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The group lasso for logistic regression
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Summary. The group lasso is an extension of the lasso to do variable selection on (predefined)
groups of variables in linear regression models. The estimates have the attractive property of
being invariant under groupwise orthogonal reparameterizations. We extend the group lasso
to logistic regression models and present an efficient algorithm, that is especially suitable for
high dimensional problems, which can also be applied to generalized linear models to solve the
corresponding convex optimization problem. The group lasso estimator for logistic regression
is shown to be statistically consistent even if the number of predictors is much larger than sam-
ple size but with sparse true underlying structure. We further use a two-stage procedure which
aims for sparser models than the group lasso, leading to improved prediction performance for
some cases. Moreover, owing to the two-stage nature, the estimates can be constructed to be
hierarchical. The methods are used on simulated and real data sets about splice site detection
in DNA sequences.

Keywords: Categorical data; Co-ordinate descent algorithm; DNA splice site; Group variable
selection; High dimensional generalized linear model; Penalized likelihood

1. Introduction

The lasso (Tibshirani, 1996), which was originally proposed for linear regression models, has
become a popular model selection and shrinkage estimation method. In the usual linear regres-
sion set-up we have a continuous response Y € R”, an n x p design matrix X and a parameter
vector 3 € RP. The lasso estimator is then defined as

A ) )4
mzarg;mn(nY—XﬁH%M > 18D,
j=1

where ||u||% = E:?:luiz for a vector u e R”. For large values of the penalty parameter A\, some com-
ponents of 3, are set exactly to 0. The /;-type penalty of the lasso can also be applied to other
models as for example Cox regression (Tibshirani, 1997), logistic regression (Lokhorst, 1999;
Roth, 2004; Shevade and Keerthi, 2003; Genkin et al., 2007) or multinomial logistic regression
(Krishnapuram et al., 2005) by replacing the residual sum of squares by the corresponding
negative log-likelihood function.

Already for the special case in linear regression when not only continuous but also categorical
predictors (factors) are present, the lasso solution is not satisfactory as it only selects individ-
ual dummy variables instead of whole factors. Moreover, the lasso solution depends on how
the dummy variables are encoded. Choosing different contrasts for a categorical predictor will
produce different solutions in general. The group lasso (Yuan and Lin, 2006; Bakin, 1999; Cai,
2001; Antoniadis and Fan, 2001) overcomes these problems by introducing a suitable extension
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of the lasso penalty. The estimator is defined as

A G
B =arggnin(||¥ — XBI5+A 18, 1.

g=
where Z; is the index set belonging to the gth group of variables, g=1, ..., G. This penalty can
be viewed as an intermediate between the /;- and />-type penalty. It has the attractive property
that it does variable selection at the group level and is invariant under (groupwise) orthogonal
transformations like ridge regression (Yuan and Lin, 2006).

This paper deals with the group lasso penalty for logistic regression models. The logistic
case calls for new computational algorithms. Kim et al. (2006) first studied the group lasso for
logistic regression models and proposed a gradient descent algorithm to solve the correspond-
ing constrained problem. We present methods which allow us to work directly on the penalized
problem and whose convergence property does not depend on unknown constants as in Kim
et al. (2006). Our algorithms are efficient in the sense that they can handle problems where p and
n are large. Furthermore, they are also applicable to generalized linear models, beyond the case
of logistic regression. We do not aim for an (approximate) path following algorithm (Rosset,
2005; Zhao and Yu, 2004; Park and Hastie, 2006, 2007) but our approaches are sufficiently fast
for computing a whole range of solutions for varying penalty parameters on a (fixed) grid. Our
approach is related to Genkin et al. (2007) which presented an impressively fast implementation
(‘the fastest’) for large-scale logistic regression with the lasso; in fact, we can also deal with
dimensionality p in the 10000s but now for the group lasso. Moreover, we present an asymp-
totic consistency theory for the group lasso in high dimensional problems where the predictor
dimension is much larger than the sample size. This has neither been developed for linear nor
for logistic regression. High dimensionality of the predictor space arises in many applications,
in particular with higher order interaction terms or basis expansions for logistic additive models
where the groups correspond to the basis functions for individual continuous covariates. Our
application about the detection of splice sites, the regions between coding (exons) and non-cod-
ing (introns) deoxyribonucleic acid (DNA) segments involves the categorical predictor space
{A,C,G,T}7 which has cardinality 16384.

The rest of this paper is organized as follows. In Section 2 we restate in more detail the idea
of the group lasso for logistic regression models, present two efficient algorithms which are
proven to solve the corresponding convex optimization problem and compare them with other
optimization methods. Furthermore, we show that the group lasso estimator is statistically con-
sistent for high dimensional sparse problems. In Section 3 we outline a two-stage procedure
which often produces more adequate models in terms of both model size and prediction per-
formance. Simulations follow in Section 4 and an application of the modelling of functional
DNA sites can be found in Section 5. Section 6 contains the discussion. All proofs are given in
Appendix A.

2. Logistic group lasso

2.1. Model set-up

Assume that we have independent and identically distributed observations (x;, y;), i=1,...,n,
of a p-dimensional vector x; € R” of G predictors and a binary response variable y; € {0, 1}.
Both categorical and continuous predictors are allowed. We denote by df, the degrees of free-
dom of the gth predictor and can thus rewrite x; = (xiTl, e, X}:G)T with the group of variables
X4 € Rdfs, g=1,...,G. For example, the main effect of a factor with four levels has df =3
whereas a continuous predictor involves df =1 only.
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Linear logistic regression models the conditional probability pg(x;) =Pg(Y =1|x;) by

paXi) | '

with
G T
n,@(xi) Zﬂo + Z X[,gﬁga
g=1

where (3 is the intercept and 3, € R4 is the parameter vector corresponding to the gth predic-
tor. We denote by 8 e RPH! the whole  parameter vector, re. 8= (0o, [)'1 - BG)T
The logistic group lasso estimator 3 \ 1s given by the minimizer of the convex function

S\(B)=—L(B)+ A Z s(dfg) 1812, (2.2)

g=1

where [(-) is the log-likelihood function, i.e.

n
1(B)= Zl ying(x;) —log[l +exp{ng(xi) }].
i=
The tuning parameter A > 0 controls the amount of penalization. Note that we do not penalize
the intercept. However, as shown in lemma 1, the minimum in equation (2.2) is attained. The
function s(-) is used to rescale the penalty with respect to the dimensionality of the parameter
vector B, Unless stated otherwise, we use s(dfy) =df, 1/2 to ensure that the penalty term is of the
order of the number of parameters df,. The same reseahng was used in Yuan and Lin (2006).

Lemma 1. Assume that 0 <X!_,y; <n. For A>0 and s(d) >0 for all d € N, the minimum in
optimization problem (2.2) is attained.

The first condition in lemma 1 is a minimal requirement for the observed data. If the design
matrix X has full rank, the minimizer of S)(-) is unique. Otherwise, the set of minimizers is a
convex set whose elements correspond to the same minimum value of S)(-).

The ‘groupwise’ l,-norm in equation (2.2) is an intermediate between the lasso and the ridge
penalty function. It encourages that in general either Bg =0or Bg’ j#0forall je{l,...,df},
where we have omitted the index A for easier notation. A geometrical interpretation of this
special sparsity property was given in Yuan and Lin (2006). An example of a solution path
{B,\} a>0 for a model consisting of an intercept and two factors having 3 degrees of freedom
each is depicted in Fig. 1.

Let the n x df, matrix X, be the columns of the design matrix corresponding to the gth pre-
dictor. If we assume that the block matrices X, are of full rank, we can perform a (blockwise)
orthonormalization—e.g. by a QR- decomposmon—to obtain X Xg=1I4s,, g=1,...,G. Using
such a design matrix, the group lasso estimator does not depend on the encodlng scherne of
the dummy variables. We choose a rescaled version X}X g =nlgt, to ensure that the parameter
estimates are on the same scale when varying the sample size n. After parameter estimation, the
estimates must be transformed back to correspond to the original encoding.

2.2. Algorithms for the logistic group lasso

2.2.1.  Block co-ordinate descent

Parameter estimation is computationally more demanding than for linear regression models.
The algorithm that was presented in Yuan and Lin (2006) sequentially solves a system of (neces-
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Fig. 1. Solution path {ﬂ,\}po for a model consisting of an intercept (------- ) and two factors having 3

degrees of freedom each (— — —, ): Amax is the value of the penalty parameter A such that no penal-

ized group is active in the model

sary and sufficient) non-linear equations which corresponds to a groupwise minimization of the
penalized residual sum of squares. Hence, the algorithm is a special case of a block co-ordinate
descent algorithm. No result on numerical convergence was given in Yuan and Lin (2006).

For the more difficult case of logistic regression, we can also use a block co-ordinate descent
algorithm and we prove numerical convergence by using the results of Tseng (2001) as shown in
proposition 1. The key lies in the separable structure of the non-differentiable partin Sy (-). These
properties of course also apply to the group lasso for linear and generalized linear regression
models.

We cycle through the parameter groups and minimize the objective function Sy(-), keeping
all except the current parameter group fixed. This leads us to the algorithm that is presented
in Table 1, where we denote by B_, the parameter vector 3 when setting 3, to 0 while all
other components remain unchanged In step 3 we first check whether the minimum is at
the non-differentiable point 3, =0. If not, we can use a standard numerical minimizer, e.g.
a Newton-type algorithm, to find the optimal solution with respect to 3,. In such a case the
values of the last iteration can be used as starting values to save computing time. If the group
was not in the model in the last iteration, we first go a small step in the opposite direction of the
gradient of the negative log-likelihood function to ensure that we start at a differentiable point.

Table 1. Logistic group lasso algorithm using block co-ordinate
descent minimization

Step Algorithm

Let 8 € RPt! be an initial parameter vector
Bo <—arg ming, {S\(3)}
3 Forg=1,...,G
if 11X T (v —ps_)lla < As(dfy)
By <0
else
By < arg min,@:g {S\(®}
end
end
4 Repeat steps 2 and 3 until some convergence criterion is met

N —
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Proposition 1. Steps 2 and 3 of the block co-ordinate descent algorithm perform groupwise
minimizations of S)(-) and are well defined in the sense that the corresponding minima are
attained. Furthermore, if we denote by ﬂ(t) the parameter vector after ¢ block updates, then
every limit point of the sequence {ﬂ },>0 is a minimum point of Sy (-).

Because the iterates can be shown to stay in a compact set, the existence of a limit point is
guaranteed.

The main drawback of such an algorithm is that the blockwise minimizations of the active
groups must be performed numerically. However, for small and moderate-sized problems in
the dimension p and the group sizes df this turns out to be sufficiently fast. For large-scale
applications it would be attractive to have a closed form solution for a block update as in Yuan
and Lin (2006). This will be discussed in the next subsection.

2.2.2.  Block co-ordinate gradient descent

The key idea of the block co-ordinate gradient descent method of Tseng and Yun (2007) is to
combine a quadratic approximation of the 10% -likelihood with an additional line search. Using
a second-order Taylor series expansion at ﬁ and replacing the Hessian of the log-likelihood
function /(-) by a suitable matrix H” we define

. . G .
M (@) =—{1B")+d"Vi(B?) + JdTHOd} + 1 3 s(df) 18Y +dy 2 2.3)
g=1
~S\(BY +d),

where d € RP*!. Now we consider the minimization of My)() with respect to the gth penalized
parameter group. This means that we restrict ourselves to vectors d with dy =0 for k # g. More-
over, we assume that the corresponding dfy, x dfy submatrix H{? is of the form H =h{ Iy,
for some scalar 2 € R.

If |VI(B8™), — h(’) B 12 < As(dfy), the minimizer of equation (2.3) is

®__ A0
dg = ,@g.

Otherwise

1 \vJj A(1) _h(t) A(1)
4 =—— {vz(g“))J — As(dfy) O Ja=hs By |
hy

VB —hy BY 112

If d) #0, an inexact line search using the Armijo rule must be performed: let a® be the largest
value in {aoél}@o such that

S)\(B(I) +a®a®y - S)\(B(t)) <aPeAD,

where 0 <6< 1,0 <o < 1and ag >0, and A® is the improvement in the objective function Sy (-)
when using a linear approximation for the log-likelihood, i.e.

AV =—aDTVIBED) + As@di 1By +d 12 = Asdfy) 18 11>

Finally, we define
~(t41)

ﬁ = B(t) =+ a([)d(t) .
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Table2. Logistic group lasso algorithm using block co-ordinate
gradient descent minimization

Step Algorithm
1 Let 3 € RP1! be an initial parameter vector
2 For¢g=0,...,G

Hgy <~ hy(ﬁ)ldfg
d < arg mingg, =0,k {Mr (D)}
ifd#0
« < line search
B<«pB+ad
end
end
3 Repeat step 2 until some convergence criterion is met

The algorithm is outlined in Table 2. When minimizing M;\t) (-) with respect to a penalized group,
we first must check whether the minimum is at a non-differentiable point as outlined above. For
the (unpenalized) intercept this is not necessary and the solution can be directly computed:

1.
d) = ——= VI3
h
0

For a general matrix H”) the minimization with respect to the gth parameter group depends on
H® only through the corresponding submatrix H, (gf]). To ensure a reasonable quadratic approx-
imation in equation (2.3), H\ is ideally chosen to be close to the corresponding submatrix
of the Hessian of the log-likelihood function. Restricting ourselves to matrices of the form
H{) =h{l4;,, a possible choice is (Tseng and Yun, 2007)

hg’) =— max[diag{—Vzl(,é(t))gg}, cxl, 24

where ¢4 > 0 is a lower bound to ensure convergence (see proposition 2). The matrix H® does
not necessarily have to be recomputed in each iteration. Under some mild conditions on H
convergence of the algorithm is assured, as can be seen from Tseng and Yun (2007) and from
the proof of proposition 2.

Standard choices for the tuning parameters are for example cg=1, 6 =0.5and 0 =0.1 (Bertse-
kas, 2003; Tseng and Yun, 2007). Other definitions of A® as for example to include the quadratic
part of the improvement are also possible. We refer the reader to Tseng and Yun (2007) for more
details and proofs that A® <0 for d” %0 and that the line search can always be performed.

Proposition 2. If Hég is chosen according to equation (2.4), then every limit point of the
sequence {ﬂ(’)}t>0 is a minimum point of Sy (-).

Remark 1. When cycling through the co-ordinate blocks, we could restrict ourselves to the
current active set and visit the remaining blocks for example every 10th iteration to update
the active set. This is especially useful for very high dimensional settings and it easily allows
for p~10*-10°. For the high dimensional example in Section 2.3, this modification decreases
the computational times by about 40% of what is reported in Fig. 2 there. Moreover, it is also
possible to update the co-ordinate blocks in a non-cyclic manner or all at the same time, which
would allow for a parallelizable approach with the convergence result still holding.



Group Lasso for Logistic Regression 59

Remark 2. The block co-ordinate gradient descent algorithm BCGD can also be applied to
the group lasso in other models. For example, any generalized linear model where the response
y has a distribution from the exponential family falls into this class. This is available in our
R-package grplasso.

A related algorithm is found in Krishnapuram et al. (2005), where a global upper bound on
the Hessian is used to solve the lasso problem for multinomial logistic regression. This approach
can also be used with the group lasso penalty, resulting in a closed form solution for a block
update. However, the upper bound is not sufficiently tight for moderate and small values of \,
which leads to too slow convergence in general. Genkin et al. (2007) overcame this problem by
working with an updated local bound on the second derivative and by restricting the change in
the current parameter to a local neighbourhood.

For linear models, the least angle regression algorithm lars (Efron et al, 2004; Osborne
et al., 2000) is very efficient for computing the path of lasso solutions {f} Apr0. For logistic
regression, approximate path following algorithms have been proposed (Rosset, 2005; Zhao
and Yu, 2007; Park and Hastie, 2007). But, with the group lasso penalty, some of them are not
applicable (Rosset, 2005) or do not necessarily converge to a minimum point of S)(-) (Zhao
and Yu, 2007), and none seem to be computationally faster than working iteratively on a fixed
grid of penalty parameters \. This has been observed as well by Genkin et al. (2007) for logistic
regression with the lasso in large-scale applications.

To calculate the solutions 3  on a grid of the penalty parameter 0 < Ag <...<A] < Amax We
can for example start at

_ 1 T
Amax—ge{mlf?c {(df)ll (y— Y)Ilz}

where only the intercept is in the model. We then use Jé] A asastarting value for B Ay and proceed
iteratively until 3 Ax With A equal or close to 0. Instead of updating the approximation of the
Hessian H® in each iteration, we can use a constant matrix based on the previous parameter
estimates ﬁ A, tosave computing time, i.e.

HY =hy(By ) at,

for the estimation of ,C:I Aesr - Some cross-validation can then be used for choosing the parameter
A. Most often, we aim for minimal test sample negative log-likelihood score.

2.3. Comparison with other algorithms
In this subsection we compare the BCGD algorithm with the blockwise sparse regression (BSR)
algorithm of Kim ez al. (2006). After an earlier version of this manuscript, Park and Hastie (2006)
(algorithm PH) also applied their methodology of Park and Hastie (2007) to group lasso models
which we also include in our comparison.

We emphasize that BSR is a method which requires the specification of an algorithmic tuning
parameter, which is denoted by s. It is shown in Kim ez al. (2006) that numerical convergence of
BSR only holds if s is chosen sufficiently small (depending on the unknown Lipschitz constant of
the gradient). Moreover, a small parameter s slows down the computational speed of BSR, and
vice versa for a large s. Thus, we are in a situation of trading off numerical convergence against
computational speed. Our BCGD method does not require the specification of an algorithmic
tuning parameter to ensure convergence, and we view this as a very substantial advantage for
practical use.
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For comparing the various algorithms, we use a random-design matrix where the predictors
are simulated according to a centred multivariate normal distribution with covariance matrix
Yij= p"=J1 1f not stated otherwise, p=0.5 is used. For the penalty parameter A multiplicative
grids between A\pax and Apmax/100 are used.

For BCGD we use the R package grplasso and for BSR our own implementation in R.
As BSR works with a constraint instead of a penalty, we use the result of BCGD as constraint
value. We use an equivalent stopping criterion as in the package grplasso,i.e. the relative func-
tion improvement and the relative change in the parameter vector must be sufficiently small.
Although this slowed down the algorithms, it is necessary to identify the correct active set of the
solution. For both algorithms we make use of the preceding solution of the path as starting value
for the next grid point. For BCGD we update the Hessian at each fifth grid point and we use
an ‘ordinary’ cycling through the co-ordinate blocks. For the path following algorithm PH of
Park and Hastie (2006) we use the corresponding MATLAB implementation that is available at
http://www.stanford.edu/~mypark/glasso.htm Asrecommended, the step length
on the A-scale is chosen adaptively. However, we could run PH with reasonable computing time
on very small data sets only.

One of them is motivated by the user guide of PH. It consists of n =200 observations of G =3
groups each having df =3, i.e. p= 10 (with intercept). For the design matrix we use p=0 and the
whole parameter vector is set to zero, i.e. there is no signal. 20 grid points are used for A. The
corresponding central processor unit times (in seconds) based on 20 simulation runs are 0.093
(0.01), 0.041 (0.0054) and 5.96 (1.23) for BCGD, BSR and PH respectively. Standard deviations
are given in parentheses. We used the tuning parameter s =0.01 for BSR. Already for such
a simple, low dimensional problem, BCGD and BSR were substantially faster than PH. As
mentioned above, we could not run PH for larger problems (this is probably because of imple-
mentation, but we also think that an optimized implementation of PH, involving potentially
large active sets, would be slower than BCGD or BSR).

As a second example, we use a higher dimensional setting with n =100 and G =250 groups
each having df =4 (p=1001). The first 10 groups are active with coefficient 0.2, resulting in a
Bayes risk of approximately 0.2. The computing times based on 20 simulation runs are depicted
in Fig. 2, where we have used 100 grid points for A. The boxplot for so =0.025 is shown in outline
because the probability for numerical convergence was only 20%. BSR with s suitably chosen is
not faster in this example. The success for numerical convergence depends heavily on the choice
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Fig. 2. Central processor unit times for BCGD (left-hand side) and for BSR with various values of the
parameter s: see the text for more details
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Table 3. Central processor unit times on the splice site data set for BCGD and
for BSR with various values for the parameter st

Time (s) Times (s) for BSR and the following values of s:
for BCGD

s=5x 1074  s=25x107% s=125x10"% s=6.125%x10">

948 2737 4273 6688 10581

+The algorithm did not converge for larger values of s.

of s and additional time is needed to find an optimal value for s. For some single \-values,
BSR sometimes turned out to be faster, but the difference between the computing times when
calculating the whole path is much smaller owing to good starting values and the fact that BSR
slows down for small values of ).

We also applied BSR to the splice site data set in Section 5. The running times are reported in
Table 3. We summarize that BCGD is often almost as fast as or even faster than (as for the real
splice site data set) BSR with the optimal algorithmic tuning parameter s. This tuning param-
eter varies very much from problem to problem, and it is highly unrealistic to have reasonable
a priori knowledge about a good parameter. Thus, the user needs to do some trial and error
first, which can be very unpleasant. In contrast, BCGD runs fully automatically and is proved
to converge, as described in Section 2.2.2.

Because of implementational issues it can be difficult to compare different algorithms. But the
fact that co-ordinatewise approaches for sparse models are efficient for high dimensional data
has also been noticed by Genkin et al. (2007) or Balakrishnan and Madigan (2006). They have
successfully applied related algorithms for the lasso even when the number of variables was in
the hundreds of thousands. For the co-ordinatewise approaches in general, already after a few
sweeps through all variables both the objective function and the number of selected variables is
close to the optimal solution.

2.4. Consistency
A reasonable choice of the tuning parameter A will depend on the sample size n, as well as on the
number of groups G, and the degrees of freedom within each group. Assuming that the degrees
of freedom per group are kept fixed, the smoothing parameter A can be taken of order log(G).
Then the group lasso can be shown to be globally consistent under some further regularity and
sparseness conditions. This section gives more details on this asymptotic result.

Let us consider the data (before rescaling) (x;, y;) as independent copies of the population
variable (X, y). The negative log-likelihood function is used as the loss function, which we denote
for easier notation by

V8(X, ) =—(yng(x) —log[1 +exp{ng (x) }).
The theoretical risk is defined as
R(B) =E[yp(x, y)],
and the empirical counterpart as

1
n,;

R,(B)= Y8 (Xi, ¥i).
-1
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With this notation, the logistic group lasso estimator 3 A 1s the minimizer of

SA(B)
n

A G
=Ru(B)+ = > s(dfpIByll2-
n g=1

Let us consider a minimizer
B’ earg min{R(B)}.
If the model is well specified it holds that
Ely[x]= pgo(x).

There are various ways to measure the quality of the estimation procedure. We shall use the
global measure

d* (g, ng) = Ellng, () = ngo (0],
The following assumptions are made.

1
(a) We shall suppose that for some constant 0 <& < 5

SSPﬂO(X)Sl

for all x.
(b) We shall require that the matrix

Y =[Fxx"]

is non-singular. We denote the smallest eigenvalue of ¥ by 12,

(c) Let x4 denote the gth predictor in x. We normalize x, such that it has identity inner
product matrix [E[xgxg] = Igr,. With this normalization, we assume in addition that, for
some constant L,,,

T 2
m;lx m;lx(xg Xg) <nL;,.

The smallest possible order for L2 is L2 = O(1/n), since we use the normalization Exyx, N=

. For categorical predictors, L2 O(1/n) corresponds to the balanced case where in
each category the probability of ﬁndmg an individual in that category is bounded away
from 0 and 1.

One can then show consistency in the following sense. Let ,60 denote the elements in the vector
ﬁo corresponding to the gth group. Let Ny be the number of non-zero group effects, i.e. the
number of vectors ﬂg satisfying || 62 l2 #0. Then there exist universal constants Cy, C, C3 and
C4, and constants ¢; and ¢, depending on ¢, v and max,(dfy), such that whenever

(d) C1(1+N})L2 log(G) < ey and €y log(G) <A< e /(14 NJ)L2
the following probability inequality holds:

2 (14 No)A A 1
[P’{d (nﬁA,nﬁo)>c2T < Cy < log(n) exp —C— +exp C4L% .

This result follows from arguments that are similar to those which were used in van de Geer
(2003) and Tarigan and van de Geer (2006). An outline of the proof is given in Appendix A.
For the asymptotic implications, let us assume that ¢, v and max,(df,) are kept fixed as
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n — oo and that G > log(n). Take A <log(G), i.e. A is of the order log(G). When for example
the number of non-zero group effects Ny satisfies Ng = O(1), and when Lﬁ = 0{1/log(G)}, then
we find the, almost parametric, rate

& (g ) = Op{log(G)/n).

With Lﬁ = O(1/n), the maximal rate of growth for Ny is No = O[/{n/log(G)}], and when Ny
is exactly of this order we arrive at the rate

d*(ng, . 11g0) = Oply/{l0g(G) /n}].

Remark 3. We may improve the result by replacing Ny by the number of non-zero coefficients
of ‘the best” approximation of 7505 which is the approximation that balances estimation error
and approximation error.

Remark 4. A similar consistency result can be obtained for the group lasso for Gaussian
regression.

3. Logistic group lasso-ridge hybrid

3.1. General case

As can be observed in the simulation study in Yuan and Lin (2006), the models that are selected
by the group lasso are large compared with the underlying true models. For the ordinary lasso,
smaller models with good prediction performance can be obtained by using the lasso with
relaxation (Meinshausen, 2007). This idea can also be incorporated in the (logistic) group lasso
approach and our proposal will also allow us to fit hierarchical models.

Denote by 7, C {0,...,G} the index set of predictors that are selected by the group lasso
with penalty parameter A and by M, = {Be RP+! 1B8,=0forg gz/f,\} the set of possible param-
eter vectors of the corresponding submodel. The group lasso-ridge hybrid estimator is defined
as

R ) G s(df,
B.x=arg rpm{ ~IB)+r 3 Sj d;’) ||ﬂg||%} (€RY
BeM) g= g

for A,k >0. The penalty in equation (3.1) is rescaled with 1/,/df; to ensure that it is of the
same order as the group lasso penalty. The special case x =0 is analogous to the lars—ordinary
least squares hybrid in Efron et al. (2004) and is denoted as the group lasso-maximum likeli-
hood estimator (MLE) hybrid. In this case, we only need the group lasso to select a candidate
model M . The parameters are estimated with the (unpenalized) MLE. Optimization problem
(3.1) can be solved with a Newton-type algorithm. For large-scale applications co-ordinatewise
approaches as used in Genkin et al. (2007) may be more appropriate. The reason why we choose
a ridge-type penalty follows in the next subsection.

3.2. Restriction to hierarchical models

When working with interactions between predictors (e.g. factors), the group lasso solutions are
not necessarily hierarchical. An interaction may be present even though (some) corresponding
main effects are missing. In most applications hierarchical models are preferred because of their
interpretability. The above two-stage prgielzecriure (3.1) gar%elrae used to produce hierarchical models
by expanding the model class M to M, where M, ~ is the hierarchical model class that is
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ir}%}écr:ed by M Blj\l‘: is then defined as in estimator (3.1), but with the minimum taken over

A

Instead of using a ridge-type penalty, we could have also used again the group lasso penalty
and proceed exactly as in Meinshausen (2007), using a ‘relaxed’ penalty x < A in the second
stage. Although this works well for the general (non-hierarchical) case, there are problems if
we restrict ourselves to hierarchical models. Even if we choose « < A the solutions may not be
hierarchical owing to the expansion of M) to M Aler. In other words: some variable selection
may happen in addition in the second stage. Using a ridge-type penalty, we prevent any further
model selection and just do shrinkage.

4. Simulation

We use a simulation scheme that is similar to that of Yuan and Lin (2006) but with larger mod-
els. In each simulation run we first sample n.,i, instances of a nine-dimensional multivariate
normal distribution (77, . .., To)T with mean vector 0 and covariance matrix Yij= pli=il Each
component Ty, k=1,...,9, is subsequently transformed into a four-valued categorical random
variable by using the quartiles of the standard normal distribution. For the main effects, this
results in (non-orthogonalized) predictors x; = (le ey xgg)T eR3,i=1,... nyain. We use
the sum constraint as encoding scheme for the dummy variables, i.e. the coefficients must add
up to 0. The entire predictor space has dimension 4° =262 144. The corresponding responses y;
are simulated according to a Bernoulli distribution with model-based probabilities.

The parameter vector 3, of a predictor with df; degrees of freedom is set up as follows to con-
form to the encoding scheme. We simulate df; + 1 independent standard normal distributions
resulting in 8, 1, . .. ,Bg,dfgﬂ and define

~ dfy+1 _
00.=Poi = g5 51 2 Bok
for je{l,...,df,}. The intercept is set to 0. The whole parameter vector 3 is finally rescaled to

adjust the empirical Bayes risk r at the desired level, where
1o
r=-— > min{pg(x;), 1 — pa(x;)}
i=1

for some large n. For all simulation runs for a given setting of p and r, the same parameter vector
is reused.
The four different cases studied are as follows.

(a) The main effects and the two-way interaction between the first two factors x; 1 and x; »
build the true model, which has a total of four terms or 16 parameters. 7n¢,i, = 500 obser-
vations are used in each simulation run.

(b) The underlying true model consists of all main effects and two-way interactions between
the first five factors x; 1, ..., X; 5, resulting in 16 terms or 106 parameters. n¢,in = 500.

(c) Case (c) is as case (b) but with n,i, = 1000.

(d) All main effects and two-way interactions between x;  and x;, |k —I| =1, are active. In
addition the two-way interactions between x; 1, X; 5 and X; 3, X; ¢ are present. This makes
a total of 20 terms or 118 parameters. n,in = 1000.

For estimation, the candidate models that were used for the logistic group lasso and its vari-
ants consist always of all main effects and all two-way interactions from the nine factors, which
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Table 4. Average test set negative log-likelihood and average number of selected terms based on 100
simulation runst

Case p r Test set negative log-likelihood Number of terms

Group Group lasso—  Group lasso— Group Group lasso— Group lasso—
lasso ridge hybrid MLE hybrid lasso ridge hybrid MLE hybrid

(a) 000 015  185.57 185.76 212.74 20.73 4.11 3.96
(10.85) (26.42) (37.28) (8.02) (0.40) (0.49)

025  273.57 269.35 278.76 16.39 4.30 4.01
(8.28) (19.63) (29.57) (6.74) (0.83) (1.01)

020 015 18585 182.31 207.24 20.08 4.28 3.90
(11.62) (20.82) (37.63) (7.15) (1.05) (0.56)

025 27492 269.34 273.89 15.21 4.17 4.03
(8.48) (17.63) 22.11) (6.22) (0.53) (0.58)

0.50 0.15  194.67 191.90 207.16 18.73 4.17 3.79
(12.49) (24.68) (28.25) (7.61) (0.73) (0.50)

025  279.59 275.35 283.90 14.34 4.26 3.83
(9.37) (13.34) (16.78) (6.38) (0.80) (0.88)

(b) 000 0.5  233.84 229.69 291.39 35.90 16.86 8.93
(12.76) (15.15) (27.06) (3.98) (3.37) (3.22)

025  300.08 306.07 325.53 30.95 15.78 6.02
(9.50) (10.92) (18.61) (5.77) (6.85) (3.39)

020 0.5 23529 232.13 283.32 36.20 16.65 9.19
(12.71) (16.29) (21.19) (3.94) (3.60) (2.83)

025  299.65 303.82 32222 30.93 16.37 6.85
(8.94) (11.78) (11.53) (5.27) (1.75) (3.36)

0.50 015  232.63 230.48 285.17 35.11 15.67 8.47
(11.35) (15.07) (29.88) (3.73) (4.02) (2.82)

025  296.56 298.68 321.80 29.62 14.11 6.61
(7.78) (11.09) (23.76) (5.88) (5.55) (3.14)

© 000 0.5  408.63 385.03 423.05 40.95 15.78 14.72
(16.55) (19.17) (34.11) (2.52) (1.06) (1.13)

025  569.56 557.99 581.94 36.34 15.41 13.63
(14.13) (17.31) (24.89) (3.83) (2.27) (1.85)

020 0.5  408.27 385.64 424.42 40.54 15.89 14.49
(18.53) (20.43) (30.87) (2.79) (1.56) (1.18)

025  566.46 556.70 584.23 36.65 15.92 13.25
(15.17) (19.44) (28.48) @.11) (2.75) 2.01)

0.50 0.5  397.35 376.20 421.71 39.90 15.74 14.29
(19.83) (24.79) (41.32) (2.85) (1.49) (1.16)

025  559.28 550.82 579.71 35.86 15.85 13.09
(15.57) (18.55) (27.67) (4.00) 2.77) (1.98)

() 000 0.5  419.61 394.37 445.84 42.74 20.17 19.01
(18.02) (21.81) (39.15) (2.19) (0.82) (1.18)

025  574.58 566.77 600.09 39.43 19.59 17.36
(13.78) (14.90) (20.92) (3.07) (2.32) (2.31)

020 0.5  418.67 394.51 447.09 42.46 20.26 18.94
(17.91) (20.54) (34.93) (2.26) (0.79) (1.31)

025  574.10 565.83 601.39 38.88 19.91 16.58
(14.50) (17.68) (27.49) (3.47) (2.41) (2.48)

0.50 0.5  416.96 394.84 448.87 42.50 20.28 18.78
(18.02) (21.28) (38.49) (2.60) (1.29) (1.49)

025  568.63 562.49 599.59 38.65 20.08 15.78
(15.09) (17.46) (29.26) (3.38) (2.39) (3.28)

+Standard deviations are given in parentheses.
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make a total of 46 terms or p =352 parameters. We use the restriction for hierarchical model
fitting for the two-stage procedures.

In each simulation run, all models are fitted on a training data set of size nyi,. A multipli-
cative grid of the form {Amax,0.96 \max, - - - » 0.96"8 )\ ax, 0} is used for the penalty parameter
A of the logistic group lasso. For the logistic group lasso-ridge hybrid, we consider values
re{1.511,1.519 . 1.573,0}. The penalty parameters A and r are selected according to the
(unpenalized) log-likelihood score on an independent validation set of size 7n¢.,i, /2. Finally, the
models are evaluated on an additional test set of size r¢pin.

Table 4 reports the average test set negative log-likelihood and the average number of terms
selected on the basis of 100 simulation runs for each setting. The corresponding standard devi-
ations are given in parentheses. The group lasso produces the largest models followed by the
group lasso-ridge hybrid and group lasso-MLE hybrid. Compared with the underlying true
models, the group lasso seems to select unnecessarily large models with many noise variables
resulting in a low true discovery rate (which is not shown), which is defined as the ratio of the
number of correctly selected terms and the total number of selected terms. On the other side,
the group lasso-MLE hybrid is very conservative in selecting terms, resulting in a large true
discovery rate at the cost of a low true positive rate (which is not shown). The group lasso-ridge
hybrid seems to be the best compromise.

The prediction performance measured in terms of the (unpenalized) log-likelihood score on
the test set is in most cases best for the group lasso-ridge hybrid, followed by the group lasso and
the group lasso-MLE hybrid. The group lasso-ridge hybrid seems to be able to benefit from the
good prediction performance of the group lasso with the advantage of producing reasonably
sized models.

5. Application to splice site detection

The prediction of short DNA motifs plays an important role in many areas of computational
biology. Gene finding algorithms such as GENIE (Burge and Karlin, 1997) often rely on the
prediction of splice sites. Splice sites are the regions between coding (exons) and non-coding
(introns) DNA segments. The 5" end of an intron is called a donor splice site and the 3’ end an
acceptor splice site. A donor site whose first two intron positions are the letters ‘GT’ is called
canonical, whereas an acceptor site is called canonical if the corresponding intron ends with
‘AG’. An overview of the splicing process and of some models that are used for detecting splice
sites can be found in Burge (1998).

5.1. MEMset donor data set
The MEMset donor data set consists of a training set of 8415 true (encoded as Y = 1) and 179438
false (encoded as Y =0) human donor sites. An additional test set contains 4208 true and 89 717
false donor sites. A sequence of a real splice site consists of the last three bases of the exon and
the first six bases of the intron. False splice sites are sequences on the DNA which match the con-
sensus sequence at positions 4 and 5. Removing the consensus GT results in a sequence length
of 7 with values in {A,C,G,T}7: thus, the predictor variables are seven factors, each having four
levels. The data are available at http://genes.mit.edu/burgelab/maxent/ssdata/.
A more detailed description can be found in Yeo and Burge (2004).

The original training data set is used to build a smaller balanced training data set (5610 true
and 5610 false donor sites) and an unbalanced validation set (2805 true and 59 804 false donor
sites). All sites are chosen randomly without replacement such that the two sets are disjoint.
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The additional test set remains unchanged. Note that the ratios of true to false sites are equal
for the validation and the test set.

5.2. Procedure

All models are fitted on the balanced training data set. As the ratio of true to false splice sites
strongly differs from the training to the validation and the test set, the intercept is corrected as
follows (King and Zeng, 2001):

B;:)OI‘I':BO_IOg L_ +10g L R
11—y -7

where 7 is the proportion of true sites in the validation set.

Penalty parameters A and x are selected according to the (unpenalized) log-likelihood score
on the validation set by using the corrected intercept estimate.

Forathreshold 7 € (0, 1) we assign observation i toclass 1 if p 4 (x;) > Tandtoclass 0 otherwise.
Note that the class assignment can also be constructed without intercept correction by using a
different threshold.

The correlation coefficient p, corresponding to a threshold 7 is defined as the Pearson correl-
ation between the binary random variable of the true class membership and the binary random
variable of the predicted class membership. In Yeo and Burge (2004) the maximal correlation
coefficient

pmax =max{p-|7€(0,1)}

is used as a goodness-of-fit statistic on the test set.

The candidate model that was used for the logistic group lasso consists of all three-way and
lower order interactions involving 64 terms or p = 1156 parameters. In addition to the standard
logistic group lasso estimator, the hierarchical group lasso-ridge hybrid and group lasso-MLE
hybrid estimators are considered.

5.3. Results

The best model with respect to the log-likelihood score on the validation set is the group lasso
estimator. It is followed by the group lasso-ridge hybrid and the group lasso-MLE hybrid. The
corresponding values of ppax on the test set are 0.6593, 0.6569 and 0.6541 respectively. They
are all competitive with the results from Yeo and Burge (2004) whose best pmax equals 0.6589.
Whereas the group lasso solution has some active three-way interactions, the group lasso-ridge
hybrid and the group lasso-MLE hybrid contain only two-way interactions. Fig. 3 shows the
l,-norm of each parameter group for the three estimators. The three-way interactions of the
group lasso solution seem to be very weak. Considering also the non-hierarchical models for
the two-stage procedures yields the same selected terms. Decreasing the candidate model size
to contain only two-way interactions gives similar results.

In summary, the prediction performance of the group lasso and its variants is competitive
with the maximum entropy models that were used in Yeo and Burge (2004) which have been
viewed as (among) the best for short motif modelling and splice site prediction. Advantages
of the group lasso and variants thereof include selection of terms. In addition, other (possibly
continuous) predictor variables as for example global sequence information could be natu-
rally included in the group lasso approach to improve the rather low correlation coefficients
(Yeo and Burge, 2004).
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Fig. 3. />-norms ||Bg||2, g€{1,..., G}, of the parameter groups with respect to the blockwise orthonormal-
ized design matrix when using a candidate model with all three-way interactions (i : j : k denotes the three-way
interaction between the ith, jth and kth sequence position; the same scheme applies to the two-way interac-
tions and the main effects): O, group lasso; A, group lasso—ridge hybrid; +, group lasso—MLE hybrid; |, active
three-way interaction

6. Discussion

We study the group lasso for logistic regression. We present efficient algorithms, which are
especially suitable for very high dimensional problems, for solving the corresponding convex
optimization problem, which is inherently more difficult than /;-penalized logistic regression.
The algorithms rely on recent theory and developments for block co-ordinate and block co-
ordinate gradient descent minimization (Tseng, 2001; Tseng and Yun, 2007). In contrast with
the algorithm in Kim ez al. (2006), our procedure is fully automatic and does not require the
specification of an algorithmic tuning parameter to ensure convergence. Moreover, our algo-
rithm is much faster than the recent proposal from Park and Hastie (2006). An implementation
can be found in our R-package grplasso. Additionally, we present a statistical consistency
theory for the setting where the predictor dimension is potentially much larger than the sample
size but assuming that the true underlying logistic regression model is sparse. The algorithms
with the supporting mathematical optimization theory as well as the statistical consistency
theory also apply directly to the group lasso in other generalized linear models.

Furthermore, we propose the group lasso-ridge hybrid method, which often yields better pre-
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dictions and better variable selection than the group lasso. In addition, our group lasso-ridge
hybrid allows for hierarchical model fitting.

Finally, we apply the group lasso and its variants to short DNA motif modelling and splice
site detection. Our general methodology performs very well in comparison with the maximum
entropy method which is considered to be among the best for this task.
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Appendix A

A.1.  Proof of lemma 1
We shall first eliminate the intercept. Let 34, ..., B; be fixed. To obtain the estimate for the intercept we
must minimize a function of the form

9(B0) = — 3 [i(o + ) — log{1 +exp(Bo + )}]
i=1

with derivative

g (b= z;{ " T4exp(Bo+c)
where ¢; = ﬁ is a constant. It holds that limg, ... {¢'(50) } =n — X}_,y; >0and hrnjw OO{g Bo)}=
=X i< 0 Furthermore g'(+) is continuous and strictly increasing. Therefore there is a unique ﬂo eR
such that g'(BF) =0. By the implicit function theorem the corresponding function 5 (8, ..., 8¢) is con-

tinuously differentiable. By replacing 3, in S, (3) by the function 35 (8, ..., B;) and using duality theory,
we can rewrite equation (2.2) as an optimization problem under the constralnt »¢ 18,ll2 <t for some
t> 0. This is an optimization problem of a continuous function over a compact set; hence the minimum is
attained.

A.2. Proof of proposition 1

We first show that the groupwise minima of S,(-) are attained. For g =0 this follows from the proof of
lemma 1. The case g > 1 corresponds to a minimization of a continuous function over a compact set;
hence the minimum is attained. We now show that step 3 minimizes the convex function S)(3,) for g > 1.
Since S)(8,) is not differentiable everywhere we invoke subdifferential calculus (Bertsekas, 2003) The
subdrfferentlal of 8\(-) with respect to 3, is the set

IS\(B,) ={—X, (y —ps) + reec E(3,)},

E(B, )—{ee R - e—s(df)”['? 0 if 3,70 and |le[| < s(df,) ifﬁy:()}_

The parameter vector 8, minimizes S)(3,) if and only if 0 € 355(8,), which is equivalent to the formu-
lation of step 3. Furthermore conditions (Al), (B1)—(B3) and (C2) in Tseng (2001) hold. By lemma 3.1
and proposition 5.1 in Tseng (2001) every limit point of the sequence {3" }>0 18 a stationary point of the
convex function S, (-), and hence a minimum point.

A.3. Proof of proposition 2
Proposition 2 directly follows from theorem 1(e) in section 4 of Tseng and Yun (2007). We must show that
—H® is bounded by above and away from zero. The Hessian of the negative log-likelihood function is

N= Zpa(xl {1-pax)Ixix! = 1XTX
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in the sense that N — %X TX is negative semidefinite. For the block matrix N,, corresponding to the gth pre-
dictor it follows from the blockwise orthonormalization that N, < (n/4) Is;, and hence max{diag(N,,)} <
n/4. An upper bound on —H" is therefore always guaranteed. The lower bound is enforced by the choice
of H ;2 By the choice of the line search we ensure that o” is bounded by above and therefore theorem 1(e)
in section 4 of Tseng and Yun (2007) can be applied.

A.4. Outline of the proof of the consistency result

The proof of the consistency result follows the arguments that were used in Tarigan and van de Geer (2006),
who considered hinge loss instead of logistic loss, but, as they pointed out, a large part of their results
can be easily extended because only the Lipschitz property of the loss is used there. Furthermore, under
assumption (a) in Section 2.4, logistic loss has the usual ‘quadratic’ behaviour near its overall minimum.
This means that it does not share the problem of unknown margin behaviour with hinge loss, i.e. the
situation is in that respect simpler than in Tarigan and van de Geer (2006).

The group lasso reduces to the /;-penalty (the usual lasso) when there is only 1 degree of freedom in
each group. The extension of consistency results to more degrees of freedom is straightforward, provided
that max,(df,) does not depend on n. We furthermore note that the group lasso uses a normalization
involving the design matrix of the observed predictors. For the consistency result, we need to prove that
this empirical normalization is uniformly close to the theoretical normalization. This boils down to show-
ing that empirical and theoretical eigenvalues of the design matrix per group cannot be too far from each
other, uniformly over the groups. Here, we invoke that assumption (d) in Section 2.4 implies that L? is no
larger than ¢;/C, log(G). We then apply assumption (c) in Bernstein’s inequality to bound the difference
in eigenvalues.

A technical extension compared with Tarigan and van de Geer (2006) is that we do not assume an
a priori bound on the functions 7g(-). This is now handled by using convexity arguments (similar to van
de Geer (2003)), and again part of the assumption (d), namely that A is smaller than c¢;/(1 4+ N2)L2. This
assumption ensures that for all n, with high probability, the difference between 74 and the estimated
Eggl(r)t;s)sion ng, is bounded by a constant that is independent of n. For similar results see van de Geer
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