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Summary. In many applications we have both observational and (randomized) interventional
data. We propose a Gaussian likelihood framework for joint modelling of such different data
types, based on global parameters consisting of a directed acyclic graph and corresponding
edge weights and error variances. Thanks to the global nature of the parameters, maximum
likelihood estimation is reasonable with only one or few data points per intervention. We prove
consistency of the Bayesian information criterion for estimating the interventional Markov equiv-
alence class of directed acyclic graphs which is smaller than the observational analogue owing
to increased partial identifiability from interventional data. Such an improvement in identifiability
has immediate implications for tighter bounds for inferring causal effects. Besides methodology
and theoretical derivations, we present empirical results from real and simulated data.
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1. Introduction

Causal inference often relies on an underlying influence diagram in terms of a directed acyclic
graph (DAG). In absence of knowledge of the true underlying DAG, there has been a substantial
line of research to estimate the Markov equivalence class of DAGs which is identifiable from data.
Most often, the target of interest is the observational Markov equivalence class to be inferred
from observational data, i.e. the data arise from observing a system in ‘steady state’ without any
interventions, see for example Spirtes et al. (2000) or Pearl (2000). For the important case of
multivariate Gaussian distributions, the observational Markov equivalence class is quite large
and, thus, many parts of the true underlying DAG are unidentifiable from observational data; see
for example Verma and Pearl (1990) or Andersson et al. (1997) for a graphical characterization of
the Markov equivalence class in the Gaussian or the fully non-parametric case. Under additional
assumptions, identifiability of the whole DAG is guaranteed as with linear structural equation
models with non-Gaussian errors (Shimizu et al., 2006) or additive noise models (Hoyer et al.,
2009); see also Peters et al. (2011).
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In many applications, we have both observational and interventional data, where the lat-
ter come from (randomized) intervention experiments. In biology, for example, we often have
observational data from a wild-type individual and interventional data from mutants or indi-
viduals with knocked-out genes. Besides the methodological issue of properly modelling such
data, we gain in terms of identifiability: the interventional Markov equivalence class is smaller
(Hauser and Bühlmann, 2012), thanks to additional interventional experiments, and this is of
particular interest for the Gaussian and non-parametric cases which are most difficult in terms
of identifiability.

We focus here on the problem of joint modelling of observational and interventional Gaussian
data. Thereby, we assume that the observational distribution is Markovian (and typically faith-
ful; see Spirtes et al. (2000)) to a true underlying DAG D0 and that the different interventional
distributions are linked to the DAG D0 and the observational distribution via the intervention
calculus by using the ‘do’ operator (Pearl, 2000). Linking all interventional distributions to the
same DAG D0 and the single observational distribution allows us to deal with the situation
where we have only one interventional data point for every intervention target (intervention
experiment). We propose to use the maximum likelihood estimator which has not been studied
or even used for the observational–interventional data setting. We prove that, when penaliz-
ing with the Bayesian information criterion BIC, it consistently identifies the true underlying
observational–interventional Markov equivalence class.

1.1. Relationship to other work
Some approaches to incorporate interventional data for learning causal models have been
developed in earlier work. Cooper and Yoo (1999) and Eaton and Murphy (2007) addressed the
problem of calculating a posterior (and also a likelihood) of a data set having observational as
well as interventional data but did not investigate properties of the Bayesian estimators, e.g. in
the large sample limit, nor addressed the issue of identifiability or Markov equivalence. He and
Geng (2008) presented a method which first estimates the observational Markov equivalence
class with the ‘PC algorithm’ (Spirtes et al., 2000) and then, in a second step, identifies addi-
tional structure by using interventional data. This technique is inefficient owing to decoupling
into two stages, especially if one has many interventional but only a few observational data: in
fact, our maximum likelihood estimator in Section 3 can cope with the situation where we have
interventional data only. To our knowledge, no analysis of the maximum likelihood estimator
of an ensemble of observational and interventional data has been pursued so far. The computa-
tion of the maximum likelihood estimator which we shall briefly indicate in Section 4.2 has been
developed in Hauser and Bühlmann (2012): because of its non-trivial nature, it is not dealt with
in this paper. When having observational data only, the work by Chickering (2002a,b) deals
with maximum likelihood estimation and consistency of the BIC-score for the corresponding
observational Markov equivalence class: however, the extension to the mixed interventional–
observational case, which occurs in many real problems, is a highly non-trivial step.

2. Interventional–observational data and maximum likelihood estimation

We start by presenting the model and the corresponding maximum likelihood estimator.

2.1. A Gaussian model
We consider the setting with nobs observational and nint interventional p-variate data from the
model
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X.1/, : : : , X.nobs/
IID∼ Pobs,

X
.1/
int , : : : , X

.nint/
int independent, and independent of X.1/, : : : , X.nobs/, X

.i/
int∼P

.i/
int:

.1/

In what follows, we specify the observational distribution Pobs and all the interventional distri-
butions P

.i/
int .i=1, : : : , nint/.

Regarding the observational distribution, we assume that

Pobs=Np.0, Σ/, where Pobs is Markovian with respect to a DAG D: .2/

The assumption with mean 0 is not really a restriction: all derivations can be easily adapted,
at the price of writing an intercept in many formulae. An implementation in the R package
pcalg (Kalisch et al., 2012) offers the option of restricting to mean 0 or not. The Markovian
assumption is equivalent to the factorization property in equation (3) below. We sometimes refer
to the true observational distribution as P0,obs with parameter Σ0, and the true DAG is D0.

In what follows, the set of nodes in a DAG D, associated with the p-dimensional ran-
dom vector .X1, : : : , Xp/, is denoted by {1, : : : , p} and the parental set by pa.j/= paD.j/=
{k; k a parent of node j} .j=1, : : : , p/. The Markov condition of Pobs with respect to the DAG
D, with parental sets pa.·/=paD.·/, allows the following (minimal) factorization of the joint
distribution (Lauritzen, 1996):

fobs.x/=
p∏

j=1
fobs.xj|xpa.j//, .3/

where fobs.·/ denotes the Gaussian density of Pobs and fobs.xj|xpa.j// are univariate Gaussian
conditional densities.

The interventional distributions P
.i/
int .i=1, : : : , nint/ may all be different but linked to the same

observational distribution Pobs and the same DAG D via the intervention calculus in Section
2.1.1. Owing to the common underlying model given by Pobs and the DAG D, this allows
us to handle cases where we have only one interventional data point for every interventional
distribution.

2.1.1. Intervention calculus
The intervention calculus, or do calculus (Pearl, 1995), is a key concept for describing the model
of the intervention distributions. We consider the DAG D appearing in the observational model
(2), and we assign it a causal interpretation as follows. Assume that Xint is realized under a
(single-variable or multivariable) intervention at the intervention target I⊆{1, : : : , p} denoting
the set of intervened vertices. The distribution of Xint is then given by the so-called truncated
factorization, which is a version of the factorization in equation (3). The truncated factorization
for the interventional distribution for Xint with deterministic intervention do.XI=uI/ is defined
as (Pearl, 1995)

fint{xIc |do.XI =uI/}=∏
j �∈I

fobs.xj|xpa.j/∩Ic , upa.j/∩I/,

where fint{·|do.XI=uI/} is the intervention Gaussian density when doing an intervention at XI

by setting it to the value uI , and fobs.·|·/ is as in equation (3). Here, the conditioning argument
xpa.j/∩Ic , upa.j/∩I distinguishes the value of the unintervened variables xpa.j/∩Ic and the values
of the intervened variables upa.j/∩I .

Deterministic interventions as described above make the intervened variables XI deter-
ministic, having the value of the intervention levels uI . In this paper, we consider stochastic
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interventions where the intervened variables XI are set to the value of a random vector UI ∼
Πj∈I fUj .uj/duj with independent (but not necessarily identically distributed) components hav-
ing densities fUj .·/ .j ∈ I/. The truncated factorization for stochastic interventions (where the
intervention values are independent of the observational variables) then reads as follows:

fint{x|do.XI =UI/}=∏
j �∈I

fobs.xj|xpa.j/∩Ic , Upa.j/∩I/
∏
j∈I

fUj .xj/: .4/

In contrast with the case of deterministic interventions above, the intervention density (4) is p

variate: x∈Rp and, for j∈I, xj is then an argument in the density from the random-intervention
variable Uj. In what follows, we assume that the densities for the intervention values are Gauss-
ian as well:

U1, : : : , Up independent with Uj∼N .μUj , τ2
j / .j=1, : : : , p/: .5/

The truncated factorization in equation (4) or its deterministic version above can be obtained
by applying the Markov property to the intervention DAG DI : given a DAG D, the intervention
DAG DI is defined as D but deleting all directed edges which point into i∈ I, for all i∈ I.

An interventional data point X
.i/
int, with intervention target T .i/= I⊆ {1, : : : , p} and corres-

ponding intervention value U
.i/
I , then has density fint {x|do.X

.i/
I =U

.i/
I /} from equation (4).

Thus, in other words, the intervention distribution P
.i/
int is characterized by the Gaussian density

in equation (4). This, together with the specific form of the Gaussian observational distribution
(see also equation (3)), fully specifies model (1) which then reads as

X
.1/
obs, : : : , X

.nobs/
obs

IID∼ fobs.x/dx as in equation .3/,

X
.1/
int , : : : , X

.nint/
int independent, and independent of X

.1/
obs, : : : , X

.nobs/
obs ,

X
.i/
int∼fint{x|do.XT .i/ =U

.i/

T .i/ /}dx as in equation (4) ,

U.1/, : : : , U.nint/ independent, and independent of X
.1/
obs, : : : , X

.nobs/
obs ,

U.i/∼N{μ.i/
U , diag.τ

.i/2
1 , : : : , τ .i/2

p /}:

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.6/

The true underlying parameters and quantities in model (6) are denoted by μ0, Σ0, μ.i/
0,U , {τ

.i/2
0,j }j

and the true DAG D0. It is well known (see also Section 3) that D0 is typically not identifiable
from the observational and a few interventional distributions.

2.1.2. Structural equation model
Model (6) (or model (1)) can be alternatively written as a linear structural equation model thanks
to the Gaussian assumption. The observational variables can be represented as

Xobs,k=
p∑

j=1
βkjXobs,j+ "k, "k∼N .0, σ2

k / .k=1, : : : , p/, .7/

where βkj = 0 if j �∈ pa.k/= paD.k/ and "1, : : : , "n are independent and "k independent of
Xobs,pa.k/. Using the matrix B= .βkj/

p
k,j=1 with

B∈B.D/ :={A= .αkj/∈Rp×p; αkj=0 if j �∈paD.k/}, .8/

we can write

Xobs=BXobs+ ", "∼Np{0, diag.σ2
1, : : : , σ2

p/}:
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An interventional setting with intervention do.XI =UI/ (and intervention target T = I) can
be represented as

Xint,k=
{ ∑

j �∈I

βkjXint,j+
∑
j∈I

βkjUj+ "k, if k �∈ I,

Uk, if k∈ I,
.9/

with βkj and "k as in equation (7) with the additional property that U is independent of Xobs
and ".

Thus, model (6) is given as

X
.1/
obs, : : : , X

.nobs/
obs independent and identically distributed (IID) as in expression (7),

X
.1/
int , : : : , X

.nint/
int independent, and independent of X.1/, : : : , X.nobs/,

X
.i/
int as in expression (9) with intervention target I=T .i/,

U.1/, : : : , U.nint/ independent, and independent of X
.1/
obs, : : : , X

.nobs/
obs ,

U.i/∼N{μ.i/
U , diag.τ

.i/2
1 , : : : , τ .i/2

p /}:

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.10/

It also holds that, for " in equation (7), ".1/, : : : , ".n/ are independent of U.1/, : : : , U.n/. As before,
we denote the true underlying quantities by B0, {σ2

0,k}k, μ0,U , τ2
0 and the true DAG D0. Because

of the causal interpretation of the DAG model, we call a model as in expression (10) or (6) a
Gaussian causal model in what follows.

To summarize, we consider an ensemble of nobs observational data points and nint data
points originating from interventions at possibly different sets of variables, characterized by the
targets T .1/, : : : , T .nint/. We assume that intervened variables are set to realizations of independent
Gaussian random variables denoted by U

.i/
k , where the bracketed index i denotes the data point

and the lower index k the intervened variable. By this notation, we also allow for multiple
interventions of the same random variables by different intervention distributions, denoted by
two sample indices i and j with T .i/=T .j/, but different distributions of U.i/ and U.j/.

For simplicity, our model presented here does not allow for ‘mechanism changes’ (Tian and
Pearl, 2001) or ‘imperfect interventions’ (Eaton and Murphy, 2007). A mechanism change
does not completely destroy the dependence of an intervened random variable from its causal
parents, but it alters the functional form of this dependence. A mechanism change hence replaces
the original structural equation of an intervened random variable by a new equation with
different coefficients, in contrast with our framework where an intervention replaces the original
structural equation by a new equation where the model coefficients do not change (see equation
(9)).

2.2. Maximum likelihood estimation when the directed acyclic graph is given
The likelihood for the Gaussian model (6) is parameterized by the covariance matrix Σ of
Pobs=Np.0, Σ/, the DAG D and the parameters μ

.i/
U and τ .i/2 for the stochastic intervention

values U.i/. Alternatively, and the route that is taken here, we can use the linear structural
equation model and parameterize the likelihood with the coefficient matrix B, the error variances
σ2

1, : : : , σ2
p, and μ

.i/
U and τ .i/2. Using this, the matrix B is constrained such that its non-zero

elements correspond to the directed edges in the DAG D.
For a given DAG D, it is quite straightforward to derive the maximum likelihood estimator,

as discussed below. Much more involved is the issue of structure learning when the DAG D is
unknown: there we want to estimate a suitable Markov equivalence of the unknown DAG, as
discussed in Section 3.
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It is easy to see that the log-likelihood for μ
.i/
Uj

and τ
.i/2
j decouples from the remaining param-

eters, and we regard μ
.i/
Uj

and τ
.i/2
j (for all i and j) as nuisance parameters.

In what follows, we unify the notation and denote an observational data point with the
intervention target I=∅. We can then write the distribution of Xint|do.XI =UI/ as

X|do.XI =UI/∼N .μ.I/, Σ.I//, .11/

μ.I/= .1−R.I/B/−1Q.I/TμUI ,

Σ.I/= .1−R.I/B/−1{R.I/ diag.σ2/R.I/+Q.I/T diag.τ2
I /Q.I/}.1−R.I/B/−T:

Thereby, we have used the following matrices:

P.I/ : Rp→Rp−|I|, x 	→xIc ,

Q.I/ : Rp→R|I|, x 	→xI ,

R.I/ : Rp→Rp, R.I/ :=P.I/TP.I/:

.12/

The Gaussian distribution in expression (11) is a direct consequence of equation (9), which can
be rewritten in vector matrix notation as

Xint=R.I/.BXint+ "/+Q.I/TU:

Denoting the intervention target for the ith data point X.i/ by T .i/, and the total sample size as
n=nobs+nint, the log-likelihood (conditional on U.1/, : : : , U.n/) becomes

lD.B, {σ2
k}k, {μ

.i/
U }i, {τ .i/2}i; T .1/, : : : , T .n/, X.1/, : : : , X.n//=

n∑
i=1

log{f
μ.T .i//,Σ.T .i// .X

.i//},

where f
μ.T .i//,Σ.T .i// denotes the density of N .μ.T .i//, Σ.T .i/// in expression (11) which depends on

B, {σ2
k}k, {μ

.i/
U }i and {τ .i/2}i. To make the notation shorter, we shall denote by T the sequence

of intervention targets T .1/, : : : , T .n/ in what follows, and by X the data matrix consisting of the
rows from X.1/ to X.n/.

For a given DAG structure D, implying certain 0s in B∈B.D/ through the space B.D/ in
expression (8), the maximum likelihood estimator is defined as

B̂.D/, {σ̂2
k.D/}k= argmin

B∈B.D/

{σ2
i }∈.R+/p

− lD.B, {σ2
i }i;T , X/: .13/

The expressions B̂.D/ and {σ̂k.D/2}k have an explicit form as described in Appendix A.1; the
nuisance parameters {μ

.i/
U }i and {τ .i/2}i do not appear in equation (13) any more since the

minimizer of the likelihood does not depend on them.

3. Estimation of the interventional Markov equivalence class

Consider model (6) or (10). It is well known that one cannot identify the underlying DAG
D0 from Pobs=P0,obs. However, assuming for example faithfulness of the distribution as in
expression (2), we can identify the observational Markov equivalence class E.D0/= E.Pobs/

from Pobs; see for example Spirtes et al. (2000) or Pearl (2000).

3.1. Characterizing the interventional Markov equivalence class
The power of interventional data is that we can identify more than the observational Markov
equivalence class, namely the smaller interventional Markov equivalence classes (Hauser and
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Bühlmann, 2012). Regarding the latter, we consider a family of intervention targets, a sub-
set of the power set of the vertices {1, : : : , p}: I ⊂P.{1, : : : , p}/. In our context I = {T .i/⊆
{1, : : : , p}; i=1, : : : , n} is the set of intervention targets of the nint interventional data together
with the empty set ∅ as long as we have at least one observational data point (nobs > 0).

A family of targets I is called conservative if, for all k∈ {1, : : : , p}, there is some I ∈I such
that k �∈ I. The simplest such family is I={∅}, i.e. observational data only. Furthermore, every
I arising from an ensemble of observational and interventional data is a conservative family
of targets as well. The issue that a family of targets should be conservative is crucial for char-
acterization of interventional Markov equivalence classes (Hauser and Bühlmann, 2012): since
an intervention at a variable Xk destroys the original dependence from its causal parents, data
thereof cannot be used to determine these parents nor to estimate the corresponding regression
coefficients in equation (7). For this reason, we consider only conservative families of targets
throughout the paper; having jointly observational and interventional data in mind, this is not
really a restriction.

The general definition of an interventional Markov equivalence class is given in Appendix
A.2. As in the observational case, there is a purely graph theoretic criterion for interventional
Markov equivalence of two DAGs under a given conservative family of targets I.

Theorem 1 (Hauser and Bühlmann (2012), theorem 10). Two DAGs D1 and D2 on the vertex
set {1, : : : , p} are interventionally Markov equivalent under the conservative family of targets
I if and only if

(a) D1 and D2 have the same skeleton (i.e. yield the same undirected graph after neglecting
arrow orientations) and the same v-structures (i.e. induced subgraphs of the form a→
b← c), and

(b) D
.I/
1 and D

.I/
2 have the same skeleton for all I ∈I.

In the observational case, represented by I= {∅}, point (b) is trivially satisfied when point
(a) holds, and the criterion reproduces the classical result of Verma and Pearl (1990).

The example in Fig. 1 shows three DAGs that are observationally Markov equivalent since
they have the same skeleton and the same v-structures (Verma and Pearl (1990), or theorem 1,
part (a)). If we have, in addition to observational data, data from an intervention at vertex 4,
the orientations of the arrows incident to the intervened vertex become identifiable (theorem 1,
part (b)). Technically speaking, the interventional Markov equivalence class under the family
of targets I={∅, {4}} is smaller than the observational Markov equivalence class.

1 2 3 4

5 6 7
(a)

1 2 3 4

5 6 7
(b)

1 2 3 4

5 6 7
(c)

Fig. 1. Three DAGs having equal skeletons and a single v-structure, 3!6 5, hence being observationally
Markov equivalent: under the family of intervention targets ID{∅,{4}}, D and D1 are still (interventionally)
Markov equivalent (i.e. statistically indistinguishable), whereas D and D2 belong to different interventional
Markov equivalence classes (figure from Hauser and Bühlmann (2012)); (a) D; (b) D1; (c) D2
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The interventional Markov equivalence class EI.D0/ is identifiable from P0,obs in ex-
pression (2) and the interventional distributions, given by fint{x|do.XI =U//dx in model (6)
for all I ∈I, assuming faithfulness as in assumptions 1 and 2 below. In Hauser and Bühlmann
(2012), the interventional Markov equivalence class of a DAG D for a conservative family
of intervention targets I is rigorously characterized in terms of a chain graph with directed
and undirected edges: the so-called interventional essential graph or I-essential graph.

Even in the presence of interventional data, causal models are in general not fully identifiable.
A family of intervention targets I guarantees full identifiability of all causal models if and only
if for each pair of variables .Xj, Xk/ one of the following two conditions holds (Eberhardt et al.,
2005):

(a) there is an intervention target I ∈I with j ∈ I and k �∈ I and another intervention target
J ∈I with j �∈J and k∈J , or

(b) there is an intervention target I ∈I with |I ∩ {j, k}|= 1 and another intervention target
J ∈I with {j, k}⊂J .

3.2. Structure learning using BIC-score
For estimating the structure and the parameters of the interventional Markov equivalence class,
we consider the penalized maximum likelihood estimator by using the BIC-score. Denote by
B̂.D/ and {σ̂2

k.D/}k the maximum likelihood estimators for a given DAG D, as in equation (13).
An estimate for the interventional Markov equivalence class is then

ÊI =arg min
EI .D/

− lD{B̂.D/, {σ̂2
k.D/}k;T , X}+ 1

2 log.n/dim{EI.D/}, .14/

dim{EI.D/}=dim.D/=p+number of non-zero elements in B̂.D/:

The optimization is over all interventional Markov equivalence classes with corresponding
DAGs D; see also Section 3.3.

We note that the l0-penalty has the property that the score remains invariant for all mem-
bers in the interventional Markov equivalence class EI.D/: this property is not true for some
other penalties such as the l1-norm. We outline in Section 3.3 a computational algorithm for
computing estimator (14).

We now justify estimator (14) by providing a consistency result. We make the following as-
sumptions.

Assumption 1. The true observational distribution P0,obs in expression (2), or equivalently the
distribution of Xobs∼fobs.x/ dx in expression (6), is faithful with respect to the true underlying
DAG D0.

Assumption 2. The true interventional distributions of X
.i/
int∼fint{x|do.XT .i/ =U.i//}dx in

expression (6) are faithful with respect to the true underlying intervention DAG D0,T .i/ , for all
i=1, : : : , nint (for the definition of the intervention DAG, see Section 2.1.1).

The faithfulness assumption means that all marginal and conditional independences can be
read off from the DAG, here D0 or D0,T .i/ respectively (Spirtes et al., 2000). This is a stronger
requirement than a Markov assumption which allows us to infer some conditional indepen-
dences from the DAG D0 or D0,T .i/ .

In our case with a data set arising from different interventions, we do not have identically
distributed data, as is evident for example from equation (11). To be able to make a precise
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consistency statement for estimator (14), we regard the sequence of intervention targets as a
random sample out of the set of possible intervention targets I.

Assumption 3. The intervention targets T .1/, : : : , T .n/ are n IID realizations of a random vari-
able T taking values in I: P.T = I/=wI > 0 for all I ∈I.

In Section 2.2, we have already seen that the parameters μ
.i/
Uj

and τ
.i/2
j (for all i and j) are

nuisance parameters. They do not belong to the statistical model but describe the experimental
setting (i.e. the interventions). With assumption 3, we introduce an additional ‘artificial’ set of
nuisance parameters describing the experimental setting. By this approach, we can model the
sequence .T .i/, X.i//n

i=1 as independent realizations of random variables .T , X/∈ I ×Rp with
the distribution

P.T = I/=wI ,

f.x|T = I/=fint{x|do.XI =UI/}:

From here on, we shall leave out the sample index .i/ of intervention variables U, in contrast
with model (10). Formally, we assume that all interventions at a target I ∈I are performed with
IID realizations of intervention variables. Their distribution is then specified by the target I as
indicated by the notation do.XI =UI/. We make this assumption to ease calculation (especially
in Appendix A) and notation, but without loss of generality: all results below are also valid if
we allow multiple interventions at one and the same target I ∈I by using different intervention
distributions. This has to do with the fact that μ

.i/
Uj

and τ
.i/2
j (for all i and j) in model (10) are

nuisance parameters (see also Section 2.2).

Theorem 2. Consider model (6) with the family of intervention targets I. Assume assump-
tions 1–3. Then: as n→∞,

P{ÊI =EI.D0/}→1:

A proof is given in Appendix A.3. The result might not be surprising in view of model
selection consistency results of BIC for curved exponential family models (Haughton, 1988).
However, a careful analysis is needed to cope with the special situation of data arising from
different interventions and hence different distributions. Again, we emphasize that we regard
the sequence of intervention targets T .1/, : : : , T .n/ as a random sample out of a predefined subset
I of the power set of {1, : : : , p}. Hence theorem 2 shows consistency in the large sample limit
with respect to the equivalence class under the family of targets I, not consistency with respect
to the causal model, i.e. the DAG itself.

Remark 1. A version of theorem 2 also holds without the faithfulness assumptions 1 and 2.
We define a causal independence map as a DAG DÅ such that

(a) DÅ encodes the Markov property of fobs.x/dx and,
(b) for each i= 1, : : : , nint, the intervention DAG DÅ

T .i/ encodes the Markov property of
fint{x|do.XT .i/ =U.i//}dx.

This is a generalization of an independence map for observational data (Pearl, 1988). A
minimum causal independence map is a causal independence map having a minimum number
of edges.

Instead of equation (14) consider the estimator

D̂=arg min
D

− lD[B̂.D/, {σ̂2
k.D/}k;T X]+ 1

2 log.n/dim.D/,
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where the optimization is over all DAGs D. The statement in theorem 2 can then be replaced by

P.D̂ is a minimum independence map/→1:

A minimum causal independence map is typically not unique. Assuming faithfulness in as-
sumptions 1 and 2, the set of all minimum causal independence maps equals the interventional
Markov equivalence class of D0, represented by EI.D0/, making the above consistency statement
equivalent to theorem 2. If one of the assumptions 1 or 2 is violated, however, an ensemble of ob-
servational and interventional distributions may have different minimum causal independence
maps that do not belong to the same interventional Markov equivalence class. An example of an
observational distribution violating assumption 1 constructed by Peters (2012) can be found in
Fig. 2. Fig. 2(a) is a causal DAG D1 with edge weights defining the regression coefficients .βkj/

in the sense of expression (7); we assume that all error variances σ2
i are 1. The DAG encodes the

independence relationship X1⊥⊥X5|.X2, X3, X4/; owing to the chosen coefficients, the distribu-
tion in addition fulfils X1⊥⊥X5|X2 (non-faithful distribution). Since these are the only partial
independence relationships between the random variables, D1 is a minimum independence map
for the observational density. DAG D2 (Fig. 2(b)) is not Markov equivalent to D1 since it has
different v-structures (the broken arrows: arrows whose orientation differs from that in D1). Nev-
ertheless, the regression coefficients indicated together with error variances σ2

1=σ2
2=1, σ2

3= 1
5 ,

σ2
4= 5

6 and σ2
5=6 generate the same observational density as D1 together with the coefficients

indicated in Fig. 2(a). DAGs D1 and D2 are also minimum causal independence maps under the
family of targets I={∅, {2}} and assuming an intervention variable U2 with variance τ2

2 =1.

Remark 2. Although we have data sets with both observational and interventional data in
mind, note that theorem 2 makes only the assumption of a conservative family of intervention
targets. In other words, consistent model selection is even possible with interventional data
alone.

Let I ∈ I \ {∅} be an intervention target, and denote by nI = |{i; T .i/= I, i= 1, : : : , n}| the
number of interventional data for this target. Assumption 3 made in theorem 2 implies that
nI �n→∞. This might not be realistic in practice since there is often only one (or very few)
interventional data point for each target I, i.e. nI=1 (or nI is small). Without having a rigorous
proof, the consistency result of theorem 2 is expected to hold if the intervention value U.i/ is far
from 0, i.e. far from the mean of XT .i/ . The heuristics can be exemplified as follows.

1

5

2 3 4

1
1

2

5 −2 3

0.3

3

1

(a)

1

5

2 3 4

1
0.2

2

7.4 −0.4
1
6

2.06

53
30

1.4

(b)

Fig. 2. (a) Causal DAG D1 and (b) DAG D2 encoding the same observational densities without being
Markov equivalent (example and figures from Peters (2012), corrected version from the errata)
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3.2.1. Example 1
Consider a DAG D0=1→2 with p=2 and corresponding observational distribution from the
structural equation model

X1∼N .0, σ2
1/,

X2←βX1+ "2, "2∼N .0, σ2
2/:

Then, the interventional distribution with target I=1 equals

X2|do.X1=u/∼N .βu, σ2
2/, .15/

whereas the marginal observational distribution is

X2∼N .0, σ2
1+β2σ2

2/: .16/

Thus, if u→∞, the means of the distributions in expressions (15) and (16) drift away from
each other and one realization from the intervention in expression (15) would be sufficient such
that, with probability tending to 1 as u→∞, we could detect the difference from (one or many
realizations of) the observational distribution in expression (16).

Alternatively, if u=0, we could detect differences of the distributions in expressions (15) and
(16) in terms of their variances. But we would need many realizations from distributions (15)
and (16) to detect this difference with high probability.

Although obvious, we note that, if the true DAG would be 1← 2, the distributions (15)
and (16) would coincide (being equal to N{0, var.X2//. Therefore, when doing an intervention
do.X1=u/ and we see a difference in comparison with the marginal distribution of X2, the true
DAG must be 1→2.

We refer to empirical results in Section 4.2 which confirm good model selection properties if
nobs is large, nI =1 but with intervention values U chosen sufficiently far from 0.

3.3. Computation
The computation of estimator (14) is a highly non-trivial task. The main difficulty comes from
the fact that we must optimize over all Markov equivalence classes. We can reformulate the
optimization as follows:

B̂, {σ̂2
k}k= arg min

B∈BDAG;{σ2
k}k

−l.B, {σ2
k}k;T , X/+ 1

2 log.n/dim.B/

where −l.·;T , X/ is the negative log-likelihood in model (10), and BDAG is the space of ma-
trices satisfying the constraint that they correspond to a DAG. This DAG constraint causes
the optimization to be highly non-convex. In view of this, the l0-penalty is not adding major
new computational challenges (and in fact allows for dynamic programming optimization; see
below) and it enjoys nice statistical properties and leads to a score (value of the objective func-
tion) which is the same for all DAG members in an interventional Markov equivalence class.

Somewhat surprisingly, although the optimization problem (14) is ‘NP hard’ (Chickering,
1996), dynamic programming can be used for exhaustive optimization (Silander and Myllymäki,
2006), roughly as long as p is less than say 20. For problems with larger dimension, the opti-
mization in problem (14) can be pursued by using greedy algorithms. On the basis of an idea
from Chickering (2002a,b), we can use a greedy forward, backward and turning arrows algo-
rithm which pursues each greedy step in the space of interventional Markov equivalence classes,
which is the much more appropriate space than the space of DAGs. An efficient implementa-
tion of such an algorithm, called greedy interventional equivalent search (GIES), is rigorously
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described in Hauser and Bühlmann (2012) where algorithmic properties, theoretical and empir-
ical, are reported in detail. Although there is no guarantee that the GIES algorithm converges
to a global optimum, it seems very competitive and keeps up with dynamic programming for
small-scale problems. An implementation of the GIES algorithm is available in the R package
pcalg which is used throughout in Section 4.

4. Empirical results

We evaluated l0-penalized maximum likelihood estimation of interventional Markov equiva-
lence classes as described in Section 3 on a real data set (Section 4.1) as well as on simulated
data (Section 4.2).

4.1. Analysis of protein signalling data
We analysed the protein signalling data set of Sachs et al. (2005). This data set contains 7466
measurements of the abundance of 11 phosphoproteins and phospholipids recorded under dif-
ferent experimental conditions in primary human immune system cells. Measurements were
performed by using flow cytometry, which is a technique that allows cell-by-cell measurements
and hence produces much larger samples than techniques requiring cell lysis for subsequent
measurements of the total amount of phosphorylated proteins. The different experimental con-
ditions are characterized by associated reagents that inhibit or activate signalling nodes, cor-
responding to interventions at different points of the protein signalling network. Interventions
mostly take place at more than one point, and the data set is purely interventional. However,
some of the experimental perturbations affect receptor enzymes instead of (measured) signalling
molecules. Since our statistical framework cannot cope with interventions at latent variables,
we considered only 5846 out of the 7466 measurements which had an identical perturbation of
the receptor enzymes. In this way, we model the system with perturbed receptor enzymes as the
‘ground state’, defining its distribution of molecule abundances as observational.

Formally we can make the data set fit our interventional framework by the aforementioned
reduction to 5846 data points. However, it has been reported that some experimental condi-
tions affect products of inhibited proteins without changing their own phosphorylation state,
and hence rather affect children of intervened variables in our framework rather than the inter-
vention target itself (Ellis and Wong, 2008; Mooij and Heskes, 2013). In addition, the linear–
Gaussian assumption of our framework may not hold, even after a log-transformation of the
measurements. Nevertheless, we fitted graphical models to the data set with different frequentist
methods:

(a) GIES for the l0-penalized maximum likelihood estimation in expression (14) (see also
Sections 3.3 and 4.2.1);

(b) the PC algorithm (Spirtes et al., 2000) together with a subsequent orientation of edges
based on interventional data as proposed by He and Geng (2008) (more precisely, we
applied the PC algorithm to observational data points, and iteratively oriented previously
unoriented edges by the following rule: let j—k be an unoriented edge for which there
is an intervention target I ∈I with j∈ I, but k �∈ I; compare observational measurements
of Xk with measurements of Xk under the intervention at target I by a two-sample t-test
on the 5% level; if the test shows a significant difference in the means, orient the edge as
j→k; otherwise orient the edge as j←k (He and Geng, 2008));

(c) the graphical lasso GLASSO (Friedman et al., 2007);
(d) GIES combined with stability selection (Meinshausen and Bühlmann, 2010).
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Fig. 3. Receiver operating characteristic plots of the models estimated from the Sachs data set, for (a)
directed edges and (b) the skeleton (in (a) GLASSO is missing since it does not yield a directed model; in (b)
random guessing is shown by the line): �, GIES without stability selection;�, GIES with stability selection;
C, PC plus orientation rules of He and Geng (2008);�, GLASSO

We varied the tuning parameter of each algorithm: the number of steps (i.e. of edge additions,
deletions or reversals) in GIES, the significance level α in the PC algorithm, the penalty param-
eter λ in GLASSO and the cut-off selection probability in stability selection applied for GIES.
The significance level of the t-test in the orientation step of He and Geng (2008) turned out to
have no influence on the outcome when in the range [10−3, 10−1]. We compared the estimated
models with the conventionally accepted model which serves as ground truth (Sachs et al.,
2005); the resulting receiver operating characteristic plots, both with respect to edge directions
(defining true and false positive results in terms of the graphs’ adjacency matrices) and with
respect to the skeleton alone, are depicted in Fig. 3.

The overall performance of the estimation of the skeleton is comparable for all four algorithms
(Fig. 3(b)), even if one of them (GLASSO) treats all data as identically distributed and disregards
its interventional nature. Regarding edge directions (Fig. 3(a)), however, GIES (with or without
stability selection) yields an improvement over the combination of the PC algorithm and the
edge orientation rules of He and Geng (2008).

The Bayesian method of Cooper and Yoo (1999) that was used for model fitting by Sachs
et al. (2005) is not directly comparable with the frequentist methods that are used here. In
particular, the results from Sachs et al. (2005) are not easily reproducible owing to choosing the
discretization levels and prior distribution, and owing to manually correcting phosphorylation
levels of proteins whose activity was inhibited without reduction of their phosphorylation level
(Ellis and Wong, 2008). Their performance as measured by comparison with the ground truth is
substantially better than all methods considered in this paper (15 true positive results and seven
false positive results in the convention of Fig. 3(a)). Potential reasons are increased robustness
due to discretization and specific tuning (which is legitimate in their context of extending and
improving the conventional ground truth).

4.2. Simulations
We performed l0-penalized maximum likelihood estimation as in expression (14) on interven-
tional and observational data simulated from 4000 randomly drawn Gaussian causal models
(see model (6) or (10)) to illustrate the consistency result of theorem 2.
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4.2.1. Experimental settings
We randomly drew DAGs whose skeleton has an expected vertex degree of 1.8, 1.9, 2.9 and 3.9 for
p=10,20,30,40respectively.ForeveryDAGD,werandomlygeneratedaweightmatrixB∈B.D/

and error variancesσ2
1, : : : , σ2

p such that the corresponding observational covariance matrix

Σ= cov.Xobs/= .1−B/−1 diag.σ2/.1−B/−T

had a diagonal of .1, : : : , 1/, meaning that each variable of the system had an observational
marginal variance of 1. The procedure for generating Gaussian causal models of this form has
been described in detail by Hauser and Bühlmann (2012).

We simulated data sets with a total sample size n= nobs+ nint between 50 and 10000. We per-
formed single-vertex interventions at k randomly drawn vertices (k= 0:2p, k= 0:5p and k=p),
drawing p=k samples under each intervention (i.e. 5, 2 or 1 for the chosen values of k). These set-
tings ensure that we had only nint=p interventional data points in each simulation, and that the
majority of the data points were thus observational (nobs= n−p). This allowed us to verify our
conjecture following theorem 2 that few interventional samples are sufficient for consistent es-
timation of interventional Markov equivalence classes (or, equivalently, interventional essential
graphs) as long as the intervention levels, the expectation values of the intervention variables U,
are sufficiently large. In our simulations, we chose expectation values μUj between 1 and 50 and
variances of τ2 = 0:22 for the intervention variables. Because of the chosen normalization
Σii= 1, the expectation values μUj can be thought of as being indicated in units of observational
standard deviations.

To sum up, for each of the 4000 randomly generated Gaussian causal models, we simulated
144 data sets with observational and interventional data, namely one data set for each combin-
ation of the following experimental parameters:

(a) n∈{50, 100, 200, 500, 1000, 2000, 5000, 10000}; nint=p; nobs=n−p;
(b) k∈{0:2p, 0:5p, p};
(c) μUj ∈{1, 2, 5, 10, 20, 50}.

We learned the structure of the underlying causal model from the simulated data sets by
using the BIC-score as described in Section 3.3. We used the two causal inference algorithms that
were mentioned in Section 3.3:

(a) an adaptation of the dynamic programming approach of Silander and Myllymäki (2006)
to interventional data (this algorithm guarantees finding the global minimizer of BIC in
equation (14); because of its exponential complexity, it is applicable only to models with
no more than 20 variables though);

(b) the GIES algorithm of Hauser and Bühlmann (2012) (this algorithm greedily optimizes
the BIC-score by traversing the search space of interventional Markov equivalence classes
through operations corresponding to edge additions, deletions or reversals in the space
of DAGs. The algorithm does not guarantee finding the optimum BIC, but it was empiri-
cally shown for graphs with up to p= 20 nodes that it has a performance that is compara-
ble with that of Silander and Myllymäki’s (2006) approach (Hauser and Bühlmann, 2012)
while having polynomial run time in the average case).

We assessed the quality of the estimated causal models with the structural Hamming distance
(SHD) (Tsamardinos et al. (2006); we use the slightly adapted version of Kalisch and Bühlmann
(2007)). This quantity is a metric on the space of graphs. The SHD between two graphs G and Ĝ

is the sum of false positive and false negative results of the skeleton and wrongly oriented edges.
Formally, if the graphs G and Ĝ have adjacency matrices A and Â respectively, the SHD between
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G and Ĝ is defined as

SHD.G, Ĝ/ := ∑
1�i<j�p

.1−1{.Aij=Âij/∧.Aji=Âji/}/:

4.2.2. Results
Fig. 4 shows the SHD between the estimated and true interventional essential graph as a function
of the total sample size n. Results for different numbers of intervention targets showed similar
characteristics (not shown). The plots illustrate the consistency of BIC, which is the main result
of theorem 2. As expected, convergence to the true equivalence class is faster the larger the
intervention values (controlled by μU ) are. Note, however, that the simulation setting does not
fully match the limit setting of theorem 2: although the theoretical result asks for the sample
sizes nI of all interventions I ∈I to grow at the order O.n/, we always have p interventional data
points in our case whereas only the number of observational data points is growing. In the setting
with nI �n, Hauser and Bühlmann (2012) have already empirically shown the performance of
GIES as well as the approach of Silander and Myllymäki (2006).

Fig. 5 supports our conjecture stated after theorem 2: even with few interventional data
points (a total of p in our case, compared with n−p�p for n= 1000), the estimates of the
causal models are substantially improved by only increasing the mean intervention values μU .
However, for p=10, this effect is not clearly visible.

5. Conclusions

We have proposed a likelihood framework for joint modelling of Gaussian interventional and
observational data. Such kinds of data arise in many applications, notably in biology with mea-
surements of wild-type individuals and modifications arising from interventional knock-outs
of some genes. Our likelihood approach has various interesting aspects which we summarize as
follows. The parameters in the model are the observational DAG D and the corresponding edge
weights B and error variances {σ2

i }i (or instead of B and {σ2
i }i the corresponding covariance

matrix of a Gaussian distribution). These parameters are global in the sense that every inter-
vention distribution is determined by these parameters via the do calculus: in particular, this
implies that only one or a few data per intervention suffice for reasonably accurate estimation
since the corresponding distributions are all linked to the global parameters.

We show here that BIC is consistent for estimating the corresponding interventional Markov
equivalence class. The proof is rather involved since the various intervention distributions are
not identical and do not easily fit into a standard setting. The interventional Markov equivalence
class is an interesting and realistic target: it is smaller than the standard observational Markov
equivalence class and it leads to a higher degree of identifiability when intervening at several
variables. This has direct implications for tighter bounds for inferring causal effects (Maathuis
et al., 2009).

Besides the methodological development and theoretical derivations, we present empirical
results for real and simulated data.
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Appendix A: Derivations and proofs

This section contains all the proofs that were left out in earlier sections, namely the derivation of the
maximum likelihood estimator for a given DAG (Appendix A.1, proving results of Section 2.2), and the
proof of the consistency result for model selection (Appendix A.3, proving theorem 2).

A.1. Explicit form of maximum likelihood estimator when the directed acyclic graph
is known
Gaussian densities form an exponential family. The joint density of Gaussian random variables with
expectation μ and covariance Σ can be written as

fN .x; K, ν/= .2π/−1=2 exp[〈− 1
2 xxT, K〉Sp +〈x, ν〉Rp − 1

2 .νTK−1ν− log{det.K/}], .17/

where the inverse covariance matrix or precision matrix K :=Σ−1 and the transformed expectation value
ν :=Kμ form the natural parameters. In equation (17), 〈·, ·〉Rp stands for the canonical inner product on
Rp, and 〈·, ·〉Sp denotes the inner product 〈A, B〉Sp := tr.AB/ on the vector space Sp of symmetric p×p
matrices.

The canonical form (17) of the exponential family of Gaussian distributions eases calculations with
the interventional distributions (11), especially for our goal of deriving a maximum likelihood estimator
for a causal model with interventional data originating from different interventions. We hence start by
calculating the natural parameters for the interventional distribution (11). To simplify later calculations,
we use the inverse error variances γk :=σ−2

k to parameterize a Gaussian causal model from here on, together
with the vector notation γ := .γ1, : : : , γp/.

Lemma 1. Let μ.I/ and Σ.I/ be the expectation and covariance of the interventional distribution (11)
respectively. Then the following identities hold:

K.I/ := .Σ.I//−1= .1−B/TR.I/ diag.γ/R.I/.1−B/+Q.I/TK̃
.I/

Q.I/,

ν.I/ :=K.I/μ.I/=Q.I/TK̃
.I/

μUI
,

ν.I/T.K.I//−1ν.I/=μT
UI

K̃
.I/

μUI
,

log{det.K.I//}=∑
k �∈I

log.γk/+ log{det.K̃
.I/

/}:

We make use here of the notation K̃
.I/

:= .Σ̃
.I/

/−1; Σ̃
.I/

:=diag.τ 2
I / is the covariance matrix of the inter-

vention variable UI . R.I/ denotes the linear function

R.I/ : Rp→Rp, x 	→y=R.I/x with yk :=
{

xk, k �∈ I,
0, k∈ I.

Proof. To prove the formulae, we use the following identities of the auxiliary matrices (12):

P.I/P.I/T=1, P.I/Q.I/T=0, Q.I/TQ.I/=1−R.I/,
Q.I/Q.I/T=1, Q.I/P.I/T=0, R.I/R.I/=R.I/:

.18/

To verify the claimed formula for the precision matrix K.I/, it can be easily checked by using the identities
(18) that

{R.I/ diag.σ2/R.I/+Q.I/TΣ̃
.I/

Q.I/}−1=R.I/ diag.γ/R.I/+Q.I/TK̃
.I/

Q.I/: .19/

We then find that

K.I/ .11/= .1−R.I/B/T{R.I/ diag.γ/R.I/+Q.I/TK̃
.I/

Q.I/}.1−R.I/B/

= .1−B/TR.I/ diag.γ/R.I/.1−B/+Q.I/TK̃
.I/

Q.I/,

where we again use several of the identities (18) in the last step.
By making use of equations (11) and (19) again, we can calculate the transformed expectation:
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ν.I/= .1−R.I/B/T{R.I/diag.γ/R.I/+Q.I/TK̃
.I/

Q.I/}Q.I/TμUI

=Q.I/TK̃
.I/

μUI
;

the last step is again a consequence of the identities (18).
For the next formula, we use the fact that B is a nilpotent matrix; it is not difficult to see that every matrix

satisfying the DAG constraint actually is nilpotent. Therefore the inverse of 1−R.I/B can be calculated
as

.1−R.I/B/−1=
p−1∑
k=0

.R.I/B/k:

Together with the identities (18) and the representation of μ.I/ in expression (11), we conclude that

Q.I/μ.I/=
p−1∑
k=0

Q.I/.R.I/B/kQ.I/TμUI
=μUI

: .20/

It follows that

ν.I/T.K.I//−1︸ ︷︷ ︸
=μ.I/T

ν.I/=μ.I/Tν.I/ .Æ/=μ.I/TQ.I/TK̃
.I/

μUI
=μT

UI
K̃

.I/
μUI

,

where we use the formula for ν.I/ already proven in .Å/; the last step follows from equation (20).
To calculate the determinant of K.I/ finally, note that there is a permutation matrix P such that

P{R.I/ diag.γ/R.I/+Q.I/TK̃
.I/

Q.I/}PT

is a block matrix. Hence

det.K.I//=det.K̃
.I/

/
∏
k �∈I

γk

or log{det.K.I//}=Σk �∈I log.γk/+ log{det.K̃
.I/

/}, which completes the proof. �
Up to now, we have considered only a single interventional distribution. In the next lemma, we provide

a formula for the likelihood of an interventional data set originating from multiple intervention targets
as defined in expression (9). In what follows, we simplify the notation by unifying observational and
interventional data points in a common framework. For this aim, we reuse the convention at the end of
Section 2.2 and consider the entire data set .X.i//n

i=1, n=nobs+nint, of all observational and interventional
data points. To make the notation short, we denote the complete data set by the matrix X, having rows
X.1/, : : : , X.n/, and the list of intervention targets T .1/, : : : , T .n/ by T . Recall that an observational data
point X.i/ is marked by the empty target T .i/=∅. As mentioned in the comment before theorem 2, we
assume that all interventions at a target I ∈I are performed by using the same distribution of intervention
variables UI for simplicity. However, the results below are also valid if we allow multiple interventions at
the same target with different distributions; formally accounting for this case makes the notation more
cumbersome though.

Lemma 2. Let .T , X/ be an interventional data set as defined above, produced by a Gaussian causal
model with structure D. Moreover, let B∈B.D/ be a weight matrix and γ∈Rp

>0 a vector of inverse error
variances. Denote by n.I/ :=|{i|T .i/= I}| and

S.I/ := 1
n.I/

∑
i:T .i/=I

X.i/X.i/T

(the empirical covariance matrix for intervention I ∈I). Then the log-likelihood of .T , X/ given param-
eters B and γ is

lD.B, γ;T , X/=−1
2

∑
I∈I

n.I/ tr.S.I/K.I//+ 1
2

∑
I∈I

n.I/ log{det.K.I//}+C

=−1
2

∑
I∈I

n.I/ tr{S.I/.1−B/TR.I/ diag.γ/R.I/.1−B/}+ 1
2

∑
I∈I

n.I/
∑
k �∈I

log.γk/+C′,
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where C and C′ are constants given by the data set .T , X/ that do not depend on the model parameters
B and γ.

In the case of purely observational data (i.e. if T .i/=∅ for all i), this result reproduces the classical
log-likelihood (see, for example, Banerjee et al. (2008)):

2 lD.B, γ; .∅/n
i=1, X/=n[log{det.K/}− tr.SK/]+C:

Proof. The likelihood of the entire data set is the product of the sample likelihoods (11):

lD.B, γ;T , X/=
n∑

i=1
log[f{X.i/|do.X

.i/

T .i/ =U
.i/

T .i/ /}]

.11/=
n∑

i=1
log{fN .X.i/; K.T .i//, ν.T .i///}

.17/= −1
2

n∑
i=1

tr.X.i/X.i/TK.T .i///+ 1
2

n∑
i=1

log{det.K.T .i///}+C

=−1
2

∑
I∈I

n.I/ tr.S.I/K.I//+ 1
2

∑
I∈I

n.I/ log{det.K.I//}+C:

In the calculations above, C stands for a constant that is independent of the model parameters B and γ
(note that, by lemma 1, the remaining terms from equation (17) are independent of model parameters).

The second line of lemma 2 follows easily from the first by applying the identities given in lemma 1. �
The following lemma shows that the log-likelihood derived before is decomposable (Chickering, 2002b)

in the sense that it can be written as a sum of terms that depend on only a vertex and its parents.

Lemma 3. Using the definitions

n.−k/ := ∑
I∈I:k �∈I

n.I/,

S.−k/ := ∑
I∈I:k �∈I

n.I/

n.−k/
S.I/,

the log-likelihood of lemma 2 can be decomposed as follows:

lD.B, γ;T , X/=
p∑

k=1
lk.Bk·, γk;T , X/+C,

lk.Bk·, γk;T , X/=− 1
2 n.−k/{γk.1−B/k·S.−k/..1−B/k·/T− log.γk/},

where C is a constant that does not depend on the parameters γ and B. The calculation of the partial
likelihoods lk involves only data measured at vertex k and its parents pa.k/.

Proof. The decomposition of the second summand in lemma 4 is easy to verify:∑
I∈I

n.I/
∑
k �∈I

log.γk/=
n∑

i=1

∑
k �∈T .i/

log.γk/=
p∑

k=1

∑
i:k �∈T .i/

log.γk/=
p∑

k=1
n.−k/ log.γk/:

The decomposition of the first summand makes use of the fact that tr.AB/= tr.BA/ for any matrices A
and B for which AB and BA are defined:∑

I∈I
n.I/ tr{S.I/.1−B/TR.I/ diag.γ/R.I/.1−B/}=

n∑
i=1

tr{R.T .i// diag.γ/R.T .i//.1−B/X.i/X.i/T.1−B/T}

=
n∑

i=1

∑
k �∈T .i/

γk.1−B/k·X.i/X.i/T..1−B/k·/T

=
p∑

k=1
n.−k/γk.1−B/k·S.−k/..1−B/k·/T:

The kth column of 1−B, .1−B/k, only has entries at indices {k} ∪ pa.k/, so the calculation includes
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only rows and columns of the empirical covariance matrix with those indices and hence uses data from
only vertex k and its parents. �

Lemma 3 shows that, for a fixed DAG D, the maximum likelihood estimates for the weight matrix and
the error variances can be calculated ‘locally’, i.e. involving only data of single vertices and their parents.

Lemma 4. For a fixed DAG D and given data, the maximum likelihood estimate for its parameters σ
and B are

B̂k,pa.k/=S
.−k/
k,pa.k/.S

.−k/
pa.k/,pa.k//

−1,

σ̂2
k= .1− B̂/k·S.−k/..1− B̂/k·/T:

The maximum partial likelihoods are

sup
Bk· ,γk

lk.Bk·, γk;T , X/=− 1
2 n.−k/{1+ log.σ̂2

k/}

=− 1
2 n.−k/[1+ log{S

.−k/
kk −S

.−k/
k,pa.k/.S

.−k/
pa.k/,pa.k//

−1S
.−k/
pa.k/,k}]:

Proof. The maximum likelihood estimate must be a root of the derivative of the likelihood. From
lemma 3, we see that @l=@Bki= @lk=@Bki for i=1, : : : , p. This partial derivative is

@

@Bki

lk.Bk·, γk;T , X/∝ .1−B/k·S
.−k/
·i =S

.−k/
ki −Bk·S

.−k/
·i : .21/

For a fixed k, Bk· has one non-zero entry for every parent of k in the DAG D. For those entries, we obtain
the system of linear equations

Bk,pa.k/S
.−k/
pa.k/, i=S

.−k/
ki , ∀ i∈pa.k/,

by setting the partial derivatives (21) to 0. In matrix notation, this reads

Bk,pa.k/S
.−k/
pa.k/,pa.k/=S

.−k/
k,pa.k/

and has the solution

B̂k, pa.k/=S
.−k/
k,pa.k/.S

.−k/
pa.k/,pa.k//

−1;

note that S
.−k/
k,pa.k/ is invertible almost surely if n.−k/ > |pa.k/|.

The derivative with respect to the error variances is

@

@γk

lk.Bk·, γk/∝ .1−B/k·S.−k/..1−B/k·/T− 1
γk

and has the inverse root

1
γ̂k

= σ̂2
k= .1− B̂/k·S.−k/..1− B̂/k·/T

=S
.−k/
kk −S

.−k/
k,pa.k/.S

.−k/
pa.k/,pa.k//

−1S
.−k/
pa.k/,k:

By plugging this into the formula of lemma 3, we immediately find the formula for the supremum of the
partial likelihoods.

A.2. Definition of interventional Markov equivalence class
The observational Markov equivalence class of a DAG can be described as follows. For a DAG D, denote
by M.D/= {f ; f Markov with respect to D} all distributions which are Markov with respect to D.
Thereby, the Markovian property is meant to be the factorization property as in expression (3), and we
denote by f the density of the p-dimensional Gaussian distribution. Two DAGs D∼D′ are Markov
equivalent, if and only if M.D/=M.D′/. The observational equivalence class of a DAG D is then
denoted by E.D/ which can be represented as an essential graph, which is a chain graph with directed
and undirected edges (Andersson et al., 1997).

For the interventional Markov equivalence class, we proceed as follows. For a DAG D, consider the
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corresponding intervention DAG DI where we remove all edges which point from pa.I/ to I. Further-
more, consider a family of intervention targets I and corresponding tuples of densities .fI/I∈I , where each
element corresponds to an intervention target I ∈I. Let

MI.D/={.fI/I∈I ;∀ I ∈I : fI ∈M.DI/, and ∀ I, J ∈I,∀ i �∈ I ∪J : fI.xi|xpaD.i//=fJ .xi|xpaD.i//}:

Two DAGs D and D′ are interventionally Markov equivalent with respect to the family of targets I (no-
tation: D∼I D′) if and only if MI.D/=MI.D′/ (Hauser and Bühlmann, 2012). For a DAG D, the
interventional Markov equivalence class with respect to I (or I-Markov equivalence class) is denoted
by [D]I which, as in the observational case, can be characterized by an essential graph EI .D/ (Hauser
and Bühlmann, 2012). For I =∅, the definition coincides with the observational Markov equivalence
class above. Although the definition of interventional Markov equivalence is somewhat cumbersome, the
defined object indeed represents the DAGs which are equivalent and non-distinguishable from the inter-
ventional distributions (and, if I also contains the ∅-target, from observational and interventional
distributions). In other words, assuming faithfulness as in expression (2), the I-interventional Markov
equivalence is identifiable from the distributions.

A.3. Proof of theorem 2
In the previous section, we calculated the maximum of the likelihood of causal models given a set of
interventional data .T , X/. For model selection, i.e. estimating the causal model that produced a given data
set, the model complexity must be penalized to avoid overfitting. For large interventional (and potentially
observational) samples, it stands to reason to choose the complexity penalty of the Bayesian information
criterion BIC.

The maximization of BIC of a growing sequence of IID data is known to lead to consistent model
selection from a set of curved exponential models (Haughton, 1988).

Definition 1 (curved exponential model; Haughton (1988)). Let

P={f.x; θ/=h.x/ exp{〈T.x/, θ〉−b.θ/}|θ∈Θ}
be an exponential family with natural parameter space Θ⊂Rk. A curved exponential model is a set of
parameters of the form M ∩Θ, where M is a smooth connected manifold embedded in Rk.

Suppose that .X.i//n
i=1 is a sequence of IID realizations from a density in the exponential family of

definition 1, and let M∩Θ be a curved exponential model in that family. The Bayesian information criterion
BIC of M ∩Θ is then defined as

S.M; X/ := sup
θ∈M∩Θ

log
{

n∏
i=1

f.X.i/; θ/

}
− 1

2
dim.M/ log.n/

=n sup
θ∈M∩Θ

{〈T̄ n, θ〉−b.θ/}− 1
2

dim.M/ log.n/, .22/

where T̄ n stands for the mean statistic T̄ n := .1=n/Σn
i=1T.X.i// and X is the data matrix having the samples

X.i/ as rows.

Theorem 3 (consistency of BIC; Haughton (1988)). Let M1 ∩Θ, M2 ∩Θ, : : : be a finite set of curved
exponential models in the natural parameter space Θ of an exponential family as in definition 1 with
the following property: for each i �= j, if a point in M̄i is in Mj ∩

◦
Θ, then it is in Mi.

Assume that θ∈ ◦Θ and let Mi and Mj be two different curved exponential models. If θ∈Mi \Mj , or
if θ∈Mi∩Mj with dim.Mi/< dim.Mj/, then

lim
n→∞

Pθ{S.Mi; X/>S.Mj ; X/}=1:

As we explained in Section 3.2, we regard the intervention targets T .1/, : : : , T .n/ as a random sequence,
taking a ‘value’ I ∈I with probability wI (assumption 3 of Section 3.2). With this assumption, we can treat
the complete data set .T .i/, X.i//n

i=1 as IID realizations of random variables .T , X/∈I×Rp. Expressed in this
notation, we have shown in Appendix A.1 that the conditional densities f.x|T = I/=fint{x|do.XI =UI/}
belong to an exponential family. In proposition 1, we show that also the joint density of .T , X/ belongs to
an exponential family.
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Proposition 1. Consider a set of random variables .X, Y/∈Rp×{1, : : : , J} with P.Y=j/=wj , 1�j �J ,
and .X|Y = j/∼f.·; θj/, where f.x; θ/ is a density from an exponential family:

f.x; θ/=h.x/ exp{〈T.x/, θ〉−b.θ/}:

Then the joint density of X and Y is also an element of an exponential family, namely

f.x, y;θ, η/=h.x/ exp
{〈

S.x, y/,
(

θ
η

)〉
−a.θ, η/

}
:

The natural parameters are given by θ= .θT
1 , : : : , θT

J /T and η= .η1, : : : , ηJ−1/
T with ηj = log .wj=wJ /−

b.θj/+b.θJ /. The sufficient statistic S and the log-partition function a are given by

S.x, y/= .δy,1 T.x/T, : : : , δy,J T.x/T, δy,1, : : : , δy,J−1/
T,

a.θ, η/=b.θj/+ log
[

1+
J−1∑
j=1

exp{ηj+b.θj/−b.θJ /}
]
:

Proof. A straightforward calculation yields the result claimed:
f.x, y;θ, η/=wy f.x; θy/

=h.x/ exp{〈T.x/, θy〉−b.θy/+ log.wy/}

=h.x/ exp

[
J∑

j=1
〈δy,jT.x/, θj〉−

J∑
j=1

δy,j{log.wj/−b.θj/}
]

=h.x/ exp

[
J∑

j=1
〈δy,jT.x/, θj〉−

J−1∑
j=1

δy,j

{
log

(
wj

wJ

)
−b.θj/+b.θJ /

}

+
(

1−
J−1∑
j=1

δj,y

)
{log.wJ /−b.θJ /}+

J−1∑
j=1

δj,y{log.wJ /−b.θJ /}
]

=h.x/ exp

[
J∑

j=1
〈δy,jT.x/, θj〉−

J−1∑
j=1

δy,j

{
log

(
wj

wJ

)
−b.θj/+b.θJ /

}
+ log.wJ /−b.θJ /

]

=h.x/ exp
{〈

S.x, y/,
(

θ
η

)〉
+ log.wJ /−b.θJ /

}
with the definitions of S.x, y/, θ and η from above.

To finish the calculation, we need to express wJ as a function of θ and η: since

wJ =1−
J−1∑
j=1

wj=1−
J−1∑
j=1

exp{ηj+b.θj/−b.θJ /}wJ ,

we find

wJ =
[

1+
J−1∑
j=1

exp{ηj+b.θj/−b.θJ /}
]−1

,

which immediately yields the log-partition-function a.θ, η/ claimed. �
To prove the consistency of BIC for causal model selection under interventions in the limit of large

interventional samples, we must show that the models described by different DAGs fit the prerequisites of
theorem 3.

We have already seen that a single Gaussian interventional density (11) is a representative of an expo-
nential family with natural parameters K.I/ and ν.I/ living in Sp and Rp respectively (see expression (17)).
By proposition 1, we conclude that the natural parameter space for the complete family of interventions is

.Sp
>0/

J︸ ︷︷ ︸
=:S

× .Rp
/J︸ ︷︷ ︸

=:V

×RJ−1︸ ︷︷ ︸
=:W

,

where we write J :=|I|. We have already seen that the interventional densities are determined by model
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parameters and experimental parameters; the model parameters are B∈B.D/ and γ ∈Rp
>0. Therefore the

sets of natural parameters corresponding to different models are parameterized by functions

ΦI
D : B.D/×Rp

>0→S×V×W :

Before showing that the images of those maps form indeed a set of embedded manifolds in S ×V ×W
satisfying the prerequisites of theorem 3, we sum up our notation from above and from lemma 1.

Definition 2. Let D be a DAG. Furthermore, let I be a conservative family of intervention targets, and
T ∈I arbitrary. Then we define

ΦI
D : B.D/×Rp

>0→S×V×W ,

.B, γ/ 	→ ..K.I/.B, γ//I∈I , .ν.I//I∈I , .η.I//I∈I\{T}/

with

K.I/.B, γ/= .1−B/TR.I/ diag.γ/R.I/.1−B/T+Q.I/TK̃
.I/

Q.I/,

ν.I/=Q.I/TK̃
.I/

μ̃.I/,

η.I/= log
(

w̃I

w̃T

)
−b{K.I/.B, γ/, ν.I/}+b{K.T/.B, γ/, ν.T/},

b.K, ν/= 1
2 [νTK−1ν− log{det.K/}]:

Furthermore, we denote the image of ΦI
D in S×V×W by MI

D .

Proposition 2. With the notation from definition 2, the image MI
D is an embedded, smooth manifold in

S×V×W .

Proof. We must prove the following points:

(a) ΦI
D is smooth;

(b) ΦI
D is injective (and hence a bijection onto its image);

(c) the inverse of ΦI
D (on its image) is continuous;

(d) ΦI
D is an immersion, i.e. its derivative is injective everywhere.

Points (b) and (c) say that ΦI
D is a topological embedding; points (a) and (d) strengthen the result to show

that ΦI
D is even an embedding in the sense of differential geometry.

Throughout the (rather technical) proofs of the aforementioned four points, we shall always assume
without loss of generality that the vertices of D= .[p], E/ are numbered according to an inverse topological
sorting, such that all matrices in B.D/ are strictly lower triangular matrices.

(a) The smoothness of ΦI
D is immediately clear from its definition: ΦI

D is a composition of smooth
functions.

(b) Let .B, γ/ and .B′, γ ′/∈B.D/×Rp
>0 such that ΦI

D.B, γ/=ΦI
D.B′, γ ′/; by the definition of ΦI

D, this is
so if and only if K.I/.B, γ/=K.I/.B′, γ ′/ for all I ∈I. This condition simplifies to

.1−B/R.I/ diag.γ/R.I/.1−B/T= .1−B′/R.I/ diag.γ ′/R.I/.1−B′/T,

or, with the abbreviation A := .1−B/−1.1−B′/,

R.I/ diag.γ/R.I/A−T=AR.I/ diag.γ ′/R.I/: .23/

By the assumption that was made before, B and B′ are strict lower triangular matrices; hence A is
a lower triangular matrix with 1s as diagonal entries. Then, the left-hand side of equation (23) is
an upper triangular matrix, whereas the right-hand side is a lower triangular matrix. We conclude
that both sides of the equation must consist of a diagonal matrix, and that we can transpose the
left-hand side:

A−1R.I/ diag.γ/R.I/=AR.I/ diag.γ ′/R.I/: .24/

For some a �∈ I, the ath column of the matrix equation (24) reads

.A−1 diag.γ//·a= .A−1/·aγa=A·aγ ′a= .Adiag.γ ′//·a: .25/
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Since the family of targets I is conservative, there is, for every a∈ [p], some I ∈I such that a �∈ I; be-
cause equation (24) holds for every I ∈I, the columnwise equation (25) holds for every a∈ [p], so we
finally find A−1 diag.γ/=Adiag.γ ′/ or, equivalently, A2=diag.γ/diag.γ ′/−1. Because the diagonal
of A2 consists only of 1s, we see that γ=γ ′. It follows that A2=1 and, because A is a unit triangular
matrix, this means that A=1, and hence, by definition of A, B=B′. Therefore, ΦI

D is injective.
(c) We can restrict our considerations to the parameterizations of the precision matrices:

K
.I/
Ic ,Ic =P.I/K.I/P.I/T= .1−B/Ic ,Ic diag.γIc /.1−BIc ,Ic /T, .26/

K
.I/
I,Ic =Q.I/K.I/P.I/T=−Q.I/BR.I/ diag.γ/.P.I/T−R.I/BTP.I/T/

=−BI, Ic diag.γIc /.1−BIc ,Ic /T: .27/

By assuming, as before, that B is a strict lower triangular matrix, equation (26) represents the
Cholesky decomposition of K

.I/
Ic ,Ic . This decomposition is unique, and BIc ,Ic as well as γIc depend

continuously on K
.I/
Ic ,Ic (Schwarz and Köckler, 2006).

For each b∈ [p], there is some I ∈I that does not contain b since I is conservative. Hence γb can be
calculated out of K

.I/
Ic ,Ic by performing the Cholesky decomposition as described above. This shows

that γ is a continuous function of the precision matrices .K.I//I∈I .
Assume now that a→b is an arrow in D, and let I ∈I be an intervention target with b �∈ I. If a �∈ I,

Bab can also be calculated from K
.I/
Ic ,Ic via the (continuous) Cholesky decomposition. Otherwise, Bab

is an entry of the matrix BI,Ic which can be calculated by solving equation (27):

BI,Ic =−K
.I/
I,Ic .1−BIc ,Ic /−T diag.γIc /−1,

which is a continuous function since the matrix inversion is continuous. Altogether, also the matrix
B∈B.D/ is a continuous function of the precision matrices .K.I//I∈I , which proves the claim.

(d) We must show that the derivative dΦI
D.B, γ/ has maximal rank for all .B, γ/∈B.D/×Rp

>0. For that,
we consider the canonical basis

{.H.a, b/, 0/}.a,b/∈E ∪{.0, ei/}1�i�p

of B.D/×Rp, the tangent space of B.D/×Rp
>0 at the point .B, γ/, where H.a,b/ denotes the p×p

matrix with H
.a,b/
ab =1 and H

.a,b/
ij =0 for .i, j/ �= .a, b/, and ei denotes the ith canonical basis vector

of Rp. We must show that

{dΦI
D.B, γ/.H.a,b/, 0/}.a,b/∈E ∪{dΦI

D.B, γ/.0, ei/}1�i�p

is a linearly independent set for all .B, γ/∈B.D/×Rp
>0. Again, it is sufficient to consider the deriva-

tives of the precision matrices K.I/.
We start with the directional derivative of K.I/ in direction .H.a,b/, 0/ for a pair .a, b/∈E. This

derivative is

dK.I/.B, γ/.H.a,b/, 0/=−H.a,b/R.I/ diag.γ/R.I/.1−B/T− .1−B/R.I/ diag.γ/R.I/H.a,b/T:

For a matrix A∈Rp×p, the matrix H.a,b/A contains Ab· as the ath row; all other rows are filled with
0s. We then can see that

.R.I/ diag.γ/R.I/.1−B/T/b· =
{

γb..1−B/·b/T, if b �∈ I,
0, otherwise.

On the basis of these considerations and the fact that B is a strictly lower triangular matrix, one
can then show that, if b �∈ I, dK.I/.B, γ/.H.a,b/, 0/=F.a,b/, where F.a, b/ is the matrix
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We continue with the calculation of the directional derivative of K.I/ in direction .0, eb/, 1�b�p.
In this less tedious case, we see that

dK.I/.B, γ/.0, eb/=
{

.1−B/·b..1−B/·b/T, if b �∈ I,
0, otherwise.

This means that, for b �∈ I, we have dK.I/.B, γ/.0, eb/=G.b/, where

It can easily be seen that the matrices {F.a,b/}a>b∪{G.b/}1�b�p are linearly independent. Since, for
each b∈ [p], there is some I ∈I with b �∈ I, we can finally conclude that the set

{dΦI
D.B, γ/.H.a,b/, 0/}.a,b/∈E ∪{dΦI

D.B, γ/.0, ei/}1�i�p

is linearly independent, which proves the claim. �

We have now shown that the parameter sets MI
D are smooth embedded manifolds. To be able to apply

theorem 3, it remains to show that two different parameter manifolds are not arbitrarily close.

Proposition 3. Let I be a conservative family of targets, and let D1 and D2 be two DAGs that are not I
equivalent. Assume that θ∈S×V×W is a parameter vector with θ∈MI

D1
and θ∈MI

D2
. Then also θ∈MI

D1
holds.

Proof. Since θ∈MI
D1

, there is a sequence of parameter sets θ.j/ in MI
D1

with θ.j/→θ as j→∞. Since ΦI
D1

is injective (proposition 2, part (b)), there is, for each j, a unique parameterization .B.j/, γ.j//∈B.D/×Rp
>0

such that θ.j/ =ΦI
D1

.B.j/, γ.j//. The sequence .B.j/, γ.j/t/j�1 must be bounded; otherwise the sequence
θ.j/=ΦI

D1
.B.j/, γ.j// could not be bounded since K.I/, I ∈I, are polynomials in B and γ (definition 2). By

the theorem of Bolzano–Weierstrass we therefore have a subsequence .B.jk/, γ.jk// that converges to some
.B, γ/∈B.D/×Rp

�0=B.D/×Rp
>0.

The parameterization ΦI
D1

has a continuous continuation on B.D/×Rp
�0. Therefore we have

θ.jk/=ΦI
D1

.B.jk/, γ.jk//
k→∞−→ΦI

D1
.B, γ/,

and ΦI
D1

.B, γ/=θ holds because of the uniqueness of limits.
It remains to show that .B, γ/∈B.D/×Rp

>0, i.e. to show that γb �=0 for all b∈ [p]. Since I is conservative,
there is, for each b∈ [p], some I ∈I such that b �∈ I. From lemma 1, we know that

det{K.I/.B, γ/}=det.K̃
.I/

/
∏
a �∈I

γa;

since the prerequisite θ∈MI
D2

implies det.K.I// �=0, we conclude that γa �=0 for all a �∈ I. This in particular
implies that γb �=0, which completes the proof. �

We have now shown that the parameter sets MI
D of all DAGs D fulfil the prerequisites of theorem 3; an

immediate consequence is the following corollary.

Corollary 1. Consider model (6) with the family of intervention targets I. Assume assumption 3 from
theorem 2, and the estimator

D̂=arg min
D

−lD[B̂.D/, {σ̂2
k.D/}k;T X]+ 1

2 log.n/dim.D/:

Then: as n→∞,

P.D̂ is a minimum independence map/→1,

where P refers to the probability distribution under the true model.

As we noted in Section 3.2, every minimum independence map is I Markov equivalent to the true model
if the true observational and all corresponding interventional densities are faithful. In this case (i.e. under
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assumptions 1 and 2 of Section 3.2), the optimization problem (14) almost surely has a unique solution in
the limit n→∞, namely the I-Markov equivalence class of the true model (theorem 2).

References

Andersson, S., Madigan, D. and Perlman, M. (1997) A characterization of Markov equivalence classes for acyclic
digraphs. Ann. Statist., 25, 505–541.

Banerjee, O., El Ghaoui, L. and d’Aspremont, A. (2008) Model selection through sparse maximum likelihood
estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res., 9, 485–516.

Chickering, D. (1996) Learning Bayesian networks is NP-complete. In Learning from Data: Artificial Intelligence
and Statistics V (eds D. Fisher and H. Lenz), pp. 121–130. New York: Springer.

Chickering, D. (2002a) Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res., 3,
445–498.

Chickering, D. (2002b) Optimal structure identification with greedy search. J. Mach. Learn. Res., 3, 507–554.
Cooper, G. F. and Yoo, C. (1999) Causal discovery from a mixture of experimental and observational data. In

Proc. 15th Conf. Uncertainty in Artificial Intelligence, pp. 116–125. San Francisco: Morgan Kaufmann.
Eaton, D. and Murphy, K. (2007) Exact Bayesian structure learning from uncertain interventions. In Proc. 11th

Int. Conf. Artificial Intelligence and Statistics, vol. 2, pp. 107–114. Society for Artificial Intelligence and Statistics.
Eberhardt, F., Glymour, C. and Scheines, R. (2005) On the number of experiments sufficient and in the worst

case necessary to identify all causal relations among N variables. In Proc. 21st Conf. Uncertainty in Artificial
Intelligence, pp. 178–184. Arlington: Association for Uncertainty and Artificial Intelligence Press.

Ellis, B. and Wong, W. H. (2008) Learning causal Bayesian network structures from experimental data. J. Am.
Statist. Ass., 103, 778–789.

Friedman, J., Hastie, T. and Tibshirani, R. (2007) Sparse inverse covariance estimation with the graphical Lasso.
Biostatistics, 9, 432–441.

Haughton, D. D. M. (1988) On the choice of a model to fit data from an exponential family. Ann. Statist., 16,
342–355.
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