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Summary. What is the difference between a prediction that is made with a causal model and
that with a non-causal model? Suppose that we intervene on the predictor variables or change
the whole environment. The predictions from a causal model will in general work as well un-
der interventions as for observational data. In contrast, predictions from a non-causal model
can potentially be very wrong if we actively intervene on variables. Here, we propose to ex-
ploit this invariance of a prediction under a causal model for causal inference: given different
experimental settings (e.g. various interventions) we collect all models that do show invari-
ance in their predictive accuracy across settings and interventions. The causal model will be
a member of this set of models with high probability. This approach yields valid confidence
intervals for the causal relationships in quite general scenarios. We examine the example of
structural equation models in more detail and provide sufficient assumptions under which the
set of causal predictors becomes identifiable. We further investigate robustness properties of
our approach under model misspecification and discuss possible extensions. The empirical
properties are studied for various data sets, including large-scale gene perturbation experi-
ments.
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1. Introduction

Inferring cause–effect relationships between variables is a primary goal in many applications.
Such causal inference has its roots in different fields and various concepts have contributed to its
understanding and quantification. Among them are the framework of potential outcomes and
counterfactuals (see Dawid (2000) and Rubin (2005)), or structural equation modelling (see
Bollen (1989), Robins et al. (2000) and Pearl (2009)) and graphical modelling (see Lauritzen
and Spiegelhalter (1988), Greenland et al. (1999) and Spirtes et al. (2000)), where Pearl (2009)
provides a nice overview. Richardson and Robins (2013) made a connection between the frame-
works by using single-world intervention graphs.

A typical approach for causal discovery, in the context of unknown causal structure, is to
characterize the Markov equivalence class of structures (or graphs) (Verma and Pearl, 1991;
Andersson et al., 1997; Tian and Pearl, 2001; Hauser and Bühlmann, 2012), to estimate the
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correct Markov equivalence class on the basis of observational or interventional data (Spirtes
et al., 2000; Chickering, 2002; Castelo and Kocka, 2003; Kalisch and Bühlmann, 2007; He and
Geng., 2008; Hauser and Bühlmann, 2015), and finally to infer the identifiable causal effects or
to provide some bounds (Maathuis et al., 2009; VanderWeele and Robins, 2010). More recently,
within the framework of structural equation models (SEMs), interesting work has been done for
fully identifiable structures exploiting additional restrictions such as non-Gaussianity (Shimizu
et al., 2006), non-linearity (Hoyer et al., 2009; Peters et al., 2014) or equal error variances
(Peters and Bühlmann, 2014). Janzing et al. (2012) exploited an independence between causal
mechanisms.

We propose here a new method for causal discovery. The approach of the paper is to note
that, if we consider all ‘direct causes’ of a target variable of interest, then the conditional dis-
tribution of the target given the direct causes will not change when we interfere experimentally
with all other variables in the model except the target itself. This does not necessarily hold,
however, if some of the direct causes are ignored in the conditioning. (We thank a referee for
suggesting this succinct description of the main idea.) We exploit, in other words, that the
conditional distribution of the target variable of interest (which is often also termed the ‘res-
ponse variable’), given the complete set of corresponding direct causal predictors, must remain
identical under interventions on variables other than the target variable. This invariance idea
is closely linked to causality and has been discussed, for example, under the term ‘autonomy’
and ‘modularity’ (Haavelmo, 1944; Aldrich, 1989; Hoover, 1990; Pearl, 2009; Schölkopf et al.,
2012) or also ‘stability’ (Dawid and Didelez (2010) and Pearl (2009), section 1.3.2). Whereas
it is well known that causal models have an invariance property, we try to exploit this fact for
inference. Our proposed procedure gathers all submodels that are statistically invariant across
environments in a suitable sense. The causal submodel consisting of the set of variables with a
direct causal effect on the target variable will be one of these invariant submodels, with con-
trolled high probability, and this allows us to control the probability of making false causal
discoveries.

Our method is tailored for (but not restricted to) the setting where we have data from dif-
ferent experimental settings or regimes (Didelez et al., 2006). For example, two different in-
terventional data samples, or a combination of observational and interventional data (see He
and Geng (2008)) belong to such a scenario. For known intervention targets, Cooper and Yoo
(1999) incorporated the intervention effects as mechanism changes (Tian and Pearl, 2001) into a
Bayesian framework and Hauser and Bühlmann (2015) modified the greedy equivalence search
(Chickering, 2002) for perfect interventions. Our framework does not require knowledge of the
location of interventions. For this setting, Eaton and Murphy (2007) used intervention nodes
with unknown children and Tian and Pearl (2001) considered changes in marginal distributions,
whereas Dawid (2012, 2015) made use of different regimes for a decision theoretic approach.
In contrast with these approaches, our framework does not require the fitting of graphical,
structural equation or potential outcome models and comes with statistical guarantees. Further
advantages are indicated in Section 1.2.

We primarily consider the situation with no hidden (confounder) variables that influence
the target variable. A rigorous treatment with hidden variables would be more involved (see
Richardson and Spirtes (2002) for graphical language) but we provide an example with instru-
mental variables in Section 5 to illustrate that the method could also work more generally in
the context of hidden variables. We do not touch very much on the framework of feedback
models (Lauritzen and Richardson, 2002; Mooij et al., 2011; Hyttinen et al., 2012), although a
constrained form of feedback is allowed. It is an open question whether our approach could be
generalized to include general feedback models.
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Fig. 1. Example including three environments (the invariance (1) and (2) holds if we consider S* D{X2, X4};
considering indirect causes instead of direct causes (e.g. {X2, X5}) or an incomplete set of direct causes (e.g.
{X4}) may not be sufficient to guarantee invariant prediction): (a) environment e D 1; (b) environment e D 2;
(c) environment eD3

1.1. Data from multiple environments or experimental settings
We consider the setting where we have different experimental conditions e∈ E and have an
independent and identically distributed sample of .Xe, Ye/ in each environment, where Xe∈Rp

is a predictor variable and Ye∈R a target variable of interest. Although the environments e∈E
can be created by precise experimental design for Xe (e.g. by randomizing some or all elements
of Xe), we are more interested in settings where such careful experimentation is not possible
and the different distributions of Xe in the environments are generated by unknown and not
precisely controlled interventions. If a subset SÅ⊆ {1, : : : , p} is causal for the prediction of a
response Y , we assume that,

for all e∈E , Xe has an arbitrary distribution and .1/

Ye=g.Xe
SÅ , "e/, "e∼F" and "e⊥⊥Xe

SÅ , .2/

where g : R|S
Å| ×R→R is a real-valued function in a suitable function class, Xe

SÅ is the vector of
predictors Xe with indices in a set SÅ and both the error distribution "e∼F" and the function
g are assumed to be the same for all the experimental settings. Expressions (1) and (2) can
also be interpreted as requiring that the conditionals Ye|Xe

SÅ and Yf |Xf
SÅ are identical for all

environments e, f ∈E (this equivalence is proved in Section 6.1).
An example of a set of environments can be seen in Fig. 1. The invariance (1) and (2) holds if

the set SÅ consists of all direct causes of the target variable Y and if we do not intervene on Y ;
see proposition 1.

Sections 5, 6.2 and 6.3 discuss violations and possible relaxations of this assumption.

1.2. New contribution
The main and novel idea is that we can use the invariance of the causal relationships under
different settings e∈ E for statistical estimation, which opens a new road for causal discovery
and inference.

For simplicity, we shall mostly focus on a linear model with a target or response variable and
various predictor variables, where expression (1) is unchanged and expression (2) then reads
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Ye=μ+XeγÅ+ "e, with μ a constant intercept term. The set SÅ of predictors is then given by
the support of γÅ, i.e. SÅ :={k; γÅ

k �=0}. Assumption 1 in Section 2 summarizes all requirements.
Proposition 1 shows that SEMs with the traditional notion of interventions (Pearl, 2009) satisfy
assumption 1 if we choose the set SÅ to be the parents of Y . Proposition 6 in Appendix D sheds
some light on the relationship to potential outcomes.

Obtaining confidence statements for existing causal discovery methods is often difficult as
one would need to determine the distribution of causal effects estimators after having searched
and estimated a graphical structure of the model. It is unknown how one could do this, except
relying on data splitting strategies which have been found to perform rather poorly in such a
setting (Bühlmann et al., 2013). We propose in Section 3 a new method for the construction of
(potentially) conservative confidence statements for causal predictors SÅ and of (potentially)
conservative intervals for γÅ

j for j= 1, : : : , p without a priori knowing or assuming a causal
ordering of variables. The method provides confidence intervals without relying on assumptions
such as faithfulness or other identifiability assumptions. If a causal effect is not identifiable from
the given data, it would automatically detect this fact and not make false causal discoveries.

Another main advantage of our methodology is that we do not need to know how the exper-
imental conditions arise or which type of interventions they induce. We assume only that the
intervention does not change the conditional distribution of the target given the causal predic-
tors (no intervention on the target or a hidden confounder): it is simply a device exploiting the
grouping of data into blocks, where every block corresponds to an experimental condition e∈E .
We shall show in Section 3.2 that such grouping can be misspecified and the coverage statements
are still correct. This is again a major bonus in practice as it is often difficult to specify what an
intervention or change of environment actually means. In contrast, for a so-called ‘do interven-
tion’ for SEMs (Pearl, 2009) it needs to be specified on which variables it acts. Interesting areas
of applications include studies where observational data alone are not sufficient to infer causal
effects but randomized studies are infeasible to conduct.

We believe that the method’s underlying invariance principle is quite general. However, for
simplicity, we present our main results for linear Gaussian models, including some settings with
instrumental variables and hidden variables.

1.3. Organization
The invariance assumption is formulated and discussed in Section 2. Using this invariance as-
sumption, a general way to construct confidence statements for causal predictors and associated
coefficients is derived in Section 3. Two specific methods are shown, using regression effects for
various sets of predictors as the main ingredient. Identifiability results for SEMs are given in
Section 4. The relationship to instrumental variables and the behaviour in the presence of hid-
den variables are discussed in Section 5. We shall discuss extensions to the non-linear model
(2) in Section 6.1 and extensions to intervened targets in Section 6.2. Some robustness property
against model misspecifications is discussed in Section 6.3.

Simulations and applications to a biological gene perturbation data set and an educational
study related to instrumental variables are presented in Section 7. We discuss the results and
provide an outlook in Section 8.

1.4. Software
The methods are available in the package InvariantCausalPrediction for the R language
(R Core Team, 2014).
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2. Assumed invariance of causal prediction

We formulate here the invariance assumption and discuss the notion of identifiable causal pre-
dictors. Let E denote again the index set of |E | possible interventional or experimental settings.
As stated above, we have variables .Xe, Ye/ with a joint distribution that will in general depend
on the environment e∈ E . In the simplest case, |E | = 2, and we have for example in the first
setting observational data and interventions of some (possibly unknown) nature in the second
setting.

Our discussion will rest on the following assumption. We assume the existence of a model that
is invariant under different experimental or intervention settings. Let, for any set S⊆{1, : : : , p},
XS be the vector containing all variables Xk, k∈S.

Assumption 1 (invariant prediction). There is a vector of coefficients γÅ= .γÅ
1 , : : : , γÅ

p /T with
support SÅ={k :γÅ

k �=0}⊆{1, : : : , p} that satisfies,

for all e∈E , Xe has an arbitrary distribution and

Ye=μ+XeγÅ+ "e, "e∼F" and "e⊥⊥Xe
SÅ , .3/

where μ∈R is an intercept term, "e is random noise with mean 0, finite variance and the same
distribution F" across all e∈E .

The distribution F" is not assumed to be known in general. If not mentioned otherwise, we
shall always assume that an intercept μ is added to model (3). To simplify the notation, we
shall from now on refrain from writing the intercept down explicitly. We discuss the invariance
assumption with the help of some examples in Figs 1 and 2; see also Appendix A for another
artificial example. (Each panel of Fig. 2 shows the distribution of a target gene activity Y (on
the y-axis), conditional on a predictor gene activity X (shown on the x-axis). Blue crosses show
observational data and red dots show interventional data. The interventions do not occur on
any of the genes shown. The conditional distribution of Y , given X, is not invariant for the
examples in Figs 2(a) and 2(b), whereas invariance cannot be rejected for the two examples in
Figs 2(c) and 2(d). Take the example of Fig. 2(c). The variance of the activity of gene YMR321C
is clearly higher for interventional than observational data, so we can reject that the invariance
assumption holds for the empty set S=∅. However, if conditioning on the activity X of gene
YPL273W, the conditional distribution of the activity Y of gene YMR321C is not significantly
different between interventional and observational data, so the set S={YPL273W} fulfils the
invariance assumption (3), at least approximately.)

We observe each unit i in only one experimental setting. The distribution of the error "e is
assumed to stay identical across all environments (though see Sections 6.2 and 6.3 for approaches
when this assumption is violated). It is in general not possible to estimate the correlation between
the noise variables "e

i and "
f
i for a single unit i in different hypothetical environments e and

f , as the outcome is observed for only one environment (Dawid, 2007, 2012). Knowledge of
the correlation would be necessary to answer counterfactual questions about the outcome.
Knowledge of the correlation is not necessary for our method.

We deliberately avoid the term ‘causality’ in assumption 1 to keep it purely mathematical.
Proposition 1 establishes a link to causality by showing that the parents of Y in an SEM satisfy
assumption 1. In other words, the variables that have a direct causal effect on Y in an SEM form
a set SÅ for which assumption 1 is satisfied. This must not necessarily be true for the variables
that have an (in)direct effect on Y , i.e. the ancestors of Y . However, the set SÅ is not necessarily
unique (see the discussion). For a given set of experimental conditions E , there can be multiple
vectors γÅ that satisfy condition (3). For example, if only observational data are available, i.e.
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Fig. 2. Some examples from the gene knockout experiments in Kemmeren et al. (2014), which are discussed
in more detail in Section 7.2

all environments are identical, it is apparent that for any model (3) the distribution F" of the
residuals "e does not depend on e. If additionally .X, Y/ have a joint Gaussian distribution and
X and Y are not independent, for example, then one can find a solution γÅ to condition (3)
for every subset SÅ⊆ {1, : : : , p}. The inference that we propose works for any possible choice
among the set of solutions. We can at most identify the subset of SÅ that is common among all
possible solutions of condition (3); see Section 4 for settings with complete identifiability.

It is perhaps easiest to think about the example of a linear SEM, as defined in Section 4.1;
see also Fig. 8 in Appendix A. We show in the following proposition that the set of parents of
Y in a linear SEM is a valid set SÅ satisfying condition (3).

Proposition 1. Consider a linear SEM, as formally defined in Section 4.1, for the variables
.X1=Y , X2, : : : , Xp, Xp+1/, with coefficients .βjk/j,k=1,:::,p+1, whose structure is given by a di-
rected acyclic graph. The independence assumption on the noise variables in Section 4.1 can
here be replaced by the strictly weaker assumption that "e

1⊥⊥ {"e
j; j ∈AN.1/} for all environ-

ments e∈E , where AN.1/ are the ancestors of Y . Then assumption 1 holds for the parents of Y ,
namely SÅ=PA.1/, and γÅ=β1,· as defined in Section 4.1, under the following assumption:
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for each e∈E , the experimental setting e arises by one or several interventions on variables
from {X2, : : : , Xp+1} but interventions on Y are not allowed; here, we allow for do interven-
tions (Pearl, 2009) (see also Section 4.2.1, and note that the assigned values can be random,
also), or soft interventions (Eberhardt and Scheines, 2007) (see also Sections 4.2.2 and 4.2.3).

Proof. It follows by the definition of the interventions in Section 4.2, and because the inter-
ventions do not act on the target variable Y , that Ye=Σj∈PA.1/ β1,jXe

j+ "e
Y for all e∈E , where

"e
Y = "e

1 is independent of XPA.1/ and has the same distribution for all e∈E . Thus, assumption
1 holds.

We remark that proposition 1 can be generalized to include some hidden variables: the exact
statement is given in proposition 4 in Appendix B.

Instead of allowing only do or soft interventions in proposition 1, we can allow for more gen-
eral interventions which could change the structural equations for X2, : : : , Xp+1 (including for
example a change in the graphical structure of the model among the variables X2, : : : , Xp+1),
as long as the conditional distribution of Ye given Xe

SÅ remains the same. Such a weaker re-
quirement is sometimes referred to as ‘modularity’ (Pearl, 2009) or what is called ‘autonomy’
(Haavelmo, 1944; Aldrich, 1989); structural equations are autonomous if, whenever we replace
one of them because of an intervention, no other structural equations change; they remain
invariant. The remaining part of the condition in proposition 1 about excluding interventions
on the target variable Y is often verifiable in many applications; see Sections 6.2 and 6.3 for
violations of this assumption.

Proposition 1 refers to standard linear SEMs that do not allow for feedback cycles. We may,
however, include feedback in the SEM and consider equilibrium solutions of the new set of
equations. The independence assumption between "e and Xe

SÅ allows for some feedback cycles
in the linear SEM. The independence assumption prohibits, however, cycles that include the
target variable Y . We shall leave it as an open question to what extent the approach can be
generalized to more general forms of feedback models.

It is noteworthy that our inference is valid for any set that satisfies assumption 1 and not only
parents in a linear SEM. For the following statements we do not specify whether the set SÅ

refers to the set of parents in a linear SEM or any other set that satisfies condition (3), as the
confidence guarantees will be valid in either case. Proposition 6 in Appendix D discusses some
relationship to the potential outcome framework.

2.1. Plausible causal predictors and identifiable causal predictors
In general, .γÅ, SÅ/ is not the only pair that satisfies the assumption of invariance in model (3).
We therefore define for γ ∈Rp and S⊆{1, : : : , p} the null hypothesis H0,γ,S.E/ as

H0,γ,S.E/ : γk=0 if k �∈S and
{ ∃F" such that for all e∈E

Ye=Xeγ+ "e, where "e⊥⊥Xe
S and "e∼F":

.4/

As stated above, we have dropped the constant intercept notationally. The variables that appear
in any set S that satisfies H0,S.E/ we call plausible causal predictors.

Definition 1 (plausible causal predictors and coefficients).

(a) We call the variables S⊆ {1, : : : , p} plausible causal predictors under E if the following
null hypothesis holds true:

H0,S.E/ : ∃γ ∈Rp such that H0,γ,S.E/ is true: .5/
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(b) The identifiable causal predictors under interventions E are defined as the following subset
of plausible causal predictors:

S.E/ :=
⋂

S:H0,s.E/ is true

S=
⋂

γ∈Γ.E/

{k :γk �=0}: .6/

Here, Γ.E/ is defined in expression (8) (the second equation in expression (6) can be ignored for
now) and we define the intersection over an empty index set as the empty set; see the discussion.
Under assumption 1, H0,γÅ,SÅ.E/ is true and therefore SÅ are plausible causal predictors, i.e.
H0,SÅ.E/ is correct, also. The identifiable causal predictors are thus a subset of the true causal
predictors,

S.E/⊆SÅ:

This fact will guarantee the coverage properties of the estimators that we define below. Further-
more, the set of identifiable causal predictors under interventions E is growing monotonically
if we enlarge the set E ,

S.E1/⊆S.E2/ for two sets of environments E1, E2 with E1⊆E2:

In particular, if |E |=1 (for example, there are only observational data), then S.E/=∅ because
H0,∅.E/ will be true. The set of identifiable causal predictors under a single environment is thus
empty and we make no statement about which variables are causal.

In Section 4, we examine conditions for SEMs (see proposition 1) under which S.E/ is identical
to the parents of Y and we thus have complete identifiability of the causal coefficients. In practice,
the set E of experimental settings might often be such that S.E/ identifies some but not all parents
of Y in an SEM.

2.2. Plausible causal coefficients
We have seen that the null hypothesis (4) H0, γ, S.E/ is in general not only fulfilled for γÅ and its
support SÅ but also potentially for other vectors γ∈Rp. This is true especially if the experimental
settings E are very similar to each other. If we consider again the extreme example of just a single
environment, |E |= 1, and a multivariate Gaussian distribution for .X, Y/, we can find for any
set S⊆{1, : : : , p} a vector γ with support S that fulfils the null hypothesis H0,γ,S.E/, namely by
using the regression coefficient when regressing Y on XS . If the interventions that produce the
environments E are stronger and we have more of those environments, the set of vectors that
fulfil the null becomes smaller. We call vectors that fulfil the null hypothesis plausible causal
coefficients.

Definition 2 (plausible causal coefficients). We define the set ΓS.E/ of plausible causal coef-
ficients for the set S⊆{1, : : : , p} and the global set Γ.E/ of plausible causal coefficients under E
as

ΓS.E/ :={γ ∈Rp : H0,γ,S.E/ is true}, .7/

Γ.E/ :=
⋃

S⊆{1,:::,p}
ΓS.E/: .8/

Thus,

Γ.E1/⊇Γ.E2/ for two sets of environments E1, E2 with E1⊆E2:

The global set of plausible causal coefficients Γ.E/ is, in other words, shrinking as we enlarge
the set E of possible experimental settings.



Causal Inference by using Invariant Prediction 955

The null hypothesis H0,S.E/ in expression (5) can be simplified. Writing

βpred,e.S/ := arg min
β∈Rp:βk=0 if k �∈S

E.Ye−Xeβ/2 .9/

for the least squares population regression coefficients when regressing the target of interest
onto the variables in S in experimental setting e∈ E , we obtain the equivalent formulation of
the null hypothesis for set S⊆{1, : : : , p},

H0,S.E/ :
{∃β ∈Rp and ∃F" such that for all e∈E we have

βpred,e.S/≡β and Ye=Xeβ+ "e, where "e⊥⊥Xe
S and "e∼F":

.10/

We conclude that

ΓS.E/=
{∅ if H0,S.E/ is false,

βpred,e.S/ otherwise:
.11/

In other words, the set of plausible causal coefficients for a set S is either empty or contains
only the population regression vector. We shall make use of this fact further below in Section 3
when computing empirical estimators.

3. Estimation of identifiable causal predictors

We would like to estimate the set S.E/ of identifiable causal predictors (6) when observing the
distribution of .Xe, Ye/ under different experimental conditions e∈ E . At the same time, we
might be interested in obtaining confidence intervals for the linear causal coefficients.

Recall again the definition (5) of the null hypothesis H0,S.E/. Suppose for the moment that
a statistical test for H0,S.E/ with size smaller than a significance level α is available. Then the
construction of an estimator Ŝ.E/ and confidence sets Γ̂.E/ for the causal coefficients can work
as in the following generic method for invariant prediction.

Step 1: for each set S⊆ {1, : : : , p}, test whether H0,S.E/ holds at level α (we shall discuss
concrete examples later).
Step 2: set Ŝ.E/ as

Ŝ.E/ :=
⋂

S:H0,S.E/ not rejected

S: .12/

Step 3: for the confidence sets, define

Γ̂.E/ :=
⋃

S⊆{1,:::,p}
Γ̂S.E/, .13/

where

Γ̂S.E/ :=
{∅ H0,S.E/ can be rejected at level α,

Ĉ.S/ otherwise:
.14/

Here, Ĉ.S/ is a 1−α confidence set for the regression vector βpred.S/ that is obtained by
pooling the data.

As an example, consider again Fig. 2. Taking the example in Fig. 2(c), we cannot reject H0,S.E/

for S={YPL273W}. Hence we can see already from this plot that Ŝ.E/ is either empty or that
Ŝ.E/={YPL273W}. The latter case happens if no further set of variables is accepted that does
not include the activity of gene YPL273W as predictor.
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A justification for pooling the data in expression (14) is given in Section 3.2. (The construction
is also valid if the confidence set is based only on data from a single environment, but a confidence
set for the pooled data will be smaller in general.) This defines a whole family of estimators and
confidence sets as we have flexibility in the test that we are using for the null hypothesis (5) and
how the confidence interval Ĉ.S/ is constructed.

If the test and pooled confidence interval have the claimed size and coverage probability, we
can guarantee coverage of the true causal predictors and the true causal coefficient, as shown
below in theorem 1 (see the discussion for a more general version of theorem 1).

Theorem 1. Assume that the estimator Ŝ.E/ is constructed according to expression (12)
with a valid test for H0,S.E/ for all sets S⊆ {1, : : : , p} at level α in the sense that, for all
S, supP :H0,S.E/ trueP{H0,S.E/ rejected} � α. Consider now a distribution P over .Y , X/ and
consider any γÅ and SÅ such that assumption 1 holds. Then, Ŝ.E/ satisfies

P{Ŝ.E/⊆SÅ}� 1−α:

If, moreover, for all .γ, S/ that satisfy assumption 1, the confidence set Ĉ.S/ in expression
(14) satisfies P{γ ∈ Ĉ.S/}�1−α then the set Γ̂.E/ (13) has coverage at least level 1−2α:

P{γÅ ∈ Γ̂.E/}�1−2α:

Proof. The first property follows immediately since

P{Ŝ.E/⊆SÅ}=P

( ⋂
S:H0,S.E/ not rejected

S⊆SÅ

)
�P{H0,SÅ.E/ not rejected}�1−α,

where the last inequality follows by the assumption that the test for H0,S is valid at level α for
all sets S⊆{1, : : : , p}. The second property follows since

P{γÅ �∈ Γ̂.E/}�P{H0,SÅ.E/ rejected or γÅ �∈ Ĉ.SÅ/}�α+α=2α:

The confidence sets thus have the correct (conservative) coverage. The estimator of the causal
predictors will, with probability at least 1−α, not erroneously include non-causal predictors.
Note that the statement is true for any set of experimental or intervention settings. In the worst
case, the set Ŝ.E/ might be empty but the error control is valid nonetheless.

Since theorem 1 holds for any γÅ and SÅ which fulfil assumption 1, and assuming the set-
ting of proposition 1, we obtain the corresponding confidence statements for the causal coeffi-
cients and causal variables in a linear SEM, i.e. for γÅ=β1,· and SÅ=PA.1/ in the notation of
proposition 1.

Remark 1.

(a) We obtain the following empirical version of expression (6):

Ŝ.E/=
⋂

γ∈Γ̂.E/

{k :γk �=0}=
⋂

S:H0,S.E/ not rejected at α

S .15/

provided that, if H0,S.E/ is not rejected, then for all γ ∈ Γ̂S.E/ we have supp.γ/⊆S and
H0,supp.γ/.E/ is not rejected either.

(b) In expression (14), we have constructed confidence sets Γ̂S.E/ based on a test for H0,S.E/.
Alternatively, confidence sets Γ̂S.E/ may be available that are not based on a test procedure
for H0,S.E/. In this case, we may take them as a starting point and define Ŝ.E/ by using
the first equality in expression (15), instead of expression (12). Analogously to theorem 1,



Causal Inference by using Invariant Prediction 957

the correct coverage property of Γ̂SÅ.E/ then implies confidence statements for Γ̂.E/ and
Ŝ.E/.

3.1. Two concrete proposals
The missing piece in the generic procedure given by expressions (12) and (13) is a test for H0,S.E/

that is valid at level α for any given set of variables S⊆{1, : : : , p} and thus implies that

P{H0,SÅ.E/ rejected}�α:

To specify a concrete procedure and to derive its statistical properties, we assume throughout the
paper that the data consist of n independent observations. Within each experimental setting e,
we assume that we receive ne independent and identically distributed data points from .Xe, Ye/

and, thus, Σe∈E ne=n.
We now propose a way to construct such a test, but we acknowledge that different choices

are possible. Our construction will be based on the fact that the causal coefficients are identical
to the regression effects in all experimental settings e∈E if we consider only variables in the set
SÅ of causal predictors.

For experimental setting e∈E and a subset S of variables, define the regression coefficients
βpred,e.S/∈Rp as above in expression (9). Define further the population residual standard de-
viations when regressing Ye on variables Xe

S as

σe.S/ := [E{Ye−Xe βpred,e.S/}2]1=2:

These definitions are population quantities. The corresponding sample quantities are denoted
with a circumflex. As mentioned above, under assumption 1, for S=SÅ, the regression effects
are identical to the causal coefficients: for all e∈E,

βpred,e.SÅ/≡γÅ,

σe.SÅ/≡var.F"/
1=2:

To obtain a test that is valid at level α for all subsets S of predictor variables, we first weaken
H0,S.E/ in expression (10) to

H̃0,S.E/ : ∃.β, σ/∈Rp×R+such that βpred,e.S/≡β and σe.S/≡σ for all e∈E : .16/

The null hypothesis H̃0,S.E/ is true whenever the original null hypothesis (10) is true. As in
expression (14), we set

Γ̂S.E/ :=
{ ∅ H̃0,S.E/ can be rejected at level α,

Ĉ.S/ otherwise:

We now give a concrete example which we shall use in the numerical examples under the
assumption of Gaussian errors and that the design matrix Xe of all ne samples in experimental
setting e∈E has full rank. (We write the design matrix in bold letters, as opposed to the random
variables Xe.) The whole procedure is then a specific version of the general procedure given
further above, where we use a specific test in the first step (the second step is unchanged).

3.1.1. Method I: invariant prediction using test on regression coefficients

Step 1: for each S⊆{1, : : : , p} and e∈E do as follows.

(a) Let Ie with ne= |Ie| be the set of observations where experimental setting e∈ E was



958 J. Peters, P. Bühlmann and N. Meinshausen

active. Likewise, let I−e= {1, : : : , n} \ Ie with n−e := |I−e| be the set of observations
when using only observations where experimental setting e∈E was not active. Let Xe,S
be the ne× .1+|S|/-dimensional matrix when using all samples in Ie and all predictor
variables in S, adding an intercept term to the design matrix as mentioned previously.
If S =∅, the matrix consists only of a single intercept column. Analogously, X−e,S
is defined with the samples in I−e. Let Ŷ e be the predictions for observations in set
Ie when using the ordinary least squares estimator computed on samples in I−e and
let D := Ye− Ŷ e be the difference between the actual observations Ye on Ie and the
predictions.

(b) Under Gaussian errors, if expression (16) is true for a set S, then (Chow, 1960)

DTΣ−1
D D

σ̂2ne

∼ F.ne, n−e−|S|−1/, .17/

where σ̂2 is the estimated variance on the set I−e on which the ordinary least squares
estimator is computed. The covariance matrix ΣD is given by

ΣD=1ne +Xe,S.XT
−e,SX−e,S/−1XT

e,S ,

letting 1n be the identity matrix in n dimensions. For any set S, we reject the null
hypothesis H̃0,S.E/ if the p-value of expression (17) is below α=|E | for any e∈E .

Step 2: this step is the same as in the generic algorithm, using expression (12).
Step 3: if we do reject a set S we set Γ̂S.E/=∅. Otherwise, we set Γ̂S.E/ to be a 1− α
confidence interval for βpred.S/ when using all data simultaneously. For simplicity, we shall
use a rectangular confidence region where the constraint for βpred.S/k is identically 0 if k �∈S

and for coefficients in S given by .β̂
pred

.S//S± t1−α=.2|S|/,n−|S|−1σ̂ diag{.XT
S XS/−1}, where XS

is the design matrix of the pooled data when using variables in S, t1−α;q is the .1−α/-quantile
of a t-distribution with q degrees of freedom and σ̂2 the estimated residual variance.

A justification of the pooling in step 3 is given in Section 3.2. This procedure has some
shortcomings. For example, the inversion of the covariance matrix in expression (17) might be
too slow if we have to search many sets and the sample size is large. We can then just work with
a random subsample of the set Ie of size, say, a few hundred, to speed up the computation. It
also depends on the assumption of Gaussian errors, although this could be addressed by using
rank tests or other non-parametric procedures. Lastly, it is not straightforward to extend this
approach to classification and non-linear models.

We thus provide a second possibility. The fast approximate version below is not fitting a model
on each experimental setting separately as in method I but is just fitting one global model to
all data and comparing the distribution of the residuals in each experimental setting. This is
ignoring the sampling variability of the coefficient estimates but leads to a faster procedure.

3.1.2. Method II: invariant prediction using fast(er) approximate test on residuals

Step 1: for each S⊆{1, : : : , p} and e∈E do as follows.

(a) Fit a linear regression model on all data to obtain an estimate β̂
pred

.S/ of the optimal
coefficients using set S of variables for linear prediction in regression. Let R= Y −
X β̂

pred
.S/.

(b) Test the null hypothesis that the mean of R is identical for each set Ie and e∈ E , us-
ing a two-sample t-test for residuals in Ie against residuals in I−e and combining via
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Bonferroni correction across all e∈E . Furthermore, test whether the variances of R are
identical in Ie and I−e, using an F -test, and combine again via Bonferroni correction
for all e∈ E . Combine the two p-values of equal variance and equal mean by taking
twice the smaller of the two values. If the p-value for the set S is smaller than α, we
reject the set S.

Step 2: this step is the same as in the generic algorithm, using expression (12).
Step 3: if we do reject a set S we set Γ̂S.E/=∅. Otherwise, we set Γ̂S.E/ to be the conventional
1−α confidence region for βpred.S/ when using all data simultaneously. For simplicity, we
shall use rectangular confidence regions, exactly as in step 3 of method I.

Besides a computational advantage, this method can also easily be extended to non-linear
and logistic regression models. For logistic regression, one can test the residuals R=Y − f̂ .X/

for equal mean across the experimental settings, for example.

3.2. Data pooling
So far, we have assumed that the set E of experimental settings is given and fixed. An experimental
setting e∈E can for example correspond to

(a) observational data,
(b) a known intervention of a certain type at a known variable,
(c) a random intervention at an unknown and random location or
(d) observational data in a changed environment.

We have used data pooling in methods I and II to obtain confidence intervals for the regression
coefficients (which is not necessary but increases power in general). A justification of this pooling
is in order. The joint distribution of .Xe

SÅ , Ye/ will vary in general with e∈E . Under assumption
1, however, the conditional distribution Ye|Xe

SÅ is constant as a function of e∈E ; see Section 6.1.
As long as our tests and confidence intervals require only an invariant conditional distribution
for SÅ (which is so for the procedures that were given above), we can pool data from various e∈E .

To make it more precise, assume that there is a set of countably many experimental settings
or interventions J and .Xj, Yj/ follow a certain distribution Fj for each j ∈J . Then each
encountered experimental setting e can be considered to be equivalent to a probability mixture
distribution over the experimental settings in J , i.e.

Fe=
∑

j∈J
we

jFj,

where we
j corresponds to the probability that an observation under setting e follows the distri-

bution Fj. We can then pool two experimental settings e1 and e2, for example, thereby creating
a new experimental setting with the averaged weights .we1 +we2/=2.

Pooling is a trade-off between identifiability and statistical power, assuming that assump-
tion 1 holds for the settings from J . The richer the set E of experimental settings, the smaller
the set Γ.E/ of plausible causal coefficients will be and the larger the set of identifiable causal
predictors S.E/. By pooling data, we make the set of identifiable causal variables smaller, i.e. S.E/

is shrinking as we reduce the number |E | of different settings. The trade-off can either be settled
a priori (for example, if we know that we have ‘sufficiently’ many observations in each known
experimental setting, we would typically not pool data) or one can try various pooling procedures
and combine all results, after adjusting the level α to account for the increased multiplicity of
the associated testing problem. Section 4 discusses conditions on the interventions under which
all true causal effects are identifiable.
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3.3. Splitting purely observational data
In the case of purely observational data, the null hypothesis (4) is correct for γ= 0 and S=∅.
Therefore, S.E/=∅ and Ŝ.E/=∅ with high probability, i.e. our method stays conservative and
does not make any causal claims.

In a reverse operation to data pooling across experiments, the question arises whether we can
identify the causal predictors by artificially separating data into several blocks although the data
have been generated under only one experimental setting (e.g. the data are purely observational).
If the distribution is generated by an SEM (see Section 4.1), we may consider a variable U that
is not Y and known to be a non-descendant of the target variable Y , i.e. there is no directed path
from Y to U, for example as it precedes Y chronologically. (This is similar to in an instrumental
variable setting; see Section 5.) We may now split the data by conditioning on this variable U or
any function h.U/. Our method then still has the correct coverage for any function h.U/ as long
as U is a non-descendant of Y , because the conditional distribution of Y given its true causal
predictors XSÅ does not change and, for all z in the image of h,

Y |XSÅ
d=Y |XSÅ , h.U/= z: .18/

U might or might not be part of the set XSÅ but we expect the method to have more power if it
is not. Equation (18) is a direct implication of the local Markov property that is satisfied for an
SEM (Pearl (2009), theorem 1.4.1). The confidence intervals remain valid but the implication
on (partial) identifiability of the causal predictors remains an open question.

Even without data splitting, there might still be some directional information in the data set
that is not exploited by our method; this may either be information in the conditional inde-
pendence structure (Spirtes et al., 2000; Chickering, 2002), information from non-Gaussianity
(Shimizu et al., 2006), non-linearities (Hoyer et al., 2009; Peters et al., 2014; Bühlmann et al.,
2014), equal error variances (Peters and Bühlmann, 2014) or shared information between the
regression function and target variable (Janzing et al., 2012). Our method does not exploit
these sources of identifiability. We believe, however, that it might be possible to incorporate the
identifiability based on non-Gaussianity or non-linearity.

3.4. Computational requirements
The construction of the confidence regions for the set of plausible causal coefficients and the
identifiable causal predictors requires us to go through all possible sets of variables in step 1 of
the procedures given above. The computational complexity of the brute force scheme seems to
grow superexponentially with the number of variables.

There are several aspects to this issue. Firstly, we often do not have to go through all sets
of variables. If we are looking for a non-empty set Ŝ.E/, it is worthwhile in general to start
generating the confidence regions Γ̂S.E/ for the empty set S=∅, then for all singletons and so
forth. If the empty set is not rejected, we can stop the search immediately, as then Ŝ.E/=∅. If
the empty set is rejected, we can stop early as soon as we have accepted more than one set S and
the sets have an empty overlap (as Ŝ=∅ in this case no matter what other sets are accepted). The
method can thus finish quickly if Ŝ=∅. However, in a positive case (where we do hope to obtain
a non-empty confidence set) we shall still have to go through all sets of variables eventually.
There are two options to address the computational complexity.

The first option is to limit a priori the size of the set of causal predictors. Say that we are
willing to make the assumption that the set of causal variables is at most s < p. Then we must
just search over all subsets of size at most s and incur a computational complexity that grows
like O.ps/ as a function of the number of variables.
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A second option (which can be combined with the first) is an adaptation of the confidence
interval that was defined above, in which the number of variables is first reduced to a subset of
small size that contains the causal predictors with high probability. Let B̂⊆ {1, : : : , p} be, for
the pooled data, an estimator of the variables with non-zero regression coefficient when using
all variables as predictors. For example, B̂ could be the set of variables with non-zero regression
coefficient with square root lasso estimation (Belloni et al., 2011), the lasso (Tibshirani, 1996) or
boosting (Schapire et al., 1998; Friedman, 2001; Bühlmann and Yu, 2003) with cross-validated
penalty parameter. If the initial screening is chosen such that the causal predictors are contained
with high probability, P.SÅ⊆ B̂/ � 1−α, and we construct the confidence set Ŝ.E/ as above,
but, just letting S be a subset of B̂ instead of {1, : : : , p}, it will have coverage at least 1− 2α.
Sufficient assumptions of such a coverage (or screening) condition have been discussed in the
literature (e.g. Bühlmann and van de Geer (2011)). If the second option is combined with the
first option, the computational complexity would then scale like O.qs/ instead of O.ps/, where
q is the maximal size of the set B̂ of selected variables. For simplicity, we shall not develop this
argument further here but rather focus on the identifiability results for the low(er) dimensional
case.

4. Identifiability results for structural equation models

The question arises whether the proposed confidence sets for the causal predictors can recover an
assumed true set of causal predictors. Such identifiability issues are discussed next. Sections 4.1
and 4.2 describe possible data-generating mechanisms and Section 4.3 provides corresponding
identifiability results.

4.1. Linear Gaussian structural equation models
We consider linear Gaussian SEMs (e.g. Wright (1921) and Duncan (1975)). We assume that
each element e∈E represents a different interventional set-up. Let the first block of data (e=
1) always correspond to an ‘observational’ (linear) Gaussian SEM. Here, a distribution over
.X1

1, : : : , X1
p+1/ is said to be generated from a Gaussian SEM if

X1
j =

∑
k �=j

β1
j,kX1

k+ "1
j , j=1, : : : , p+1, .19/

with "1
j ∼IID N .0, σ2

j /, j=1, : : : , p+1. The corresponding directed graph is obtained by drawing
arrows from variables X1

k on the right-hand side of equation (19) with β1
jk �= 0 to the variables

X1
j of the left-hand side. This graph is assumed to be acyclic. Without loss of generality let us

assume that Y1 :=X1
1 is the target variable and write X := .X2, : : : , Xp+1/. We further assume

that all variables are observed; this assumption can be weakened; see proposition 4 in Appendix
B and Section 5.

The parents of Y are given by

PA.Y/=PA.1/={k∈{2, : : : , p+1} :β1
1,k �=0}:

Here, we adapt the usual notation of graphical models (e.g. Lauritzen (1996)). For example,
we write PA.j/, DE.j/, AN.j/ and ND.j/ for the parents, descendants, ancestors and non-
descendants of Xj respectively.

Let us assume that the other data blocks are generated by a linear SEM, also:

Xe
j=

∑
k �=j

βe
j,kXe

k+ "e
j, j=1, : : : , p+1, e∈E : .20/
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Assumption 1 states that the influence of the causal predictors remains the same under interven-
tions, i.e. Ye=XeγÅ+"e

1 for γÅ= .β1
1,2, : : : , β1

1,p+1/T and "e
1=d "1

1 for e∈E . The other coefficients
βe

j,k and noise variables "e
j, j �=1, however, may be different from those in the observational set-

ting (19). Within this setting, we now define various sorts of intervention.

4.2. Interventions
We next discuss three different types of intervention that all lead to identifiability of the causal
predictors for the target variable.

4.2.1. Do interventions
Do types of interventions correspond to the classical do operation from Pearl (2009), for exam-
ple. In the eth experiment, we intervene on variables Ae⊆{2, : : : , p+1} and set them to values
ae

j ∈R, j ∈Ae. For the observational setting e= 1, we have A1=∅. We specify model (20), for
e �=1, as follows:

βe
j,k=

{
β1

j,k if j �∈Ae,
0 if j∈Ae,

and

"e
j

d=
{

"1
j if j �∈Ae,

ae
j if j∈Ae:

The do interventions correspond to fixing the intervened variable at a specific value. The fol-
lowing two types of intervention consider ‘softer’ forms of interventions which might be more
realistic for certain applications.

4.2.2. Noise interventions
Instead of fixing the intervened variable at a specific value, noise interventions correspond to
‘disturbing’ the variable by changing the distribution of the noise variable. This is an instance
of what is sometimes called a ‘soft intervention’ (e.g. Eberhardt and Scheines (2007)). We now
consider a kind of soft intervention, in which we scale the noise distributions of variables Ae⊆
{2, : : : , p+1} by a factor Ae

j, j∈Ae. Alternatively, we may also shift the error distribution by
a variable Ce

j . More precisely, we specify model (20), for e �=1, as follows:

βe
j,k=β1

j,k for all j,

and

"e
j

d=
{

"1
j if j �∈Ae,

Ae
j"1

j if j∈Ae,

or

"e
j

d=
{

"1
j if j �∈Ae,

"1
j +Ce

j if j∈Ae:

The factors Ae
j and the shifts Ce

j are considered as random but may be constant with probability
1. They are assumed to be independent of each other and independent of all other random
variables considered in the model except for Xe

k for k∈DE.j/.
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4.2.3. Simultaneous noise interventions
The noise interventions above operate on clearly defined variables Ae which can vary between
different experimental settings e∈ E . In some applications, it might be difficult to change or
influence the noise distribution at a single variable but instead one could imagine interventions
that change the noise distributions at many variables simultaneously. As a third example, we
thus consider a special case of the preceding Section 4.2.2, in which we pool all interventional
experiments into a single data set, i.e. |E |=2 and, for all j∈{2, : : : , p+1},

βe=2
j,k =βe=1

j,k .21/

and

"e=2
j

d=Aj"e=1
j

or

"e=2
j

d= "e=1
j +Cj:

The random variables Aj � 0 are assumed to have a distribution that is absolutely continuous
with respect to Lebesgue measure with E.A2

j /<∞ and to be independent of all other variables
and among themselves. The pooling can either happen explicitly or, as stated above, as we cannot
control the target of the interventions precisely and a given change in environment might lead to
changes in the error distributions in many variables simultaneously. As an example we mention
gene knockout experiments with off-target effects in biology (e.g. Jackson et al. (2003) and
Kulkarni et al. (2006)).

4.3. Identifiability results
The following theorem 2 gives sufficient conditions for identifiability of the causal predictors.
We then discuss some conditions under which the assumptions can or cannot be relaxed further
below. Proofs can be found in Appendix F.

Theorem 2. Consider a (linear) Gaussian SEM as in expressions (19) and (20) with interven-
tions. Then, with S.E/ as in expression (6), all causal predictors are identifiable, i.e.

S.E/=PA.Y/=PA.1/ .22/

if one of the following three assumptions is satisfied.

(a) The interventions are do interventions (Section 4.2.1) with ae
j �=E.X1

j / and there is at least
one single intervention on each variable other than Y , i.e. for each j∈{2, : : : , p+1} there
is an experiment e with Ae={j}.

(b) The interventions are noise interventions (Section 4.2.2) with 1 �=E.Ae
j/2 <∞ and, again,

there is at least one single intervention on each variable other than Y . If the interventions
act additively rather than multiplicatively, we require E.Ce

j/ �=0 or 0 < var.Ce
j/<∞.

(c) The interventions are simultaneous noise interventions (Section 4.2.3). This result still
holds if we allow changing linear coefficients βe=2

j,k �=βe=1
j,k in equation (21) with (possibly

random) coefficients βe=2
j,k .

The statements remain correct if we replace the null hypothesis (10) with its weaker version
(16).

These are examples for sufficient conditions for identifiability but there may be many more.
For example, one may also consider random coefficients or changing graph structures (only the
parents of Y must remain the same).
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Remark 1. In general, the conditions that were given above are not necessary. The follow-
ing remarks, however, provide two specific counterexamples that show the necessity of some
conditions.

(a) We cannot remove the condition ae
j �=E.X1

j / from theorem 2, part (a): the following SEMs
correspond to observational data in experiment e=1, interventional data with do.X2=0/

in experiment e=2, and interventional data with do.X3=0/ in experiment e=3: e=1,

Y1=X1
2+X1

3+ "Y , X1
2= "2, X1

3=−X1
2+ "3;

e=2,

Y2=X2
2+X2

3+ "Y , X2
2=0, X2

3=−X2
2+ "3;

e=3,

Y3=X3
2+X3

3+ "Y , X3
2= "2, X3

3=0,

with "2 and "3 having the same distribution. Then, we cannot identify the correct set of
parents SÅ={1, 2}. The reason is that even S=∅ leads to a correct null hypothesis (10).

(b) If we check only the null hypothesis (16) instead of the stronger version (10) (namely
whether the residuals have the same variance rather than the same distribution), the
condition E.Ae

j/2 �=1 is essential. Consider a two-dimensional observational distribution
from experiment e=1 and an intervention distribution from experiment e=2: e=1,

X1= "X, Y1=X1+ "Y ;

e=2,

X2=A"X, Y2=X2+ "Y ,

with E.A/2=1 and "X, "Y ∼IID N .0, 1/. Then we cannot identify the correct set of parents
PA.Y/= {X} because again S=∅ leads to the same residual variance and therefore a
correct null hypothesis (16). If we use hypothesis (10), however, condition E.Ae

j/2 �=1 can
be weakened (if densities exist); see the proof of theorem 2, part (c).

In practice, we expect stronger identifiability results than theorem 2. Intuitively, intervening
on (some of) the ancestors of Y should be sufficient for identifiability in many cases. Note that
the two counterexamples above are non-generic in the way that they violate faithfulness (e.g.
Spirtes et al. (2000)). The following theorem shows for some graph structures (which need not
be known) that even one interventional setting with an intervention on a single node may be
sufficient, as long as the data-generating model is chosen ‘generically’ (see Appendix A for an
example).

Theorem 3. Assume a linear Gaussian SEM as in expressions (19) and (20) with all non-
zero parameters drawn from a joint density with respect to Lebesgue measure. Let Xk0 be
a youngest parent of target variable Y =X1, i.e. there is no directed path from Xk0 to any
other parent of Y . Assume further that there is an edge from any other parent of Y to Xk0 .
Assume that there is only one intervention setting, where the intervention took place on Xk0 ,
i.e. |E |=2 and Ae=2={k0} (k0 does not need to be known).

Then, with probability 1, all causal predictors are identifiable, i.e.

S.E/=PA.Y/=PA.1/

if one of the following two assumptions is satisfied.

(a) The intervention is a do intervention (Section 4.2.1) with ae=2
k0
�=E.X1

k0
/.
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(b) The intervention is a noise intervention (Section 4.2.2) with 1 �= E.Ae=2
k0

/2 <∞ or
E.Ce=2

k0
/ �=0.

It is, of course, also sufficient for identifiability if the interventional setting Ae=2= {k0} is
just a member of a larger number of interventional settings. We expect that more identifiability
results of similar type can be derived in specific settings. Theorem 3 shows that intervening on
the youngest parent can reveal the whole set of parents of the target variable so this intervention
is in a sense the most informative intervention under the assumptions made. Intervening on
descendants of Y will, in contrast, rule out only these variables as parents of Y . Some interven-
tions are also completely non-informative; intervening on a variable that is independent of all
other variables (including the target) will, for example, not help with identification of the set of
parents of the target variable.

5. Instrumental and hidden variables with confounding

We now discuss an extension of the invariance idea that is suitable in the presence of hidden
variables. Instrumental variables can sometimes be used when the causal relationship of interest
is confounded and no randomized experiments are available (Wright, 1928; Bowden and Turk-
ington, 1990; Angrist et al., 1996; Didelez et al., 2010). For simplicity, let us assume that I is
binary. We assume that the SEM for a p-dimensional predictor X, a univariate target variable
Y of interest and a q-dimensional hidden variable H can be written as

X=f.I, H , Y , η/,

Y =XγÅ+g.H , "/,
.23/

whereγÅ is the unknown vector of causal coefficients, f and g are unknown real-valued functions
and η and " are random-noise variables in p dimensions and one dimension respectively. As
is commonly done for SEMs, we require that the noise variables H , η, " and I are jointly
independent. Fig. 3 shows an example of an SEM that satisfies equations (23).

Again, we are interested in the causal coefficient γÅ. Because of the hidden variable H , how-
ever, regressing Y on X does not yield a consistent estimator for γÅ.

Two remarks on model (23) are in order. First, the model requires that I has no direct effect
on Y , which is a standard assumption for instrumental variable models. For a discussion on why
a violation of this assumption usually leads to no false conclusions (only a reduction in power),
see Section 6.3. Second, model (23) allows for feedback between X and Y , i.e. the corresponding
graph in an SEM is not required to be acyclic. If feedback exists, the solutions are typically
understood to be stable equilibrium solutions of equations (23) but we shall here require only
that the solutions satisfy equations (23).

IX2 Y X1

H

Fig. 3. Graph of a model that satisfies equation (23) with X :D .X1, X2/: variable Y has a direct causal effect
on X2 only, whereas there is a feedback between Y and X1
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We can use I as an instrument in a classical sense and estimate γÅ by the following well-known
two-stage least squares procedure (Angrist et al., 1996): first we estimate the influence of I on X

and then we regress Y on the predicted values of X given I. For non-linear models one can use
two-stage predictor substitution or two-stage residual inclusion; see Terza et al. (2008) for an
overview. If we strive for identification of γÅ, two limitations with this approach are as follows.

(a) The conditional expectation E.X|I/ is not allowed to be constant for I ∈{0, 1}.
(b) The predictor X must be univariate for a univariate instrument I, i.e. p=1 is required.

What happens if we interpret the two different values of I as two experimental settings? In
other words, what happens if I plays the role of the indicator of environment (that we call E

at the end of Section 6.1) and we apply the method that was described above? We can define
E as two distinct environments by collecting all samples with I = 0 in the first environment
and all samples with I = 1 in the second environment. Of course, another split into distinct
environments is also possible and allowed as long as the split into distinct environments is not
a function of Y , a descendant of Y or the hidden variables H .

We stated in proposition 1 that SEMs (with interventions) satisfy the assumptions of invariant
predictions if there are no hidden variables between the target variable and the causal predictors.
Because here there is the hidden variable H we cannot justify our method by using proposition
1 (nor with proposition 4 in general). However, the invariant prediction procedure (3) can be
extended to cover models of the form (23) as these models fulfil,

for all e∈E , Xe has an arbitrary distribution,

Ye=XeγÅ+g.He, "e/, .24/

with unknown causal coefficients γÅ∈Rp and unknown function g : Rq×R→R and the distri-
bution g.He, "e/ is identical for all e in E :

In the absence of hidden variables and feedback loops, the residuals Ye−XeγÅ are indepen-
dent of the causal predictors Xe

SÅ =Xe
supp.γÅ/ and have the same distribution across all environ-

ments. In the presence of hidden variables or feedback loops, we cannot require independence
of the residuals and the causal predictors XSÅ but we can adapt the null hypothesis H0,S in
expression (5) to the weaker form

H0,S,hidden.E/ :∃γ ∈Rp such that γk=0 if k �∈S and

the distribution of Ye−Xeγ is identical for all e∈E : .25/

Testing the null hypothesis (25) is computationally more challenging than for the corresponding
null hypothesis in the absence of hidden confounders (5). In contrast with expression (5), we
cannot attempt to find for a given set S the vector γ by regressing Ye on Xe. The reason is that,
even if the null hypothesis (25) holds, it does not require the residuals Ye−Xeγ to be independent
of Xe

supp.γ/.
Suppose nevertheless that we have a test for the null hypothesis H0,S,hidden.E/ and define by

analogy with expression (12) the estimated set of causal predictors as

Ŝ.E/ :=
⋂

S:H0,S,hidden.E/ not rejected

S: .26/

Then the coverage property follows immediately in the following sense.

Proposition 2. Consider model (23) and let SÅ := {k : γÅ
k �= 0}. Suppose that the test for

H0,S,hidden.E/ is conducted at level α and Ŝ is defined as in equation (26). Then

P{Ŝ.E/⊆SÅ} �1−α:
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Proof. The hypothesis H0,S,hidden.E/ is obviously true for SÅ as Ye−XeγÅ= g.He, "e/ and
the distribution of g.He, "e/ is invariant across the environments e∈ E (defined by I) as I is
independent of H and ".

The method has thus guaranteed coverage for model (23) even if the necessary assumptions (a)
and (b) for identification under a two-stage instrumental variable approach are violated. Thus,
an advantage of the invariance approach might be that no test for a weak influence of I on X is
necessary. A weak instrument can lead to amplification of biases in conventional instrumental
variable regression (Hernán and Robins, 2006). With the invariance approach, the confidence
intervals for γÅ are naturally wide in case of a weak influence of I on X, leading to small sets Ŝ

of selected causal variables.
Ignoring the computational difficulties, this shows that the approach can be generalized to

include hidden variables that violate assumption (b) (iii) in proposition 4, e.g. by replacing ex-
pression (5) with the null hypothesis (25). As a possible implemention of the general approach
we must therefore test hypothesis (25) for every set S⊆{1, : : : , p}. We are faced with a formidable
computational challenge because the coefficients γÅ cannot be found by simple linear regression
anymore. One possibility is to place a stricter constraint on the form of allowed interventions.
For shifted soft interventions from Section 4.2.3, for example, such an approach is described
in Rothenhäusler et al. (2015). For general interventions, we can test hypothesis (25) in a brute
force way by testing the invariance of the distribution over a grid of γ-values. However, the com-
putational complexity of this approach is exponential in the predictor dimension and it would
be valuable to identify computationally more efficient ways of testing the null hypothesis (25).

Proposition 2 discussed the coverage of the estimator (26). The power of the procedure de-
pends again on the type of interventions, the function class and the chosen test for the null
hypothesis. We can ask for specific examples whether Ŝ.E/=SÅ in the population limit.

Proposition 3. Assume as a special case of model (23) a shift in the variance of X under I=1
compared with I=0 observations:

X=f.H , η/+Z1I=1,

Y =XγÅ+g.H , "/,
.27/

where the p-dimensional mean 0 random variable Z is independent of H , ", η and I and has a
full rank covariance matrix. Then γÅ and SÅ are identifiable in a population sense. Specifically,
if the test of H0,S,hidden.E/ has power 1 against any alternative, then

P{Ŝ.E/=SÅ}�1−α:

A proof is given in Appendix E. Note that the causal variables and coefficients can be identified
for model (27), even though the model violates the above-mentioned assumptions (a) and (b)
for identifiability with a classical two-stage instrumental variable analysis: X can be of arbitrary
dimension even though the instrumental variable I is univariate and there is no shift in E.X|I/
between I = 1 and I = 0. Although the identifiability P{Ŝ.E/= SÅ} � 1−α depends in this
specific model (27) on the full rank assumption of Z and this assumption is difficult to verify in
practice, we stress again that the coverage property P{Ŝ.E/⊆SÅ}�1−α is guaranteed for the
general case (23).

6. Further extensions and model misspecification

6.1. Non-linear models
We have shown an approach to obtain confidence intervals for the causal coefficients in linear
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models. We might be interested in identifying the set of causal predictors SÅ in the more general
non-linear setting (2). The equivalent null hypothesis to expression (5) is then

H0,S,nonlin.E/ : there exists g : R|S| ×R→R and "e such that

Ye=g.Xe
S , "e/, "e∼F" and "e⊥⊥Xe

S for all e∈E : .28/

It is interesting to note that S satisfies condition (28) if and only if it satisfies

H0,S,nonlin.E/ :∀e, f ∈E the conditional distributions Ye|Xe
S=x and Yf |Xf

S =x

are identical for all x such that both conditional distributions are well defined:
.29/

The ‘only if ’ part is immediate and for the ‘if ’ part we can use a similar idea to that in Peters
et al. (2014), proposition 9, for example, and choose a uniform[0, 1]-distributed " and g.a, b/=
ge.a, b/ :=F−1

Ye|Xe
S=a.b/, where FYe|Xe

S=a is the cumulative distribution function of Ye|Xe
S=a.

As in the linear case, we can consider an SEM with environments corresponding to different
interventions and, again, the parents of Y satisfy the null hypothesis. More precisely, we have
the following remark.

Remark 2. Proposition 1 and proposition 4 still hold if we replace linear SEMs (19) with
non-linear SEMs

Yj=fj.XPA.j/, "j/, j=1, : : : , p+1,

and replace assumption 1 with the assumption that SÅ satisfying null hypothesis (28) exists.

Proof. Again, the proof is immediate. Only the case with hidden variables requires an argu-
ment. From the SEM, we are given Ye=f.Xe

S0 , Xe
S0

H

, "̃e/ with S0
H being the hidden parents of

Y and .Xe
S0

H

, "̃e/⊥⊥Xe
S0 . We can then write Ye=g.XS0 , "e/ for a uniformly distributed "e that is

independent of XS0 and

g.x, n/ :=F−1
f.x,Xe

S0
H

,"̃e/
.n/:

The function g does not depend on e because Xe
S0

H

and "̃e have the same distribution for all e∈E .

Assume that we have a test for the null hypothesis H0,S,nonlin.E/. Then, testing all possible
sets S⊆{1, : : : , p}, we can obtain a confidence set for SÅ in a similar way to that in the linear
setting (15) by

Ŝ.E/ :=
⋂

S:H0,S,nonlin.E/ not rejected

S: .30/

If all tests are conducted individually at level α, we have again the property that, for any SÅ

which fulfils hypotheses (28) or (29), P{Ŝ.E/⊆SÅ}�1−α since the null hypothesis for SÅ will
be accepted with probability at least 1−α.

Constructing suitable tests for hypothesis (29) is easier if we are willing to assume that the
function g in hypothesis (28) is additive in the noise component, i.e.

H0,S,additive.E/ : there exists g : R|S|→R and "e such that

Ye=g.Xe
S/+ "e, "e∼F" and "e⊥⊥Xe

S for all e∈E : .31/

Then, we can construct tests for the null hypothesis (28) that are similar to that in the linear
case. Analogously to method I in Section 3.1, we can perform non-linear regression in each
environment and test whether the regression functions are identical (e.g. Durot et al. (2013),
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for isotonic regression functions). As an alternative, we can also fit a regression model on the
pooled data set and test whether the residuals have the same distribution in each environment;
see method II in Section 3.1.

We may also test hypothesis (29) without assuming additivity of the noise component. This
could be addressed by introducing an environment variable E and then performing a conditional
independence test for Y⊥⊥E|XS ; see also Appendix C. The details of these approaches lie beyond
the scope of this paper.

6.2. Interventions on the target variable and its causal mechanism
So far, we have assumed that the error distribution of the target variable is unchanged across
all environments e∈E ; see assumption 1 for linear models. This precludes interventions on Y

and precludes a change of the causal mechanism for the target variable. For the gene knockout
experiments that were mentioned in Section 2 and treated in detail in Section 7.2, we would for
example know whether we have intervened on the target gene or not. In other situations, we
might not be sure whether an intervention on the target variables occurred or not.

If interventions are sparse, other approaches are possible, also. For any given target variable
Y , we might not be sure whether an intervention on Y occurred or not, but we can assume that
an intervention on Y happened in at most V �|E | different environments, even if we do not
know in which of the environments it occurred; see Kang et al. (2015) for a related setting in
instrumental variable regression. The null hypothesis (29) in the general non-linear case can
then be weakened to

H ′0,S,nonlin.E/ :∃E ′ ⊆E with |E ′|� |E |−V such that ∀ e, f ∈E ′ the conditional distribution
Ye|Xe

S=x and Yf |Xf
S =x are identical ∀ x such that both conditional

distributions are well defined: .32/

The null hypothesis H ′0,SÅ,nonlin is then still true even when interventions happen on Y in some
environments, where SÅ is the causal set of variables that satisfies the invariance assumption in
the absence of interventions on Y . Any test for hypothesis (29) can be extended as a test for the
weaker null hypothesis (32) by testing all subsets E ′ with |E ′|� |E |−V at level α, e.g. using a test
for hypothesis (28), and rejecting hypothesis (32) only if we can reject all such subsets. We can
then treat H0,S,nonlin.E/ as being ‘accepted’ if we find one subset E ′ whose corresponding null
hypothesis cannot be rejected.

6.3. Model misspecification
We have shown how the approach can be extended to cover hidden variables, non-linear models
and interventions on the target variable. The question arises how the original approach behaves
if these model assumptions are violated but we use the original approach instead of the proposed
extensions. We again write Ŝ.E/ as in expression (15) as

Ŝ.E/ :=
⋂

S:H0,S not rejected

S:

Our approach still satisfies the coverage property P{Ŝ.E/⊆SÅ}�1−α for any set SÅ that satis-
fies assumption 1. Let SÅ

c be a set that is considered to be causal, for example, because it is the set
of observed parents of Y in an SEM. Under no model misspecification, proposition 1 shows that
this set will satisfy assumption 1 or, in the general case, equation (29). If the model assumptions
are violated, however, then either H0,SÅ

c
is still true (in which case the desired confidence state-

ments P{Ŝ.E/⊆SÅ
c }�1−α is still valid) or H0,SÅ

c
is no longer true. The latter case thus warrants
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our attention. There are two possibilities. If H0,S is also false for all other sets S⊆ {1, : : : , p},
then Ŝ.E/=∅ for a test that has power equal to 1 to detect the alternative hypotheses. Thus, the
desired coverage property P{Ŝ.E/⊆SÅ

c }�1−α is still valid, even though the method will now
have no power to detect the causal variables. It could happen, however, that there is some set
S′ ⊆{1, : : : , p} with S′ \SÅ

c �=∅ for which H0,S′ is true. Proposition 5 in Appendix C shows that,
under some assumptions even in this case, the mistake is not too severe: then there is a different
set S̃, for which H0,S̃ is true, and that contains only ancestors of the target Y and no descendants.
Then, by construction, the same also holds for Ŝ.E/, with probability greater than 1−α.

7. Numerical results

We apply the method to simulated data, gene perturbation experiments from biology with
interventional data and an instrumental variable type of setting from educational research.

7.1. Simulation experiments
For the simulations, we generate data from randomly chosen linear Gaussian SEMs and compare
various approaches to recover the causal predictors of a target variable.

The generation of linear Gaussian SEMs is described in Appendix G. We sample 100 different
settings and, for each of those 100 settings, we generate 1000 data sets. We tried to cover a wide
range of scenarios; some (but not all of which) correspond to the theoretical results that were
developed in Section 4.3. After randomly choosing a node as target variable, we can then test
how well various methods recover the parents (the causal predictors) of this target. We check
whether false variables were selected as parents (false positive results) or whether the correct
parents were recovered (true positive results).

For the invariant prediction method proposed, we divide the data into a block of observational
data and a block of data with interventions. Some other existing methods make use of the
exact nature of the interventions but for our proposed method this information is discarded
or presumed unknown. The estimated causal predictors Ŝ.E/ at confidence 95%, computed as
in method I in Section 3.1, are then compared with the true causal predictors SÅ of a target
variable in the causal graph (which can sometimes be the empty set). The results of method II
are very similar in the simulations and are not shown separately. We record whether any errors
were made (Ŝ.E/ � SÅ) and whether the correct set was recovered (Ŝ.E/= SÅ). We compare
the proposed confidence intervals with point estimates given by several procedures for linear
SEMs.

(a) Greedy equivalence search (Chickering, 2002): in the case of purely observational data, we
can identify the so-called Markov equivalence class of the correct graph from the joint
distribution, i.e. we can find its skeleton and orient the v-structures, i.e. some of the edges
(Verma and Pearl, 1991). Although many directions remain ambiguous in the general
case, it might be that we can orient some connections of the target variable Xj−Y . If the
edge is pointing towards Y , we identify Xj as a direct cause of Y . The greedy equivalence
search searches greedily over equivalence classes of graph structures to maximize a penal-
ized likelihood score. Here, we apply greedy equivalence search on the pooled data set,
pretending that all data are observational.

(b) Greedy interventional equivalence search (GIES) with known intervention targets (Hauser
and Bühlmann, 2012): the GIES considers soft interventions (at node j) where the condi-
tional p.xj|xPA.j// is replaced by a Gaussian density in xj. One can identify interventional
Markov equivalence classes from the available distributions that are usually smaller than
the Markov equivalence classes obtained from observational data. GIES is a search pro-
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cedure over interventional Markov equivalence classes maximizing a penalized likelihood
score. In comparison, a benefit of our new approach is that we do not need to specify the
different experimental conditions. More precisely, we do not need to know which nodes
have been intervened on.

(c) GIES with unknown intervention targets: to obtain a more fair comparison with the other
methods, we hide the intervention targets from the GIES algorithm and pretend that
every variable has been intervened on.

(d) Linear non-Gaussian acyclic models (LINGAMs) (Shimizu et al., 2006): the assumption
of non-Gaussian distributions for the structural equations leads to identifiability. We use
an R implementation (R Core Team, 2014) of LINGAMs which is based on independent
component analysis, as originally proposed by Shimizu et al. (2006). In the observational
setting, the structural equation of a specific variable Xj reads

X1
j =

∑
k∈PA.j/

βj,kX1
k+ "1

j ,

whereas, in the interventional setting (if the coefficients βj,k remain the same), we have

X2
j =

∑
k∈PA.j/

βj,kX2
k+ "2

j :

One may want to model the pooled data set as coming from an SEM of the form

X̃j=
∑

k∈PA.j/

βj,kX̃k+ "̃j,

where "̃j follows a distribution of the mixture of "1
j and "2

j and thus has a non-Gaussian
distribution (Kun Zhang mentioned this idea to JP in a private discussion). The new noise
variables "̃1, : : : , "̃p are not independent of each other: if, for any j �=k, "̃j comes from the
first mixture, then "̃k does so, also. We can neglect this violation of LINGAMs and apply
the method nevertheless. There is no theoretical result which would justify LINGAMs
for interventional data.

(e) Regression: we pool all data and use a linear least squares regression and retain all variables
which are significant at level α=p, in an attempt to control the familywise error rate FWER
of falsely selecting at least a single variable at level α in a regression (not causal) sense. As
a regression technique, this method cannot correctly identify causal predictors.

(f) Marginal regression: we pool all data and retain all variables that have a correlation with
the outcome at significance level α=p. As above, this regression method cannot correctly
identify causal predictors.

We show the (empirical) probability of false selections, P{Ŝ.E/�SÅ}, in Fig. 4 for all methods.
The probability of success, P{Ŝ.E/=SÅ}, is shown in Fig. 5.

The success probabilities show some interesting patterns. First, there is (as expected) not
a method that performs uniformly best over all scenarios. However, regression and marginal
regression are dominated across all 100 scenarios by GIES (both with known and unknown
interventions), LINGAMs and the proposed invariant prediction). Among the 100 settings,
there were three where greedy equivalence search performed best on the given criterion, 14
where GIES (with known interventions) performed best, 54 for LINGAMs and 23 where the
proposed invariant prediction was optimal for exact recovery. There is no clear pattern about
which parameter is driving the differences in the performances: Spearman’s correlation between
the parameter settings and the differences in performances between all pairs of methods was less
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Fig. 4. Probability of erroneous selections P {Ŝ.E/ � S*} (FWER) for the methods considered, including
the proposed invariant prediction to the right: the figure is otherwise generated analogously to Fig. 5; the
dotted line indicates the 0.05-level at which the invariant prediction method was (successfully) controlled; all
the other methods do not offer FWER-control

than 0.3 for all parameters. The interactions between the parameter settings seem responsible
for the relative merits of one method over another.

The pattern for false selections in Fig. 4 is very clear, however. The proposed invariant pre-
diction method controls the rate at which mistakes are made at the desired 0:05 (and often lower
due to a conservativeness of the procedure). All other methods have FWERs that reach 0.4 and
higher. No other method offers a control of FWER and the results show that the probability
of erroneous selections can indeed be very high. The control of FWER (and the associated
confidence intervals) is the key advantage of the proposed invariant prediction.

7.2. Gene perturbation experiments
7.2.1. Data set
We applied our method to a yeast (Saccharomyces cerevisiae) data set (Kemmeren et al., 2014).
Genomewide messenger ribonucleic acid expression levels in yeast were measured and we there-
fore have data for p= 6170 genes. There are nobs= 160 ‘observational’ samples of wild types
and nint= 1479 data points for the ‘interventional’ setting where each of them corresponds to
a strain for which a single gene k∈K :={k1, : : : , k1479}⊂{1, : : : , 6170} has been deleted (mean-
while, there is an updated data set with five more mutants). If the method suggests, for example,
gene 5954 as a cause of gene 4710, and there is a deletion strain corresponding to gene 5954, we
can use this data point to determine whether gene 5954 indeed has a (possibly indirect) causal
influence on 4710. We say that the pair is a true positive finding if the expression level of gene
4710 after intervening on 5954 lies in the 1% lower or upper tail of the observational distribution
of gene 4710; see also Fig. 6. (We additionally require that the intervention on gene 5954 appears
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Fig. 5. Probability of success, defined as P {Ŝ.E/ D S*} for various methods, including our new proposed
invariant prediction in the rightmost column: each dot within a column (the x-offset within a column is uniform)
corresponds to one of the 100 simulation scenarios; the dot’s height shows the empirical probability of success
over 1000 simulations and the small bars indicate 95% confidence for the true success probability; identical
scenarios are connected by grey lines; for each method, the maximal and minimal values along with the
quartiles of each distribution are indicated by horizontal bars

to be ‘successful’ in the sense that the expression level of gene 5954 after intervening on this gene
5954 lies in the 1% lower or upper tail of the observational distribution of gene 5954. This was
not so for 38 out of the 1479 interventions.) With this criterion, there are about 9:2% relevant
effects, which corresponds to the proportion of true positive findings for a random guessing
method.

7.2.2. Separation into observational and interventional data
For predicting a causal influence of, say, gene 5954 on another gene we do not want to use
interventions on the same gene 5954 (this would use information about the ground truth). We
therefore apply the following procedure: for each k∈K we consider the observational data as
e= 1 and the remaining 1478= 1479− 1 data points corresponding to the deletions of genes
in K \{k} as the interventional setting e=2. Since this would require nintp applications of our
method, we instead separate K into B= 3 subsets of equal size, consider the two subsets not
containing k as the interventional data and do not make any use of the subset containing k. This
leaves some information in the data unused but yields a huge computational speed-up, since
we need to apply our method in total only 3p times. Additionally, when looking for potential
causes of gene 4710, we do not consider data points corresponding to interventions on this gene
(if it exists); see proposition 1.

7.2.3. Goodness of fit and p-values
If we would like to avoid making a single mistake on the data set with high probability 1−α,
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(a)

(b)

(c)

(g)

(h)

(i)

(d)

(e)

(f)

Fig. 6. (a)–(c) Observational data, (d)–(f) interventional data (that are neither using interventions on the
target variable itself nor using interventions on the possible causal predictors of the target variable examined)
and (g)–(i) test data (with the 1%–99% quantile range of the observational data shown as a shaded box as in
(a)–(c)): (d) interventions on genes other than 5954 and 4710; (e) interventions on genes other than 3729 and
3730; (f) interventions on genes other than 3672 and 1475; (g) intervention on gene 5954; (h) intervention
on gene 3729; (i) intervention on gene 3672

we can set the level of significance for each gene to α=nint, using a Bonferroni correction to
take into account the p=6170 genes. We work with α=0:05 if not mentioned otherwise. The
guarantee requires, however, that the model is correct (for example the linearity assumption is
correct and there are no hidden variables with strong effects on both genes of interest). These
assumptions are likely to be violated, and the implications have been partially discussed earlier
in Section 6. To guard further against false positive results that are due to model misspecification
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we require that there is at least one model (one subset S⊆{1, : : : , p}) for which the model fits
reasonably well: we define this by requiring a p-value above 0:1 for testing H0,S.E/ for the
best fitting set S of variables (the set with the highest p-value), if not mentioned otherwise
(but we also vary the threshold to test how sensitive our method is with regard to parameter
settings). If no set of variables attains this threshold, we discard the models and make no
prediction.

7.2.4. Method
We use L2-boosting (Friedman, 2001; Bühlmann and Yu, 2003) from the R package mboost
(Hothorn et al., 2010) with shrinkage 0:1 as a way to preselect for each response variable 10
potentially causal variables, to which we then apply the causal inference methods. We primarily
use method II as method I requires subsampling for computational reasons. Subsampling can
lead to a loss of power as there is a non-negligible probability of losing the few informative
data points in the subsampling process. For a computational speed-up we consider only subsets
of size 3 or smaller as candidate sets S. Furthermore, we retain only results where just a single
variable has been shown to have a causal influence to avoid testing more difficult scenarios where
one would have to intervene on multiple genes simultaneously.

7.2.5. Comparisons
As alternative methods we consider the ‘intervention calculus when the DAG is absent’ algorithm
IDA (Maathuis et al., 2009) based on the PC algorithm (Spirtes et al., 2000) and a method that
ranks the absolute value of marginal correlation (j1→j2 and j2→j1 obtain the same score and
are ranked randomly), both of which make use only of the observational data. We also compare
with IDA based on GIES (Hauser and Bühlmann, 2015) and a correlation-based method that
ranks pairs according to correlation on the pooled observational and interventional data. It was
not feasible to run the LINGAM algorithm (Shimizu et al., 2011) on this data set.

7.2.6. Results
The method proposed (method II) outputs eight gene pairs that can be checked because the
corresponding interventional experiments are available. There are in total eight causal effects
that are significant at level 0.01 after a Bonferroni correction. Out of these eight pairs, six are
correct (random guessing has a success probability of 9:2%). Fig. 6 shows the three pairs that
obtained the highest rank, i.e. smallest p-values. (The two data sets in Figs 6(a)–6(c) and 6(d)–
6(f) are used as two environments for training the invariant prediction model. The regression
line for a joint model of observational and interventional data, as proposed in method II, is
shown in Figs 6(a)–6(f); we cannot reject the hypothesis that the regression is different for
observation and interventional data here. In Figs 6(g)–6(i) we use the intervention data point
on the chosen gene and look at the effect on the target variable. The first two predicted causal
effects can be seen to be correct (true positive findings) in the following sense: after successfully
intervening on the predicted cause, the target gene shows reduced activity; the third suggested
pair is unsuccessful (a false positive finding) since the intervention reduces the activity of the
cause but the target gene remains as active as in the observational data.) The rows in Fig.
6 therefore correspond to the three causal effects in the data set that were regarded as most
significant by our method. One note regarding the plot: we plot all available data even though
only two-thirds of them were effectively used for training because of the cross-validation scheme
discussed. Many outlying points in the interventional training data of the false positive finding
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(Fig. 6(f)) are in particular not part of the training data and the method might have performed
better with a more computationally intensive validation scheme that would split the data into
B blocks with B larger than the currently used B=3.

To compare with other methods (none of which provide a measure of significance), we always
consider the eight highest ranked pairs. Table 1 summarizes the results. In this data set, the
alternative methods could exceed random guessing.

To test sensitivity of the results to the chosen implementation details of the method, the
variable preselection and the goodness-of-fit cut-off have also all been varied (e.g. by using the
lasso instead of boosting as preselection and using a cut-off of 0.1 instead of 0.01). For method
II, variable selection with the lasso instead of boosting leads to a true positive rate of 0.63 (five
out of eight). Choosing the goodness-of-fit cut-off at 0.01 rather than 0.1 leads to true positive
rates of 0:43 (nine out of 21) for boosting and 0.47 (eight out of 17) for the lasso. Method I
without forcing eight decisions leads to a true positive rate of 0.75 (three out of four) for boosting
and 1.00 (one out of one) for the lasso. Choosing the goodness-of-fit cut-off at 0:01 rather than
0:1 leads to true positive rates of 0.86 (six out of seven) for boosting and 0.75 (three out of four)
for the lasso. (Using 500 instead of 1000 subsamples for method I leads to increased speed and
worse performance.) We regard it as encouraging that the true positive rate is always larger than
random guessing, irrespective of the precise implementation of the method.

Among the reasons for false positive findings (e.g. two out of eight for method II in Table 1,
there are at least the following options:

(a) noise fluctuations,
(b) non-linearities,
(c) hidden variables,
(d) issues with the experiment (for example the intervention might have changed other parts

of the network) and
(e) the pair is a true positive result but is—by chance—classified as false positive by our

criterion (see Section 7.2.1 above).

Missing causal variables in the prescreening by boosting or the lasso falls under category (c). We
control error (a) and have provided arguments why errors (b) and (c) will lead to rejection of the
whole model rather than lead to false positive results. Lowering the goodness-of-fit threshold
seemed indeed to lead to more spurious results, as expected from the discussion in Section
6.3 earlier. Validating a potential issue with the experiment as in reason (d) is beyond our
possibilities. We could address error (e) if we had access to multiple repetitions of the intervention

Table 1. Number of true effects among the strongest eight effects that have been found in the interventional
test data†

Numbers for the Marginal Random guessing
following methods: correlation

Method I Method II GIES IDA Observed Pooled

Number of true positive 6 6 2 2 1 2 2 (95% quantile)
findings (out of 8) 3 (99% quantile)

4 (99:9% quantile)

†The number 8 has been chosen to correspond to the number of significant effects under the proposed method II.
Method I is based on 1000 samples and required roughly 10 times more computational time than method II.
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Fig. 7. 90% confidence intervals ( ) for the influence of various variables on the probability of receiving a
Bachelor of Arts degree (or higher): of all 8192 possible sets S, we accept 1565 sets (the empty set is not
accepted as the probability of receiving a degree is sufficiently different for people within a close distance to
a 4-year college and further away)

experiments. We provide code that reproduces the results on our home page. The code may result
in minor variations due to updates in the package.

7.3. Educational attainment
We look at a data set about educational attainment of teenagers (Rouse, 1995). For 4739 pupils
from approximately 1100 US high schools, 13 attributes are recorded, including gender, race,
scores on relevant achievement tests, whether the parents are college graduates, or family income.
Here we work with the data as provided in Stock and Watson (2003), where we can see the length
of education that pupils received. We make a binary distinction into whether pupils received a
Bachelor of Arts degree or higher (equivalent to at least 16 years of education in the classification
that was used in Stock and Watson (2003)) and ask whether we can identify a causal predictive
model that allows us to forecast whether students will receive a Bachelor of Arts degree or not
and this forms a binary target Y .

The distance to the nearest 4-year college is recorded in the data and we use it to split the
data set into two parts in the sense of expression (18); we assume that this variable has no
direct influence on the target variable. As discussed, this variable does not have to satisfy the
usual assumptions about instrumental variables for our analysis but must just be independent
of the noise in the outcome variable (it must be a non-descendant of the target), which seems
satisfied in this data set as the distance to the 4-year college precedes the educational attainment
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chronologically. One set of observations is thus all pupils who live closer to a 4-year college than
the median distance of 10 miles. The second set is all other pupils, who live at least 10 miles from
the nearest 4-year college. We ask for a classification that is invariant in both cases in the sense
that the conditional distribution of Y , given X, is identical for both groups, where X are the
set of collected attributes and Y is the binary outcome of whether they attained a Bachelor of
Arts degree or higher. We use the fast approximate method II of Section 3.1, with the suggested
extension to logistic regression.

Fig. 7 shows the outcome of the analysis, which is also included as an example in the R
package InvariantCausalPrediction. (In Fig. 7, the point estimates for the coefficients
are shown for these 1565 sets as red dots and the corresponding confidence intervals as vertical
red bars. The blue confidence intervals are then the union of all 1565 confidence intervals, as in
our proposed procedure. The variables score (test score) and fcollege no (active if father did not
receive a college degree) show significant effects.) Factors were split into dummy variables so
that ‘ethnicity afam’ is 1 if the ethinicity is African-American and 0 otherwise, ‘fcollege no’ is 1
if the father did not receive a college degree and so forth. We provide 90% confidence intervals.
All include 0 except for the confidence interval for the influence of the test score (positive effect)
and the indicator that the father did not receive a college degree (negative effect). A high score
on the achievement test thus seems to have a positive causal influence on the probability of
obtaining a Bachelor of Arts degree, which seems plausible.

As it is difficult to verify the ground truth in this case, we refrain from comparisons with other
possible approaches to the same data set and just want to use it as an example of a possible
practical application. The example shows that we can use instrumental-variable-type variables
to split the data set into different ‘experimental’ groups. If the distributions of the outcome are
sufficiently different in the groups created, we can potentially have power to detect invariant
causal prediction effects.

8. Discussion and future work

An advantage of causal predictors compared with non-causal predictors is that their influence
on the target variable remains invariant under different changes of the environment (which
arise for example through interventions). We have described this invariance and exploit it for
the identification of the causal predictors. Confidence sets for the causal predictors and confi-
dence intervals for relevant parameters follow naturally in this framework. In the special case
of Gaussian SEMs with interventions we have proved identifiability guarantees for the set of
causal predictors. We discussed some of the questions that require more work: suitable tests
for equality of conditional distributions for non-linear models, feedback models and increased
computational efficiency in both the absence and the presence of hidden variables.

The approach of invariant prediction provides new concepts and methods for causal inference
and also relates to many known concepts but considers them from a different angle. It constitutes
a new understanding of causality that opens the way to a novel class of theory and methodology
in causal inference.
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Appendix A: An example

We illustrate here in Fig. 8 the concepts and methodology which have been developed in Sections 2.1,
2.2 and 3. Fig. 8 shows an example of two environments whose data were generated from observational
and interventional SEMs. (The first environment corresponds to the graph including the broken edge; the
second environment corresponds to an intervention on X3, the graph excluding the broken edge. Since
the structural equation for Y is unchanged, the set SÅ = {X2, X3}= PA.1/ satisfies assumption 1; see
proposition 1. We consider the set-up where we know neither SÅ nor the SEMs (we do not even require
the existence of such an SEM). Instead, we are given two finite samples (one from each environment) and
provide an estimator Ŝ for SÅ. In this example, the null hypothesis of invariant prediction is rejected for any
set S of variables except for S={X2, X3} and S={X2, X3, X4} (using the methodology that was described
in Section 3.1.)

Appendix B: Hidden variables without confounding

We discuss first a generalization of proposition 1, allowing for some hidden variables but excluding con-
founding between the observable causal variables and the target variable. Another setting allowing for such
confounding is presented in Section 5. Consider the SEM with variables X1=Y , X2, : : : , Xp, Xp+1, H1, : : : ,
Hq, where the H1, : : : , Hq are unobserved hidden variables with mean 0.

Proposition 4. Consider a linear SEM including variables

.X1=Y , X2, : : : , Xp, Xp+1, H1, : : : , Hq/,

whose structure is given by a directed acyclic graph. Denote by

S0 :=PA.1/∩{2, : : : , p+1}
the indices of the observable direct causal variables for Y and by S0

H the set of indices having a directed
edge from the hidden variables H1, : : : , Hq to Y , i.e. S0

H =PA.1/\S0. The structural equation for Y is

Y = ∑
j∈S0

βY ,jXj+
∑

k∈S0
H

κY ,kHk+ "Y ,

where "Y is independent of XS0 and HS0
H

.
Then, by choosing γÅ={βY ,j , j∈S0} and SÅ=S0, assumption 1 holds if one of the following conditions

(a) or (b) is satisfied.

(a) There are no direct causal effects from the hidden variables H1, : : : , Hq to the target variable Y , i.e.
S0

H =∅, and it holds that

Ye= ∑
j∈S0

βY ,jX
e
j+ "e

Y for all e∈E , .33/

where "e
Y is independent of Xe

S0 and has the same distribution for all e∈E . In particular, this holds
under do or soft interventions on the variables {X2, : : : , Xp+1}∪{H1, : : : , Hq} given that S0

H =∅.
(b) There are hidden variables which have a direct effect on the target variable Y , i.e. S0

H �= ∅. It holds
that

Ye= ∑
j∈S0

βY ,jX
e
j+

∑
k∈S0

H

κY ,kH
e
k + "e

Y for all e∈E , .34/

where Σk∈S0
H

κY ,kH
e
k + "e

Y is independent of Xe
S0 and has the same distribution with mean 0 for all

e∈E . This holds under the following conditions:
(i) the experiments e∈E arise as do or soft interventions;
(ii) there are no interventions on Y , on nodes in S0

H or on any ancestor of S0
H ;



980 J. Peters, P. Bühlmann and N. Meinshausen

X
3

Y

−1
.0

−0
.5

0.
0

(a
)

(b
)

(c
)

(d
)

(e
)

0.
5

1.
0

1.
5

−1.0−0.50.00.51.0

S
 =

 { 
X

3 
}

X
4

Y

S
 =

 { 
X

4 }

−0
.5

0.
0

0.
5

−1.0−0.50.00.51.0

F
ig

.8
.

(a
)–

(c
)E

xa
m

pl
e

of
tw

o
S

E
M

s
en

ta
ili

ng
th

e
tw

o
di

st
rib

ut
io

ns
co

rr
es

po
nd

in
g

to
tw

o
en

vi
ro

nm
en

ts
(a

)e
D1

an
d

(c
)e

D2
;(

d)
fo

rS
D{

X
3
},

fo
re

xa
m

pl
e,

th
e

lin
ea

r
re

gr
es

si
on

co
ef

fic
ie

nt
s

di
ffe

r
in

th
e

tw
o

en
vi

ro
nm

en
ts

;f
or

(e
)

S
D {

X
4
},

th
e

re
gr

es
si

on
co

ef
fic

ie
nt

s
se

em
si

m
ila

r
bu

t
th

e
se

t
is

re
je

ct
ed

be
ca

us
e

of
va

ry
in

g
va

ria
nc

es
of

th
e

re
si

du
al

s
(

,d
at

a
fr

om
en

vi
ro

nm
en

te
D1

;
,d

at
a

fr
om

en
vi

ro
nm

en
te

D2
);

w
e

th
en

pr
op

os
e

to
co

ns
id

er
th

e
in

te
rs

ec
tio

n
of

th
e

se
ts

of
va

ria
bl

es
fo

r
w

hi
ch

th
e

hy
po

th
es

is
of

in
va

ria
nc

e
is

no
t

re
je

ct
ed

;t
hi

s
le

ad
s

to
th

e
(c

on
se

rv
at

iv
e)

es
tim

at
e

Ŝ
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(iii) there is no d-connecting path between any node in S0 and S0
H .

Proof. Assumption 1 follows immediately from expression (33) or (34). From the definition of the
interventions, as described in Section 4.2, the justification for result (33) follows and hence the claim
assuming condition (a). When invoking condition (b), we show now that conditions (i)–(iii) imply result
(34) and the required conditions. Because of conditions (i) and (ii), we have equation (34) and we know
that the distribution of

ηe := ∑
k∈S0

H

κY ,kH
e
k + "e

Y

is the same for all e∈E . Furthermore, ηe is independent of Xe
S0 because of condition (iii).

Appendix C: Model misspecification

Under model misspecification S.E/ may not be a subset of the direct causes of Y anymore. The following
proposition shows that in most cases it is still a subset of the ancestors of Y (and is therefore a subset
of possibly indirect causes of Y ). The proposition is formulated in the general case; see Section 6.1. To
formulate the required faithfulness assumption, we consider an environment variable E.

Proposition 5. Consider an SEM over nodes .Y , X2, : : : , Xp+1, H1, : : : , Hq/ with hidden variables H1, : : : ,
Hq. We now augment the corresponding graph by a discrete environment variable E∈E (e.g. Pearl (2009))
that satisfies P.E= e/ > 0 for all e∈E and has a directed edge to any node that is do or soft intervened
on. Let us assume that the joint distribution over .Y , X2, : : : , Xp+1, H1, : : : , Hq, E/ is faithful with respect
to the augmented graph. Then

S.E/ :=
⋂

S:H0, S, nonlin.E/ is true

S⊆AN.Y/∩{X2, : : : , Xp+1}:

In particular, this proposition still holds under model misspecification when for some do interventions,
for example, S0=PA.Y/∩{X2, : : : , Xp+1} does not satisfy H0,S,nonlin.E/ (28); Fig. 9 shows an example. The
following proof also shows that there are model misspecifications where we expect S.E/=∅. If Y is directly
intervened on, for example, under the assumption of proposition 5, we shall not be able to find any set S
that satisfies null hypothesis (28).

Proof. We first note that H0,S,nonlin.E/ (29) holds if and only if Y ⊥⊥E|XS . Because of faithfulness this
is the same as Y and E being d separated given XS in the augmented graph. Assume now that the latter
holds for some set S⊆ {X2, : : : , Xp+1}. (Such a set S does not exist if Y is directly intervened on.) The
proposition follows if we can construct a set S̃⊆AN.Y/∩ {X2, : : : , Xp+1} that satisfies Y and E being d
separated given XS̃ .

Assume that not all nodes in S are ancestors of Y . Define then W ∈S to be one ‘youngest’ non-ancestor
in S, i.e. W �∈AN.Y/ and there is no directed path from W to any other node in S. (Such a node must exist
since otherwise all youngest nodes of S are in AN.Y/, which implies that S⊆AN.Y/.) We now prove that
for

S̃ :=S \{W}
we have that Y and E are d separated given XS̃ . To see this, consider any path from E to Y . If this path
does not go through W , the path is blocked by S̃ because it was blocked by S= S̃∪{W} (removing nodes
outside a path can—if anything—only block it). Consider now a path that passes W and the two edges
connected to W that are involved in this path. If both edges are into W , we have finished because removing

E X1 X2 Y

H

Fig. 9. Graph corresponding to a model misspecification in the sense that the assumptions of proposition
1 and assumption (b), part (iii), of proposition 4 are not satisfied: indeed, we find that H0,S is violated for
S D S0 :D {X2}, and, since H0,S is satisfied for both S D {X1, X2} and S D {X1}, we obtain S.E/ D {X1};
therefore, S.E/ is not a subset of S0 but it is still a subset of the ancestors AN.Y/ of Y ; see proposition 5
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W does not open the path. If one of these edges goes out of W , there must be a collider on this path which
is a descendant of W (E does not have incoming edges and W is not an ancestor of Y ). But because W is
the youngest node in S neither the collider nor any of its descendants is in S. We can therefore remove W
and the path is still blocked.

Appendix D: Potential outcomes and invariant prediction

We now sketch that the assumption of invariant prediction can also be satisfied in a potential outcome
framework (e.g. Rubin (2005)): as long as we do not intervene on the target variable Y , the conditional
distributions of Y given the causal predictors remains invariant. (Here, we discuss the non-linear set-
ting and therefore develop a result that corresponds to remark 2 rather than proposition 1.) Although
other formulations may be possible, also, we adopt the counterfactual language that was introduced by
Richardson and Robins (2013) who referred to finest fully randomized causally interpretable structured
tree graphs (Robins, 1986). We further consider the non-linear version (29) of invariant prediction; see
also remark 2.

Similarly to Richardson and Robins (2013), definition 1, we consider random variables V := .X1 =
Y , X2, : : : , Xp, Xp+1/ and assume the existence of counterfactual variables Xj.r̃/, for any assignment r̃ to a
subset R⊆V and for all j∈{1, : : : , p+1}. We further assume the following conditions:

(a) ‘consistency and recursive substitution’ (Richardson and Robins (2013), equation (14)) (condition
1) and

(b) ‘finest fully randomized causally interpretable structured tree graphs independence’ (Richardson
and Robins (2013), equation (17)) (condition 2).

To ease the notation, we require Xj.xj= r̃/= r̃ rather than Xj.xj= r̃/=Xj (Richardson and Robins (2013),
page 21).

Proposition 6. Consider random variables V := .X1= Y , X2, : : : , Xp, Xp+1/ and denote the causes of
Y by P := PA.1/. For each environment e ∈ E consider a set Re ⊆V \ {Y} of treatment variables and
an assignment r̃e, i.e. Xe

j :=Xj.r̃
e
/. Assuming conditions 1 and 2, i.e. a finest fully randomized causally

interpretable structured tree graphs model, we have that

Y.r̃e
/|P.r̃e

/=q d=Y.r̃f
/|P.r̃f

/=q .35/

for all e, f ∈E and for all q such that both sides of equation (35) are well defined. Therefore, the set P of
parents satisfies null hypothesis (29).

We have already seen in appendix B that we can allow for some hidden variables, i.e. condition 2 can be
relaxed further.

Proof. We have for all e∈E
Y.r̃e

/ |P.r̃e
/=q=Y.r̃e

/|.P\Re/.r̃e
/=qP\Re , .P∩Re/.r̃e

/= q̃P∩Re

=Y.r̃e
/|.P\Re/.r̃e

/=qP\Re .36/

=Y.r̃e
AN.Y//|.P\Re/.r̃e

AN.P\Re//=qP\Re .37/

=Y |.P\Re/=qP\Re , .P∩Re/= r̃e
P∩Re .38/

=Y |.P\.Re∪Rf //=qP\.Re∪Rf /, .P∩Rf /=qP∩Rf , .P∩Re/= r̃e
P∩Re

=Y |.P\.Re∪Rf //=qP\.Re∪Rf /, .P∩Rf /= r̃f

P∩Rf , .P∩Re/=qP∩Re .39/

= : : :

=Y.r̃f
/|P.r̃f

/=q,

where for equation (36) we have used .P∩Re/.r̃e
/= r̃e

P∩Re and qP∩Re = r̃e
P∩Re (otherwise equation (35) is

not well defined). Equation (37) follows from condition 1 and equation (38) follows from the modularity
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property (Richardson and Robins (2013), proposition 16). Equation (39) holds because qP∩Rf = r̃f

P∩Rf . All
equality signs should be understood as holding in distribution.

Appendix E: Proof of proposition 3

Proof. The residuals Y −Xγ for γ ∈Rp are given by g.H , "/+ .γÅ− γ/f.H , η/+Z1I=1.γ
Å− γ/. The

two environments E are equivalent to conditioning on I = 0 for the first environment and I = 1 for the
second environment. Since I, H , ", η and Z are independent and Z has a full rank covariance matrix, the
distribution of the residuals can only be invariant between the two environments if γ−γÅ≡0. Hence the
test of H0,S,hidden.E/ will be rejected for S �=SÅ, whereas the true null hypothesis H0,SÅ ,hidden.E/ is accepted
with probability at least 1−α by construction of the test and the result follows by the definition of Ŝ in
expression (26).

Appendix F: Proofs of Section 4.3

F.1. Proof of theorem 2, part (a)
Proof. As shown in proposition 1 we have S.E/⊆PA.Y/ because the null hypothesis (5) is correct for

SÅ=PA.Y/. We assume that S.E/ �=PA.Y/ and deduce a contradiction.
As in expression (9) we define the regression coefficient

βpred,e.S/ := arg min
β∈Rp

:βk=0 if k �∈S

E.Ye−Xeβ/2:

We then look for sets S⊆{1, : : : , p} such that for all e1, e2 ∈E
βpred,e1 .S/=βpred,e2 .S/,

Re1 .S/
d=Re2 .S/,

with Re1 .S/ :=Ye1 −Xe1βpred,e1 .S/ and Re2 .S/ :=Ye2 −Xe2βpred,e2 .S/ (‘constant beta’ and ‘same error dis-
tribution’). If S.E/ �=PA.Y/, then there must be a set S � PA.Y/ whose null hypothesis is correct and that
satisfies βpred,e.S/ �=βpred,e.SÅ/=γÅ. This set S leads to the following residuals for e=1:

R1.S/=Y 1−
p+1∑
k=2

βpred,1.S/kX
1
k=

p+1∑
k=2

αkX
1
k+ "1

1,

with αk := γÅ
k −βpred,1.S/k = γÅ

k −βpred,e.S/k for any e∈E and αk �= 0 for some (possibly more than one)
k∈{2, : : : , p+1}.

Among the set of all nodes (or variables) X1
k that have non-zero αk, we consider a ‘youngest’ node X1

k0
with the property that there is no directed path from this node to any other node with non-zero αk. We
further consider experiment e0 with Ae0 ={k0}. This yields

R1.S/=αk0 X1
k0
+

p+1∑
k=2,k �=k0

αkX
1
k+ "1

1 .40/

and

Re0 .S/=αk0 a
e0
k0
+

p+1∑
k=2,k �=k0

αkX
1
k+ "1

1: .41/

Since E.X1
k0

/ �=a
e0
k0

, Re0 .S/ and R1.S/ cannot have the same distribution. This yields a contradiction.

F.2. Proof of theorem 2, part (b)
Proof. As before we obtain equations (40) and (41) for a youngest node X1

k0
among all nodes with

non-zero αk0 and an experiment e0 with Ae0 = {k0}. We now iteratively use the structural equations to
obtain

R1.S/=αk0 "1
k0
+

p+1∑
k=1, k �=k0

α̃k"
1
k .42/
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and

Re0 .S/=αk0 Ae
k0

"1
k0
+

p+1∑
k=1,k �=k0

α̃k"
1
k: .43/

Since all "e
k are jointly independent and E.A

e0
k0

/2 �=1, R1.S/ and Re0 .S/ cannot have the same distribution.
This contradicts the fact that the null hypothesis (5) is correct for S. The proof works analogously for the
shifted noise distributions.

F.3. Proof of theorem 2, part (c)

Proof. We start as before and obtain analogously to equations (42) and (43) the equations

R1.S/=αk0 "1
k0
+

p+1∑
k=1, k �=k0

α̃k"
1
k

and

R2.S/=αk0 Ak0 "1
k0
+

p+1∑
k=1, k �=k0

D̃k"
1
k,

where the D̃k are continuous functions of the random variables As, s∈{2, : : : , p+1}\{k0} and βe=2
j,s , j, s∈

{2, : : : , p+1} (and therefore random variables themselves). R1.S/ and R2.S/ are supposed to have the same
distribution. It follows from Cramér’s theorem (Cramér 1936) that Ak0 "1

k0
must be normally distributed.

But then it follows that

E{.Ak0 /4}E{."1
k0

/4}=E{.Ak0 "1
k0

/4}=3E{.Ak0 "1
k0

/2}2

=3E{.Ak0 /2}2E{."1
k0

/2}2=E{.Ak0 /2}2E{."1
k0

/4}
and therefore

var.A2
k0

/=0

which means that P.Ak0 ∈{−c, c}/=1 for some constant c �0. This contradicts the assumption that Ak0

has a density.

F.4. Proof of theorem 3

Proof. The proof of theorem 3 follows directly from lemma 1 (see below) and the fact that faithfulness
is satisfied with probability 1 (Spirtes et al. (2000), theorem 3.2). Assume that the null hypothesis (10) is
accepted for S with SÅ \S �=∅. Lemma 1 implies that, with probability 1, we have αk0 �=0, where α is defined
as in equation (44) in lemma 1. (Otherwise, we construct a new SEM by replacing the equation for Y with
Yk0 :=Σk∈SÅ\{k0}γÅ

k Xk+ "1 and removing all equations for the descendants of Y . Equation (45) then reads
a violation of faithfulness since there is a path between k0 and Yk0 via nodes in SÅ \S that is unblocked
given S \{k0}.) But, if αk0 �=0, we can use exactly the same arguments as in the proof of theorem 2.

Lemma 1. Assume that the joint distribution of .X1, : : : , Xp+1/ is generated by an SEM (19) with all
non-zero parameters βj,k and σ2

j drawn from a joint density with respect to Lebesgue measure. Let Xk0

denote a youngest parent of target variable Y =X1. Let S be a set with SÅ \S �= ∅, i.e. some of the true
causal parents are missing in the set S. Consider the residuals

Res.Y/= ∑
k∈SÅ

γÅ
k Xk−

∑
k∈S

βpred,1.S/kXk+ "1
1

= ∑
k∈SÅ

αkXk+
∑

k �∈SÅ
αk"

1
k

.44/

where the second equation is obtained by iteratively using the structural equations except those for the
parents SÅ of Y .
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Then, for almost all parameter values, we have αk0 =0 implies that k0 ∈S and

Xk0 ⊥Yk0 |XS̃\{k0}, .45/

where Yk0 :=Σk∈SÅ\{k0}γÅ
k Xk+ "1 and S̃ :=S∩ND.k0/ with ND.k0/ being the non-descendants of k0.

Proof. With probability 1, we have γÅ
k0
�= 0. Hence, αk0 = 0 can happen only if k0 ∈S or S contains a

descendant of Xk0 (otherwise αk0 = γÅ
k0
�= 0). We shall now show that in fact k0 ∈S must be true. Let the

random vector XS contain all variables Xk with k∈S and let it be topologically ordered such that, if Xk2

is a descendant of Xk1 , it appears after Xk1 in the vector XS . Assume now that S contains a descendant
of Xk0 . Without loss of generality, we can assume that the |S|-entry of XS (i.e. its last component) is a
youngest descendant Xs of Xk0 in S, i.e. there is no directed path from Xs to any other descendant of Xk0

in S. The entry .|S|, |S|/ of the matrix .EX1
S

T
X1

S/ is the only entry depending (additively) on the parameter
σ2

s ; we call this entry d. With

.EX1
S

T
X1

S/=:
(

A b
bT d

)
it follows that

.EX1
S

T
X1

S/−1=

⎛
⎜⎝A−1+ A−1bbTA−1

d−bTA−1b

A−1b

d−bTA−1b
bTA−1

d−bTA−1b

1

d−bTA−1b

⎞
⎟⎠=:

(
A−1 0

0 0

)
+ 1

d−bTA−1b
C:

Observe that .EX1
S

T
X1

S/ is non-singular with probability 1 (if the matrix is non-singular, the full covariance
matrix over .X2, : : : , Xp+1/ is non-singular, also) and

βpred,1.S/= .EX1
S

T
X1

S/−1ξ

for ξ :=EX1
S

T
Y 1 �=0 (otherwise βpred,1.S/ would be 0 and thus αk0 =γÅ

k0
�=0).

According to formula (44) and αk0 = 0, computing the linear coefficients βpred,1.S/, and subsequently
using the true structural equations, leads to the following relationship between the true coefficients βj,k
and γÅ:

γÅ
k0
=ηT

Sβpred,1.S/,

where ηS depends on the true coefficients βj,k and is constructed in the following way: the ith component of
ηS is obtained by multiplying the path coefficients between Xk0 and Xi. For example, the two directed paths
Xk0→X5→X3→Xi and Xk0→X5→Xi lead to the corresponding ith entry ηS, i=β1

5,k0
β1

3,5β
1
i,3+β1

5,k0
β1

i,5.
All non-descendants of k0 have a 0-entry in ηS ; k0 itself has the entry 1 in ηS if k0 ∈S (we shall see below
that this must be so). But, then, we have

γÅ
k0
=ηT

Sβpred,1.S/=ηT
S .EX1

S

T
X1

S/−1ξ=ηT
S

(
A−1 0

0 0

)
ξ+ 1

d−bTA−1b
ηT

S Cξ: .46/

If Xs �=Xk0 then ξ does not depend on σ2
s (it does if Xs=Xk0 ). We must then have that ηT

S Cξ= 0 since
otherwise it follows from equation (46) that

d=bTA−1b+ ηT
S Cξ

γÅ
k0
−ηT

S

(
A−1 0

0 0

)
ξ

,

which can happen only with probability 0 (it requires a ‘fine-tuning’ of the parameter σ2
s ; note that d

depends on σ2
s ).

But if ηT
S Cξ=0 then γÅ

k0
= .η1: : :η|S|−1/A

−1.ξ1, : : : ξ|S|−1/=ηT
S̃1

βpred,1.S̃1/ with S̃1 :=S \{s}, an equation
analogue to the first part of equation (46). We can now repeat the same argument for S̃1 (assume that
S̃1 contains a descendant of k0; then consider the youngest descendant of k0 in S̃1: : :) and obtain S̃2. After l
iterations, we obtain γÅ

k0
=ηT

S̃
βpred,1.S̃/, where S̃ := S̃l does not contain any descendant of k0. The only non-

zero entry of ηS̃ is the entry for k0 (otherwise all remaining ηS̃-entries would be 0, which implies that γÅ
k0
=0).

We have thus shown that k0 ∈S and that βpred,1.S̃/k0 =γÅ
k0

with S̃ :=S∩ND.k0/. We obtain relationship
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(45) with the following argument: regressing Y on S̃ yields a regression coefficientγÅ
k0

for Xk0 ; thus, regressing
Yk0 =Y −γÅ

k0
Xk0 on S̃ yields a regression coefficient 0 for Xk0 .

Appendix G: Experimental settings for numerical studies

We sample nobs data points from an observational and nint data points from an interventional setting
.|E |=2/. We first sample a directed acyclic graph with p nodes that is common to both scenarios. To do
so, we choose a random topological order and then connect two nodes with a probability of k=.p− 1/.
This leads to an average degree of k. Given the graph structure, we then sample non-zero linear coefficients
with a random sign and a random absolute value between a lower bound lbe=1 and an upper bound
ube=1= lbe=1+Δe=1

b . We consider normally distributed noise variables with a random variance between
σ2

min and σ2
max. We can then sample the observational data set (e=1).

For the interventional setting (e=2), we choose simultaneous noise interventions (Section 4.2.2) with
the extension of changing linear coefficients, i.e., for j∈A (where even A is random and can include the
later target of interest Y ), we have "e=2

j =Aj"
e=1
j and (possibly) βe=2

j,s �=βe=1
j,s . The set A of intervened nodes

contains either a single node or a fraction θ of nodes. We chose Aj to be uniformly distributed random
variables that take values between amin and amin+Δa. The linear coefficients βe=2

j,s are chosen either equal
to βe=1

j,s or according to the same procedure with corresponding bounds lbe=2 and ube=2.
All parameters were sampled independently for each of the scenarios, uniformly in a given range that

is shown below in brackets (or with given probability for discrete parameters).

(a) The number nobs of samples in the observational data is chosen uniformly from {100, 200, 300,
400, 500}.

(b) The number nint of samples in intervention data is chosen uniformly from {100, 200, 300, 400, 500}.
(c) The number p of nodes in the graph is chosen uniformly from {5, 6, 7, : : : , 40}.
(d) The average degree k of the graph is chosen uniformly from {1, 2, 3, 4}.
(e) The lower bound lbe=1 is chosen uniformly from {0:1, 0:2, : : : , 2}.
(f) The maximal difference Δe=1

b between largest and smallest coefficients is chosen uniformly from
{0:1, 0:2, : : : , 1}.

(g) The minimal noise variance σ2
min is chosen uniformly from {0:1, 0:2, : : : , 2}.

(h) The maximal noise variance σ2
max is chosen uniformly from {0:1, 0:2, : : : , 2}, yet at least equal to

σ2
max.

(i) The lower bound aj,min for the noise multiplication is chosen uniformly from {0:1, 0:2, : : : , 4}.
(j) The difference Δa between upper and lower bound aj,min for noise multiplication is chosen to be 0

with probability 1
3 (which results in fixed coefficients) and otherwise uniformly from {0:1, 0:2, : : : , 2}.

(k) The interventional coefficients are chosen to be identical (βe=2
j,s =βe=1

j,s ) with probability 2
3 ; otherwise

they are chosen uniformly between lbe=2 and ube=2.
(l) The lower bound lbe=2 for new coefficients under interventions is chosen as the smaller value of two

uniform values in {0:1, 0:2, : : : , 2}.
(m) The upper bound ube=2 for new coefficients under interventions is chosen as the corresponding

larger value.
(n) With probability 1

6 we intervene only on one (randomly chosen) variable, i.e. |A|=1.
(o) Otherwise, the inverse fraction 1=θ is chosen uniformly from {1:1, 1:2, : : : , 3}, i.e. the fraction of

intervened nodes varies between θ= 1
3 and θ=1=1:1.
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Bühlmann, P., Peters, J. and Ernest, J. (2014) CAM: causal additive models, high-dimensional order search and
penalized regression. Ann. Statist., 42, 2526–2556.
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Discussion on the paper by Peters, Bühlmann and Meinshausen

Peter A. Thwaites (University of Leeds)
Peters and his colleagues have produced a stimulating paper, which will be of interest not only to statisticians
but also to people working in other communities, such as artificial intelligence. They note that if one can
identify all the direct causes or causal predictors of a response variable then the distribution of this variable
conditioned on these predictors will be invariant under manipulation of other variables in the system. This
could be thought of as a direct consequence of the directed local Markov property that a variable is
independent of its non-descendants given its parents (see for example Lauritzen (2001)). They then look
for such invariance across different environments to identify these predictors.

The authors have shown that the set of causal predictors is identifiable when manipulations of the system
are of certain types (theorem 2), including the rudimentary ‘do’ interventions of Pearl (2000). However,
they also make the assumption (in for example Section 7.1) that the exact nature of the interventions is
unknown. If this is indeed so, how probable is it that the interventions are of these types? An urgent task
is to demonstrate that the set of predictors is identifiable for a much wider class of interventions—if those
listed turn out to be the only ones that allow this set to be identified, then the work in this paper, however
interesting, may turn out to be of limited use. I would like to propose investigating the following types of
intervention as being among those of interest:

(a) manipulating collections of variables to specific values, where there is not at least one single do
intervention on each non-response variable;

(b) stochastic manipulations which assign a new probability distribution over the outcomes of manip-
ulated variables;

(c) functional manipulations Do X=g.W/ for some set of variables W .

We could of course also consider what might be termed stochastic functional manipulations.
I shall concentrate here on functional manipulations. So consider the sprinkler example from Pearl

(2000), a directed acyclic graph for which is given in Fig. 10(a). Here, using the adapted methodol-
ogy of Section 6.1, we have structural equations models X1=f."1/, X2=f2.X1, "2/, X3=f3.X1, "3/, X4=
f4.X2, X3, "4/ and X5=f5.X4, "5/. The do intervention ‘Put sprinkler on’ removes the edge X1→X3 (as
in Fig. 10(b)), and hence X3 is no longer a function of X1. But we could consider a manipulation such as
‘If it is summer put the sprinkler on; if it is not summer and it is raining put the sprinkler off’ (Thwaites,
2013). Here, instead of removing the edge X1→X3, we need to add an edge X2→X3 as in Fig. 10(c), since
whether the sprinkler is on depends on both the season and whether it is raining. So a possible structural

(a) (b) (c)

Fig. 10. Example of a functional manipulation
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equation model for this is X3=f ′3.X1, X2/, implying a deterministic relationship between X1, X2 and X3.
But what happens to the sprinkler if it is not summer and not raining?

It is not immediately apparent whether these kinds of scenarios will always satisfy the assumptions that
are stated in the paper and, if they do, whether the set of causal predictors will always be identifiable. In
this particular example this might not be an issue since the parents of the probable response variables X4
and X5 remain unchanged.

The authors have extended their ideas to the non-linear case. The sprinkler example here, which uses
discrete variables, suggests to me the further extension to cases where the methodology must necessarily
be non-parametric. I would also like to draw attention to the (still relatively small) collection of references
on causality which argue that causes are more naturally thought of as events, rather than random variables
(see for example Shafer (1996), Dawid (2000) and Thwaites et al. (2010)). Is the analysis in this paper
compatible with this interpretation?

As befits a discussion paper, this paper provides plenty of opportunity for debate, argument and further
research. It is therefore with great pleasure that I propose a vote of thanks to the authors.

Vanessa Didelez (Leibniz Institute for Prevention Research and Epidemiology, Bremen, and University of
Bremen)
I thank Peters, Bühlmann and Meinshausen for their stimulating paper, which I believe will have great
impact.

They exploit the property of ‘invariant prediction’ (assumption l) for causal discovery mostly relying
on structural equation models (SEMs). Although it is important to provide results for SEMs as they are
extremely popular in numerous fields, they make strong mechanistic assumptions which many researchers
find too limiting or unrealistic mostly because of the implied joint distribution of counterfactuals (Dawid,
2000). Careful reading of the properties on which the authors’ results rely suggests to me that such as-
sumptions can be much relaxed while still addressing practically relevant questions.

I propose to adopt the decision theoretic framework of Dawid (2002, 2015) and Dawid and Didelez
(2010). A brief outline is as follows.

(a) We distinguish between variables that we can (or care) to manipulate and those that we do not.
Invariance with respect to the former may not hold but we may be able to characterize sufficient
additional information without assuming an underlying SEM. This is similar to randomized con-
trolled trials demonstrating an effect of X on Y : the effect is not necessarily expected to be the same
in different populations because of for example different lifestyles habits; even if not of interest in
themselves, such habits would need to be taken into account to obtain invariance.

(b) Assumption 1 suggests that the authors’ target of inference is the set SÅ. However, they define SÅ

relative to the actual experimental settings, i.e. dependent on the available data, and not in a stand-
alone manner; hence it makes no sense to call SÅ the ‘true causal predictors’ (page 954). Further,
formulating SÅ in the context of available data means that the prediction aspect is not obvious.
Proposition 1 and other results alternatively suggest that the desired target is PA.Y/ in an SEM; this
is shown to be identified under a particular set of experiments. Dawid (2002) and Dawid and Didelez
(2010) considered causal inference to be about predicting the effects of future interventions. A key
assumption, then, is invariance across the observed regimes as well as the potentially different and
new one which we want to predict. Hence, we formulate the target of inference as a (future) decision
problem, or ideal experiment. We might ask: given a set of manipulable variables (not assumed com-
plete or direct in any sense) X= .X2, : : : , Xp+1/, which subset XSÅ is the most effective in steering Y ?
We assume that ‘effectiveness’ can be decided on the basis of ideal experiments Eideal, e.g. randomiz-
ing all Xi. The available data, however, are gathered under a set of actual experiments Eactual which
may differ from Eideal, and identification concerns the question whether Eactual can help to find SÅ.

(c) Similarly to Dawid (2002) and Dawid and Didelez (2010), let σX be a ‘regime indicator’ taking
values in E =Eactual ∪Eideal. A characterization of valid experimental settings (which is somewhat
missing in the authors’ approach) can be expressed as assumptions about the set of distributions
P.·;σX= e/, e∈E . Then, assumption 1 reads P.Y |XSÅ ;σX= e/=P.Y |XSÅ ;σX= e′/, e �= e′, or

Y ⊥⊥σX|XSÅ , .47/

similarly to using an environment variable E (Section 6.1 and Appendix C). However, σX is not
a random variable and conditional independence is generalized as in Constantinou and Dawid
(20l6). Such independences can sometimes be inferred from influence diagrams (Dawid (2002); see
the examples in Fig. 11).
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Fig. 11. Examples of influence diagrams

(d) In a more general approach, we could extend assumption (47) to include further variables H1, : : : , Hq;
but here, as above, we do not assume that these are manipulable. It may be more plausible that in-
variance holds with respect to the enlarged system, analogously to the ‘extended stability’ of Dawid
and Didelez (2010). We can now ask: which of H1, : : : , Hq need to be observed in addition to X? Con-
sider the influence diagrams in Fig. 11; for Fig. 11(a) we find Y ⊥⊥σX|.X3, X4, X5/ which coincides
with PA.Y/, but without assuming an SEM; for Fig. 11(b), with an unmanipulable or unobservable
H , we find Y ⊥⊥σX|.X3, X4/, similarly to proposition 4, part (b), of the paper; for Fig. 11(c), we find
Y ⊥⊥σX|.X2, X4, X5/, so SÅ �=PA.Y/ although still a meaningful quantity; this case is analogous to
proposition 5 with X2 an ancestor of Y , but without considering the existence of H a violation of
any assumptions—we are simply not interested in H and find that it can be ignored; finally, in Fig.
11(d), H cannot be ignored as it is required to establish invariance: Y ⊥⊥σX|.X3, X5, H/. The set
SÅ={X3, X5} is still a meaningful target of inference, and identified from a sufficiently rich Eactual
as long as H is observed and a ‘deconfounder’ (Dawid, 2002).

The vote of thanks was passed by acclamation.

Ricardo Silva (University College London)
I consider that the genuine fundamental problem of causal inference is the need for (partially untestable)
invariance assumptions to operationalize interventions, and I thank the authors for emphasizing the role
of invariances in a stimulating paper. I shall make some brief comments on how the ideas introduced here
can also be helpful in the context of measurement problems.

Much of the contribution involves removing assumptions about the exact target of interventions. This
is important: sometimes we may feel uncomfortable to speak of causal effects between some treatment X
and outcome Y , not because we cannot think of ways of intervening on X, but because we can think of
too many ways of intervening. However, perhaps none may plausibly keep the relationship between X and
Y invariant. In this case, the methods in Peters and his colleagues cannot be applied.

Many of these problems can be explained as a result of the difficulty of measuring X or Y . Invariance
assumptions, fortunately, can be extended to accommodate measurement error. It can also clarify to some
extent the nature of unobserved quantities. Consider the classical example of Bollen (1989), of which a
simplified version is shown in Fig. 12. Although it may be unrealistic to describe perfect interventions on
gross national product that do not directly affect energy consumption, an alternative model postulates
an abstract ‘industrialization level’ index measured indirectly by these two variables. Assumptions of
invariance under interventions F on this index could be tested by models that capture different regimes
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Fig. 12. Dark vertices represent observed vertices, with the square vertex indicating an intervention; latent
variables are represented as white vertices (this example is a simplification of that described by Bollen
(1989))

among latent variables but share the same measurement model. Identification of measurement models has
been studied under the psychometrics (Spearman, 1904), machine learning (Silva et al., 2006) and statistics
literatures (Carroll et al., 2006; Allman et al., 2009) and these results can be used to build such a test of
invariance.

Moreover, invariance under interventions provides further operational meaning to latent constructs: a
quantity that acts as a mediator between an intervention and measurements, as well as other latent variables.
Depending on which invariance assumptions are held as primitives (our ‘fundamental problem’), violations
of measurement invariances may indicate lack of unidimensionality of the latent construct (a different
take on the issue of ‘versions of a treatment’ (VanderWeele and Hernan, 2013), or further unmeasured
confounding between measurements and latent variables. In either case, I predict that the valuable ideas
introduced by Peters, Bühlmann and Meinshausen will also change the ways we build and interpret latent
variable models in the future.

Philip Dawid (University of Cambridge)
In the context of the example of Fig. 1, we shall typically not know whether the world is correctly described
by the models represented by the graphs shown.

Suppose that we have extensive data—values for all five variables involved—from regime (a), which is
purely observational, and from regime (b), where we have intervened on X2 and X3. We do not have data
from regime (c), where X4 is intervened on, but we are interested in inferring what would happen there.
Adopting the helpful terminology introduced in the discussion contribution of Dr Didelez, regimes (a)
and (b) are ‘actual’ and regime (c) is ‘ideal’.

If the actual regimes are indeed correctly represented by Figs 1(a) and 1(b), we shall find some invariances
across these two regimes: in both, we have the same joint distribution for .X4, X5/, the same conditional
distribution for Y , given .X2, X4/, the same conditional distribution for Y , given .X2, X5/, and indeed the
same conditional distribution for Y , given .X2, X4, X5/. But this is not enough information to reconstruct
the underlying graphs. For example, we shall not know that X5 precedes X4, and we shall not be able to
deduce whether or not, in regime (c) where X4 is intervened on, the conditional distribution of Y given
.X2, X5/ will be the same as in (a) and (b)—as it would be if the correct graphical representation of regime
(c) had X4 and X5 interchanged, but need not be for the situation as pictured.

This example shows that—contrary to an ambiguous impression left by the paper—there is not a unique
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minimal SÅ determined by assumption 1: when regimes (a) and (b) are the only games in town, we could
have SÅ= .X2, X4/, or equally SÅ= .X2, X5/. In this example, the ‘correct’ choice, which also takes into
account the ‘ideal’ regime represented by (c), is SÅ = .X2, X4/. But we have no way of knowing this.
Indeed, we have no warrant to suppose that any invariances discovered from the actual regimes, (a) and
(b), will persist into some entirely new regime such as (c). To do so would require making some very strong
additional assumptions. But what should these be, and when and how might they be justified?

Adam Foster (University of Cambridge)
I thank the authors for a fascinating paper. The aim of this comment is to address the question ‘could
invariant prediction work for function data?’.

The following motivating example is inspired by Lindquist (2012). Suppose that we wish to study pain
processing in the brain. A subject is exposed to a stimulus which can be painful .P=1/ or painless .P=0/.
We measure a subject’s brain activity in two regions by using functional magnetic resonance imaging.
The resulting functions are X1.t/ and X2.t/. The subject then reports how much pain was experienced
as Y .

A possible structural equation model (SEM) for pain processing is shown in Fig. 13.
We have two experimental environments corresponding to do.P = 0/ and do.P = 1/ which we label e

and f respectively.
The structural equations implied by this model are functional. For Y we have the structural equation

Y =
∫

X2.t/γ2Y .t/dt+ "Y :

Introducing a suitable inner product, this can be rewritten as

Y = 〈X2, γ2Y 〉+ "Y : .48/

A common technique for estimating the regression function γ2Y is to expand the data on a finite basis
(e.g. a Fourier basis) so the model reduces to a multivariate linear model in the basis coefficients.

This is a causal model, because equation (48) holds for all environments:

Ye=〈Xe
2, γ2Y 〉+ "e

Y ,
Yf =〈Xf

2 , γ2Y 〉+ "
f
Y

and "e
Y and "

f
Y have the same distribution.

The approximate test, method II in the paper, for invariant prediction can be used in this case, because
the residuals are scalar. Suppose now that "Y is Gaussian. Then the procedure for estimating the causal
predictors is outlined in algorithm 1 (functional invariant prediction for the pain processing example).

Step 1: for S⊆{1, 2} do the following steps.
Step 2: fit a functional linear model by regressing Y on XS using data from all environments.
Step 3: test Ye−〈Xe

S , γ̂〉 and Yf −〈Xf
s , γ̂〉 have the same mean and variance.

Step 4: end for.
Step 5: take the intersection of the accepted S.

The approximation being made when using this procedure is the same as for the multivariate case,
namely that the estimate γ̂ is close to the true regression function γ.

As we have seen, the approximate test for invariant prediction can carry over without changes to the
functional case when the response is scalar. There are several extensions which could be made in the
functional setting which are now discussed.

The motivating example did not have a fully functional flavour, because the residuals—the quantities
which are tested in invariant prediction—were scalar.

Fig. 13. An SEM for pain processing in the brain
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In some cases the response may be functional. In this case we seek a test for the equality of distribution
of functions: algorithm 2 (two-samples test for functions).

Step 1: expand the functions F and G on a basis

F =∑
Ckφk,

G=∑
Dkφk:

Step 2: for k=1, : : : , K do the following step.
Step 3: test whether Ck and Dk have the same distribution.
Step 4: end for.
Step 5: combine the results by using the Bonferroni correction.

In practice, a functional principal component basis is often used. It has been shown (Pomann et al.,
2016) that as K→∞ testing the principal components is equivalent to testing the equality of distribution
or the underlying functions.

Steffen Lauritzen (University of Copenhagen)
First I congratulate the authors for providing this interesting and stimulating paper. I welcome the fact
that stability of causal relationships over varying environments are highlighted, and I wonder whether
this usefully could be more formalized. In particular, I should like to draw the attention of the authors to
the decision theoretic formalism of limited memory influence diagrams (LIMIDs) (Lauritzen and Nilsson,
2001). A LIMID consists of a Bayesian network of chance nodes Γ, appropriately augmented with decision
nodes Δ; for a LIMID there might also be utility nodes which represent consequences of actions.

Every decision node d∈Δ will have a specified information set, represented as the parent set in a directed
acyclic graph D= .Γ∪Δ, E/, for example as illustrated in Fig. 14.

A (randomized) policy δd for d ∈Δ specifies the distribution of decision d for each configuration xpa.d/

in its information set, and a strategy q={δd , d ∈Δ} is a specification of policies for all decisions. Thus a
strategy is exactly an environment and the joint distribution of the chance and ‘environment’ nodes is

f.x/=∏
γ∈Γ

p.xγ |xpa.γ//
∏

d∈Δ
δd.xd |xpa.d//:

Would it be worthwhile to use this notion of environment, for designing causal experiments? Also, it might
be fruitful to investigate cases where the environment is partially unknown, corresponding to hidden
variables or confounders.

Peng Ding and Avi Feller (University of California, Berkeley)
We congratulate the authors on an interesting and compelling contribution to the causal inference litera-
ture.

Fig. 14. LIMID describing a set of environments for a causal system involving three potentially explanatory
variables and a single response variable
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We offer three main comments. First, the authors correctly note that invariance across experimental
conditions can be a powerful source for learning about causal relationships. We hope that several examples
of this from elsewhere in causal inference will prove useful. For instance, Kling et al. (2007) and Reardon
and Raudenbush (2013), among others, assumed that key causal relationships are constant across sites
in large, multisite experiments, and then leveraged this assumption for inference. Other examples of such
no-interaction assumptions include identifying causal effects within subgroups defined by non-compliance
behaviour (Jo, 2002) and survival status (Ding et al., 2011). Finally, this invariance assumption is crucial
for inference when transporting causal conclusions across populations (Pearl and Bareinboim, 2014).

Second, we note that the paper’s fundamental invariance assumption is possibly testable in practice. In
recent work, Jiang et al. (2016) exploit a similar assumption—which they call homogeneity—in the context
of evaluating surrogate end points with multiple trials. A key observation from Jiang et al. (2016) is that
the homogeneity assumption has testable implications when there are a sufficiently large number of trials.
We expect that similar results would hold for this paper and we would be curious to see those implemented.

Third, although we found the example of educational attainment interesting, it is not clear how useful
the proposed method is in this setting. In particular, we expect that all 13 variables in that example are
‘causally’ predictive of college graduation; in other words, we imagine the corresponding directed acyclic
graph to be very dense ex ante, and we gain little in practice from learning that test score and father’s
education are causally predictive of college graduation. This setting is common in the social sciences,
where a truly null relationship between two variables is relatively rare. By contrast, this method seems
much more useful in the gene example, in which the directed acyclic graph is presumably much more
sparse. We hope that there are ways to extend the proposed method to be more useful in the absence of
such sparsity.

Tyler J. VanderWeele (Harvard University, Boston)
The causal inference methodology in statistics can be divided into two broad categories. In one category,
the causal structure is assumed known and the goal is the identification and estimation of the causal effect
of an exposure on an outcome, or of time varying exposures, interactive effects, mediated effects, spillover
effects or effects on various latent subpopulations (Pearl, 2009; Morgan and Winship, 2014; Imbens and
Rubin, 2015; VanderWeele, 2015; Hernán and Robins, 2016). We might refer to this category as the ‘causal
effects literature’. In the second broad category, the causal structure is assumed unknown and is to be
learned or inferred from the data. We might refer to this category as the ‘causal discovery literature’. Prior
work on causal discovery has exploited conditional independence relations (e.g. Spirtes et al. (2000)), inde-
pendence relations within reweighted data (e.g. Shpitser et al. (2012)), non-Gaussianity (e.g. Shimizu et al.
(2006)) or non-linearity (e.g. Hoyer et al. (2009)) to learn something about the underlying causal structure.
Peters and his colleagues propose using the stability of causal coefficients across multiple interventional
or experimental settings to infer causal structure, thereby advancing the prior causal discovery literature.

I should like to issue two challenges on causal discovery. First, it would seem that an important next step
in advancing the literature would be approaches that integrate what is potentially learned from exploiting
several of the various relationships above, rather than just one. Second, I would like to challenge the
causal discovery community to find a non-trivial application within the social sciences in which we actually
learn something new. In the authors’ example, even if we accept the applicability of the methodology, the
‘discovery’ that test scores have a positive causal influence on the probability of obtaining a college degree is
hardly surprising. A difficulty with many of the causal discovery methods in the social science context is that,
very often, many underlying structures are compatible with the data (and even more so when unmeasured
variables are allowed), and the priors favouring sparsity, that are often used, thus favour structures that, in
the social science context, are unreasonable where, typically, everything influences everything else. I have
been convinced, through examples, that causal discovery may be of use within gene network contexts, in
which the discovery methods can be employed to generate hypotheses about structure that can later be
confirmed, or refuted, by experiment. The methods there seem useful for hypothesis generation. However,
an application of causal discovery in the social sciences in which the results are neither trivial nor absurd
would be of considerable interest.

Federico Crudu (Pontificia Universidad Catolica de Valparaı́so) and Freddy López and Emilio Porcu
(Universidad Federico Santa Maria, Valparaı́so)
We congratulate Peters and his colleagues for their beautiful paper. Our discussion is mainly focused on
instrumental variables, which are analysed in Section 5 of the paper. The authors propose a sophisticated
version of the model
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Y =Xγ+g.H , "/,
X=Zπ+V ,

where X is the regressor, g the mapping associated with the hidden variable H related to the error term
" and Z is the instrumental variable (denoted I in the paper). Ordinary least squares estimation does not
offer consistent estimates whenever X and H are correlated: hence, the need for using the approach above,
where the endogenous variable X is related to the instrument Z. In particular, if Z is not related to H , it
is a valid instrument and the parameter of interest γ can be consistently estimated with two-stage least
squares. One notorious problem for this type of estimation is the strength of the instrument, which is
governed by the parameter π. If π is large then Z is said to be strong. If π is small Z is said to be weak.
A weak instrument tends to lead to awkward inferential results. The authors claim that their method is
robust to the presence of a weak instrument, but we do not understand how this can happen. We have
some other queries.

(a) If we understand correctly, the authors point out that one can use only one instrument for one
endogenous variable; however, this may not be very convenient as you may wish to use more
instruments (when they are available) to increase the precision of your estimates. This is even more
relevant in case the function that relates X to Z is unknown and approximable with polynomials or
splines. In this case one can automatically generate a potentially large number of instruments.

(b) What happens if the instruments are irrelevant, i.e. π=0?
(c) What happens if Z is actually endogenous?

Wenliang Pan and Canhong Wen (Sun Yat-Sen University, Guangzhou)
We congratulate Peters and his colleagues for a thought-provoking and fascinating paper on a challenging
topic in casual models. Our comments are as follows.

This important work introduces an invariance prediction assumption to construct confidence sets for
causal predictors and derives confidence intervals for the associated coefficients. Next, identifiability guar-
antees for the sets of causal predictors in Gaussian structural equation models are given. Furthermore,
extensions to instrumental variable and hidden variables are discussed. The authors also provide discus-
sion on non-linear models, intervened targets and some robustness properties. This work is a substantial
contribution to the casual inference problems by providing a solid inference tool.

In particular, we are very interested to know the answers to the following questions.

(a) It is very natural to ask whether similar results can be established in high dimensional and ultra-
high dimensional set-ups. In Section 3.4, the authors address the computational complexity by the
shrinkage estimation methods, such as those of Tibshirani (1996) and Fan and Lv (2001). Would it
enjoy the oracle property?; what about the sure independence property under the ultrahigh dimen-
sional cases when then dimensionality is much higher than the sample size (Fan and Lv, 2008).
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Fig. 15. Simple example: boxplot of the true positive rate in 100 simulated data sets
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(b) What are the conditions on the predictors? We have conducted a simple simulation to study the
influence of correlation on the performance of invariance prediction. We generated multivariate
Gaussian variables X with mean 0 and variance Σ, where Σ has entry .σij/10×10=ρ|i−j|. The following
linear model was considered: Y =X1−X2−1:5X4+ ε, where ε∼N.0, 1/. The last variable X10 was
chosen to be a child of Y , i.e. X10 is non-causal, p=0, 0:5, 0:9 for independent, moderately correlated
and highly correlated cases respectively. Summary results are given in Fig. 15. It seems that the
performance would become worse when the correlation in the predictors becomes higher.

We believe that research along those directions will further enhance the applicability of casual inference
by using invariance prediction. Lastly, we conclude this comment by congratulating the authors again for
such a wonderful piece of work!

The following contributions were received in writing after the meeting.

Elias Bareinboim (Purdue University, West Lafayette)
Causal inference studies the principles and tools necessary for reasoning about cause-and-effect relation-
ships based on heterogeneous data sets and different types of invariance regarding experimental regimes,
sampling schemes and environmental conditions (Pearl, 2000; Bareinboim and Pearl, 2016). We commend
Peters and his colleagues for leveraging these invariances for structural learning with confidence intervals.
Readers may be interested to know that these invariances, which were earlier formulated for understanding,
characterizing and testing causal relations (Haavelmo 1995; Aldrich, 1989; Pearl, 2000) have found new
applications. In this note, we comment on two different invariances used in the paper.

We start by noting that there is a projection of structural causal models known as causal Bayesian
networks (CBNs) (Pearl (2000), pages 23–24), which makes weaker independence assumptions among
counterfactuals while still allowing reasoning about interventional distributions. Bareinboim et al. (2012)
introduced an equivalent formulation of CBNs that makes explicit the modularity condition exploited in
the paper, namely

‘that if we consider all direct causes of a target variable of interest, then the conditional distribution
of the target given the direct causes will not change when we interfere experimentally with all other
variables in the model except the target itself ’.

It was shown explicitly that a CBN encodes a collection of interventional invariances of the form
(definition 6, part (iii)) ∀ X⊂V, Y∈V, S⊂V, P{y|do.x, s, pay/}=P{y|do.s, pay/} whenever there is no
arrow from X to Y in G. This property can be seen as the Markov blanket of interventional distributions,
which contrasts with its probabilistic counterpart (where X cannot include descendants of Y ). It was shown
that these invariances can be written in terms of zero direct effects, which Peters and his colleagues could
leverage systematically in settings where interventions are not necessarily atomic or precisely identified.

The authors further exploit Y ’s functional invariance across experimental conditions (sometimes called
S-admissibility: definition 8 (Pearl and Bareinboim (2014))), which is a qualitatively different type of
assumption. This invariance has also been exploited in the context of transportability theory and is encoded
explicitly in the causal diagram through the removal of square nodes. Interestingly, the S-admissibility of
Y given its parents is natural in various scenarios, but it is not always necessary for causal inference as
discussed in example 9 of Pearl and Bareinboim (2014).

Overall, it is refreshing to see such a refined and systematic use of structural invariances in challenging,
real world applications.

Debopam Bhattacharya and Oliver Linton (University of Cambridge)
This paper proposes an interesting methodology to detect a relationship between an outcome Y and a set
of potential covariates X that is invariant to the ‘environment’ from which the data were generated. This
invariant relationship, to be found by hypothesis tests performed for each selection of covariate sets, is
interpreted as a ‘causal’ model. We shall frame our discussion along the following points.

(a) In many cases of interest, the outcome is non-binary, and the requirement might simply be that
E.Y |X, e), rather than the entire distribution of Y given X (as assumed in Section 1.1), to remain
invariant as the environment e varies. This would allow for arbitrary heteroscedasticity, and iden-
tical forms of heteroscedasticity across environments could represent an ‘invariant’ feature of the
relationship between Y and X. The paper, instead, imposes that the conditional variance of Y in the
‘causal’ model is independent of the regressors and is identical across environments. Furthermore,
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Chow-type tests in non-Gaussian heteroscedastic environments are also widely used in practice; see
Davidson and MacKinnon (1993), page 377.

(b) The distinction between ‘environments’ and ‘covariates’ may not be entirely clear cut in an applica-
tion. The example in Section 7.3 uses distance to college as a potential example of an environment.
This may be problematic, given the long-standing practice in labour economics of using distance
to college as an instrument for college attendance, where distance is assumed to affect college at-
tendance without having any direct influence on earnings. This contradicts the paper’s assumption
that distance to college has no direct ‘causal effects’ on college attendance. Since the data are cross-
sectional at a point in time, it is not sufficient to argue that location decision is chronologically
prior to college choice, since one’s parents’ location choice could depend on how much they value
education beyond what is indicated by observed covariates.

(c) It may be a good robustness check to see whether different covariate combinations are selected
if one defines environments differently. For example, in Section 7.3, one may use different cut-
offs for distance to define far or near. If choice of covariate sets changes with the definition of
environment, then how do we interpret ‘causality’? Is causality always to be defined in terms of
a specific definition of environment? Does it have any other more ‘fundamental’ definition which
does or does not coincide with the invariance-based definition?

(d) How is the concept of ‘invariance’ useful in regard to formulating public policy or targeting in-
terventions? If a covariate has a statistically insignificant coefficient in every environment, do we
include it as part of a causal model?

Andrew Davison (University of Cambridge)
Firstly, I congratulate Peters and his colleagues on their interesting and novel approach to causal inference.
Although they mainly focus on linear models, by use of the ‘conditional formulation’ in H0,S,nonlin.E/, it is
straightforward to extend the methods to handle generalized linear models, which I shall now detail.

I say that the invariant prediction assumption is satisfied if there is a link function g, a column vector
γÅ ∈Rp with support set SÅ and ηÅ ∈R such that, for all e∈E , the Ye|Xe

SÅ = x belong to an exponential
dispersion family with mean parameter μx such that g.μx/=ηÅ+Σi∈SÅ xiγ

Å
i and dispersion parameter φ,

both independent of e. The analogue of H0,S.E/ is now

H0,S.E/ : H0,γ,η,S is true for some γ ∈Rp and η∈R .49/

where

H0,γ,η,S.E/ :

{ there exists φ∈ .0,∞/ and a link function g such that,
for all e∈E and x∈R|S| when this is defined,
Ye|Xe

S=x∼ED.μx, φ/ where g.μx/=η+Σi∈S xiγi: .50/

The population regression coefficients are now defined by

.βpred,e.S/, ζpred,e.S// := argmin
β∈Rp

:supp.β/⊆S; ζ∈R
E[− log[f{Ye; θe.β, ζ/, φ}]] .51/

= argmin
β∈Rp

:supp.β/⊆S; ζ∈R
E[K{θe.β, ζ/}−Ye θe.β, ζ/] .52/

where θ=θ.μ/ is the natural parameter, θe.β, ζ/ :=θ{g−1.ζ+Xeβ/} and

f.y, θ, φ/=a.y, φ/exp
[

1
φ

{yθ−K.θ/}
]

.53/

is the density of the exponential dispersion family. For Gaussian linear models, this recovers the original
definition. I now define the population residual dispersion parameter by

φpred,e.S/ := E[{Ye−μpred,e.S/}2]
V{μpred,e.S/} .54/

where μpred,e.S/ :=g−1{ζpred,e.S/+Xeβpred,e.S/} and V.μ/=K′′{θ.μ/} is the variance function. Assuming
that the Xe are non-degenerate, by Jensen’s inequality one can argue that
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H0,S.E/ :

⎧⎨
⎩

there exists .β, ζ, φ/∈Rp×R×R+ and a link function g such that
for all e∈E and x∈R|S|, Ye|Xe

s=x∼ED.μx, φ/ when this exists,
g.μx/= ζ+Σi∈S xiβi, and .βpred,e.S/, ζpred,e.S/, φpred,e.S//≡ .β, ζ, φ/: (55)

I give one possible such test for H0,S.E/ at a level α (under sufficient regularity conditions, see for example
Jørgensen (1987)), which rejects H0,S.E/ if

[1={.|S|+1/.|E |−1/}].D−∑
e∈E

De/

φ̂.S/
>F.|S|+1/.|E|−1/,n−|E|.|S|+1/.α/: .56/

Here D is the deviance under the pooled model, De is the deviance of the model formed using observations
in Ie only, Fa,b.α/ is the upper α-quartile of the Fa,b-distribution and

φ̂.S/ := 1
n−|E |.|S|+1/

n∑
i=1

.yi− μ̂i/
2

V.μ̂i/
,

given that

μ̂i :=g−1{ζ̂
pred,e

.S/+xiβ̂
pred,e

.S/}, for i∈ Ie,

is a consistent estimator of φ. Confidence regions can be obtained as they are for a generalized linear
model. The testing procedure in Section 3 can then be used, with the coverage statements in theorem 2
holding asymptotically when the ne→∞.

Unfortunately, finding sufficient conditions on E to ensure that Ŝ.E/=SÅ appears more difficult; for
example, the approach of theorem 2 is probably not applicable. As expression (51) seeks to minimize the
cross-entropy, I wonder whether an information theoretic approach distinguishing between different (Ye,
Xe/ could be fruitful. To end, I again thank the authors, and I hope to see further development of their
method.

Jason P. Fine and Michael G. Hudgens (University of North Carolina, Chapel Hill)
Peters and his colleagues are to be congratulated on a stimulating and wide reaching presentation, offering
a novel approach to causal analysis which has the potential to be widely adopted in real applications.

The theoretical development is quite general, requiring only a valid test of equal conditional distributions
across experimental settings. In the linear structural equation model with normal errors, this involves
testing the equivalence of the regression and scale parameters, for which tests with good power are already
available. Under relaxed model conditions with unspecified error distribution, the construction of omnibus
tests is unclear, particularly regarding the infinite dimensional error distribution. We might expect such
omnibus tests to be less powerful (potentially much less powerful with small to moderate sample sizes),
leading to an increased probability of failing to detect causal predictors. Similar issues would seem to occur
whenever semiparametric models are employed and inference about infinite dimensional parameters is
needed.

The method proposed seems applicable in controlled experimental settings such as laboratory animal
studies, in which case the invariant prediction assumption might be suitable, i.e. it may be reasonable
to assume that the conditional distribution of the target given the causal predictors is the same across
experiments. The method may be of less utility in other settings such as in human populations where
this homogeneity assumption across experiments or environments may be dubious. For example in the
educational attainment setting, the likelihood of attaining a Bachelor’s degree or higher conditionally
on all observed direct causes may differ between subpopulations (environments) because of unmeasured
(hidden) causes. If these hidden causes confound the association between the observed direct causes and
the target, then the method requires additional information such as an instrumental variable to draw
meaningful causal inference.

There are many avenues of possible future research building on the methods proposed. The current ap-
proach simultaneously identifies causal predictors with non-zero causal effects and provides inference for
those effects; a question arises whether other procedures might be developed under weaker assumptions
which identify causal predictors without estimation of the associated effects. The education analysis results
in Fig. 7 suggest that one set S was particularly influential, yielding coefficient estimates close to 0 which
render the corresponding variables not significant (e.g. income low); future research might examine the
stability of inferences drawn by using the method proposed. The suggested approach adjusts for simul-
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taneous inference across multiple experimental settings using the Bonferroni procedure; less conservative
inferences might potentially be achieved by using alternative multiplicity adjustments.

Niels Richard Hansen (University of Copenhagen)
Peters, Bühlmann and Meinshausen have made a significant contribution to causal inference by system-
atically exploiting invariance of causal effects. Although they do address the question of model misspeci-
fication in Section 6.3 and Appendix C, some issues deserve more attention.

Gene expression is a dynamic process, whose constituents interact according to biochemical processes.
The identification of these biochemical mechanisms from experimental data is of great interest; see for
example Babtie et al. (2014), Finkenstädt et al. (2013), Hill et al. (2016), Oates et al. (2012) and Oates and
Mukherjee (2012). For time dynamic processes the causal interpretation of a structural equation model (or
a directed acyclic graph) for cross-sectional data may be problematic, and alternatives need to be considered
(Aalen et al., 2012, 2014; Røysland, 2012; Sokol and Hansen, 2014). At best, a structural equation model
is an approximation, and assumption 1 or its non-linear generalization (28) are only approximately true.

When assumption 1 does not hold, can we then still infer an approximately invariant prediction model?
If all the hypotheses H0,S are false, the methodology proposed will with high probability find no such
model when the tests have sufficient power. Although this prevents false positive results, it does not seem
to be an attractive property if there are models that are close to being invariant. This is particularly so
because the population value of (S.E/, Γ.E/) is highly non-robust to the inclusion of just one environment
for which invariant prediction fails. I wonder whether it would be possible to define a method that is more
robust to deviations from assumption 1: a method that can produce an approximately invariant prediction
model in a well-defined way.

Invariant prediction is likely to be important for disentangling causal gene expression mechanisms,
though some work may be needed to transfer the methodology to more realistic models and to make it
more robust to model misspecification.

As a final purely technical comment—related to model misspecification—the paper is unclear on how
the population quantity S.E/ given by expression (6), and its corresponding estimator, given by expression
(12), should be computed in the case where all the hypotheses H0,S are false. In Section 6.3 SÅ

c ‘is considered
to be causal’ but what does that mean if H0,SÅ

c is false? Also, it is stated that Ŝ.E/=∅when all hypotheses are
rejected (suggesting that S.E/ should be ∅ when all hypotheses are false), but, in fact, the intersection over
the empty index set of true hypotheses is {1, : : : , p} (the nullary intersection). This is a mathematical
subtlety, but it also ensures that S.E/ indeed is increasing in E (Section 2.1). Still, when all H0,S are false,
Γ.E/=∅ as the union of empty sets. This can be contrasted with the case where H0,∅ is true, in which case
S.E/=∅ and 0 ∈Γ.E/.

Kuldeep Kumar (Bond University, Gold Coast)
I congratulate the authors for rejuvenating this topic of causal inference by using invariant prediction.
However, my trifle disappointment after reading this interesting paper is that there is no mention of
Bayesian inference in the context of causal models. Way back in 1978 Rubin had his seminal paper on
Bayesian inference on causal effects (Rubin, 1978) and discussed the role of randomization there. Since
some prior information about the causal effect may quite often be available can Peters and his colleagues
throw some light on the role of Bayesian inference in the context of causal models? It should be mentioned
that Bayesian inference has been successfully applied in the context of structural equation modelling. My
other concern is related to the results in Section 7.2.6. It seems that the authors have chosen three pairs
that obtained the highest rank on the basis of the smallest p-values in spite of the fact that the p-value
approach has deep flaws and limitations.

Kuang-Yao Lee, Tianqi Liu and Hongyu Zhao (Yale University, New Haven)
Peters and his colleagues are to be congratulated for introducing a new approach to learning causality from
both observational and interventional data. There are two major categories of methods in the existing
literature for this problem:

(a) two-stage procedures combining the estimations of observational Markov class, and additional
structures complemented by the interventional data;

(b) likelihood inferences on integrated observational and interventional data (see, for example, Ellis
and Wong (2008) and Luo and Zhao (2011)).

The method proposed by Peters and his colleagues is based on testing the invariant conditional
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distributions—a clever idea which we believe will have significant impact on causal inferences and will
stimulate further work and extensions under the proposed principle.

We have the following questions inspired from reading the paper.

(i) In regression settings, the accuracy of selecting relevant features often depends on the inner de-
pendence between the predictors, which can be further influenced by the network’s complexity.
Regarding different types of network, we then wonder how robust the method is. For example,
could the random network in the simulation induce simpler structures than a hub network which
is more commonly observed in gene networks?

(ii) As mentioned by the authors, the pooling is designed to balance identifiability and statistical effi-
ciency. They have suggested integrating the findings from different poolings. It would be interesting
to see whether this procedure can be carried out in a more systematic way. If so, it would also be
instructive to know the principles under which it is implemented, e.g. how to make E ‘richer’.

(iii) As suggested by Fig. 4, the method proposed can always pick up a non-trivial set. It is natural to
ask whether it is possible to strengthen the result of theorem 1. What we would like to see may be
something like

P{Ŝ.E/=SÅ}
or, at least,

P{∅ �= Ŝ.E/⊆SÅ}:

sufficiently large.

Zudi Lu (University of Southampton)
I congratulate Peters and his colleagues warmly for a stimulating contribution of wide application.

Causal inference and invariance principle
The causality concept seems not well defined in general, with inferring the cause described differently by,
for example, Encyclopedia Britannica (2014), Shaughnessy et al. (2012) and Pearl (2009). Interestingly,
the authors propose ‘to exploit the invariance of a prediction under a causal model for causal inference’,
which is made mode based under hypotheses in expressions (4), (25) and (28), and on page 947 put in
expressions (1) and (2) as an assumption guaranteed by causality.

It will be interesting to see a clearer discussion on ‘causal inference’ and the assumed ‘invariance’. In
what sense are inferences on causality and on the invariance equivalent?

Observational and interventional data
Data under interventions are required by using the invariance principle. In most socio-economic or envi-
ronmental problems, such interventions are unrealistic, with data usually thought of as observational only
(see Zhu et al. (2004) and Hu et al. (2016)). Interestingly, the idea of splitting purely observational data in
Section 3.3 can apply with a variable U needed in equation (18) on page 960.

In Section 7.3 on educational data, would different U impact identification of causal predictors? It will
also be interesting to have some principle on how to choose a good U for application.

Predictability and Granger causality
A feature of causal inference in the paper lies in prediction-based invariance across experiments. In econo-
metrics, Granger (1969) causality is predictability based by testing whether one time series is useful in
forecasting another, which, it is asserted (see Diebold (2001) and Wikipedia (2016)), finds only ‘predictive
causality’ due to the fallacy of one thing preceding being a proof of causation. In prediction, the invari-
ance causality seems a special case of Granger causality. It will be interesting to see discussions on the
relationship between these two causal inferences.

Possible extensions
The results from the paper are inspiring. Some extensions could be made in a natural way:

(a) quantile causality inference, with quantile check function pτ .y/ := y{τ − I.y < 0/}, with 0 < τ < 1,
replacing the least squares in expression (9) on page 955;

(b) time series causality inference, with temporal lags of Y added, say Ye
t =aYe

t−1+Xe
t γ+Ee

t , with |a|<1,
instead of the linear regression, in equation (4) on page 953;

(c) spatial causality inference, with spatial auto-regression replacing structural equation model (19) on
page 963.

I hope that further research will allow the authors to extend the applicability of their methods.
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Jorge Mateu (University Jaume I, Castellón)
Peters and his colleagues are to be congratulated on a valuable contribution and thought-provoking
paper in this timely topic of causal inference when the influence of causal predictors on a target variable
remains invariant under different changes of the environment. This context can be found in a variety of
transdisciplinary problems. As they state, the approach of invariant prediction provides new concepts and
methods for causal inference while relating to many known concepts, viewed from a different angle. This is
the point I would like to emphasize here in relation to dealing with spatial and spatiotemporal dependences
and graph theory.

The previous decade has witnessed an extraordinary increase in interest in the analysis of network-related
data within numerous disciplines: interest caused by a strongly expanded availability of network data, and
by the fact that underlying relational structures of (process) data have gained severe attention. Thus, a swift
move towards network-centric perspectives has taken place. In this context, an alternative graph-based
approach of analysing point patterns in space and space–time that occur on network structures introduces
several different graph-related intensity measures (Eckardt and Mateu, 2016). These patterns occur on
undirected and directional as well as partially directed network structures. These intensity measures can
be parametrically formulated when covariate information is available on the network and are considered
(causal) predictors for the number of events happening per unit area of the network. Fig. 3 in the paper
is one of the multiple cases that arise in this context. We hardly know (perhaps they are hidden or just
missing) all potential predictors of the target counting variable, but we know that there are continuous
experimental changes and interventions on these predictors. Following the roots of this paper, if we at
least control all direct causes on the target variable, then the conditional distribution of the target given
the direct causes will not change under experimental changes. This idea of invariance and causality is
fundamental in network-driven intensity models. Note that these graph-based models deal with spatial
or spatiotemporal dependences, and these dependences pose non-linear complex dependences that the
corresponding statistical methodological approach must handle. Invariance and causality bring a new
insight into the specific network context problem and open new avenues for sound research in computing
and statistics. In addition, this methodology sets the basis for approaching many real problems from a
variety of applied scientific fields.

Joris M. Mooij (University of Amsterdam)
I congratulate Peters and his colleagues on an original and thought-provoking paper. In my opinion, the
main contribution of this work is the innovative conservative way to use statistical tests to arrive at decisions
regarding causal relations, while allowing control of the probability of making false causal discoveries. A
remarkable aspect of the invariant prediction method proposed by the authors is that it does not require
the faithfulness assumption (Spirtes et al., 2000), unlike most other, if not all, constraint-based causal dis-
covery methods.

Let us first consider the causally insufficient setting, as discussed in Appendix C. The main idea of the
invariant prediction method in that setting essentially boils down to the local causal discovery method
proposed by Cooper (1997). Indeed, treat the environment as a random variable E∈E , as the authors do
in proposition 5. Assume that the environment E is not caused by any of the observed variables, and that
the target variable Y is dependent on the environment .Y ⊥⊥/ E/. If we find a set of observed variables S such
that

Y ⊥⊥E|S .57/

then (as shown by Cooper (1997)) we can conclude that S⊆AN.Y/, i.e. the variables in S must be ancestors
of Y . This reasoning depends critically on the assumption of faithfulness.

In the causally sufficient setting, a crucial observation made by the authors is that the parent set PA(Y )
actually satisfies Y ⊥⊥E|PA.Y/ even when faithfulness is not assumed (the local Markov condition and
the fact that E is assumed to be a non-descendant of Y suffice for this to hold), and therefore, when
conservatively taking the intersection of all sets S that satisfy condition (57), we must obtain a subset of the
parents (direct causes) of Y . Interestingly, this strategy is still valid in the presence of faithfulness violations.
Indeed, these can only lead to more sets S that satisfy condition (57) and, by taking the intersection of all
such sets, the worst thing that can happen is that we obtain a smaller subset of the parents of Y .

Not relying on faithfulness is potentially a huge advantage of the method, as faithfulness is likely to be
violated in practice. However, other strong assumptions then must be made: in particular the absence of
latent confounders (which is also likely to be violated in practice). An intriguing question is whether this
work can be generalized to allow for latent confounders without assuming faithfulness.
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Chris. J. Oates (University of Technology Sydney and Australian Research Council Centre of Excellence
for Mathematical and Statistical Frontiers, Melbourne), Jessica Kasza (Monash University, Melbourne,
and Victorian Centre for Biostatistics, Melbourne) and Sach Mukherjee (German Center for Neuro-
degenerative Diseases, Bonn)
The information theorist is taught to list invariances and then to derive models that exhibit those invari-
ances. We warmly congratulate Peters and his colleagues on their insight and creativity in bringing ideas
of invariance to bear on causal inference.

An attractive feature of the method proposed is that it allows integration of multiple data sources, even
when the precise nature or target of perturbations is unknown. However, a softer approach that allows for
variation in causal structure across data subsets might sometimes be appropriate (see for example Oates
et al. (2014)).

On invariance, we wonder how far we can push the information theorist: consider estimation of the
causal effect θij of one variable Xi on another Xj . A correct causal graph G can be interrogated to produce
a minimal sufficient set S of variables to adjust for in estimation of θij (Pearl, 2009). Call such an estimator
θ̂ij.S/. Often, minimal sufficient adjustment sets are not unique, in which case any other such set S′will allow
consistent estimation. Then, we would expect, for large sample sizes, θ̂ij.S/≈ θ̂ij.S

′/. However, there seems
no particular reason to expect that these two estimates would coincide if the graph G were incorrect. This
seems to suggest another invariance that could be exploited for causal discovery. Potentially, other invari-
ances could play a role. This may in future lead to having to ask which invariances are most useful in practice.

There has long been (in our view justifiable) empirical scepticism towards de novo causal discovery
(Freedman and Humphreys, 1999). The issue is that it is difficult empirically to validate causal discovery
by using data at hand. This goes further than familiar issues of statistical uncertainty, since the underlying
concern is of a potentially profound mismatch between critical assumptions and the real data-generating
system. The authors’ insightful discussion of model misspecification is therefore welcome and the conser-
vative behaviour of their procedure very appealing. We note also that background scientific knowledge
may itself be misspecified but that in some circumstances it may be possible to effect ‘repair’ on the relevant
causal structures (Oates et al., 2016). We see it as a positive development that empirical validation of causal
discovery is becoming more common (see for example Hill et al. (2016)). In the near future, empirical work,
not least in biology, ought to give us a better sense of the practical efficacy of causal discovery.

T. S. Richardson (University of Washington, Seattle) and J. M. Robins (Harvard School of Public
Health, Boston)
We thank Peters and his colleagues for a thought-provoking and highly innovative paper that links disparate
approaches to causality.

In Section 5 they describe two assumptions that they associate with the instrumental variable (IV)
method. However, these do not fully represent the IV literature. There are IV papers that assume a para-
metric structural model with the error term independent of the instrument (e.g. Newey (1990), page 110,
and Robins and Tsiatis (1991)) contrary to conditions (a) and (b); these papers also describe semipara-
metric efficient methods for estimation and testing that avoid search. Identification in such models rests
on the parametric assumptions; in their absence non-parametric bounds may be found.

We found Section 7.3 confusing because the authors initially mention IV methods which allow for
unmeasured confounding (or feedback). However, algorithm II, applied in Section 7.3, explicitly assumes
the absence of hidden variables (even though one might expect them to be present).

In Section 5 the authors present another method based on direct search that allows for unmeasured
confounders, but this method is not applied. In Appendix C, the authors discuss algorithm II in the
presence of unmeasured confounders. Then, as shown in Fig. 9, the method may fail to find ’direct’ causal
predictors.

Proposition 5 in Appendix C shows that under the assumptions of faithfulness, and exogeneity of E, the
set S.E/ will consist solely of ancestors of Y . It follows from Richardson (1996), lemma 4, and Acid and de
Campos (1996) that this conclusion holds, even without faithfulness, provided that E is temporally prior
to all other variables and some set d-separates E and Y in the augmented graph. The structural conclusions
in proposition 5 are essentially those resulting from the fast causal inference algorithm (Spirtes et al., 2000)
when selection bias is assumed absent; otherwise S.E/ need not contain ancestors of Y . See Fig. 16.

The authors assume that the allocation of units to environments is exogenous (so E has no parents,
observed or unobserved). Though plausible in an experimental context such as in Section 7.2, this often
may not hold when ‘environments’ are constructed post hoc (Section 7.3). A related point: in Section
2 the authors assume that data are independent and identically distributed for each environment e∈ E .
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(a) (b)

Fig. 16. Two directed acyclic graphs representing selection bias: observations are only recorded for S D1;
in (b) H is unobserved; in both, X will be an identified causal predictor of Y, given P.X , Y jE, S D1/

However, in Section 3.2 they pool data from different experimental settings to create a single environment.
Such pooled data will no longer be independent and identically distributed in general.

Milan Stehlík (Johannes Kepler University in Linz and University of Valparaíso) and Silvia Stehlı́ková
We congratulate Peters and his colleagues on their paper, introducing readers to the challenging world of
causal inference.

The assumption of independently distributed errors with finite variance is unrealistic for genetic data
examples. This is too oversimplifying an assumption for large-scale genetic perturbation experiments
(Kemmeren et al. (2014), e.g. pages 740, 743, 745 and 747). Heavy-tailed errors denote the presence of
highly connected hubs. We can accept additive errors, but more difficult is the assumption of independent
errors but finite variance, which cannot be assumed without proper testing (Stehlík et al., 2014). This invites
the question: how convincing is Fig. 2(c) regarding invariance of set S={YPL273W}? The basic theory of
independent additive errors gives either a normal distribution or heavy-tailed stable laws. Moreover one
can make a tree of possibilities of estimators of corr.εe

i , ε
f
i / for a single unit i in different environments e

and f . Thus, the counterfactual question can be answered partially.
In genetic data examples, where strong correlations are present (Kemmeren et al. (2014), e.g. pages

740, 741, 743, 747 and 750), weighted least squares should be applied instead of ordinary least squares to
obtain best linear unbiased estimators. It is disturbing to read on page 949 that ‘... we are more interested
in settings where such careful experimentation is not possible...’ and on page 957 to request a full rank
linear model (without careful experimental design this is overrealistic).

Finally we would prefer more foundation and justification of the invariance introduced. Invariance
should have deep algebraical or logical bases. Assumption 1 in Section 2 relies on ‘the existence of a model
that is invariant under different experimental or intervention settings’. Especially in genetics such models
can be easily empty sets. There is a well-known approach on invariant statistical models based on groups.
We mention for example James (1954), Obenchein (1971) and Francis et al. (2016) for orthogonal, linear
and finite reflection groups. Having an invariant statistic, we can invert it to confidence intervals. This form
of invariance relates directly to algebraic–geometric foundations of statistical information. What are these
algebraic structures in the case of invariance in the paper? One can think about losing symmetry, or other
particular group axioms, but it needs justification. What is its relationship to the fiducial statistics of Hora
and Buehler (1967)?

Linbo Wang (Harvard University, Boston) and Shizhe Chen and Ali Shojaie (University of Washington,
Seattle)
We congratulate Peters and his colleagues on a thought-provoking proposal to identify (a subset of)
causal predictors by using the invariance principle. Here, we make two comments about the approach
proposed, concerning the effect of selection variables and the design of perturbation experiments in high
dimensions.

First, consider the simple directed acyclic graph .DAG/ X→S←Y , where the data are observed given
a particular value of the selection variable S. Although X does not directly affect Y , intervening on X
would, in general, change the distribution of Y in the observed data. Consequently, in this case, the method
proposed will be anticonservative, as it detects X as a (spurious) causal predictor. This is noteworthy since
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the approach is valid (albeit potentially conservative) under many other deviations, such as confounding
and model misspecification. Moreover, (under the faithfulness assumption) the ‘traditional’ structure
learning approach can draw valid causal inferences in the presence of selection variables by using maximal
ancestral graphs (Richardson and Spirtes, 2002; Colombo et al., 2012). We wonder whether the approach
proposed can be extended to handle selection variables.

Second, the design of perturbation experiments is of practical interest for applications in high dimensions.
Consider, for example, the do interventions of Section 4.2.1. Theorem 2, part (a), shows that the causal
predictors are identifiable if there is at least one intervention on each of p variables potentially affecting the
response Y. However, with large p, intervening on all variables can be too costly. In such cases, learning a
superset of the parents of Y , paY , from observational data can help to design more efficient experiments.
For this, one could, for example,

(a) learn the (partially directed) skeleton of the DAG by using, for example, the PC algorithm (Spirtes
et al., 2000; Kalisch and Bühlmann, 2007), or

(b) learn the Markov blanket (Pearl, 2014) of Y by using, for example, lasso regression (Meinshausen
and Bühlmann, 2006).

For linear structural equation models with Gaussian noise, both methods consistently select (a superset
of) all variables in paY (Kalisch and Bühlmann, 2007; Meinshausen and Bühlmann, 2006). In practice,
however, Markov blanket learning using lasso regression (Meinshausen and Bühlmann, 2006) may select
more members of paY , as seen in Fig. 17. Moreover, the faithfulness assumption is not necessary when
learning the Markov blanket and lasso inference procedures do not require a ‘beta-min’ condition (see,
for example, van de Geer et al. (2014)). These preliminary findings suggest that investigating the trade-off
between experimental cost and statistical power when learning a superset of paY may be fruitful.

Qingyuan Zhao, Charles Zheng, Trevor Hastie and Robert Tibshirani (Stanford University)
We congratulate Peters and his colleagues on this throught-provoking paper. Statistical inference of causal-
ity has been thoroughly studied in randomized experiments or observational studies but is seldom consid-
ered when data from both observational and interventional settings are available. Peters and his colleagues
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Fig. 17. Results of a simulation study to compare the performance of structure learning procedures for
selecting a superset of the parents of variable Y in a DAG (in each of B D 100 simulated data sets, n D 500
observations are generated from a linear structural equation model based on a randomly generated DAG with
p D 100 variables; the DAG is the same for all simulated data sets; the results suggest that Markov blanket
learning using the lasso may miss fewer parents of Y ; however, the performance of lasso-based procedures
depends heavily on the choice of tuning parameter): (a) distribution of the number of true parents of node Y
selected by using each estimation method ( , total number of true parents of Y ); (b) distribution of the
total number of nodes included in the selected sets
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Table 2. Robustness properties of the ICP procedure†

Issues ICP’s behaviour

(a) Intervene on Y (or a missing cause)
⋂
∅

(b) Non-linear, non-additive and/or
⋂
∅

heteroscedastic
(c) Not enough interventions False causal positive

findings
(d) Small sample size ∅
(e) Left out a confounder

⋂
∅

(f) Left out an unconfounding predictor Okay
(g) Misspecified model or noise distribution False positive findings

†Under certain types of model misspecification, ICP will return a ‘model reject’,
denoted by

⋂
∅ (i.e. all subsets including the empty set are not invariant), rather

than produce false positive results: (a) when interventions are performed on Y ,
no predictor set can be invariant; (b) when the homoscedastic linear model is mis-
specified, the prediction rule will vary depending on the range of the predictors;
(c) without enough interventions, the set of causal parents is unidentifiable, and
non-causal invariant sets exist; (d) when the sample size is small, the hypothesis
test for invariance has insufficient power to reject the invariance null, and hence
many sets are accepted as invariant; (e) if a confounder is left out, this is equiv-
alent to intervening on Y ; (f) when an uncounfounding predictor is left out, its
effect is equivalent to independently and identically distributed noise; (g) under
a misspecified noise model, the hypothesis test may not be sensitive to differences
in the noise distribution, leading to low power.

Fig. 18. Application of the ICP procedure to recover the protein signalling network, taking in turn each of
the 11 variables as the response of interest and selecting the subset of environments in which the response
was not perturbed: the invariant set for each variable can be identified as the parents of that variable in the
graph; for nine of the 11 proteins, ICP rejected the model and reported no discoveries; for protein PIP2, ICP
correctly identified one parent, PIP3; for protein PIP3, ICP reported Mek and Jnk as part of the invariant set,
but these do not match any interactions known in the literature

have made an important contribution by tackling this problem with their notion of invariant causal pre-
diction (ICP).

At first look, ICP is a corollary of structural equation models, but we think that its value might be much
more substantial. Dawid (2000) noted that causal researchers are predominantly Laplacian determinists,
for whom

‘nothing short of a functional model relating outputs to inputs will do as a description of nature’.

Peters and his colleagues provide an alternative approach that defines causality by predictability instead of
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determinism: two different concepts that are not logically connected (Hoefer, 2016). In light of Breiman’s
(2001) two cultures of statistics, determinism roughly corresponds to the data modelling culture and
predictability is the spirit of Breiman’s algorithmic modelling culture.

Bearing this difference in mind, Peters and his colleagues do not take a downright predictability approach
in this paper. Rather, they consider two types of assumption: invariant prediction to define causality
and deterministic modelling assumptions such as linearity. This hybrid perspective becomes clear when
comparing the assumptions in equation (4) with those of expressions (24), (28) or (31). As a consequence,
ICP can make causal discovery only when the modelling assumptions are correct. The authors take this
as a robustness property, but in our view it also limits the applicability in practice. We did not find in the
paper a summary of the robustness of ICP, so we tried to outline in Table 2 the behaviour of linear ICP
when some of its assumptions are not met. We would welcome the authors’ comments on this summary.

To test the empirical performance of ICP, we use the authors’ software on a protein signalling network
data set. Sachs et al. (2005) collected a combination of observational and nine interventional data sets to
infer the causal structure of 11 proteins (Fig. 18). Using their own method, Sachs et al. (2005) reportedly
recovered 15 of the known directed arcs and discovered two new putative links (which are not shown),
and missed three of the interactions which were known in the literature. In contrast, ICP makes only three
causal discoveries. Among them, only one belongs to the known arcs. The poor performance of ICP on
this data set could be explained by the overly restrictive linear model.

The authors replied later, in writing, as follows.

We thank all the contributors to the discussion for many insightful and interesting comments. We shall
address some of the points that have been raised but, for brevity, we cannot respond to all the issues
mentioned.

Non-uniqueness of SÅ

Several comments (including Didelez and Dawid) addressed the point that for a given set of environments
E there might be different sets SÅ satisfying assumption 1; see the discussion in the paragraphs following
this assumption. We acknowledge that our exposition in the paper is perhaps confusing, mainly because
the formulation of assumption 1 depends on the set of environments E . A better way and a stronger result
is as follows.

We regard the set E of the observed environments as a subset of any larger set F ⊇E of possible environ-
ments. Given F , we are interested in a set SÅ=SÅ.F/ for which the invariance assumption 1 holds with
respect to F . (If F does not contain sufficiently many interventions, there could be multiple sets SÅ.F/
that satisfy the invariance assumption with respect to F and all these sets will be covered by our confidence
statements below.)

We have the following more general version of theorem 1.

Theorem 1. Consider an observed set of environments E . Consider a distribution P over .Y , X/ and
assume a valid test for H0,S.E/, in expression (12) for all sets S⊆{1, : : : , p} at level α in the sense that,
for all S, supP :H0, S .E/ true P{H0,S.E/ rejected }�α. Then, Ŝ.E/ satisfies

for every F ⊇E and every SÅ satisfying assumption 1 with respect to F ,
P{Ŝ.E/⊆SÅ}�1−α:

If, moreover, Ĉ.S/ in expression (14) is a valid confidence interval satisfying P{βpred.S/∈ Ĉ.S/}�1−α
for all sets S satisfying H0,S.E/, then the set Γ̂.E/ in expression (13) has coverage at least level 1−2α:

for every F ⊇E and every γÅwith support SÅsatisfying assumption 1 with respect to F ,
P{γÅ ∈ Γ̂.E/}�1−2α:

Important is the fact that the confidence statements hold for all (possibly future) environments (or inter-
ventions) F which include the observed data (but potentially many more interventions) and satisfy the
invariance assumption 1 with respect to F . This property is interesting for, say, predictive tasks where
one wants to be protected against new possibly adversarial environments. Applied to Fig. 1, for possi-
ble environments F ={1, 2, 3} and observed environments E={1, 2}, we have a unique target of interest
SÅ={2, 4} which fulfils assumption 1 with respect to F . If we are interested in other environments F⊇E ,
then the set SÅ of interest can be (depending on F ) {2, 4}, {2, 5} or {2, 4, 5} and the coverage statement
in theorem 1 is true whichever of these sets we are interested in.
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In the special case of structural equation models (SEMs), if we care about any possible set F ⊇ E of
interventions (excluding those on the response variable Y ), then the set of parents of Y always satisfies
assumption 1; see proposition 1. The coverage statement is then true for the parents of Y even if the observed
set of environments E is much smaller than the set F of future intervention environments of interest.

The assumption of structural equation models
In response to Didelez: assumption 1 and theorem 1 do not use the terminology of SEMs. Instead, we
discuss SEMs as an example; see proposition 1. The confidence statements in theorem 1 rely only on
assumption 1 and do not require a specification of a type of intervention. SEMs can be used to model
observational distributions, interventional distributions and counterfactuals. We stress that, in our work,
we use them solely in the first two ways. We therefore never make use of or assume the existence of any
joint distribution of counterfactuals

Weak or unspecified interventions
In response to Thwaites, the coverage property is true under all possible interventions, including the
examples that were mentioned, as theorem 1 is not making any assumption about the nature of the
interventions except for excluding direct interventions on the response variable (although identifiability
requires obviously some further work and assumptions about the strength of interventions in each specific
scenario).

Zhao, Zheng, Hastie and Tibshirani observed numerically that too weak or too few interventions lead to
false positive results. This is guaranteed not to happen on average under the assumptions of the simulations
since the coverage property does not require strong interventions or specific types of interventions) and
we think the observed result is thus most likely to be a non-representative realization (the other model
robustness properties are in agreement with our experience and writing).

Instrumental variables
Applied to instrumental variables (IVs) we regard our method as robust with respect to weak instruments
in the following sense: if, in the extreme case, the influence of the instrument on the predictor X is zero,
then all environments (which correspond to different values of the IV) are identical. Then even the empty
set is accepted and the confidence intervals thus include zero. In response to Crudu, López and Porcu, we
do not provide any guarantee for situations in which the instrument is endogenous, but an IV can be a
non-descendant of Y in the graph (see the next paragraph).

Covariates and environments
The framework of limited memory influence diagrams proposed by Lauritzen is definitely of interest in
this context (as is the related decision theoretic framework that was developed by Dawid and Didelez). A
decision node can be used to define an environment as long as it is not a descendant of Y . This point of
view allows a richer class of possible models than those where the decision node cannot have ancestors in
the graph (as would be so for an IV if we view the IV as a decision node).

Given purely observational data, it is in particular possible to use covariates for a ‘post hoc’ construction
of environments, as long as these covariates can be assumed to be non-descendants of the target Y ; see
Section 3.3. Note that these covariates are allowed to have parents. Different candidate covariates may
lead to different outcomes of the method, since some covariates may lead to a more informative splitting
into environments than others.

Model misspecifications
In response to Richardson and Robins, we have formulated proposition 5 without assuming the existence
of a set d-separating E and Y (this is violated if E points directly to Y , for example); instead we assume
faithfulness but this can be regarded as a matter of taste.

Furthermore, it has been pointed out by Richardson and Robins, and Wang, Chen and Shojaie that,
if the model is misspecified because of implicit conditioning (‘selection bias’), the method may falsely
regard non-ancestors of Y as causal predictors. If the implicit conditioning and the invariance hold in
every ‘possible’ environment (see above) e∈F ⊇E , predictions using those causal predictors remain valid
in the sense that prediction intervals for Y will have correct coverage and the false selection is in this sense
unproblematic. We acknowledge, however, that problems do occur if one tries to model interventions
on such predictors if these kinds of interventions have not appeared in E (there is no set SÅ satisfying
assumption 1 with respect to a set F ⊇E including these interventions).

Latent variables
Richardson and Robins, and Mooij wondered whether one can allow for latent variables beyond the
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discussion in the paper. We believe that this is possible by exploiting a slightly different form of invariance.
For some progress in this direction see Rothenhäusler et al. (2016).

Data pooling
Richardson and Robins correctly point out that data pooled from different environments are not indepen-
dently and identically distributed in general. It is important to note that the coverage statement only relies
on an independently and identically distributed data assumption of the noise in the response variable Y ,
not on an independently and identically distributed data assumption for the joint distribution of .X, Y/.
Phrased differently, for correct coverage, we must make sure only that we accept the invariance of the
conditional distribution Y |XSÅ = x with high probability (conditional on the true causal variables XSÅ ).
The distribution of XSÅ can be arbitrary, as we condition on it for the test.

Sachs data and interventions on response
Hansen also asked whether there is a way for causal inference if invariance does not hold for any set, as
happens for example under interventions on the target and Zhao wondered about the pooling of data.
In the same context, Zhao, Zheng, Hastie and Tibshirani apply our method to the Sachs data. We have
done this in other work as well: since interventions may occur on the response in some environments,
a direct application of the method to all eight environments will not produce interesting discoveries (as
also pointed out by the comment of Zhao and his colleagues). A simple way to avoid environments with
interventions on the target (even though the precise location of the targets is unknown) is to consider
all pairs of two environments and to combine the discovered causal predictors with a union operation
(after adjusting for multiplicity). The reasoning is as follows: if an intervention on the outcome occurs for
a given pair of environments, an empty set will in general be returned. If no interventions occur on the
target, however, we can and will make causal discoveries. We obtain rather different results which are in
reasonable agreement with the speculated ‘ground truth’ in Sachs (2005); see Meinshausen et al. (2016).

Sparseness of graph
It has been correctly noted by VanderWeele, and Ding and Feller that the assumption of a sparse graph can
be doubtful in social sciences (and elsewhere). We agree that in these contexts we must treat the estimated
set Ŝ.E/ with caution. Even in the absence of interest in a stipulated set SÅ, however, we note that the
method offers confidence intervals on the causal coefficients. We support the idea of the challenge that
was proposed by VanderWeele. The difficult question in the absence of very convincing examples with a
ground truth is whether the data have been so far of too poor quality, the questions ill posed or whether
there is genuinely nothing interesting to learn (or all of these).

Further extensions
We appreciate the discussion of several other extensions, some of which already contain detailed proce-
dures; these ideas include functional (Foster), dynamical (Hansen) or high dimensional data (Pan and
Wen), latent factor models (Silva), non-linear and generalized linear models (Davison and Lu), network
models (Mateu), non-Gaussian error distributions (Stehlík and Stehlíková), more details on the relation-
ship to modularity (Bareinboim), the use of different types of invariance (Bhattacharya and Linton, and
Oates, Kasza and Mukherjee), formalizations within the framework of limited memory influence diagrams
(Lauritzen), applicability under weaker assumptions on homogeneity (Fine and Hudgens), finite sample
identifiability statements and how they depend on the dependence structure of the covariates (Zhao), the
method’s relationship to measurement problems (Silva) and Bayesian reasoning (Kumar).
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