a linear combination, as in (5), of the weights of all paths that
d-connect i to j given S.

The primary objects of this study are the following subsets of the parameter space:

Tubei, j |S(λ) = {ω ∈ � : | corr(i, j |S)| ≤ λ}. (2)

Here corr(i, j |S) is a function of the parameter ω [denoted (ai j )(i, j)∈E) earlier] in the
space � ⊂ R

|E |, λ is a parameter in [0, 1], and (i, j, S) is a triple, where i and j
are d-connected given S. These “tubes” can be seen as hypersurfaces that have been
fattened up by a factor that depends on λ and the position on the hypersurface (Fig. 3).
The volume of Tubei, j |S(λ) with respect to a given measure, or prior, ϕ(ω) dω on
� ⊂ R

|E | is represented by the integral

Vi, j |S(λ) =
∫

Tubei, j |S(λ)

ϕ(ω) dω. (3)

In this paper we study the asymptotics of this integral when the parameter λ is close
to 0.

Two applications in statistics are our motivation. The first concerns the strong-
faithfulness assumption for algorithms that learn Markov equivalence classes of DAG
models by inferring conditional independence relations. The PC algorithm [16] is a
prominent instance. Our setup is exactly as in [17]. The Gaussian distribution with
concentration matrix K is λ-strong-faithful to a DAG G if, for any S ⊂ V and i, j /∈ S,
we have | corr(i, j |S) | ≤ λ if and only if i is d-separated from j given S. We write
VG(λ) for the volume of the region in � representing distributions that are not λ-
strong-faithful. In other words, VG(λ) is the volume of the union of all tubes in � that
correspond to non-d-separated triples (i, j, S).

Zhang and Spirtes [19] proved uniform consistency of the PC algorithm under the
strong-faithfulness assumption with λ � 1/

√
n, provided the number of nodes p is

fixed and the sample size n → ∞. In a high-dimensional, sparse setting, Kalisch
and Bühlmann [11] require strong faithfulness with λ � √

deg(G) log(p)/n, where
deg(G) denotes the maximal degree (i.e., sum of indegree and outdegree) of nodes in
G.

To understand the properties of the PC algorithm for a large sample size n, it is
essential to determine the asymptotic behavior of the unfaithfulness volume VG(λ)

when λ tends to 0. Given a prior ϕ over the parameter space, VG(λ) is the prior
probability that the true parameter values violate λ-strong faithfulness. Thus 1−VG(λ)
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for λ � 1/
√

n describes the prior probability that the PC algorithm is able to recover
the true graph. We shall see in Example 4.8 that VG(λ) depends on the choice of the
parameter space � and the prior ϕ.

We shall address the issue of computing VG(λ) as λ → 0. This will be done
using the concept of real log canonical thresholds (RLCTs) [1,14,18]. Our Sect. 3
establishes the existence of positive constants �, m, C (which depend on G and ϕ)
such that, asymptotically for λ→ 0,

VG(λ) ≈ C · λ� · (− ln λ)m−1,

Vi, j |S(λ) ≈ C ′ · λ�′ · (− ln λ)m′−1. (4)

[See (9) for an exact definition of ≈.] This refines the results in [17] on the growth of
VG(λ) via the geometry of the correlation hypersurfaces {det(Ki R, j R) = 0}. Whereas
[17] focused on developing bounds on VG(λ) for the low-dimensional and the high-
dimensional case and showed the importance of the number and degrees of these
hypersurfaces, here we analyze the exact asymptotic behavior of VG(λ) for λ → 0
and G fixed and demonstrate the importance of the singularities of these hypersurfaces.
Singularities get fattened up much more than the smooth parts of the hypersurface,
and this increases the volumes (4) substantially.

Our second application concerns stratification bias in causal inference (e.g., [7,8]).
Here, the volume Vi, j |S(λ) being large is not a problematic feature but is in fact
desired. Suppose we want to study the effect of an exposure E on a disease outcome
D. If there is an additional variable C such that D → C ← E , then stratifying (i.e.,
conditioning) on C tends to change the association between E and D. This can lead
to biases in effect estimation. This is known as collider bias. On the other hand, if
D← C → E holds, then C is a confounder, and stratifying on C corresponds to bias
removal. In certain larger graphs, such as Greenland’s bow-tie example [7], stratifying
on C removes confounder bias but at the same time introduces collider bias. To decide
whether one should stratify on such a variable C , it is important to understand the
partial correlations involved. In this application, the volume Vi, j |S(λ) can be viewed
as the cumulative distribution function of the prior distribution of the partial correlation
corr(i, j |S) implied by the prior distribution on the parameter space, and we compare
the two cumulative distribution functions VE,D|C (λ) and VE,D(λ).

In this paper we examine Vi, j |S(λ) from a geometric perspective, and we demon-
strate how this volume can be calculated using tools from singular learning theory. To
derive the asymptotics (4), the main player is the correlation hypersurface, which is the
locus in � where corr(i, j |S) vanishes. The first question is whether this hypersurface
is smooth and, if not, whether one needs to analyze the nature of its singularities. We
study these questions for various classes of interesting causal models using methods
from computational algebraic geometry.

The remainder of this paper is organized as follows. In Sect. 2 we introduce the
families of DAGs that we will be working with throughout. Example 2.1 illustrates
the algebraic computations that are involved in our analysis. We also discuss some
simulation results, which indicate the importance of singularities when studying the
volume VG(λ) of strong-unfaithful distributions. Sect. 3 presents the connection to
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singular learning theory [14,18] and explains how this theory can be used to compute
the volumes of the tubes Tubei, j |S(λ). Example 3.1 illustrates our theoretical results
for some very simple polynomials in two variables.

In Sect. 4 we develop algebraic algorithms for analyzing the singularities of the
correlation hypersurfaces. We show that, for the polynomials det(Ki R, j R) of interest,
the real singular locus is often much simpler than the complex singular locus. For
instance, Theorem 4.1 states that these hypersurfaces are always smooth for complete
DAGs with up to six nodes. In Sect. 5 we study the singularities and volumes (3) for
trees without colliders.

Section 6 focuses on our second application, namely, bias reduction in causal infer-
ence. Problems 6.2 and 6.7 offer precise versions of conjectures by Greenland [7],
in terms of comparing different volumes Vi, j |S(λ) for fixed G. We establish some
instances of these conjectures.

In Sect. 7 we introduce more advanced methods, based on the resolution of singu-
larities [9,10], for finding the exponents � and m in (4). Finally, in Sect. 8 we present
some new results on computing the constants C and C ′ in our asymptotics (4) for tube
volumes.

2 Four Classes of Graphs

In this article we will be primarily working with four classes of DAGs:

(i) Complete graphs: we denote the complete DAG on p nodes by K p. The corre-
sponding matrix AK p is strictly upper triangular, and all

(p
2

)
parameters ai j are

present.
(ii) Trees: we call a DAG G a tree graph if the skeleton of G is a rooted tree and

all edges point away from the root (i.e., G has no colliders). We are particularly
interested in the most extreme trees, namely, star and chainlike graphs. We denote
the star graph shown in Fig. 1a by Starp and the chainlike graph shown in Fig. 1b
by Chainp.

(iii) Complete tripartite graphs: let A, B ⊂ V , with A ∩ B = ∅. Then we denote by
A⇒ B the complete bipartite graph where (a, b) ∈ E for all a ∈ A and b ∈ B.
A complete tripartite graph is denoted by Tripartp,p′ with 1 ≤ p′ ≤ p − 3. It
corresponds to the DAG {1, 2} ⇒ {3, . . . , p − p′} ⇒ {p − p′ + 1, . . . , p} and
is shown in Fig. 1c.

(a) (b) (c) (d)

Fig. 1 Various classes of graphs
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(iv) Bow ties: we define a bow tie as a complete tripartite graph Tripartp,2 with two
additional edges, namely (1, p − 1) and (2, p). A bow tie is denoted by Bowp

and is shown in Fig. 1d. Bow ties with p = 5 feature prominently in Greenland’s
study [7].

The following example serves as a preview to the topics covered in this paper.

Example 2.1 We illustrate our objects of study for the tripartite graph G = Tripart6,2.
Since the error variances are assumed to be fixed at 1, this DAG model has eight free
parameters, namely, the unknowns in the matrix

AG =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 a13 a14 0 0
0 0 a23 a24 0 0
0 0 0 0 a35 a36
0 0 0 0 a45 a46
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The covariance matrix � equals the inverse (or adjoint) of the concentration matrix

K =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a2
13 + a2

14 + 1 a13a23+a14a24 −a13 −a14 0 0
a13a23+a14a24 a2

23 + a2
24 + 1 −a23 −a24 0 0

−a13 −a23 a2
35 + a2

36 + 1 a35a45+a36a46 −a35 −a36

−a14 −a24 a35a45+a36a46 a2
45 + a2

46 + 1 −a45 −a46

0 0 −a35 −a45 1 0
0 0 −a36 −a46 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

One conditional independence statement of interest is 1 ⊥⊥ 2 | {5, 6}. Its correlation
hypersurface in R

8 is defined by the almost-principal minor in � with rows 1, 5, and
6 and columns 2, 5, and 6, or the almost-principal minor in K with rows 1, 3, and 4
and columns 2, 3, and 4. That determinant equals

f = (1+ a2
46)a13a23a2

35 + (1+ a2
45)a13a23a2

36 + (1+ a2
35)a14a24a2

46

+ (1+a2
36)a14a24a2

45 + a13a24a35a45 + a13a24a36a46

+ a14a23a35a45 + a14a23a36a46 − 2a13a23a35a36a45a46

− 2a14a24a35a36a45a46. (5)

This is a weighted sum of all paths that d-connect nodes 1 and 2 given {5, 6}.
The first term in formula (5) for f = det(K134,234) corresponds to the path 1 →
3 → 5 ← 3 ← 2 in G = Tripart6,2, and the last term corresponds to the path
1→ 4→ 5← 3→ 6← 4← 2.

Let ϕ denote a prior on the parameter space. For this example we take ϕ to be the
Lebesgue probability measure on the cube � = [−1,+1]8. The expression V1,2|56(λ)
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defined in (3) is the volume of the region of parameters a ∈ � that satisfy

| corr(1, 2 | 5, 6)| =
∣
∣
∣
∣
∣

f (a)
√

det(K134,134)
√

det(K234,234)

∣
∣
∣
∣
∣
≤ λ.

As a function in λ, the volume V1,2|56(λ) is a cumulative distribution function on
[0,∞). Our aim in this article is to determine the asymptotics of such a function for
λ→ 0.

In Sect. 3 we shall explain the form of the asymptotics that is promised in (4). To
find the exponents � and m, the first step is to run the algebraic algorithm in Sect. 4.
This answers the question of whether the hypersurface in � defined by f = 0 has any
singular points. The set of such points, known as the singular locus, is the zero set in
� of the ideal

J = 〈
f ,

∂ f

∂a13
,

∂ f

∂a14
,

∂ f

∂a23
,

∂ f

∂a24
,

∂ f

∂a35
,

∂ f

∂a36
,

∂ f

∂a45
,

∂ f

∂a46

〉
.

The tools of Sect. 4 reveal that its real radical [15] is the intersection of three prime
ideals:

R
√

J =
〈

entries of

(
a13 a14
a23 a24

)
·
(

a35 a36
a45 a46

) 〉

= 〈a13, a14, a23, a24〉 ∩ 〈a35, a36, a45, a46〉
∩
〈
2×2 minors of

(
a13 a23 a45 a46
a14 a24 −a35 −a36

)〉
.

Thus the hypersurface { f = 0} is singular. Its singular locus decomposes into three
irreducible varieties, namely, two linear spaces of dimension 4 and one determinantal
variety of dimension 5. In Sect. 6 we will return to this example, with a focus on a
statistical application of the cumulative distribution function V1,2|56(λ). We will then
show that (�, m) equals (1, 1). ��

This paper extends the work of Uhler et al. in [17] on the geometry of the strong-
faithfulness assumption in the PC algorithm. Upper and lower bounds on the volume
VG(λ) of the unfaithful region TubeG(λ) for the low- and high-dimensional settings
were derived in [17, §5]. These bounds involved only the number |E | of parameters
and the degrees of the correlation hypersurfaces {det(Ki R, j R) = 0}. The new insight
in the current paper is that singularities are essential for the asymptotic behavior of
VG(λ) for λ→ 0.

What led us to this insight was taking a closer look at the simulation results for trees.
In [17, §6.1.1] trees were still treated as one single class. We subsequently examined
the difference between stars and chains, as depicted in Fig. 1a, b. Our simulation results
for Star p and Chainp are shown in Fig. 2. We shall now explain the curves in these
diagrams.

The left diagram in Fig. 2 is for p = 6 nodes and the right diagram is for p = 10.
Each curve is the graph of the cumulative distribution function VG(λ), but with the
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Fig. 2 Proportion of λ-strong-unfaithful distributions for chains compared to stars

x-axis transformed into a logarithmic scale (with base 10). Thus we depict the graph
of the function

(−∞, 0] → [0, 1], x �→ VG(10x ). (6)

The red curve is for G = Chainp and the blue curve for G = Star p. These curves
were computed by simulation: we sampled the parameter a from the uniform distrib-
ution on [−1, 1]p−1 and recorded the proportion of trials that landed in TubeG(λ) for
various values of λ. The diagrams show clearly that VG(λ) is smaller for star graphs
than for chainlike graphs.

A theoretical explanation for these experimental results will be given in Sect. 5.
Our asymptotic theory predicts the behavior of these curves as x = log(λ) tends to
−∞. The point is that the correlation hypersurfaces for chainlike graphs have deeper
singularities than those for star graphs. The equation of any such hypersurface for a
tree is the product of a monomial and a strictly positive polynomial. This enables us
to apply Proposition 3.5. In Theorem 5.1 and Corollary 5.3 we shall determine the
constants �, m, and C of (4) exactly when the graph G is a tree. We shall also address
the question of how to obtain �, m, and C from simulations.

Before we get to graphical models, however, we first need to develop the mathe-
matics needed to analyze VG(λ). This will be done, in a self-contained manner, in the
next section.

3 Computing the Volume of a Tube

We now introduce the basics regarding the computation of integrals like the one in (3),
and we explain why asymptotic formulas like (4) can be expected. While this section
is foundational for what is to follow, no reference to any statistical application is made
until Theorem 3.8. It can be read from first principles and might be of independent
interest to a wider audience.
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(a) (b)

(c) (d)

Fig. 3 Tubes for various polynomials in two variables

Let � ⊂ R
d be a compact, full-dimensional, semianalytic subset, and consider a

probability measure ϕ(ω)dω on �, where dω is the standard Lebesgue measure and
ϕ : �→ R a real-analytic function. Also, fix an analytic function f : �→ R whose
hypersurface {ω : f (ω) = 0} has a nonempty intersection with the interior of �. We
are interested in the volume V (λ) with respect to the measure ϕ of the region

Tube(λ) = {
ω ∈ � : | f (ω)| ≤ λ

}
.

Here λ > 0 is a parameter that is assumed to be small. In later sections, we often take
� to be the cube [−1,+1]d , with ϕ its Lebesgue probability measure, and f is usually
a polynomial.

The asymptotics of the volume function V (λ) depends on the singularities of the
hypersurface { f = 0}. This phenomenon is illustrated in Fig. 3. Our measure for the
complexity of the singularities of f is a pair (�, m) of nonnegative real numbers. That
pair is the real log-canonical threshold (RLCT) of f . It is related to the volume V (λ)

for small values of λ by the formula

V (λ) ≈ C λ�(− ln λ)m−1. (7)

Here C is a positive real constant whose study we shall defer until Sect. 8.
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Example 3.1 Let d = 2 and ϕ be the Lebesgue probability measure on the square
� = [−1,+1]2. Our problem is to compute the area of the tube {(x, y) ∈ � :
| f (x, y)| ≤ λ}. Here f (x, y) is one of the four simple polynomials below whose
tubes are shown in Fig. 3.

(a) f (x, y) = x : the corresponding tube is a rectangle, and its area equals

V (λ) = λ.

Thus, in this example, we have (�, m) = (1, 1) and C = 1. For other lines, the
value of C will change. Proposition 3.6 below shows that (�, m) = (1, 1) for
smooth hypersurfaces.

(b) f (x, y) = xy: the tube in Fig. 3b consists of four copies of a region that is the
union of a small rectangle and a certain area under a hyperbola. Using calculus,
we find

V (λ) = 4

⎛

⎝λ+
1∫

λ

λ

x
dx

⎞

⎠ 1

4
= λ(− ln λ)+ λ.

The logarithm function appears in this case. We have (�, m) = (1, 2) and C = 1.
(c) f (x, y) = x2 y3: the corresponding tube is shown in Fig. 3c. Its area equals

V (λ) = 4

⎛

⎜
⎝λ1/2 +

1∫

λ1/2

λ1/3x−2/3dx

⎞

⎟
⎠

1

4
= 3λ1/3 − 2λ1/2.

Thus, the RLCT equals (�, m) = ( 1
3 , 1), and we have C = 3. See Proposition 3.5

for a formula for (�, m) when f is a monomial in any number of variables.
(d) f (x, y) = xy(x + y)(x − y): the corresponding tube is shown in Fig. 3d. This

example is a slight generalization of Fig. 3b. As in Fig. 3b there is just one
singularity at the origin, given by the intersection of lines. Computing the area
V (λ) is more challenging. In Example 7.3 we shall see that the RLCT equals
(�, m) = ( 1

2 , 1).

For general bivariate polynomials f (x, y) we are facing a hard calculus problem,
namely, integrating the function y = y(x) that is defined implicitly by f (x, y) = λ.
We can approach this by expanding y as a Puiseux series in λ whose coefficients
depend on x . Integrating these coefficients leads to asymptotic formulas in λ. These
are consistent with what follows. ��

We now return to the general setting defined at the beginning of this section. Let W
be a random variable taking values in � with distribution ϕ. The volume V (λ) with
respect to the measure ϕ can then be viewed as the cumulative distribution function
of the random variable f (W ). The corresponding probability distribution function
v(λ) = dV/dλ is called the state density function. Its Mellin transform is known as
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the zeta function of f . It is denoted by

ζ(z) =
∞∫

0

λ−zv(λ)dλ =
∫

�

| f (ω)|−zϕ(ω)dω for z ∈ C.

According to asymptotic theory [1,14,18], our volume has the complete asymptotic
series expansion

V (λ) ≈
∑

�

d∑

m=1

C�,mλ�(− ln λ)m−1. (8)

Here the index � runs over some arithmetic progression of positive rational numbers
and d is the dimension of the parameter space �. Equation (8) is valid for sufficiently
small λ > 0. To be precise, writing V (λ) ≈∑∞

i=1 gi (λ), where g1(λ) > g2(λ) > · · ·
for small λ, means that

lim
λ→0

V (λ)−∑k
i=1 gi (λ)

gk(λ)
= 0 for each positive integer k. (9)

Using the little-o notation, this is equivalent to V (λ) =∑k
i=1 gi (λ)+ o(gk(λ)) as

λ → 0 for each positive integer k. It is a common misconception to think that the
infinite series converges to V (λ) for each fixed λ when λ is small. Rather, it means
that for each fixed k, the k-term approximation for V (λ) gets better as λ→ 0. We will
primarily be interested in the first term approximation (7).

Definition 3.2 ([14, §4.1], [18, §7.1]) Here we define the RLCT (�, m) of f over �

with respect to ϕ. This is a pair in Q+ × Z+, which we denote by RLCT�( f ;ϕ). It
measures the complexity of the singularities of the hypersurface defined by f (ω) = 0.
The following four definitions of RLCT�( f ;ϕ) = (�, m) are known to be equivalent:

(i) For large N > 0, the Laplace integral

Z(N ) =
∫

�

e−N | f (ω)| ϕ(ω) dω

is asymptotically C N−�(ln N )m−1 for some constant C .
(ii) The zeta function

ζ(z) =
∫

�

| f (ω)|−z ϕ(ω) dω

has its smallest pole at z = �, and that pole has multiplicity m.
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(iii) For small λ > 0, the volume function

V (λ) =
∫

| f (ω)|≤λ

ϕ(ω) dω

is asymptotically C λ�(− ln λ)m−1 for some constant C .
(iv) For small λ > 0, the state density function

v(λ) = d

dλ

∫

| f (ω)|≤λ

ϕ(ω) dω

is asymptotically Cλ�−1(− ln λ)m−1 for some constant C .

If the real analytic hypersurface {ω ∈ � : f (ω) = 0} is empty, then we set � = ∞
and leave m undefined. We say that (�1, m1) < (�2, m2) if �1 < �2 or if �1 = �2
and m1 > m2. Hence, the pairs are ordered reversely by the size of λ�(− ln λ)m−1 for
sufficiently small λ > 0.

Let us provide some intuition for the ordering of the pairs (�, m). The RLCT is a
measure of complexity for singularities. Analytic varieties can be stratified into subsets
where this measure is constant. The highest stratum contains the smooth points of the
variety. As we go deeper, to strata with lower RLCTs, we encounter singularities
of increasing complexity. The volumes of λ-fattenings of deeper singularities will,
asymptotically as λ goes to zero, also be larger than those of their less complex
counterparts. For instance, in both panels a and b of Fig. 3 the singular locus consists
of the origin, but the λ-fattening of the origin in Fig. 3c is larger than in Fig. 3b. See
also Example 3.7.

Example 3.3 Let f (ω) = ω2
1 +ω2

2 + · · · +ω2
d , and let ϕ be the Lebesgue probability

measure on � = [−1,+1]d . Then Tube(λ) is the standard ball of radius λ1/2 whose
ϕ-volume is

V (λ) = πd/2

2d · �( d
2 + 1)

· λd/2.

By Definition 3.2 (iii), the RLCT equals RLCT�( f ;ϕ) = (d/2, 1). ��
We now list some formulas for computing the RLCT. A first useful fact is that

RLCT�( f ;ϕ) is independent of the underlying measure ϕ as long as it is positive
everywhere. We can thus assume that ϕ is the uniform distribution on �.

Proposition 3.4 If ϕ : � → R is strictly positive and 1 denotes the constant unit
function on �, then

RLCT�( f ;ϕ) = RLCT�( f ; 1).
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Proof See [14, Lemma 3.8]. ��
Proposition 3.5 Suppose that � is a neighborhood of the origin. If f (ω) =
ω

κ1
1 · · ·ωκd

d g(ω), where the κi are nonnegative integers and the function g : �→ R

has no zeros, then RLCT�( f ; 1) = (�, m), where

� = min
i

1

κi
and m =

∣
∣
∣
∣

{
argmini

1

κi

}∣∣
∣
∣ .

Proof This is a special case of Theorem 7.1 that will be proved later. ��
Recall that an analytic hypersurface { f (ω) = 0} is singular at a point ω ∈ � if ω

satisfies

f (ω) = 0 and
∂ f

∂ωi
(ω) = 0 for i = 1, . . . , d.

If the hypersurface is not singular at any point ω ∈ �, then it is said to be smooth.

Proposition 3.6 If the hypersurface { f (ω) = 0} is smooth, then RLCT�( f ; 1) =
(1, 1).

Proof This is also a special case of Theorem 7.1. ��
Example 3.7 Following up on Example 3.1, we now consider an arbitrary monomial
function f (x, y) = xs yt on the square � = [−1, 1]2. The tube appears as in Fig. 3c.
Its area satisfies

V (λ) ≈
⎧
⎨

⎩

Cλ1/s if s < t,
Cλ1/t if s > t,
Cλ1/s(− ln λ) if s = t.

This formula for the asymptotics (7) follows from Definition 3.2 (iii) and Proposi-
tion 3.5. ��

For the statistical applications in this paper, the relevant functions f are polynomi-
als. They are determinants f = det(Ki R, j R), where R = V \(S ∪ {i, j}) as in Sect. 1.
Let RLCT(i, j |S) denote the corresponding RLCT over � = [−1, 1]E with respect to
a positive density ϕ. The theory developed so far says that the RLCT of the correlation
hypersurface gives an asymptotic volume formula for Vi, j |S(λ).

Theorem 3.8 If ϕ satisfies the assumptions in Proposition 3.4, then as λ tends to zero,
the volume of the region Tubei, j |S(λ) [see (2)] is asymptotically

Vi, j |S(λ) ≈ C λ�(− ln λ)m−1

for some constant C > 0 (which only depends on G) and (�, m) = RLCT(i, j |S).
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Proof By part (iii) in Definition 3.2, the desired pair (�, m) is the RLCT of the partial
correlation f = corr(i, j |S). This is the algebraic (and, hence, analytic) function in
(1). This function differs from the polynomial det(Ki R, j R) by a denominator that does
not vanish over �. That denominator is a unit in the ring of real analytic functions
over �, and multiplying by a unit does not change the RLCT of an analytic function
[14, §4.1]. ��

We close this section by relating our results to the study of unfaithfulness in [17].

Corollary 3.9 Under the assumptions in Theorem 3.8, as λ tends to zero, the volume
of λ-strong-unfaithful distributions satisfies

VG(λ) ≈ C λ�(− ln λ)m−1

for some constant C > 0. Here (�, m) is the minimum of the pairs RLCT(i, j |S),
where (i, j, S) runs over all triples in the DAG G such that i is not d-separated from
j given S.

Proof The function VG(λ) is the volume of the union of the regions Tubei, j |S(λ).
Thus,

max
i, j,S

Vi, j |S(λ) ≤ VG(λ) ≤
∑

i, j,S

Vi, j |S(λ).

Asymptotically, for small positive values of λ, both the lower and upper bounds vary
like a constant multiple of λ�(− ln λ)m−1, where (�, m) is the minimum over all pairs
RLCT(i, j |S). In this minimum, (i, j, S) runs over all triples such that i and j are
d-connected given S. ��

4 Singular Locus

The asymptotic integration theory in Sect. 3 requires us to analyze the singular locus
Sing( f ) of the real algebraic hypersurface determined by a given polynomial f . If
Sing( f ) is empty, then the hypersurface is smooth and Proposition 3.6 characterizes
the asymptotics of the integral. In this section we return to Gaussian graphical models,
develop tools for computing the relevant singular loci, and show that they are empty
in many cases. In many of the remaining cases, the singularities are of the monomial
type featured in Proposition 3.5.

Consider any almost-principal minor f = det(Ki R, j R) of the concentration matrix
K of a DAG G. This is a polynomial function on the parameter space R

E . This
polynomial and its partial derivatives are elements in the polynomial ring Q[ai j :
(i, j) ∈ E]. The Jacobian ideal of f is the ideal in this polynomial ring generated by
f and its partials. We denote it by

Jacobi, j,R := 〈 f 〉 +
〈

∂ f

∂ai j
: (i, j) ∈ E

〉
.

123



Found Comput Math (2014) 14:1079–1116 1093

log(lambda)

P
ro

po
rt

io
n 

of
 u

nf
ai

th
fu

l d
is

tr
ib

ut
io

ns

-8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
complete
chain
star
tripartite
bowtie

(a)
log(lambda)

P
ro

po
rt

io
n 

of
 u

nf
ai

th
fu

l d
is

tr
ib

ut
io

ns

-8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
complete
chain
star
tripartite
bowtie

(b)

Fig. 4 VG (λ) for complete graph K p compared to Chainp , Starp , Tripartp,2, Bowp

The singular locus Sing( f ) is the subvariety of real affine space R
E defined by the

Jacobian ideal Jacobi, j,R . The structure of the real variety Sing( f ) governs the volume
Vi, j |S(λ) of the set Tubei, j |S(λ) of unfaithful parameters. If Sing( f ) = ∅, then Propo-
sition 3.6 tells us that Vi, j |S(λ) asymptotically equals Cλ for some constant C > 0. If
the singular locus is not empty, then understanding Sing( f ) is essential for computing
its RLCT (�, m).

We conducted a comprehensive study of all DAGs with few nodes by computing
the singular locus for every almost-principal minor in their concentration matrix K .
Our first result concerns the special case of complete graphs. Noncomplete graphs will
be studied later.

Theorem 4.1 Suppose that ϕ satisfies the assumptions in Proposition 3.4. For any
conditional independence statement on the complete directed graph K p with p ≤ 6
nodes, we have Sing( f ) = ∅, and hence Vi, j |S(λ) ≈ Cλ for all triples (i, j, S).

It is tempting to conjecture that the hypothesis p ≤ 6 can be removed in this
theorem. Presently we do not know how to approach this problem other than by direct
calculation.

Applying Corollary 3.9, this means that the volume of λ-strong-unfaithful distrib-
utions for the complete graph satisfies VK p (λ) ≈ C λ for λ → 0, which is the best
possible behavior regarding strong faithfulness. This may be counterintuitive, but it
has been confirmed in simulations. In Fig. 4 we plot, via (6), the proportion of strong-
unfaithful distributions VG(λ) for the five graphs in Sect. 2 for varying values of λ.
Especially in the plot for p = 10 it becomes apparent that the behavior for λ→ 0 is
very different than, say, for λ = 0.001. For λ→ 0 we have Vcomplete(λ) < Vchain(λ),
although the chainlike graph is much sparser than the complete graph. Note also that
the complete graph K10 has

∑10
k=2

(10
k

)(k
2

) = 11520 relevant triples (i, j, S), whereas

for Chain10 there are only
∑9

k=1 k2k−1 = 4097 such triples.
In what follows we explain the algebraic computations that led to Theorem 4.1. We

used ideal-theoretic methods from [3] in their implementation in the Gröbner-based
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software packages Macaulay 2 [5] and Singular [4]. An important point to note
at the outset is that the ideal Jacobi, j,R is almost never the unit ideal. By Hilbert’s
Nullstellensatz, this means that the hypersurfaces f = det(Ki R, j R) have plenty of
singular points over the field C of complex numbers. What Theorem 4.1 asserts is that,
in many of the cases of interest to us here, none of those singular points have their
coordinates in the field R of real numbers.

To study the real variety of an ideal, techniques from real algebraic geometry are
needed. A key technique is to identify a sum of squares (SOS). Indeed, the real Null-
stellensatz [15] states that the real variety is empty if and only if the given ideal contains
a certain type of SOS. To apply this to directed Gaussian graphical models, we shall
use the fact that every principal minor of the covariance matrix or the concentration
matrix furnishes such a SOS.

Lemma 4.2 Every principal minor det(K R,R) of the concentration matrix K of a
DAG is equal to 1 plus a sum of squares in Q[ai j : (i, j) ∈ E]. In particular, its real
variety is empty.

Proof We can write the principal submatrix K R,R as the product (A− I )R,∗ · ((A−
I )R,∗)T , where ( )R,∗ refers to the submatrix with row indices R. Thus K R,R is
the product of an |R| × p matrix and its transpose. By the Cauchy–Binet formula,
det(K R,R) equals the sum of squares of all maximal minors of the |R| × p matrix
(A− I )R,∗. One of these maximal minors is the identity matrix. Hence the polynomial
det(K R,R) has the form 1 + SOS. In particular, the matrix K R,R is invertible for all
parameter values in R

E . ��

We note that Lemma 4.2 holds more generally also in the case of unequal noise
variances. In the context of commutative algebra, it now makes sense to introduce the
saturations

Singu∗i, j,R =
⎛

⎝Singui, j,R :
⎛

⎝
∏

(i, j)∈E

ai j

⎞

⎠

∞⎞

⎠ .

These are also ideals in Q[ai j : (i, j) ∈ E]. By definition, Singui, j,R consists
of all polynomials that get multiplied into the Jacobian ideal by some power of the
determinant of K R,R , and Singu∗i, j,R consists of polynomials that get multiplied into
Singui, j,R by some monomial. By [3, §4.4], the variety of Singui, j,R is the Zariski
closure of the set-theoretic difference of the variety of Jacobi, j,R and the hypersurface
{det(K R,R) = 0}. We saw in Lemma 4.2 that the latter hypersurface has no real points.
The ideal Singu∗i, j,R represents singularities in (R\{0})E .

Corollary 4.3 The singular locus of the real algebraic hypersurface
{
det(Ki R, j R) =

0
}

in R
E coincides with the set of real zeros of the ideal Singui, j,R. The set of real

zeros of Singu∗i, j,R is the Zariski closure of the subset of all singular points whose
coordinates are nonzero.
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Proof of Theorem 4.1 We computed the ideals Jacobi, j,R and Singui, j,R for every
almost-principal minor Ki R, j R in the concentration matrices of the graphs G =
K3, K4, K5, K6. In all cases the ideal Singui, j,R was found to equal the unit ideal
〈 1 〉. These exhaustive computations were carried out using the software Singular
[4]. This establishes Theorem 4.1. ��

We briefly discuss our computations for the complete directed graph on six nodes.

Example 4.4 Fix the complete directed graph G = K6. We tested all 240 conditional
independence statements and computed the corresponding ideal Singui, j,R . We discuss
one interesting instance, namely, i = 1, j = 3, R = {2, 4}. The almost-principal
minor K241,243 =

⎛

⎜
⎝

a2
23 + a2

24 + a2
25 + a2

26 + 1 a25a45 + a26a46 − a24 a24a34+a25a35+a26a36−a23
a25a45 + a26a46 − a24 a2

45 + a2
46 + 1 a35a45 + a36a46 − a34

a13a23+a14a24+a15a25+a16a26−a12 a15a45 + a16a46 − a14 a14a34 + a15a35 + a16a36

⎞

⎟
⎠

contains all 15 parameters except a56. Its determinant is a polynomial of degree 6.
Of its 14 partial derivatives, 13 have degree 5. The derivative with respect to a12 has
degree 4. Thus Jacob1,3,{2,4} is generated by 15 polynomials of degrees 4, 5, . . . , 5, 6.
The matrix K24,24 is the upper left 2×2-block in the preceding matrix. The square of
its determinant is a polynomial of degree 8 that happens to lie in the ideal Jacob1,3,{2,4}.
This proves Singu1,3,{2,4} = 〈1〉. ��

For graphs G that are not complete, Singui, j,R may not be the unit ideal. We already
saw one nonobvious instance of this for the tripartite graph in Example 2.1. Here is an
even smaller example where the Jacobian ideal and its saturations are equal and not
the unit ideal.

Example 4.5 Let p = 4, and take G to be the almost-complete graph with adjacency
matrix

AG =

⎛

⎜
⎜
⎝

0 0 a13 a14
0 0 a23 a24
0 0 0 a34
0 0 0 0

⎞

⎟
⎟
⎠ .

The conditional independence statement 1 ⊥⊥ 2 | 4 is represented by the almost-
principal minor

K31,32 =
(

a2
34 + 1 a24a34 − a23

a14a34 − a13 a13a23 + a14a24

)

of the concentration matrix. The determinant of this minor factors into two binomials:

det(K31,32) = (a13a34 + a14)(a23a34 + a24). (10)
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Table 1 RLCT for all DAGs
with three nodes

(1, 1) (1, 2) Subtotal

Monomial 21 3 24

Smooth 3 3

Subtotal 24 3 27

Table 2 RLCT for all DAGs
with four nodes

(1, 1) (1, 2) (1, 3) (1/2, 1) Subtotal

Monomial 568 145 14 1 728

Smooth 198 198

Normal crossing 22 2 24

Blowup 12 12

Special 2 1 3

Subtotal 780 168 16 1 965

The Jacobian ideal is the prime ideal generated by these factors:

Jacob1,2,3 = Singu1,2,3 = Singu∗1,2,3 = 〈 a13a34 + a14 , a23a34 + a24 〉.

The left equality holds because det(K3,3) = a2
34+ 1 is a non-zero-divisor modulo

Jacob1,2,3. The singular locus of (10) is the three-dimensional real variety defined
by this binomial ideal in the parameter space R

5. Its RLCT is found to be (�, m)

= (1, 2). ��
This example inspired us to analyze the partial correlations of all small DAGs with

p ≤ 4 nodes. In our experiments, we found that det(Ki R, j R) is frequently the product
of a monomial with a strictly positive sum of squares. This is the case when there is
a unique path which d-connects nodes i and j given S. For instance, this holds for
trees. Such cases are denoted as Monomial in Tables 1 and 2. For these, the RLCT is
read off directly from Proposition 3.5. The rows labeled Smooth cover cases that are
not monomial but where Singui, j,R is the unit ideal, so Proposition 3.6 gives us the
RLCT. The next theorem summarizes the complete results. The trivial case p = 2 is
excluded because there is only one graph 1→ 2, with RLCT(1, 2|∅) = (1, 1). Here
and in Tables 1 and 2 we enumerate unlabeled DAGs.

Theorem 4.6 Under the assumptions in Theorem 3.8, for all DAGs with p ≤ 4 nodes
and all triples (i, j, S), the value RLCT(i, j |S) is given in Tables 1 and 2. In all cases
but one, we have RLCT(i, j |S) = (1, m), where m < p.

To establish Theorem 4.6, we listed every DAG G and every triple (i, j, S) that is not
d-separated in G. The rows Monomial and Smooth were discussed earlier. On three
nodes there are only three partial correlations that correspond to the weighted sum
of more than one d-connecting path, namely, the partial correlations corr(1, 2 | 3),
corr(1, 3), corr(2, 3) in the complete DAG 1 → 2, 2 → 3, 1 → 3. These are the
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3
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Fig. 5 Four-node DAG

three cases of smooth RLCTs in Table 1. The row Normal crossing refers to cases
covered by Theorem 7.1. The Special cases are treated in Examples 4.5 and 4.8.
Lastly, the row Blowup represents instances where the real singular locus is a linear
space. Our computation of RLCT(i, j |S) = (�, m) for such instances uses the method
in Example 7.4. We now examine the unique exceptional case where � �= 1.

Example 4.7 Let p = 4 and G = Tripart4,1. Then the corresponding concentration
matrix may be obtained from Example 4.5 by setting a14 = a24 = 0. The partial
correlation for 1⊥⊥2 | 4 is now given by

det(K13,23) = a13a23a2
34.

For this monomial, Proposition 3.5 tells us that (�, m) = RLCT(1, 2|4) = (1/2, 1). ��
Here is an case where the RLCT depends in a subtle way on the choice of �.

Example 4.8 Consider the conditional independence statement 1⊥⊥3 | 4 for the DAG
in Fig. 5. The partial correlation is represented by the almost-principal minor

det(K12,23) = a13 · g, where g = a23a24a34 + a2
24 + 1.

The component {g = 0} is smooth in R
4. However, it is disjoint from the cube

� = [−1, 1]4. To see this, note that −1 ≤ a23a24a34 in �. With this, g = 0 would
imply a24 = 0 and, hence, g = 1, a contradiction. Consequently, if � is the cube
[−1, 1]4, then the correlation hypersurface is simply {a13 = 0}, and the RLCT equals
(1, 1) by Proposition 3.5. The other special case with RLCT = (1, 1) in Table 2 comes
from swapping the labels of nodes 1 and 2.

Now, if we enlarge the parameter space �, then the situation changes. For instance,
suppose (a13, a23, a24, a34) = (0,−2, 1, 1) is in the interior of �. This is a singular
point of det(K12,23) = a13 · g. The RLCT can be computed by applying Theorem 7.1.
It is now (1, 2) instead of (1, 1). This example shows that the asymptotics of Vi, j |S(λ)

depends on �. However, it is possible to choose � in such a way that further enlarge-
ment will not cause the asymptotics of VG(λ) to change. Such a choice could be used
as a worst-case analysis for VG(λ), but to avoid complicating the paper, we will not
explore this any further. ��

Remark 4.9 We briefly return to the issue of faithfulness in the PC algorithm. Zhang
and Spirtes [20] introduced a variant known as the conservative PC algorithm. As
the name suggests, this algorithm is more conservative and may decide not to orient
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certain edges. The conservative PC algorithm only requires adjacency faithfulness for
correct inference, which is simply strong faithfulness restricted to the edges of G:

| corr(i, j |S)| > λ for all (i, j) ∈ EandS ⊂ V \{i, j}.

If {i, j} is not adjacent to R, then the relevant minor equals det(Ki R, j R) =
ai j det(K R,R) + f (ā), where f is a polynomial in ā = {ast | (s, t) �= (i, j)}, the
correlation hypersurface is smooth, and (�, m) = (1, 1). If {i, j} is adjacent to R, then
the behavior can be more complicated, as seen in Example 4.8.

5 Asymptotics for Trees

In [17] trees were treated as one class. However, as noted in the discussion of Fig. 2,
there is a striking difference between the volume VG(λ) for chainlike graphs compared
to stars. In this section we give an explanation for this difference based on RLCTs.

We use the notation SO S(a) for any polynomial that is a sum of squares of
polynomials in the model parameters (ai j )(i, j)∈E . Suppose that G is a tree on
V = {1, 2, . . . , p}, and let m be the longest length of an undirected path in G. It
was shown in [17, Corollary 4.3(a)] that any nonzero almost-principal minor of the
concentration matrix K has the form

det(Ki R, j R) = (1+ SO S(a)) · ai→ j , (11)

where ai→ j is the monomial of degree ≤ m formed by multiplying the parameters
ars along the unique path between i and j . Specifically, for the two trees in Fig. 1 we
have

det(Ki R, j R) =
{

(1+ SO S(a))
∏ j−1

k=i ak,k+1 if G = Chainp,

(1+ SO S(a)) · a1,i a1, j if G = Starp, and i, j > 1.

In both cases, the term SO S(a) disappears when i and j are leaves of the tree G; cf.
(13) and (14).

Since the correlation hypersurfaces for trees are essentially given by monomials,
we can apply Proposition 3.5. The minimal RLCT is (1, m), where m is the largest
degree of any of the monomials in (11). Corollary 3.9 implies the following result.

Theorem 5.1 Under the assumptions in Theorem 3.8, if G is a tree, then the volume
of λ-strong-unfaithful distributions satisfies

VG(λ) ≈ Cλ(− ln λ)m−1,

where m is the length of the longest path in the tree G, and C is a suitable constant.

In the case of stars we have m = 2, whereas for chainlike graphs we have m = p−1.
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Corollary 5.2 Under the assumptions in Theorem 5.1, the volume VG(λ) of strong-
unfaithful distributions satisfies

VG(λ) ≈
{

Cchain · λ(− ln λ)p−2 if G = Chainp,

Cstar · λ(− ln λ) if G = Starp,
(12)

where Cchain and Cstar are suitable positive constants.

As a consequence, the volume VG(λ) is asymptotically larger for chains compared
to stars, and the difference increases with an increasing number of nodes p. This
furnishes an explanation for Fig. 2, at least for small values of λ. In that figure we saw
the curve for the chain lying clearly above the curve for the star tree. However, one
subtle issue is the size of the constants Cchain and Cstar. These need to be understood
in order to make accurate comparisons.

In Sect. 8, we develop new theoretical results regarding the computation of the
constant C in (7). Theorem 8.5 gives an integral representation for C when the partial
correlation hypersurface is essentially defined by a monomial. In Example 8.7 we shall
then derive the following corollary.

Corollary 5.3 The two constants in (12) are

Cchain = 1

(p − 2)! and Cstar =
(

p

3

)
.

This result surprised us at first. It establishes the counterintuitive fact that as p
grows, the constant for the lower curve in Fig. 2 is exponentially larger than that for
the upper curve. Therefore, to fully explain the relative position of the two curves for
a wider range of values of λ > 0, it does not suffice to just consider the first order
asymptotics (7). Instead, we need to consider some of the higher-order terms in the
series expansion (8).

As we shall see in Sect. 8, it is difficult to determine the constants C�,m in (8) ana-
lytically. In the remainder of this section, we propose a procedure based on simulation
and linear regression for estimating the constants C�,m in the asymptotic explanations
of the volumes VG(λ) and Vi, j |S(λ). For simplicity we focus on the latter case and we
take f = det(Ki R, j R).

Suppose that G is a DAG for which the RLCTs (�, m) in Theorem 3.8 and Corol-
lary 3.9 are known. This is the case for all trees by Theorem 5.1. Our procedure goes
as follows. We first sample n points uniformly from � and compute the proportion of
points ω that lie in Tubei, j |S(λ) for different values of λ. We then fit a linear model to

Vi, j |S(λ)

λ�
≈ Cm−1(− ln λ)m−1 + Cm−2(− ln λ)m−2 + · · · + C0,

where (�, m) is the known RLCT.
In what follows, we illustrate this procedure for chains and stars. We analyze two

specific examples of partial correlation volumes, namely, those corresponding to the
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Fig. 6 Regression-based asymptotics for chains and stars

longest paths in each graph, that is, V1,p|∅(λ) for Chainp, and V2,3|∅(λ) for Star p. For
chainlike graphs

corr(1, p) = (−1)p ∏p−1
i=1 ai,i+1

√
1+ a2

p−1,p

(
1+ a2

p−2,p−1

(· · · (1+ a2
12)

))
, (13)

whereas for star graphs

corr(2, 3) = − a12 a13√
(1+ a2

12)(1+ a2
13)

. (14)

We first approximate V1,p|∅(λ) for chainlike graphs and V2,3|∅(λ) for star graphs
by simulation for various values of λ. This means that we sample n points uniformly
in the (p − 1)-dimensional parameter space �, and we count how many of them are
≤ λ. The results for p = 6 and p = 10 are shown in Fig. 6. These are based on a
sample size of n =1,000,000. We then fit a linear model

V1,p|∅(λ)

λ
≈ C p−2(− ln λ)p−2 + C p−3(− ln λ)p−3 + · · · + C0

for chainlike graphs. The curve resulting from the regression estimates is shown in
black in Fig. 6. The curve resulting from the first-order approximation with the con-
stants computed using Corollary 5.3 is shown in gray in Fig. 6. We note that, especially
for chainlike graphs, where the true constant in Corollary 5.3 is small, the first-order
approximation is very bad.

The approximation by regression, on the other hand, is a fast way to get pretty
accurate estimates of all constants. The same was done with star graphs, but with the
linear model
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V2,3|∅(λ)

λ
≈ C1(− ln λ)+ C0.

Figure 6 shows that the first-order approximation is more accurate for stars than for
chains.

6 Volume Inequalities for Bias Reduction in Causal Inference

We now discuss the problem of quantifying bias in causal models. Our point of depar-
ture is Greenland’s paper [7], where the problem of quantifying bias is discussed for
binary variables. In contrast to the previous sections, in the situation discussed here, a
large tube volume is in fact desired since it corresponds to small bias. In this section
we use the notation Ki, j |S for the almost-principal minor Ki R, j R of the concentration
matrix.

We are interested in estimating the direct effect of an exposure E on a disease
outcome D (i.e., the coefficient on the edge E → D) from the partial correlation
corr(E, D | S), where S is a subset of the measurable variables. This partial correlation
is a weighted sum over all open paths (i.e., paths that d-connect E to D) given S
(the direct path aE D being just one of them). For estimating the direct effect aE D

from corr(E, D | S), all open paths other than the direct path are thus considered
as bias. We shall analyze two forms of bias that are of particular interest in practice,
namely, confounding bias and collider-stratification bias. We start by defining collider-
stratification bias.

Suppose we are given a DAG G with D, E ∈ V and there is another node C such
that

E → V1 → · · · → Vs → C ← W1 ← · · · ← Wt ← D.

This says that C is a collider on a path from D to E . Stratifying (i.e., conditioning) on
C opens a path between E and D leading to bias when estimating aE D . The partial
correlation corresponding to the opened path between E and D is known as collider-
stratification bias. It arises, for example, in the context of discrete variables, where
instead of obtaining a random sample from the full population, a random sample is
obtained from the subpopulation of individuals with a particular level of C .

Example 6.1 We illustrate collider-stratification bias for the tripartite graph G =
Tripart5,1 shown in Fig. 7a. Let node 1 represent the exposure E and node 2 the
disease outcome D. In this example, node 5 is a collider C for multiple paths between
E and D. When stratifying on C = 5, node E = 1 is d-connected to node D = 2 via
the following paths:

1→ 3→ 5← 4← 2, 1→ 4→ 5← 3← 2, 1→ 3→ 5← 3← 2,

1→ 4→ 5← 4← 2.
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(a) (b) (c) (d)

Fig. 7 Various tripartite and almost tripartite graphs

The bias introduced for estimating the direct effect of E on D when conditioning
on C is

corr(1, 2 | 5) = a13a35a45a24 + a14a45a35a23 + a13a2
35a23 + a14a2

45a24
√

det(K134,134) det(K234,234)
. (15)

The numerator det(K134,234) is the weighted sum of all open paths between E and D.
Similarly, nodes 3 and 4 are colliders for multiple paths. The bias when conditioning
on these is

corr(1, 2 | 34) = corr(1, 2 | 345) = a13a23 + a14a24√
(a2

13 + a2
14 + 1)(a2

23 + a2
24 + 1)

. (16)

Problem 6.2 is about comparing the tube volume for (15) with the tube volume for
(16). ��

A question of practical interest in causal inference is to understand the situations in
which stratifying on a collider leads to a particularly large bias. It is widely believed that
collider-stratification bias tends to attenuate when it arises from more extended paths
[2,7]. What follows is our interpretation of this statement as a precise mathematical
conjecture.

Problem 6.2 Let D, E ∈ V and C = {C ∈ V | ∃ path P from E to D with C as a
collider}. We introduce a partial order on the collider set C by setting C ≤ C ′ if all
paths on which C is a collider also go through C ′. Given subsets S, S′ ⊂ C, we set
S ≤ S′ if for all C ∈ S there exists C ′ ∈ S′ such that C ≤ C ′. If this holds, then the
bias introduced when conditioning on S should be smaller than when conditioning on
S′. To make this precise, we conjecture:

VD,E |S(λ) ≥ VD,E |S′(λ) for all S ≤ S′ and all λ ∈ [0, 1]. (17)

We now study this conjecture for the tripartite graphs Tripartp,p′ . For tripartite
graphs the conjecture says that says that the collider-stratification bias introduced
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Fig. 8 Effect of collider bias on complete tripartite graphs and bow ties

when conditioning on the third level {p − p′ + 1, . . . , p} is in general smaller than
when conditioning on the second level of nodes {3, . . . , p − p′}, i.e.,

V1,2|p−p′+1,...,p(λ) ≥ V1,2|3,...,p−p′(λ). (18)

This inequality is confirmed by the simulations shown in Fig. 8a. Here p = 5, p′ = 2
is shown in red and p = 10, p′ = 2 is shown in blue. The solid lines correspond to
the volume V1,2|p−p′+1,...,p(λ), whereas the dashed lines correspond to the volume
V1,2|3,...,p−p′(λ).

Going beyond simulations, we now present an algebraic proof of our conjecture
when λ is small for the tripartite graphs in Fig. 7c, where the second level has only
one node.

Example 6.3 For G = Tripartp,p−3 the left-hand side of (18) is given by

det(K1,2|4,5,...,p) = a13a23

( p∑

k=4

a2
3k

)

.

Depending on the values of p, the corresponding RLCT is given by

RLCT(1, 2|4, . . . , p) =

⎧
⎪⎨

⎪⎩

( 1
2 , 1) if p = 4,

(1, 3) if p = 5,

(1, 2) if p ≥ 6.

(19)

For p = 4 this was Example 4.7. To prove (19) for p ≥ 5, we need two ingredients.
Firstly, if the polynomial is a product of factors with disjoint variables, then the RLCT
is the minimum of the RLCT of the factors, taken with multiplicity [e.g., if the RLCTs
are (�, m1) and (�, m2), then the combined RLCT is (�, m1+m2), just like in the case
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of a monomial]. Secondly, the RLCT of a sum of squares of d unknowns is equal to
(d/2, 1). We saw this in Example 3.3.

For the right-hand side of (18), we condition on node 3. Now, the defining polyno-
mial is

det(K1,2|3) = a13a23.

By Proposition 3.5, this has RLCT (1, 2), which is larger than or equal to all values
of (�, m) in (19). To compare the behavior of V1,2|3(λ) and V1,2|4,...,p(λ) for small
λ, we will need to derive the constant C in (7). In Example 8.8, we will show that if
p ≥ 6 and the parameter space is

� = {a ∈ R
p−1 : |a12| ≤ 1, |a23| ≤ 1, a2

34 + · · · + a2
3p ≤ 1}, (20)

then the asymptotic constants are given by C1,2|3 = 1 and C1,2|4,...,p = 2+2/(p−5).
We conclude that V1,2|3(λ) ≤ V1,2|4,...,p(λ) for small values of λ, as conjectured in
Problem 6.2. ��
Example 6.4 A slight twist to Example 6.3 is the almost-chain graph shown in Fig. 7d,
with edges E = {(1, 3), (2, 3), (3, 4), . . . , (p− 1, p)}. For such graphs, Problem 6.2
asks whether

V1,2|s(λ) ≤ V1,2|t (λ) if s ≤ t.

This holds for small λ because det(K1,2|s) = a13a23
∏s−1

k=3 a2
k,k+1. By Proposition 3.5,

RLCT(1, 2|s) =
{

(1, 2) if s = 3,

( 1
2 , s − 3) if s ≥ 4,

so RLCT(1, 2|s) ≥ RLCT(1, 2|t) for s ≤ t . ��
In Example 6.3 we resolved Problem 6.2 for tripartite graphs whose middle level

consists of one node. We next consider the case Tripart p,1, where the third level has
one node.

Example 6.5 The graph Tripart5,1 shown in Fig. 7a was discussed in Example 6.1. We
focus on the numerators in (15) and in (16). The polynomial (15) will be studied in
Example 7.5, where we prove that RLCT(1, 2 | 5) = (1, 3). Using the same method
for Tripartp,1 gives

RLCT(1, 2|p) =

⎧
⎪⎨

⎪⎩

( 1
2 , 1) if p = 4,

(1, 3) if p = 5,

(1, 2) if p ≥ 6,

RLCT(1, 2|3, . . . , p − 1)

=
{

(1, 2) if p = 4,

(1, 1) if p ≥ 5.
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Thus, we conclude that V1,2|p(λ) ≥ V1,2|3,...,p−1(λ) for small values of λ > 0. ��
Example 6.6 For the graph Tripart6,2 in Fig. 7b we check whether V1,2|56(λ) ≥
V1,2|34(λ) for small λ. As before, RLCT(1, 2 | 3, 4) = (1, 1), but a hard computa-
tion using the tools of Sect. 7 reveals that now RLCT(1, 2 | 5, 6) = (1, 1). Thus,
knowledge of the RLCT is not sufficient to establish (17). What is needed is a finer
analysis along the lines of Sect. 8. ��

The second form of bias studied by Greenland [7] is confounder bias. In the context
of a directed graphical model G, a confounder for the effect of E on D is a node C
such that

E ← V1 ← · · · ← Vs ← C → W1 → · · · → Wt → D.

The partial correlation introduced by the path from E to D passing through C is
referred to as confounder bias. In such situations, stratifying on C blocks the path
between E and D (i.e., C d-separates E from D) and therefore corresponds to bias
removal.

In certain graphs, such as the bow-tie example in [7], there are variables where strat-
ifying removes confounder bias but at the same time introduces collider-stratification
bias. For instance, consider the graph G = Bow5, where node 4 corresponds to expo-
sure E and node 5 corresponds to disease outcome D. Then conditioning on node 3
blocks the paths

4← 3→ 5, 4← 1→ 3→ 5, 4← 3← 2→ 5, (21)

and therefore reduces confounder bias, but opens the path

4← 1→ 3← 2→ 5, (22)

and therefore introduces collider-stratification bias. This tradeoff is of particular inter-
est in situations where one cannot condition on 1 and 2, for example because these
variables were unmeasured. It is believed that in such examples the bias removed by
conditioning on the confounders is larger than the collider-stratification bias intro-
duced, and one should therefore stratify. We translate this statement into the following
mathematical problem.

Problem 6.7 Let D, E ∈ V , and we denote by D the confounder-collider subset, i.e.,

D = C ∩ {C ∈ V | ∃ path π from E to D having C as a confounder}.

We conjecture the following inequality for the relevant tube volumes:

VD,E |S(λ) ≥ VD,E |∅(λ), for all S ⊂ D and all λ ∈ [0, 1].

This conjectural inequality is interesting for the bow-tie graphs Bowp. It means that
conditioning on the nodes in the second level reduces bias since the bias removed by
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conditioning on the confounders is larger than the collider-stratification bias introduced
by conditioning:

Vp−1,p|3,...,p−2(λ) ≥ Vp−1,p|∅(λ). (23)

This is confirmed by our simulations in Fig. 8b for p = 5 in red and p = 10 in
blue. The solid line corresponds to the volume Vp−1,p|3,...,p−2(λ) and the dashed line
corresponds to Vp,p−1|∅(λ). In the following example we prove inequality (23) for
p = 5 and small λ > 0.

Example 6.8 Let G = Bow5 as in Fig. 1d. The left-hand side of (23) is represented
by

det(K4,5|3) = a13a14a23a25.

This monomial is the path in (22). The corresponding RLCT is (1, 4). The polynomial
representing the right-hand side of(23) is a weighted sum of the paths in (21):

det(K4,5|∅) = a34a35(1+ a2
13 + a2

23)+ a23a25a34 + a13a14a35.

We derive its RLCT using the blowups described in Sect. 7. We find that it is (1, 1).
Since (1, 4) < (1, 1), we conclude V4,5|3(λ) ≥ V4,5|∅(λ). ��

7 Normal Crossing and Blowing Up

In this section we develop more refined techniques for computing RLCTs. The fol-
lowing theorem combines the monomial case of Proposition 3.5 with the smooth case
of Proposition 3.6. As promised in Sect. 3, this furnishes the proofs for these two
propositions.

Theorem 7.1 Suppose ϕ(ω) = ω
τ1
1 , . . . , ω

τd
d and f (ω) = ω

κ1
1 , . . . , ω

κr
r g(ω) where

τ1, . . . , τd are nonnegative integers, κ1, . . . , κr are positive integers, and the hyper-
surface g(ω) = 0 is either empty or smooth and normal crossing (see definition in
what follows) with ω1, . . . , ωr . We write ω0 = g, κ0 = 1, and τ0 = 0, and we define

� = min
i∈I

τi + 1

κi
, J =

{
argmin

i∈I
τi + 1

κi

}
, m = |J |,

where I is the set of all indices 0 ≤ i ≤ r such that ωi has a zero in �. Then we have

RLCT�( f ;ϕ) = (�, m),

provided the equations ωi = 0 for i ∈ J have a solution in the interior of �.

The normal crossing hypothesis in Theorem 7.1 means that the system

f = ω1
∂ f

∂ω1
= · · · = ωr

∂ f

∂ωr
= ∂ f

∂ωr+1
= · · · = ∂ f

∂ωd
= 0
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has no solutions in �. See [12] to learn more about normal crossing singularities.
We begin with a technical lemma establishing that the RLCT can be computed

locally.

Lemma 7.2 For every x ∈ � there exists a neighborhood �x ⊂ � of x such that

RLCT�x ( f ;ϕ) = RLCTU ( f ;ϕ)

for all neighborhoods U ⊂ �x of x. Moreover,

RLCT�( f ;ϕ) = min
x

RLCT�x ( f ;ϕ),

where we take the minimum over all x in the real analytic hypersurface {ω ∈ � :
f (ω) = 0}.
Proof This comes from [14, Lemma 3.8, Proposition 3.9]. ��
Proof of Theorem 7.1 Lemma 7.2 states that RLCT�( f ;ϕ) is the minimum of
RLCT�x ( f ;ϕ) as x varies over �. Writing each subset �x as Rx ∩ �, where Rx

is a sufficiently small neighborbood of x in R
d , we claim that RLCT�( f ;ϕ) =

minx∈� RLCTRx ( f ;ϕ) if this minimum is attained in the interior of �. Indeed, for x
in the interior of �, we get RLCTRx ( f ;ϕ) = RLCT�x ( f ;ϕ). Otherwise, the volume
of {ω ∈ �x : f (ω) ≤ λ} is less than that of {ω ∈ Rx : f (ω) ≤ λ} for all λ. Hence,
RLCTRx ( f ;ϕ) ≤ RLCT�x ( f ;ϕ), and the claim follows.

Now, to prove Theorem 7.1, it suffices to show that for each x ∈ � we have

RLCTRx ( f ;ϕ) =
(

min
i∈Ix

τi + 1

κi
,

∣
∣
∣
∣
∣

{
argmin

i∈Ix

τi + 1

κi

}∣∣
∣
∣
∣

)

where Ix is the set of all indices 0 ≤ i ≤ r that satisfy ωi (x) = 0. Without loss of
generality, suppose x = (x1, . . . , xd), where x1 = · · · = xs = 0 and xs+1, . . . , xr are
nonzero. If g(x) �= 0, we may divide f (ω) by g(ω) without changing the RLCT in
a sufficiently small neighborhood Rx of x . The RLCT of the remaining monomial is
determined by [14, Proposition 3.7]. Now, let us suppose g(x) = 0. Because g(ω) is
normal crossing with ω1, . . . , ωr , one of the derivatives ∂g/∂ω j must be nonzero at
x for some s + 1 ≤ j ≤ d. We assume Rx is sufficiently small, so that this derivative
and ωs+1, . . . , ωr do not vanish. Consider the map σ : Rx → R

d given by

σ j (ω) = g(ω), σi (ω) = ωi for i �= j.

The Jacobian matrix of σ is nonsingular, so this map is an isomorphism onto its image.
Set U = μ(Rx ) and ρ = σ−1 : U → Rx . Then for all μ ∈ U we have

( f ◦ ρ)(μ) = μ
κ1
1 , . . . , μκs

s μ j · a(μ) and (ϕ ◦ ρ)(μ) = μ
τ1
1 , . . . , μτs

s · b(μ),

where the factors a(μ) and b(μ) do not vanish in U . Using the chain rule [14, Propo-
sition 4.6], we get RLCTRx ( f ;ϕ) = RLCTU ( f ◦ ρ;ϕ ◦ ρ). The latter RLCT can
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be computed once again by dividing out the nonvanishing factors and applying [14,
Proposition 3.7]. ��

The hypersurface { f (ω) = 0}may not satisfy the hypothesis in Theorem 7.1. In that
case, we can try to simplify its singularities via a change of variables ρ : U → �. With
some luck, the transformed hypersurface {( f ◦ ρ)(μ) = 0} will be described locally
by monomials and the RLCT can be computed using Theorem 7.1. More precisely,
let U be a d-dimensional real analytic manifold and ρ : U → � a real analytic map
that is proper, i.e., the preimage of any compact set is compact. Then ρ desingularizes
f (ω) if it satisfies the following conditions:

1. The map ρ is an isomorphism outside the variety {ω ∈ � : f (ω) = 0}.
2. Given any y ∈ U , there exists a local chart with coordinates μ1, . . . , μd such that

( f ◦ ρ)(μ) = μ
κ1
1 , . . . , μ

κd
d · a(μ), det ∂ρ(μ) = μ

τ1
1 , . . . , μ

τd
d · b(μ),

where det ∂ρ is the Jacobian determinant, the exponents κi , τi are nonnegative
integers, and the real analytic functions a(μ), b(μ) do not vanish at y.

If such a desingularization exists, then we may apply ρ to the volume function (7)
to calculate the RLCT. Care must be taken to multiply the measure ϕ by the Jacobian
determinant |det ∂ρ| in accordance with the change-of-variables formula for integrals.

Hironaka’s celebrated theorem on the resolution of singularities [9,10] guarantees
that such a desingularization exists for all real analytic functions f (ω). The proof
employs transformations known as blowups to simplify the singularities. We now
describe the blowup ρ : U → R

d of the origin in R
d . The manifold U can be covered

by local charts U1, . . . , Ud such that each chart is isomorphic to R
d and each restriction

ρi : Ui → R
d is the monomial map

(μ1, . . . , μi−1, ξ, μi+1, . . . , μd) �→ (ξμ1, . . . , ξμi−1, ξ, ξμi+1, . . . , ξμd).

Here, the coordinate hypersurface ξ = 0, also called the exceptional divisor, runs
through all the charts. If the origin is locally the intersection of many smooth hyper-
surfaces with distinct tangent hyperplanes, then these hypersurfaces can be separated
by blowing up the origin [9].

Example 7.3 Consider the curve { f (x, y) = xy(x + y)(x − y) = 0} in Fig. 3d.
To resolve this singularity, we blow up the origin. In the first chart, the map is ρ1 :
(ξ, y1) �→ (ξ, ξ y1), so

f ◦ ρ1 = ξ4 y1(1+ y1)(1− y1) and det ∂ρ1 = ξ.

The lines {y = 0}, {x + y = 0} and {x − y = 0} are transformed into {y1 = 0},
{y1 = −1} and {y1 = 1} respectively in this chart, thereby separating them. The line
{x = 0} does not show up here, but it appears as {x1 = 0} in the second chart, where
ρ2 : (x1, ξ) �→ (ξ x1, ξ) and

f ◦ ρ2 = ξ4x1(x1 + 1)(x1 − 1), det ∂ρ2 = ξ.
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Since the curve {(1 + y1)(1 − y1) = 0} is normal crossing with ξ y1 in the first
chart, we can now apply Theorem 7.1. The chain rule [14, Proposition 4.6] shows that
RLCT�( f ; 1) is the minimum of RLCTUi ( f ◦ρi ; det ∂ρi ) for i = 1, 2. In both charts,
this RLCT equals ( 1

2 , 1). ��
Example 7.4 Let p = 4 and G be an almost complete DAG with a13 = 0. We consider
the conditional independence statement 1 ⊥⊥ 3 | 4. The correlation hypersurface is
defined by

f = det(K12,23) = a14a2
23a34 + a14a23a24 + a12a24a34 − a12a23 + a14a34.

The real singular locus is a line in the parameter space R
5 since Singu1,3,2 =

〈a12, a14, a23, a34〉. Blowing up this line in R
5 creates four charts: U1, U2, U3, U4.

For instance, the first chart has

ρ1 : U1 → R
5 , (ξ, μ14, μ23, a24, μ34) �→ (ξ, ξμ14, ξμ23, a24, ξμ34),

det ∂ρ1 = ξ3.

Then f transforms into f ◦ ρ1 = ξ2 · g, where g = μ14μ
2
23μ34ξ

2 + μ14μ34 +
μ14μ23a24 + μ34a24 − μ23. The hypersurface {g = 0} has no real singularities, so it
is smooth in U1. We can thus apply Theorem 7.1 with I = {0, 1} to find RLCTU1(ξ

2 ·
g, ξ3) = (1, 1). The behavior is the same on U2, U3, and U4, and we conclude that
RLCT(1, 3|4) = (�, m) = (1, 1). This example is one of the 12 cases that were labeled
Blowup in Table 2. The other 11 cases are similar. ��
Example 7.5 In Example 6.5 we claimed that RCLT(1, 2 | 5) = (1, 3) for G =
Tripart5,1. We now prove this claim by using the blowup method. The polynomial
in question is

f = det(K1,2|5) = (a13a35 + a14a45)(a23a35 + a24a45).

The singular locus of the hypersurface { f = 0} is given by

Singu1,2,34 = 〈 a35 , a45 〉 ∩
〈

2× 2 minors of

(
a13 a23 a45
a14 a24 −a35

) 〉
.

We blow up the linear subspace {a35 = a45 = 0} in R
6. This creates two charts.

The map for the first chart is ρ1 : (a13, a14, a23, a24, ξ, μ45) �→ (a13, a14, a23, a24,

ξ, ξμ45). This map gives

f ◦ ρ1 = ξ2(a13 + a14μ45)(a23 + a24μ45), det ∂ρ1 = ξ.

Now, by setting a13 = x − a14μ45 and a23 = y − a24μ45, the transformed func-
tion f ◦ ρ1 is the monomial ξ2xy. Then Theorem 7.1 can be employed to evaluate
RLCTU1(ξ

2xy, ξ) = (1, 3). The calculation in the second chart is completely analo-
gous. ��
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The same approach as in Example 7.5 can be applied to the polynomial f =
det(K1,2|56) in Example 2.1. A lengthy calculation, involving many charts and multi-
ple blowups, eventually reveals that G = Tripart6,2 satisfies RCLT(1, 2|56) = (1, 1).
This was stated in Example 6.6.

8 Computing the Constants

We now describe a method for finding the constant C in the formula V (λ) ≈
Cλ−�(− ln λ)m−1 in (7). The two theorems in this section are new, and they extend
the results of Greenblatt [6] and Lasserre [13] on the volumes of sublevel sets. Unless
stated otherwise, all measures used in this section are the standard Lebesgue measures.
We begin by showing that the constant C is a function of the highest-order term in the
Laurent expansion of the zeta function of f .

Lemma 8.1 Given real analytic functions f, ϕ : �→ R, consider the Laurent expan-
sion of

ζ(z) :=
∫

�

| f (ω)|−zϕ(ω)dω = a�,m

(�− z)m
+ a�,m−1

(�− z)m−1 + · · · ,

where � is the smallest pole and m its multiplicity. Then, asymptotically as λ tends to
zero,

V (λ) :=
∫

| f (ω)|≤λ

ϕ(ω)dω ≈ a�,m

�(m − 1)! λ
�(− ln λ)m−1.

Proof According to the proof of [18, Theorem 7.1], the volume function V (λ) equals∫ λ

0 v(s)ds, where v(s) = ∫
�

δ(s − f (ω)) ϕ(ω)dω is the state density function and δ

the delta function. Now, using the proof of [14, Theorem 3.16], we obtain

v(s) = a�,m

(m − 1)! s
�−1(− ln s)m−1 + o

(
s�−1(− ln s)m−1

)
as s → 0.

Here we used the little-o notation. Finally, using integration by parts, we find that

V (λ) = a�,m

�(m − 1)! λ
�(− ln λ)m−1 + o

(
λ�(− ln λ)m−1

)
as λ→ 0. ��

Example 8.2 In Example 3.3, we saw that the volume of the d-dimensional ball defined
by |ω2

1 + · · · +ω2
d | ≤ λ was equal to V (λ) = Cλ−d/2 for some positive constant C .

Here we show how to compute that constant using asymptotic methods. By Lemma 8.1,
C = 2α/(d 2d), where α is the coefficient of (d/2− z)m in the Laurent expansion of
the zeta function

ζ(z) =
∫

Rd

|ω2
1 + . . .+ ω2

d |−zdω.
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Computing this Laurent coefficient from first principles is not easy. Instead, we derive
α using the asymptotic theory of Laplace integrals. The connection between such
integrals and volume functions was alluded to in Definition 3.2. By [14, Proposition
5.2], the Laplace integral

Z(N ) =
∫

Rd

e−N (ω2
1+···+ω2

d )dω

is asymptotically α �( d
2 )N−d/2 for large N . But this Laplace integral also decomposes

as

Z(N ) =
∫

R

e−Nω2
1 dω1 · · ·

∫

R

e−Nω2
d dωd = (

√
π N−1/2)d ,

where each factor is the classical Gaussian integral. Solving for α leads to the formula

C = πd/2

2d · �( d
2 ) · d

2

= πd/2

2d · �( d
2 + 1)

.

��

In Sect. 3, we saw how the RLCTs of smooth hypersurfaces and of hypersurfaces
defined by monomial functions can be computed. The following two theorems and
their accompanying examples demonstrate how the asymptotic constant C can also be
evaluated in those instances. Here, we say that two hypersurfaces intersect transver-
sally in R

d if the points of intersection are smooth on the hypersurfaces and if the
corresponding tangent spaces at each intersection point generate the tangent space of
R

d at that point.

Theorem 8.3 Let { f = 0} be a smooth hypersurface, and let ϕ : �→ R be positive.
Suppose ∂ f/∂ω1 is nonvanishing in �. Let W be the projection of the hypersurface
{ f = 0} ⊂ � onto the subspace {(ω2, . . . , ωd) ∈ R

d−1}, and let ρ : �→ R
d be the

map ω �→ ( f (ω), ω2, . . . , ωd). If the boundary of � intersects transversally with the
hypersurface { f = 0}, then

V (λ) :=
∫

{ω∈�:| f (ω)|≤λ}
ϕ(ω)dω ≈ Cλ

asymptotically (as λ→ 0), where

C = 2
∫

W

ϕ

|∂ω1 f | ◦ ρ−1(0, ω2, . . . , ωd) dω2, . . . , dωd .
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Proof The asymptotics of the volume V (λ) depends only on the region {ω ∈ � :
| f (ω)| ≤ λ}. So we may assume that � is a small neighborhood of the hypersurface
{ f (ω) = 0}. As we saw in the proof of Theorem 7.1, the map ρ is an isomorphism
onto its image. Thus, after changing variables, the zeta function associated to V (λ)

becomes

ζ(z) =
∫

ρ(�)

| f |−z ϕ

|∂ω1 f | ◦ ρ−1( f, ω2, . . . , ωd) d f dω2, . . . , dωd

=
∫

W

ε2(ω2,...,ωd )∫

ε1(ω2,...,ωd )

| f |−z ϕ

|∂ω1 f | ◦ ρ−1( f, ω2, . . . , ωd) d f dω2, . . . , dωd .

Here, the lower and upper limits ε1, ε2 straddle zero because the boundary of � is
transversal to the hypersurface. By substituting the Taylor series

ϕ

|∂ω1 f | ◦ ρ−1( f, ω2, . . . , ωd) = ϕ

|∂ω1 f | ◦ ρ−1(0, ω2, . . . , ωd)+ O( f )

and the exponential series ε1−z
2 = 1+ O(1− z), we get the Laurent expansion

ε2∫

0

| f |−z ϕ

|∂ω1 f | ◦ ρ−1( f, ω2, . . . , ωd) d f

=
[ | f |1−z

1− z
· ϕ

|∂ω1 f | ◦ ρ−1(0, ω2, . . . , ωd)

]ε2

0
+ · · ·

= 1

1− z
· ϕ

|∂ω1 f | ◦ ρ−1(0, ω2, . . . , ωd)+ · · · .

The same is true for the integral from ε1 to 0. The result now follows from Lemma 8.1.
��

Example 8.4 By Theorem 4.1, all conditional independence statements in small com-
plete graphs lead to smooth hypersurfaces. Here we analyze the statement 1⊥⊥ 2 | 3
in the complete three-node DAG. This example was studied in [17, §2]. The corre-
sponding partial correlation is

corr(1, 2 | 3) = a13a23 − a12√
1+ a2

23

√
1+ a2

12 + a2
13

.

This partial correlation hypersurface lives in R
3 and is depicted in [17, Fig. 2b].

We apply Theorem 8.3 by setting � := [−1, 1]3, f := corr(1, 2 | 3), and ϕ :=
1/23, the uniform distribution on �. We choose ω1 to be a12. Then ρ−1(0, a13, a23) =
(a13a23, a13, a23). The projection W of the surface {a12 = a13a23} onto {(a13, a23) ∈
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[−1, 1]2} is the whole square [−1, 1]2. The formula for the constant C now simplifies
to

C = 1

4

1∫

−1

1∫

−1

√
1+ a2

13

√
1+ a2

13 + a2
13a2

23 da13 da23 ≈ 5.4829790759.

This two-dimensional integral was evaluated numerically using Mathematica.
��

We now come to the monomial case that was discussed in Theorem 7.1.

Theorem 8.5 Let g : � → R and ϕ : � → R be positive, and let f (ω) =
ω

κ1
1 · · ·ωκd

d g(ω), where the κi are nonnegative integers. Suppose that 1/� = κ1 =
· · · = κm > κm+1 ≥ · · · ≥ κd and that the boundary of � is transversal to the
subspace L defined by ω1 = · · · = ωm = 0. Let ω̄ and κ̄ denote the vectors
(ωm+1, . . . , ωd) and (κm+1, . . . , κd), respectively. Then

V (λ) :=
∫

{ω∈�:| f (ω)|≤λ}
ϕ(ω)dω ≈ Cλ�(− ln λ)m−1

asymptotically as λ tends to zero, where

C = (2�)m

�(m − 1)!
∫

�∩ L

ω̄−�κ̄ g(0, . . . , 0, ω̄)−�ϕ(0, . . . , 0, ω̄)dω̄. (24)

Proof Let us suppose for now that � is the hypercube [0, ε]d . Our goal is to apply
Lemma 8.1 by computing the Laurent coefficient a�,m of the zeta function ζ(z). We
first study the Taylor series expansion of the integrand about ω1 = · · · = ωm = 0.
This gives

(
ωκ g(ω)

)−z
ϕ(ω) = ω−zκ (g(0, . . . , 0, ω̄)−zϕ(0, . . . , 0, ω̄)

+O(ω1)+ · · · + O(ωm)) .

The higher-order terms in this expansion contribute larger poles to ζ(z), so we only
need to compute the coefficient of (�− z)−m in the Laurent expansion of

∫

�

ω
−zκ1
1 · · ·ω−zκm

m ω̄−zκ̄ g(0, . . . , 0, ω̄)−z ϕ(0, . . . , 0, ω̄) dω1, . . . , dωm dω̄

=
(

ε1−z/�

1− z/�

)m ∫

�∩ L

ω̄−zκ̄ g(0, . . . , 0, ω̄)−z ϕ(0, . . . , 0, ω̄) dω̄.
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Because g is positive, the last integral in the preceding expression has no poles near
z = �, so the constant term in its Laurent expansion comes from substituting z = �.
Hence,

a�,m = �m
∫

�∩ L

ω̄−�κ̄ g(0, . . . , 0, ω̄)−� ϕ(0, . . . , 0, ω̄) dω̄.

Now suppose � is not the hypercub [0, ε]d . Since the boundary of � is transversal
to the subspace L , we decompose � into small neighborhoods that are isomorphic to
orthants. Summing up the contributions from these orthants gives the desired result.

��
Remark 8.6 We revisit the planar tubes shown in Fig. 3a–c. Using the formula (24) in
Theorem 8.5, one can easily check the constants C we saw in Example 3.1, namely,

C =

⎧
⎪⎨

⎪⎩

1 for f (x, y) = x,

1 for f (x, y) = xy,

3 for f (x, y) = x2 y3.

Example 8.7 We apply Theorem 8.5 to find the constants in Corollary 5.3 for chains
and stars. In both cases we set � = [−1, 1]p−1 and ϕ = 21−p. For chains we have
(�, m) = (1, p−1), and L is the subspace a12 = · · · = ap−1,p = 0. Then the integral
in (24) is the evaluation of the denominator of (13) at the origin multiplied by ϕ, so
Cchain = 1/(p − 2)!, as claimed.

For stars, (�, m) = (1, 2) is achieved by 1 < i < j and S ⊂ S̄ := {2, . . . , p}\{i, j},
with

corr(i, j |S) = − a1i a1 j√
1+ SO S(S)+ a2

1i

√
1+ SO S(S)+ a2

1 j

, SO S(S) =
∑

s∈S

a2
1s .

Since | corr(i, j |S)| ≥ | corr(i, j |S̄)|, the quantity VG(λ) is the volume of the union
of the tubes {| corr(i, j |S̄)| ≤ λ} over all 1<i< j . By application of formula (24), the
asymptotic volume of each tube computes to pλ(− ln λ)/3. Meanwhile, the volumes
of the intersections of these tubes become negligible as λ→ 0. After summing over
all 1<i< j , we get Cstar =

(p−1
2

) p
3 =

(p
3

)
. ��

Example 8.8 We compute the constant C of the volume V1,2|4,...,p(λ) for G =
Tripart p,p−3 as in Example 6.3. Let p ≥ 6 and � be given by (20). We are inter-
ested in the tube

∣
∣
∣
∣a13a23

g(ā)

h(a)

∣
∣
∣
∣ ≤ λ, where g(ā) =

p∑

k=4

a2
3k

and h(a) =
√

1+ g(ā)(a2
13+1) ·

√
1+ g(ā)(a2

23+1).
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The measure on � is ϕ(a) da12 da23 dā, where ϕ(a) = 1/4 and dā is the Lebesgue
probability measure on the ball {g(ā) ≤ 1}. According to Theorem 8.5,

C =
∫

{g(ā)≤1}

(
g(ā)

1+ g(ā)

)−1

dā.

By substituting spherical coordinates for the integration, this expression simplifies to

1+
∫

{g(ā)≤1}

1

g(ā)
dā = 2+ 2

p − 5
,

yielding the constant C1,2|4,...,p needed for the bias reduction analysis in Example 6.3.
��

9 Discussion

In this paper we examined the volume of regions in the parameter space of a directed
Gaussian graphical model that are given by bounding partial correlations. We estab-
lished a connection to singular learning theory, and we showed that these volumes can
be computed by evaluating the RLCT of the partial correlation hypersurfaces. Through-
out the paper we made the simplifying assumption of equal noise, i.e., ε ∼ N (0, I ).
Ideally, one would like to allow for different noise variances. This would increase
the dimension of the parameter space �. It would be very interesting to study this
more difficult situation and understand how the asymptotic volumes change or, more
generally, how the asymptotics depends on our choice of the parameter space �. This
issue was discussed briefly in Example 4.8.

This paper can be seen as a first step toward developing a theory that would make
it possible to compute the complete asymptotic expansion of particular volumes. We
have concentrated on computing only the leading coefficients of these expansions,
and even this question is still open in many cases (e.g., Example 6.6). An interesting
extension would be to better understand how to use properties of the graph to compute
the coefficients Cl,m in the asymptotic expansion. Finally, another interesting problem
for future research would be to ascertain all values of (l, m) for which Cl,m is nonzero
in terms of the intrinsic properties of the underlying graph.
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