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MAXIMIN EFFECTS IN INHOMOGENEOUS LARGE-SCALE DATA

BY NICOLAI MEINSHAUSEN AND PETER BÜHLMANN

ETH Zürich

Large-scale data are often characterized by some degree of inhomogene-
ity as data are either recorded in different time regimes or taken from multiple
sources. We look at regression models and the effect of randomly changing
coefficients, where the change is either smoothly in time or some other di-
mension or even without any such structure. Fitting varying-coefficient mod-
els or mixture models can be appropriate solutions but are computationally
very demanding and often return more information than necessary. If we
just ask for a model estimator that shows good predictive properties for all
regimes of the data, then we are aiming for a simple linear model that is reli-
able for all possible subsets of the data. We propose the concept of “maximin
effects” and a suitable estimator and look at its prediction accuracy from a
theoretical point of view in a mixture model with known or unknown group
structure. Under certain circumstances the estimator can be computed orders
of magnitudes faster than standard penalized regression estimators, making
computations on large-scale data feasible. Empirical examples complement
the novel methodology and theory.

1. Introduction. “Big data” often refers to datasets that are large in different
ways: there can be many observations, many variables or both, and the size can
be measured against some historical standard or against available computational
resources (e.g., the data might be too large to fit into memory). Data can also come
from different sources, have inhomogeneities and might have to be processed in a
streaming fashion. Here, we want to take a look at one specific aspect of “big data,”
the effect of inhomogeneities in the data in regression modeling. Specifically the
question whether one is able to extract (in a computationally feasible way) a model
that works for data that come from different time-regimes or that, more generally,
have different underlying distributions.

From a perhaps slightly naive statistical point of view, a situation where we face
computational challenges due to a large number of homogeneous observations in
a database is not problematic. We can simply discard most of the observations and
retain sufficiently many observations, chosen at random, to guarantee good pre-
dictive accuracy. The exact number of observations we have to retain will be a
function of the desired predictive accuracy, the number of variables and the noise
level. Keeping tens of thousands of observations will be sufficient for most practi-
cal purposes. Most estimators can easily deal with datasets of this size.
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However, many large-scale datasets do not fit neatly into the standard frame-
work of a single underlying model observed with independent and identically dis-
tributed errors. There are likely to be outliers in the data, and the truth might better
be approximated with a mixture of models than a single one and underlying dis-
tributions of the variables might shift over time [Hand (2006)]. There has been
a lot of work on various aspects of these issues. While we cannot provide an
even approximately complete overview, some of the major themes can be found
in work on robust estimation [Hampel et al. (1986), Huber (1964, 1973)], time-
varying coefficients models [Cai, Fan and Li (2000), Fan and Zhang (1999), Hastie
and Tibshirani (1993)], mixture models [Aitkin and Rubin (1985), Figueiredo and
Jain (2002), McLachlan and Peel (2000)] and change-point estimation [Carlstein,
Müller and Siegmund (1994)]. In a high-dimensional regression dataset, Städler,
Bühlmann and van de Geer (2010) showed evidence for the presence of multi-
ple components that can be exploited for variable selection. Mixed- and random-
effects models [McCulloch (2006), Pinheiro and Bates (2000)] are related but do
not have an observation-specific random effect. Varying-coefficient models seem
particularly attractive to capture shifts in underlying distributions if the data are
recorded chronologically, and the approach has been extended to cope with more
general estimation problems, including estimation of time-varying graphs [Kolar
et al. (2010)]. Mixture models, on the other hand, do not assume such a struc-
ture and try to infer the hidden states of the mixture class membership by using,
for example, the EM-algorithm [Dempster, Laird and Rubin (1977)] or related ap-
proaches.

In some applications, trying to infer the full time-varying coefficients in a model
or inferring the hidden states in a mixture model can be computationally challeng-
ing, and success is not always guaranteed from a statistical point of view. More-
over, we might not be interested in the hidden states or the exact time-evolution of
the coefficients but rather in a simple model that can work reliably for all states or
times. Our examples will mostly fit into a change-point model, where the underly-
ing distribution can shift abruptly.

An example is given in Figure 1, which is based on price data of twelve financial
future instruments (including foreign exchange, equity and commodity futures)
on time-resolution of minutes over the course of ten years, after 2000. We use
the past 5 minutes of log-returns of all instruments (i.e., 60 predictor variables)
to forecast with a linear model the log-return of the Euro–Dollar exchange rate
over the next minute (which is the response variable). Two-thirds of the data are
used for training a least squares estimator, and the cumulative cross products of
this model for the training and test data is shown in the first and second panel
of Figure 1, respectively, where the cumulative gain up to time 1 ≤ t ≤ n is for
response values Yi , i = 1, . . . , n and predictions Ŷi , i = 1, . . . , n (both are assumed
to mean-centered and predictions are normalized to have a second moment of 1)
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FIG. 1. Forecasting minute log-returns of the Euro–Dollar exchange rate with a least squares
linear model fit over the pooled training data and the proposed maximin effects estimator. The panels
show the cumulative cross products as in (1) for the least squares estimator and the maximin effect
estimator, respectively, where the aspect ratios are chosen such that the same effect strength will lead
to the same slope in all four panels. There are more than half a million training observations for
a model with just 60 free parameters, and yet the least squares estimator overfits, which leads to
a degradation in performance on the test data. The performance of the maximin estimator is more
consistent over the training data, which translates into a better performance on the test data.

given by

t∑
i=1

(YiŶi).(1)

The training data show that the model works very well at the beginning of the train-
ing period but then tails off, and performance on the test data is much worse than
on the training period, even though there are more than half a million observations
to fit a model with 60 parameters. In contrast, the third and fourth panel show the
cumulative cross products of the “maximin effects” estimator that we propose. The
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least squares estimator is maximizing the explained variance on the pooled dataset,
leading (as in this example) to periods or groups of observations where the fit is
very good, and others where barely any variance is explained by the fitted values.
In contrast, the “maximin effects” estimator maximizes the explained variance for
the worst group of observations, which have been divided in this example rather
arbitrarily into 3 equally large blocks of consecutive observations; see Section 2
for more precise definitions regarding a group of observations. The estimator in
the example is computed without a regularization penalty. The predictive accuracy
is much more constant over time, and performance on the test data is in line with
performance on the training data, as the estimator has not been as much influenced
by the period at the beginning of the training set as the least squares estimator.

We will set notation and introduce the maximin effects estimator in Section 2,
while showing some properties for known and unknown group structure in Sec-
tion 3, discussing computational properties in Section 4 and concluding with an
example in Section 5.

2. Maximin effects. We will first try to give a suitable and intuitive defini-
tion of maximin effects in mixture models or varying-coefficient models, while
introducing the maximin effects estimator thereafter.

While we focus exclusively on regression here for ease of exposition, the same
approach can be used, for example, for classification and graph estimation.

2.1. Maximin effects for mixture models. We will work with a mixture model,
where for n observations of a real-valued response Yi and a 1×p predictor variable
Xi ∈ R

p for i = 1, . . . , n,

Yi = XiBi + εi where Bi ∈ R
p and Bi ∼ FB(2)

for some unknown distribution FB , either discrete or continuous. We also use the
standard notation with the n × 1 response vector Y , the n × p design matrix X

and the n × 1 error vector ε. The predictor variables Xi are random and indepen-
dent, and the noise ε1, . . . , εn fulfils E(εtX) = 0. Furthermore, the coefficients Bi

are independent from the Xi , i = 1, . . . , n. Independent noise is an example, but
some dependencies between noise contributions are also possible in this frame-
work, for example, if the observations have a time-ordering. The inhomogeneity
of the data is thus solely caused by the variation of the regression coefficients
among the sample points with indices i = 1, . . . , n. We do not necessarily assume
that the Bi , i = 1, . . . , n are independent. They can be organized in known or un-
known groups. The following examples indicate the scope of the model: if FB has
point masses at a finite set of points, we are in the setting of classical finite mixture
models, where B can take one of a finite number of values. In another scenario,
realizations Bi are positively correlated over time if the observations are ordered
in some chronological order, creating a smoothly varying effect over time. In the
latter example, the model behaves more like a varying-coefficient model [Hastie
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and Tibshirani (1993)]. A shift in the distribution of the predictor variables could
conceivably be handled in a very similar manner. As a final example, the realiza-
tions Bi are most often the same, but a small fraction takes other values which can
be viewed as outliers or contaminations.

We always assume that the random Xi are identically distributed from a dis-
tribution with population Gram matrix �. For a fixed regression coefficient b ∈
support(FB) ⊆ R

p , we can define two different optimality criteria: Rβ;b is the
variance of the residuals in absence of additional errors on the observations, while
Vβ;b is the explained variance of predictions with β ∈ R

p:

Rβ;b = E
(‖Xb − Xβ‖2

2/n
) = bt�b − 2βt�b + βt�β,(3)

Vβ;b = 2βt�b − βt�β.(4)

Alternative expressions for (3) and (4) under the condition E(εtX) = 0 are

Rβ;b = EY,X

(‖Y − Xβ‖2
2/n

) − E
(‖ε‖2

2/n
)
,

Vβ;b = E
(‖Y‖2

2/n
) − EY,X

(‖Y − Xβ‖2
2/n

)
.

If we want to find a single p-dimensional regression coefficient that works op-
timally on average over B ∼ FB , the optimal choice are the pooled coefficients

bpool = argmin
β

EB(−Vβ;B) = argmin
β

EB(Rβ;B),(5)

where the expectation is with respect to B ∼ FB . Note that in this case it is inconse-
quential for the pooled estimator, whether we minimize the residuals or maximize
the explained variance.

If we are looking for effects that guarantee a good performance throughout all
possible parameter values, in analogy to decision theoretic consideration [Wald
(1945)], two possible definitions of effects are

bpred-maximin = argmin
β

max
b∈F

Rβ;b,(6)

bmaximin = argmin
β

max
b∈F

(Rβ;b − R0;b)
(7)

= argmin
β

max
b∈F

(−Vβ;b) = argmax
β

min
b∈F

(Vβ;b),

where F = support(FB). Alternatively, F could be the smallest region such that
P(B ∈ F) ≥ 1 − α for some α ∈ (0,1], guaranteeing success for a large fraction
of randomly chosen coefficient values.

Two comments are in order regarding the definition of maximin effects. First,
the effects are optimizing for the worst-case scenario for b ∈ F . To be more pre-
cise, if we view future samples of B to be allowed to be chosen by an adversarial
player, the maximin effects are then of a minimax regret form as they optimize the



1806 N. MEINSHAUSEN AND P. BÜHLMANN

objective function (explained variance) under the most adversarial scenario. Mini-
max regret strategies have also been explored in game theoretical aspects of deci-
sion theory and machine learning, for example, in Cesa-Bianchi and Lugosi (2006)
and Zinkevich et al. (2007), and bandit-type problems and on-line decision prob-
lems, [e.g., Audibert, Bubeck and Lugosi (2014), Auer, Cesa-Bianchi and Fischer
(2002), Bartlett et al. (2008), Foster and Vohra (1999), Lai and Robbins (1985)].
We do not allow in our framework any choice about which distribution we sample
from, contrary to bandit-type problems. Related to our setting is a paper by Eldar,
Ben-Tal and Nemirovski (2004), who propose a linear minimax regret estimator
which can be computed with convex optimization. Their estimator is optimizing a
mean-squared error loss subject to various source uncertainties in the data. Our set-
up is conceptually perhaps closest to the minimax framework in robust statistics
[Huber (1964)]. However, we consider much more general situations than contam-
inated samples with a fraction of outliers: as discussed in Section 3.2.3, the latter
fits into our framework as well.

Second, we have shown two different objectives (minimizing residual variance
Rβ;b and maximizing explained variance Vβ;b) that yield two different minimax-
regret estimators (bpred-maximin and bmaximin). Using the first choice of minimiz-
ing residual variance has the main drawback that it is nonrobust when sampling
regression coefficients: adding a small point mass to FB can change the effects
bpred-maximin drastically. The same is true for the pooled effects (5). Explained
variance Vβ;b is expressed as residual variance if measured against the baseline of
residual variance R0,b under a constant 0 prediction (we assume a mean-centered
response throughout). This baseline is often appealing in practice as we would like
to avoid doing worse than a constant prediction. Moreover, assume we choose in-
stead a baseline of residual variance Rbbase,b for any vector bbase in the convex hull
of the support of F (such as bpool or bpred-maximin). Whichever vector β �= bbase we
choose in this scenario, we cannot avoid doing worse than the baseline for some
values of b ∈ F with the consequence that the problem will become trivial, as the
optimal value under the most adversarial scenario can then always be achieved
by a vanishing coefficient vector (thus keeping the baseline solution). Theorem 1
will provide a justification for this statement: once we shift the problem by the
nonzero baseline bbase, the vector bbase will sit at the origin, and it will be a part
of the convex hull of the equally shifted support of F , thus leading to a vanishing
maximin-effect.

A simple two-dimensional example of “maximin effects” is shown in Figure 2.
The coefficients are chosen as B = (1, η), where η varies uniformly in [−4,6]. The
two random predictor variables are chosen independently with a standard normal
distribution. The pooled estimator (5) is marked with a blue circle in the first panel
of Figure 2, and the corresponding cumulative cross product in (1) is shown in
the second panel if observations are ordered such that η decreases monotonically
from 6 to −4. The pooled effects (5) maximizes the overall explained variance but
suffers as η takes on negative values. Predictions in this range are even negatively
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FIG. 2. An illustration of the difference between the pooled effects bpool in (5) and the maximin
effects bmaximin in (7). First panel: the green dots indicate the values the random coefficient takes
on with a maximin first component and a variable second component. The blue circle indicates the
location of the pooled effects bpool, while the red dot marks the location of the maximin effects
bmaximin. Second and third panel: the cumulative cross product (1) for the pooled and maximin
estimator, respectively. While the pooled estimator achieves a better overall fit, it does so at the cost
of a highly variable performance.

correlated with the responses, as can be seen by the negative slope of the cumula-
tive cross product in the figure toward the right half of the observations. The effect
is perhaps more drastic than in the real-data example in Figure 1 but of a similar na-
ture. The maximin effects bmaximin in contrast take a nonzero value only for the first
variables, where the effect is constant. This yields a constant explained variance
throughout the whole parameter range, as shown in the third panel of Figure 2.

If we are in a classical regression model with a fixed regression coefficient vec-
tor, then FB has just a point mass at some b ∈ R

p , and (5), (6) and (7) will coincide.



1808 N. MEINSHAUSEN AND P. BÜHLMANN

The vector bmaximin is maximizing the explained variance under the most adverse
realization of the random regression coefficient. The value 0 has a special status
since we define the regret with respect to the 0 regression vector. Effects that can
take opposite signs are set to 0 when using the maximin explained variance in
bmaximin (similar to the value 0 getting special status when losing the rotational
invariance in coordinate space when replacing a ridge penalty by a Lasso-type
penalty).

The maximin effects have an interesting characterization.

THEOREM 1. Assume that the predictor variables are chosen randomly from
a design with full-rank population Gram matrix �. Let H be the convex hull of the
support F of FB . The maximin-effect (7) is then given by

bmaximin = argmin
γ∈H

γ t�γ.

In particular, if 0 ∈ H , then bmaximin ≡ 0.

A proof is given in the Appendix. The maximin effects parameter is thus the
one that is closest to the origin in the convex hull spanned by the support of FB .
In a classical regression setting with fixed regression coefficients β∗, FB just has a
point-mass at a β∗, and the maximin effect will, by Theorem 1, be identical to β∗.
Figures 1 and 4 show examples of datasets with an interesting nonzero solution.

If the origin is included in the convex hull of all coefficients, the best lower
bound that can be guaranteed is 0, and the maximin effects are consequently van-
ishing identically in this scenario. If the maximin effects vanish, a standard re-
gression analysis will typically be misleading since the inner product between any
estimated vector and true effects in FB can take an arbitrary sign, depending on
which effect in FB is currently active. A vanishing maximin effect is thus a warn-
ing sign that standard regression analysis might not be appropriate.

Four examples of maximin effects are shown in Figure 3, comparing the pooled
and the maximin effects. For bpred-maximin, as defined in (6), there is no equivalent
characterization as in Theorem 1, as the value 0 has no special status.

It is noteworthy that the maximin effects are robust in the following sense: if
we add new points to the support of FB , we will always maintain or lower the
distance to 0 as in Theorem 1. In the most extreme case, adding contaminations to
the support of FB will either leave the maximin effects unchanged or shrink the
maximin effects toward 0. This is a direct consequence of Theorem 1.

We can also characterize the maximin effects in yet another way, using Theo-
rem 1. Define the predictions and residuals as

Predβ := Xβ and Resb,β := Xb − Xβ.
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FIG. 3. Four examples of the support of FB (green dots or area), its convex hull (black lines), the
pooled effects (blue circle) and the maximin effects (red cross). The maximin effects are the closest
point to the origin in the convex hull of the support of FB in the distance measure of Theorem 1.
In the example on the first panel, the origin is contained in the convex hull, and the maximin effects
thus vanish. In the second example the maximin effects rest on the convex hull of the support, but
are not equal to zero. In both examples, the maximin effects are not part of the support itself. The
third example shows a continuous support of FB , while the last example has unbounded support
of FB . In both of these examples, the maximin effects are identical to a corner point of the support,
but generalizations to the edge of the support are easily possible as well. In the last example, the
pooled effects are thus infinite whereas the maximin effects have a robustness property by staying at
the closest point to the origin.

The maximin effects are then, using Theorem 1, characterized as the effects that
maximize the norm of the predictions, subject to the constraint that the inner prod-
uct between the predictions and the residuals is nonnegative for all possible b ∈ F ,

bmaximin = argmax
β

E
(‖Predβ ‖2

2
)

such that min
b∈F

E(Predβ,Resb,β) ≥ 0.(8)

If B just takes a deterministic fixed value β∗, we recover of course bmaximin = β∗.
The constraint in the optimization above requires that the predictions are never
negatively correlated with the residuals if b can vary in F . The maximin predic-
tions are in this sense the maximal predictions that are still “conservative” in the
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sense that they can potentially “under-explain” a signal but can never be negatively
correlated with the residuals.

In summary, if we want to maximize the explained variance if an adversary
is allowed to pick a regression vector b ∈ F or if test data are not expected to
come from the same distribution as the training data with respect to the random
coefficients, then estimating the maximin coefficients (7) seems a useful choice.

2.2. Maximin effects estimator. We introduce the maximin effects estimator
first for data where we know a group-structure of the observations in the sense
that within each group of observations the regression coefficient has a fixed (but
unknown) value, which varies between groups.

To be more precise, suppose there are G groups of observations g = 1, . . . ,G,
and each group has ng samples. The indices belonging to a group are denoted
by Ig ⊂ {1, . . . , n} for all groups g = 1, . . . ,G. Let XIg = Xg denote the ng ×
p-dimensional submatrix of X that corresponds to choosing the rows in Ig and
likewise for Yg = YIg and εIg = εg . If we are in situation where we know that the
random coefficient is fixed at bg within a group, then

Yg = Xgbg + εg, g = 1, . . . ,G.

Let �̂g = n−1
g (Xt

gXg). The empirical counterpart to (4) is the explained variance
in group g,

V̂
g
β := 2

ng

βtXt
gYg − βt�̂gβ.

A natural estimator for a sparse, consistent signal bmaximin is then a penalized
version of the empirical minimizer. For q ∈ [1,2],

β̂λ = argmin
β∈Rp

L(β) + λ‖β‖q where L(β) = max
g=1,...,G

(−V̂
g
β

)
.(9)

For G = 1, the loss function L(β) is identical to quadratic loss up to a constant.
For G > 1, however, the loss function will be different from quadratic loss. If
p � ming ng , one can use the unpenalized version (λ = 0). In the general case,
the two most interesting choices for the penalty are q = 1, making the estimation
lasso-like [Chen, Donoho and Saunders (2001), Tibshirani (1996)], and q = 2 for a
ridge-type estimation [Hoerl and Kennard (1970)]. An equivalent version is given
by the constrained optimization,

β̂κ = argmin
β∈Rp

max
g=1,...,G

(−V̂
g
β

)
such that ‖β‖q ≤ κ,(10)

and we will mostly use the constrained version for the theoretical results. In prac-
tice the two versions can be used interchangeably, and the penalty parameter can be
chosen by cross-validation, using hold-out samples for each unknown group and
choosing the penalty parameter that maximizes the minimally explained variance
on the hold-out samples from all groups.

The objective function in (9) or (10) is convex in its argument and can thus
relatively easily be optimized; we will return to this issue later in Section 4.
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2.3. Maximin effects estimator for unknown groups. In some applications
there are no a priori known groups on which the realized value of the regres-
sion coefficients shows little or no variation. However, if the observations have,
for example, a time ordering, and the effects are changing smoothly over time, we
would suspect that taking blocks of consecutive observations would result in little
variability of the realized coefficients within groups.

For some datasets, the groups are entirely unknown; see Städler, Bühlmann and
van de Geer (2010) for an example. We propose in these cases to take G groups
of m observations, where m is approximately of size n/G (modulo rounding to the
next integer) if we sample without replacement. Alternatively, we can sample G

groups with m observations each with replacement such that typically Gm > n.
For both cases mentioned above, once we have constructed the G groups, we

use the same estimator as in (9) or (10). We discuss in Sections 3.2.2–3.2.3 the
validity of the procedure based on such estimated groups.

3. Properties. The statistical properties of the lasso-type maximin effects
estimator (10) with the 
1-norm constraint will be examined first for the case
of known groups in the observations and later be extended to the considerably
more involved case (both from a theoretical and practical perspective) of unknown
groups, either capturing smooth varying effects (over time) or more generally with-
out such a (time) structure.

3.1. Known groups. Here we show a result for the lasso-type maximin effect
estimator (10) for known groups of observations.

Specifically, there are G groups, and for simplicity, we assume that each group
has ng ≡ n/G observations (without this assumption, we need to replace in the
results below n/G by ming ng). In each group, the explanatory variables are cho-
sen randomly with Gram matrix �, yielding design matrices Xg , g = 1, . . . ,G. In
each group,

Yg = Xgbg + εg for g = 1, . . . ,G,

for coefficients bg ∈ R
p that are fixed in each group but can vary between groups.

The maximin estimator is then the set of coefficients that work optimally across all
groups in the sense of (7).

With estimator (10), we are now trying to maximize the explained variance in
all groups.

THEOREM 2. Let D be the maximal difference between the empirical Gram
matrix �̂g and population Gram matrix �, D = maxg ‖�̂g − �‖∞. If κ ≥
maxg ‖bg‖1, then

min
b∈F

V
β̂κ ;b ≥ V ∗ − 6Dκ2 − 4

n/G
max

g

∥∥Xt
gεg

∥∥∞κ,(11)
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where V ∗ is the optimal value that can be attained,

V ∗ = max
β

min
b∈F

Vβ;b.(12)

A proof is given in the Appendix. For D = 0 (if the population and empirical
versions of the Gram matrices are identical, as happens under fixed design; see a
more detailed comment below), the estimator thus reaches the optimal value less a
term

max
g

4

n/G

∥∥Xt
gεg

∥∥∞ max
g

‖bg‖1,

which is a similar result to that of standard lasso estimation [see, e.g., Bühlmann
and van de Geer (2011)], except that the first term 4(n/G)−1 maxg ‖Xt

gεg‖∞ will
increase when the number G of groups grows larger, which is the price we have
to pay for estimating the maximin effects (7) instead of the pooled effect (5). On
the other hand, the error is just a function of the noise ε and not influenced by
the variability of bg across groups, whereas standard lasso-type estimation of the
pooled effect (5) would suffer if the variability of bg is high across groups.

We note that one can also derive a similar bound if the Gram matrix of the
predictors is allowed to depend on the group. In particular, we can have a fixed
design in each group. In this case a corresponding result holds true with D = 0. If
the design is random as in Theorem 2, we have an additional term in the bound that
is proportional to D times the squared 
1-norm of bmaximin and bg , g = 1, . . . ,G.
A more careful analysis for the special case of Gaussian random design [Raskutti,
Wainwright and Yu (2010)] could render the bound again linear in κ , with more
general design treated in Lecué and Mendelson (2015).

The two terms that are relevant for the rate are thus D and maxg ‖Xt
gεg‖∞.

To give a simple bound for D if all predictor variables are drawn from the same
population with Gram matrix �, we can, for example, get the following:

LEMMA 1. If the predictor variables are chosen i.i.d. from a distribution with
Gram matrix � and ‖Xi‖∞ ≤ M for i = 1, . . . , n, then for any α ∈ (0,1), with
probability at least 1 − α,

D2 ≤ 2M2

n/G
log

(
2p2G

α

)
.(13)

The proof follows directly from Hoeffding’s inequality, combined with a union
bound over both the p2 entries in each empirical Gram matrix and the number
G of groups. Of course, a similar bound could be derived for a Gaussian or sub-
Gaussian distribution of the explanatory variables.

If we additionally make a distributional assumption for the independent noise to
control the term maxg ‖Xt

gεg‖∞, we get a simple bound for the estimator in (10).
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COROLLARY 1. Assume that the predictor variables are chosen i.i.d. from a
distribution with Gram matrix � and ‖X‖∞ ≤ 1. If the errors εi , i = 1, . . . , n have
a i.i.d. Gaussian distribution N (0, σ 2), then if κ ≥ maxg ‖bg‖1, with probability
at least 1 − α,

min
b∈F

V
β̂κ ;b ≥ V ∗ − 1√

n/G

[
6

√
2 log

(
2p2G

α

)
κ2 + 4σ

√
2 log

(
2pG√
2πα

)
κ

]
.

The error features the same (n/G)−1 rate as lasso estimation on a single block
of homogeneous data with n/G observations of a fixed signal. The success hinges
obviously on the sparsity of the maximin solution. The bound becomes less tight
when κ grows. Observe that κ is constrained from below by the sparsity of the
regression coefficients. The problem thus becomes easier for sparse regression co-
efficients as one would expect from standard sparse regression [Bühlmann and
van de Geer (2011)].

In summary, the maximin effects estimator (10) is able to estimate the maximin
effects in a dataset with known groups. Note that an alternative would involve com-
puting the Lasso-type estimator on each group and then constructing the estimator
that yields the best minimally explained variance across all groups. In presence of
a large number G of groups, the statistical properties of such a naive alternative
procedure are unclear.

3.2. Unknown groups. The more difficult scenario is a mixture model, where
there is no a priori known group structure for the observations, and each observa-
tion has its own realized value of the random coefficients. We assume that each
coefficient B ∈ F = support(FB), where F is compact.

As mentioned previously, for the case of unknown groups, one solution is to
apply estimator (10) to chosen groups, which can be chosen at random in the ab-
sence of any group information or in some way that reflects prior knowledge, for
example, in the case coefficients varying over time.

3.2.1. Pareto condition. We will need to make one main assumption for re-
covery of the maximin coefficients for unknown groups, which will be discussed
in a few examples below.

First, we define an essential subset of regression coefficients.

ASSUMPTION 1 (Essential subset). A set A = {bj ;bj ∈ F }j=1,...,d is called
an essential subset of F = support(FB) if the maximin effects for B ∼ F̃B , where
the support of F̃B is A, are identical to the maximin effects as for the original
problem with B ∼ FB .

An essential subset is at most of cardinality d ≤ p (if d > p, at least one bj

could be removed without changing the point that is closest to the origin in the
convex hull of these points).
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Two examples serve as simple illustrations: if bmaximin ∈ F , then the smallest
essential subset is just bmaximin itself. If F is discrete, then an essential subset is
always the support of F itself.

We now give the so-called Pareto condition which will be shown to be sufficient
for recovery. For known groups, we do not need the condition, as it always fulfilled,
as in Section 3.2.1. The condition is meant for cases where the groups are sampled
randomly according to some mechanism, which we discuss with a few examples
and settings in Section 3.2.1.

ASSUMPTION 2 (Pareto condition). Let Ig ⊂ {1, . . . , n} be the index sets for
chosen groups g = 1, . . . ,G, and let Bi , i = 1, . . . , n be the regression coefficients
at observation i ∈ {1, . . . , n}. The assumption is that, for γ ∈ (0,1), with probabil-
ity 1 − γ with respect to the random coefficients Bi , i = 1, . . . , n and a potentially
random sampling of the groups, there exists an essential subset A of F such that
for each b ∈ A there exists a group g ∈ {1, . . . ,G} for which Bi = b for all i ∈ Ig .

We call this the Pareto condition since it implies that the maximin vector is op-
timal in the sense that making the performance better in one group will make the
performance worse in another group. The condition requires some of the groups
to be “pure” in the sense that all observations in the group correspond to the same
realization of the regression vector. We emphasize that the Pareto condition is for-
mulated as the probability of a certain event: we find this construction simpler than
requiring a random event condition.

The Pareto condition is fulfilled for a few examples which will be discussed fur-
ther in Section 3.2.3, but the condition is not true in general. Without appropriate
structure (of the type shown in the examples) cases exist where the condition is
violated.

3.2.2. Recovery assuming the Pareto condition. Using the Pareto condition,
we get the following theorem for randomly sampled groups in the estimator (10):

THEOREM 3. Assume the Pareto condition is fulfilled, with corresponding
probability 1 − γ for some γ ≥ 0. If Xi , i = 1, . . . , n are i.i.d. from a distribution
with Gram matrix � and ‖X‖∞ ≤ 1 and κ ≥ maxg ‖bg‖1, then with probability at
least 1 − 3α − γ ,

min
b∈F

V
β̂κ ;b ≥ V ∗ − M√

m
and

(
β̂κ − bmaximin

)t
�

(
β̂κ − bmaximin

) ≤ M√
m

(14)

with M = 6

√
2 log

(
2p2G

α

)
κ2 + 4 max

g

1√
m

∥∥Xt
gεg

∥∥∞κ.
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A proof is given in the Appendix. If the smallest eigenvalue of the population
covariance matrix � is bounded from below by some λmin > 0, then it follows
further that with the same probability as above, ‖β̂κ −bmaximin‖2

2 ≤ M/(
√

mλmin).
If the error distribution is Gaussian, we get the following:

COROLLARY 2. If the assumptions of Theorem 3 are fulfilled, and addition-
ally the errors εi , i = 1, . . . , n have a i.i.d. Gaussian distribution N (0, σ 2), then,
with probability at least 1 − 3α − γ , the constant M in Theorem 3 can be chosen
as

M = 6

√
2 log

(
2p2G

α

)
κ2 + 4σ

√
2 log

(
2pG√
2πα

)
κ.

This result is a generalization of Corollary 1. If we choose m = n/G, we ob-
tain the results of Corollary 1. (Note, however, that we need the Pareto condition
for Corollary 2 but not Corollary 1.) However, the results also show that we can
choose m much larger than n/G by allowing an observation to appear in multiple
groups, thus lowering the statistical error. Another point of view is that we keep
the sample size in each group fixed but increase the number of groups G, thus
increasing the chance that the Pareto condition will be fulfilled. We can thus infer
the optimal maximin coefficients by randomly sampling groups and applying the
maximin estimator (10) to these groups. The success hinges on the sparsity of the
coefficients within the support of the distribution of the random coefficients.

We describe in Section 5 a cross-validation method for choosing the number of
groups.

3.2.3. Examples where the Pareto condition is fulfilled. Theorem 3 rests on
the Pareto condition. It is evident that an arbitrary random sampling scheme can-
not lead to success in the sense of Theorem 3. The number G of groups, for ex-
ample, plays a crucial part. Setting G = 1 leads just to pooled estimation, which
yields in general a consistent estimator for the pooled coefficients and can thus
not consistently estimate the maximin coefficients if they differ from the pooled
coefficients.

Fixed groups with fixed design. The simplest example where the Pareto condition
is fulfilled is the case of known groups, where B takes a single value bg within
each group g = 1, . . . ,G. By definition of the maximin coefficients, the Pareto
condition is then fulfilled, and we are back to the setting of Section 3.1.

Chronological observations with a jump process. Assume the observations
have a time-ordering, and we have a change-point model. Consider the case where
the support of FB is finite of cardinality J , that is, F = {b1, . . . , bJ }. Assume that
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B for the first sample, namely B1, is chosen uniformly at random among the J

different possibilities. Thereafter, for i = 2, . . . , n and some δ ∈ (0,1)

Bi =
{

Bi−1, w.p. 1 − δ,
bj , w.p. δ/J for all j = 1, . . . , J .

We build G groups of consecutive observations. Below, we will further show under
which conditions on G and J the Pareto condition is fulfilled with high probability.
The Pareto condition is fulfilled if we have for each possible value b1, . . . , bJ a
g ∈ {1, . . . ,G} such that Bi = bj for all observations i in the gth set. Suppose we
fix G and condition on Bi′ = bj for some j ∈ {1, . . . , J } and some i ′ ∈ {1, . . . , n−
2n/G}. Let L be the conditional length of the segment of observations i ≥ i ′ where
Bi = bj . Then

P

(
L ≥ 2

n

G

)
≥ (1 − δ)2n/G ≥ 1 − 2nδ

G
.

If indeed, Bi′ = bj and L ≥ 2n/G, then one block of observations of length n/G

is guaranteed to have exclusively realizations of B equal to bj . The probability that
there is at least one i ′ for which Bi′ = bj in {1, . . . , n − 2n/G} is greater than

1 −
(

1 − δ

J

)n−2n/G

≥ 1 − exp
(
− δ

J
(n − 2n/G)

)
.

Using a union bound over all J distinct values the coefficients can take, the Pareto
condition is fulfilled with corresponding probability at least 1 − γ for γ ∈ (0,1) if

G ≥ 4
nδJ

γ
,

δ(n − 1)

J
≥ 1/ log

(
2J

γ

)
.

The second condition states that the number of distinct classes J cannot be too
large. More specifically, δn/J is approximately the average number of contiguous
blocks of observations that have a realization bj of the random coefficient. The
condition above implies that this average value needs to be larger than 1 for the
scheme to work (as otherwise a value of the coefficients might not be sampled at
all).

The first condition is a requirement on the number of groups G one has to pick.
It yields an effective sample size n/G of order δ−1, which is the order of the length
of observations where the regression coefficient stays constant.

Contaminated samples and robustness. Assume that the regression coefficients
come from a mixture distribution

B =
{

b∗, with probability 1 − ε,
U, otherwise,

(15)
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where U follows a distribution FU such that(
u − b∗)t

�b ≥ 0 ∀u ∈ support(FU).(16)

Note that the latter condition implies that bmaximin = b∗. A fraction ε of samples
are contaminated in the sense that they have a different realized value of B .

We build G groups of observations by random sampling. Each group consists
of m samples drawn at random without replacement from all n observations, and
each group is sampled independently. We will argue under which circumstances
the Pareto condition is fulfilled with high probability.

The Pareto condition is trivially fulfilled if we have a single group of obser-
vations where all realizations are identical to b∗ = bmaximin. Suppose we divide
the samples into G groups. Each group contains m observations, drawn at random
without replacement from all n observations, independently for each group (and
thus, the same re-sampled data point can occur in several groups). If for γ ∈ (0,1)

G ≥ log(1/γ )

log(1 − (1 − ε)m)
,(17)

then we guarantee the Pareto condition will be fulfilled with corresponding prob-
ability at least 1 − γ with respect to the random sampling of the coefficients and
random sampling of the groups.

There is also a robustness inherent in the procedure. If sampling (15) holds with-
out condition (16), then the samples U can come from an arbitrary distribution. If
condition (17) is fulfilled, then we have again with probability at least 1 − γ that
there is a group where B is equal to b∗ for all observations in the group. We can
then use Theorem 1 to show robustness properties of the estimate, as already dis-
cussed in the paragraphs after Theorem 1. Adding contaminated samples can only
shrink the maximin effects parameter and the corresponding estimator toward the
origin. The maximin effects estimator thus has robustness properties against out-
liers as long as at least one group does not contain outliers.

Some more examples are possible to derive, including for continuous distribu-
tions of B , but are beyond the scope of this manuscript. The basic intuition is that
the convex hull of the effective coefficients in each groups needs to approximate
the convex hull of the support of the random coefficients B in order for the Pareto
condition to be fulfilled.

The outliers above are referred to as b-outliers in linear mixed models
[McCulloch and Neuhaus (2001)]. An interesting question is whether the method
is also robust to outliers in the noise, the so-called e-outliers. If we use a robust ver-
sion of the explained variance Vβ;b in the maximim estimator definition, then the
breakdown point of the maximin estimator will at least be identical to the break-
down point of the robust estimator for the explained variance. The reason is that
the explained variance would have to be corrupted arbitrarily much in every of the
G groups, requiring in each group g = 1, . . . ,G at least �ρng� corrupted samples
if ρ ∈ (0,1) is the breakdown point of the robust explained variance estimator.
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Hence at least
∑

g ρng = ρn samples would have to be corrupted for the modified
maximin estimator to take on arbitrarily large values, and the breakdown point
of a robust explained-variance estimator would thus be inherited by the maximin
estimator.

Before presenting some numerical results, we first discuss now the computa-
tional aspects of the procedure.

4. Computation. The objective function of estimator (9) is convex, and the
penalty is separable. Estimator (9) or the equivalent constrained formulation (10)
could thus be computed using coordinate-wise updates, with a similar strategy
as in the “glmnet” approach [Friedman, Hastie and Tibshirani (2009)] to fitting
lasso- and ridge-penalized regression models. If p and n are large, this becomes
computationally burdensome. We show two different possibilities.

4.1. Iteratively reweighted estimation. The estimation can be reduced to a se-
ries of weighted standard lasso or ridge estimation. The minimum in (10) can be
approximated for positive terms by a sum

lim
ζ→0

(
G∑

g=1

(
V̂

g
β

)ζ )1/ζ

.(18)

This leads to a weighted estimation problem, where the weights are constant in
each group, and weights are larger in groups where the explained variance is still
small. For a fixed value of ζ > 0, the solution of (18) is (setting q = 1 for Lasso-
type estimation and q = 2 for ridge)

argmin
β∈Rp

−2
n∑

i=1

wiYi(Xβ)i +
n∑

i=1

wi(Xβ)2
i + λ‖β‖q,(19)

where the weights wi , i = 1, . . . , n are proportional to

wi ∝ (
V

gi

β̂

)ζ−1
,(20)

where gi is the group that observation i belongs to. The strategy is now to alternate
between updating the weights in (20), starting with uniform weights, and comput-
ing the solution to (19) for fixed weights. The solution in the first example in
Figure 1 has been computed in this way, as a series of reweighted least squares es-
timators with ζ = 0.01. A few rounds of the iteration are typically sufficient, and
the computational burden is thus similar to standard least squares or lasso-type
estimation.
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4.2. Computationally efficient solution for maximal penalties. Computing es-
timator (9) by coordinate-wise updates or by iteratively reweighted penalized esti-
mation requires, however, that either the design matrix X or the Gram matrices in
all groups are kept in memory.

Another option is to look at the limit of β̂λ as λ → λmax, where λmax is the
supremum of the values for which the estimator does not vanish identically. In this
limit,

β̂λ

‖β̂λ‖2
→ β̂

‖β̂‖2
,

where β̂ is the solution to

β̂ := argmin
β∈Rp

‖β‖1 such that min
g=1,...,G

(
βtXt

gYg

) ≥ 1.(21)

The quadratic term disappears in (21) as it will shrink like κ2 if ‖β‖1 = κ , whereas
the remaining two terms (penalty and objective) in the estimator scale linearly
with κ , and the constant κ thus drops out of the equation or can be replaced with
an arbitrary constant (modulo scaling of the solution) as κ → 0. The constant 1 is
chosen arbitrarily, and choosing a different constant would just rescale the solu-
tion. The estimator β̂ in (21) can be computed with linear programming, and most
importantly, the data matrix Xg enters only through its inner product with the re-
sponse vector Yg , achieving a great reduction in problem size. Estimator (21) still
has to be re-scaled for optimal least squares prediction, but this is just a univariate
optimization. Our only tuning parameter in this case is the number of groups G to
choose (unless they are known), and we can optimize G by using cross-validation;
see the section with numerical examples for details on how the cross-validation is
implemented.

The solution β̂ in (21) selects in general several variables, not just a single one
as might be expected from the analogous situation for the standard lasso. For ridge
estimation with q = 2, estimator (21) would correspond to marginal regression
if we had only a single group, and this behavior has recently been examined in
Genovese et al. (2012). However, the variability of the inner products in (21) across
groups leads to sometimes appreciably different solutions and has a similar effect
as the quadratic penalty that is written down explicitly in (9). We will use this
latter estimation technique in (21) for the following high-dimensional example in
Section 5, which will also demonstrate the computational advantages of this type
of estimation.

The maximal penalty solution is suitable if either a fast initial estimator is desir-
able or if the data are very noisy. In the latter case the large penalty will be justified
not only from a computational but also from a statistical point of view. The per-
formance of the maximal penalty estimator should be seen as a lower bound for
what is achievable with a more expensive estimation with a fine-tuned value of the
penalty parameter.
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While tight bounds on the worst-case and typical computational complexity are
difficult to establish, the memory requirements are more immediate. If fitting a
pooled estimation, the required memory is of order O(min{p2, np}), as either the
whole matrix X or the Gram matrix has to be held in memory. For standard max-
imin estimation or estimation of mixture models with G groups, this is increased
to O(min{Gp2, np}) since the Gram matrix has to be stored separately for all G

groups. For the maximal penalty estimator (21) or its ridge counter-part, the mem-
ory complexity decreases to O(pG), as one only has to store the G p-dimensional
cross-products between the predictors and the responses in each group. The mem-
ory complexity of the maximal-penalty estimator is thus substantially reduced in
the typical scenario where G � min{n,p}, while the memory complexity is just
marginally increased for the general case with arbitrary λ.

5. Numerical example. The example in Figure 1 illustrated that overfitting
has to be a concern even if we have millions of observations at our disposal to fit
quite low-dimensional models with less than one hundred parameters due to the
shifts in the underlying distributions.

Next, we look at an example with millions of variables and thousands of ob-
servations. Kogan et al. (2009) collected a dataset of so-called 10-K reports from
thousands of publicly traded U.S. companies in the years 1996–2000. For each
report, unigrams and bigrams of word frequencies have been computed and used
as predictors for the stock return volatility in the twelve-month period after the
release of the report, which is here measured against the baseline of the volatility
before the filing of the report. We use 3000 examples as a training set and the re-
maining just over 16,000 examples for testing. We compute both a cross-validated
lasso and ridge estimator with the “glmnet” package [Friedman, Hastie and Tibshi-
rani (2009)] and the estimator (21), once for a fixed number of 3 groups and once
for a cross-validated number of groups, which is explained in the next paragraph.
Below, we will further explain the procedure for cross-validation.

The histograms of ∑
i∈I

YiŶi(22)

are shown for the various methods, where both Y and Ŷ are standardized to have
mean 0 and variance 1. The groups in I are chosen randomly as 500 observations
out of the training or test data. Form (22) avoids the choice of the scaling for the es-
timators of form (21) as the measure is invariant under rescaling of the predictions.

The results for lasso estimation (q = 1) are shown in Figure 4 and for ridge esti-
mation (q = 2) in Figure 5 when selecting a varying number of predictor variables
p ∈ {103, 104, 105, 106, 4,272,227} as a consecutive block in the order given by the
dataset in Kogan et al. (2009). Both the lasso and ridge estimators of the maximin
effects are calculated under the maximal penalty (21), which has computational
advantages and avoids having to chose a tuning parameter for the penalty.
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FIG. 4. The histograms of the cross product (22) for lasso-type estimation on the training data (left three columns) and test data (right three columns).
The predictions are standardized, and the measure is thus equivalent to explained variance after rescaling of the predictions. The number of predictor
variables is increasing from the top to the bottom row, from 1000 to 4,272,227. The three columns in each panel correspond to standard cross-validated
lasso estimation (blue) and the two maximin effects estimators with a fixed number of G = 3 groups (red) and a cross-validated choice of G (orange).
In both training and test data, the explained variance is more variable under the pooled estimation than when estimating the maximin effects, while the
average explained variance is similar. There is little difference between the estimator with a cross-validated choice of the number of groups and a fixed
number of G = 3 groups. For p ≤ 104, the cross-validated lasso estimator returns an empty model while the maximin estimation still finds some signal in
the data, even if it is weaker than when using p ≥ 105 predictor variables.
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FIG. 5. The results for ridge regression, analogous to Figure 4. The gap between training and test performance is much more pronounced for the
pooled ridge estimate (blue) compared to the estimators of maximin effects (orange and red). Moreover, the probability of having a subset of observations
with very small (or negative) explained variance is slightly higher for the pooled estimation. Estimation of the maximin effects was also three orders of
magnitudes faster for the fixed number of groups G (red) than the pooled estimation (blue).
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As can be seen from the figures, the variability of the explained variance is in-
deed higher for pooled estimation, compared with the maximin effects estimators,
especially for a lasso-type penalty. The difference in performance between train-
ing and test datasets is also larger for the pooled estimation as it is more prone to
overfitting than the maximin effects estimators.

Cross-validation. As the dataset is not a priori grouped and the optimal group
size is unknown, one needs to decide on the optimal number of groups G. One
possibility indicated above is with cross-validation. To this end, we split the
ntrain = 3000 training data 100 times into two half-samples of ntrain/2 observa-
tions, sampled uniformly at random. For each split, we then divide both half-
samples of observations into smaller blocks of consecutive observations. (We
would sample at random if the data did not have a time-ordering.) The first half-
sample of ntrain/2 observations is split into G blocks with a sample size ntrain/(2G)

in each block. The second half-sample is split into g blocks, where g = 5 is cho-
sen as large as possible while still leaving at least a few hundred observations in
each block. For each split into two half-samples, we compute the maximin esti-
mator on the blocks formed by the first half-sample and compute the explained
variance in each of the g blocks of the second half-sample. (The result turns out to
be rather insensitive to the precise choice of g; note that we want to choose g as
high as possible but have to keep a minimal number of observations in each of the
“test” groups in order not to be overwhelmed by noise in the estimation of the ex-
plained variances.) The worst-case explained variance over these g groups is then
averaged for each value of G across the 100 random splits into two half-samples.
We choose G to optimize this averaged worst-case explained variance. All groups
are chosen here as consecutive blocks of equal size from the two half-samples,
respectively, since the reports are ordered chronologically and it seems likely that
there are shifts in the underlying distributions over time. If no such time-ordering
applies, we would sample the groups at random within each half-sample for cross-
validation.

Computational aspects. Estimation of the standard estimator (9) is in general
slower than the pooled estimation over all data, at least as long as (9) is computed
by iteratively reweighted pooled estimation. On the other hand, when going for the
maximal penalty estimate as in (21), the solution can be computed using quadratic
or linear programming for ridge and lasso penalties, respectively, and the design
matrix enters only through the inner products on the right-hand side of (21). Fig-
ure 6 shows the necessary computational time as a function of the dimensionality
p of the data and the number n of samples. The advantage of the maximin ef-
fects estimator with a cross-validated choice of the number of groups is visible
across the entire range of the dimensionality. The relative speed advantage of the
maximin estimation is more than a factor 10 for ridge estimation. Choosing just a
fixed number of groups can get the relative advantage to three orders of magnitude
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FIG. 6. The timings in seconds of the three estimation methods as a function of the number of
predictor variables for n = 3000 observations for Lasso-type estimation (left) and ridge estimation
(second from left): the cross-validated pooled estimate (blue), and the two estimators of maximin
effects with a fixed number of groups G = 3 (red) and a cross-validated choice of the number of
groups (orange). Analogous plots for the timings in seconds as a function of the number of samples
for p = 106 variables in the two right panels. Estimation of maximin effects was often orders of
magnitudes faster than the pooled estimation.

for ridge estimation, which can be useful in its own right or as an initial check as
to whether there is any signal in the data at all. The computational complexity is
roughly similar as a function of p for the methods whereas the maximin effects
have a better scaling as a function of n, as expected since the dimension n drops
out of the memory requirements for estimation and is replaced by the much smaller
number G of groups.

6. Discussion. One characteristic of large-sale datasets is the mix of a large
number of observations from different sources or different regimes. Due to the
inhomogeneity of the data, estimating regressions or classifications or graphs over
the pool of all available data is likely to estimate effects that might be strong for
one part of the data but very weak or even of opposite sign for another part. Here,
we proposed to estimate effects which are present for all possible groupings of the
data (even if they might be masked by noise if we make the groups unreasonably
small). The improvement in predictive accuracy can be seen empirically.

We have introduced the notion of maximin effects and proposed an estimator for
these effects, using either a lasso or ridge-type penalty. If we have known groups
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of observations with a different parameter setting in each group, the estimator is
guaranteed to do as well in estimating the maximin effects as standard Lasso es-
timation would in estimating the average effect in a single group of these obser-
vations. For datasets with unknown groups, we have proposed to sample groups
at random from the available observations. This has a similar flavor to “stability
selection” [Meinshausen and Bühlmann (2010)] and the “bolasso” [Bach (2008)]
or [Bradic (2013)], where models are fitted repeatedly over random (bootstrap)
samples of the data. In contrast to these approaches, though, the estimator is try-
ing to infer the “maximin effects” if the underlying regression coefficients change
randomly, which is a novel concept. We have presented theoretical guarantees for
the statistical accuracy, an efficient computational algorithm which is feasible for
large-scale problems, as well as empirical results on real data demonstrating im-
proved performance for prediction.

We expect that the notion of maximin effects is useful beyond regression and
classification for ‘big data” applications, both from a statistical as well as com-
putational point of view, potentially helping to avoid detecting too many spurious
effects that are not replicable.

APPENDIX

A.1. Proof of Theorem 1. Let H be its convex hull of the support of F . The
maxim effects are given by definition as

bmaximin = argmax
β∈Rp

min
b∈F

2βt�b − βt�β

= argmax
β∈Rp

min
b∈H

2βt�b − βt�β,

where the second equality follows by linearity of the objective function in b.
Let CtC = � be the Cholesky decomposition of �. Since we assumed � to be

full-rank, C is invertible, and we define

H̃ := {Cz : z ∈ H } ⊆R
p.

Then

bmaximin = C−1 argmax
ξ∈Rp

(
min
u∈H̃

2ξ tu − ξ t ξ
)
.(23)

Define ξ∗ to be the choice of weights in the simplex that is minimizing the 
2-norm
of the corresponding vector in the convex hull H̃ ,

ξ∗ := argmin
u∈H̃

‖u‖2
2.(24)

The proof is complete if we can show that

ξ∗ = argmax
ξ∈Rp

(
min
u∈H̃

2ξ tu − ξ t ξ
)
,(25)
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since this implies the result, using (23), the invertibility of C and

C−1 argmin
u∈H̃

‖u‖2
2 = argmin

u∈H

ut�u.

By definition of ξ∗ in (24), it holds true that for every μ ∈ H̃ ,

∀0 ≤ ν ≤ 1 : ∥∥ξ∗ + ν
(
μ − ξ∗)∥∥

2 ≥ ∥∥ξ∗∥∥
2,

since ξ∗ and μ are from a convex set (namely H̃ ), and ξ∗ minimizes the 
2-norm
over this convex set. Since equality holds for ν = 0, the derivative of the left-hand
side with respect to ν at ν = 0 has to be positive, which is equivalent to

2
(
ξ∗)t

μ − 2
(
ξ∗)t

ξ∗ ≥ 0 for all μ ∈ H̃ .(26)

Hence

2
(
ξ∗)t

μ − (
ξ∗)t

ξ∗ ≥ (
ξ∗)t

ξ∗ for all μ ∈ H̃ .(27)

Choosing ξ = ξ∗ yields thus a value of the objective function of at least (ξ∗)t ξ∗
in (25).

On the other hand, choosing u = ξ∗ in (25), for all ξ ∈ R
p ,

2ξ t ξ∗ − ξ t ξ ≤ (
ξ∗)t

ξ∗,(28)

with equality only if ξ ≡ ξ∗. The value of the objective function in (25) can hence
not exceed (ξ∗)t ξ∗. Choosing ξ = ξ∗ in (25) yields thus the optimal value of the
objective function and is indeed a solution to (25), which completes the proof.

A.2. Proof of Theorem 2. We write β̂ instead of β̂κ to simplify notation,
and use the constrained version of the estimator. Note that the theorem is for
known groups, and thus {b :b ∈ F } = {b :b = bg for some g ∈ {1. . . . ,G}}. Let
δg = (G/n)Xt

gεg for all g ∈ {1, . . . ,G}. Using the basic inequality, for any fixed
vector ξ in the feasible region, that is, for all ξ with ‖ξ‖1 ≤ κ ,

min
g

{
2β̂t �̂gbg − β̂t �̂gβ̂ + 2β̂t δg

} ≥ min
g

{
2ξ t �̂gbg − ξ t �̂gξ + 2ξ t δg

}
.(29)

Using the definition of D = maxg ‖�̂g − �‖∞,

min
g

{
2β̂t�bg − β̂t�β̂

} + 2D‖β̂‖1 max
g

‖bg‖1 + D‖β̂‖2
1 + 2‖β̂‖1‖δg‖∞(30)

≥ min
g

{
2ξ t�bg − ξ t�ξ

}
(31)

− 2D‖ξ‖1 max
g

‖bg‖1 − D‖ξ‖2
1 − 2‖ξ‖1‖δg‖∞.

Hence, using ξ = bmaximin, and using that by definition of β̂ , κ ≥ max{maxg ‖bg‖1,

‖β̂‖1} (and hence, when using Theorem 1 that bmaximin is in the convex hull of FB ,
also κ ≥ ‖bmaximin‖1), it follows that

min
g

{
2β̂t�bg − β̂t�β̂

} ≥ V ∗ − 6Dκ2 − 4 max
g

‖δg‖∞κ,(32)
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where

V ∗ = min
g

{
2bt

maximin�bg − bt
maximin�bmaximin

}
,

which completes the proof.

A.3. Proof of Theorem 3. Starting as in the proof of Theorem 2, let Ig ⊆
{1, . . . , n} be the index set of the gth group. The explained variance in group g

when using a regression vector ξ ∈R
p can then be written as∑

i∈Ig

2(Xiξ)(XiBi) − ∑
i∈Ig

(Xiξ)2.

Analogous to (29), we have the basic inequality for all ξ with ‖ξ‖1 ≤ κ ,

min
g

1

m

∑
i∈Ig

(
2(Xiβ̂)(XiBi) − (Xiβ̂)2 + 2(Xiβ̂)εi

)
(33)

≥ min
g

1

m

∑
i∈Ig

(
2(Xiξ)(XiBi) − (Xiξ)2 + 2(Xiξ)εi

)
.

As the Pareto condition is fulfilled (with corresponding probability 1 − γ ), there
exists a subset G̃ ⊆ {1, . . . ,G} such that Bi = bg for all i ∈ Ig, g ∈ G̃, and an
essential subset is formed by A = {bg;g ∈ G̃}. Restricting the minimum on the
left-hand side of (33) over all groups in G̃, we have for all ξ with ‖ξ‖1 ≤ κ ,

min
g∈G̃

(
2β̂t �̂gbg − β̂t �̂gβ̂ + 2β̂t δg

)

≥ min
g

1

m

∑
i∈Ig

(
2(Xiξ)(XiBi) − (Xiξ)2 + 2(Xiξ)εi

)
,

where δg = (1/m)Xt
gεg . Hence, using ‖ξ‖1 ≤ κ ,

min
g∈G̃

{
2β̂t �̂gbg − β̂t �̂gβ̂

} + 4κ‖δg‖∞ ≥ min
g

1

m

∑
i∈Ig

(
2(Xiξ)(XiBi) − (Xiξ)2)

.

Analogous to (30), the first term on the left-hand side is bounded with probability
at least 1 − α by

min
g∈G̃

{
2β̂t �̂gbg − β̂t �̂gβ̂

} ≤ min
g∈G̃

{
2β̂t�bg − β̂t�β̂

} + 3Dκ2.

Since A is by assumption an essential subset, we have that the first term on the
left-hand side is bounded with probability at least 1 − α by

min
g∈G̃

{
2β̂t �̂gbg − β̂t �̂gβ̂

} ≤ min
b∈F

V
β̂;b + 3Dκ2.



1828 N. MEINSHAUSEN AND P. BÜHLMANN

Thus, for all ξ with ‖ξ‖1 ≤ κ ,

min
b∈F

V
β̂;b + 4κ‖δg‖∞ + 3Dκ2 ≥ min

g

1

m

∑
i∈Ig

(
2(Xiξ)(XiBi) − (Xiξ)2)

.

Since bmaximin is in the feasible region, we can use it for ξ to get

min
b∈F

V
β̂;b + 4κ‖δg‖∞ + 3Dκ2

(34)

≥ min
g

1

m

∑
i∈Ig

(
2(Xibmaximin)(XiBi) − (Xibmaximin)

2)
.

Now, by definition of bmaximin, when letting H be the convex hull of F (where
F is again the support of FB ),

min
b∈F

E
(
2(Xibmaximin)(Xib) − (Xibmaximin)

2)
= min

b∈H
E

(
2(Xibmaximin)(Xib) − (Xibmaximin)

2)
= E

(
(Xibmaximin)

2) = bt
maximin�bmaximin = V ∗,

where we have used in the first equality linearity with respect to the argument
b ∈ F and in the second the definition of bmaximin and the fact that bmaximin is in
the convex hull of the support F of FB .

Now bounding the fluctuations on the right-hand side of (34), we use that
|(Xiξ)(Xib − Xiξ)| ≤ ‖X‖2∞(maxb∈F ‖b‖1 + ‖ξ‖1)‖ξ‖1 ≤ 2κ2. Using Hoeffd-
ing’s inequality and a union bound over all groups, for any α ∈ (0,1), if κ ≥
maxg ‖bg‖1 and κ ≥ ‖ξ‖1,

P

(
min

g

1

m

∑
i∈Ig

(
2(Xiξ)(XiBi) − (Xiξ)2) ≥ bt

maximin�bmaximin −
√

2 log(G/α)√
m

κ2
)

≥ 1 − α.

Plugging this into (34), it holds with probability 1 − 2α for all ξ with ‖ξ‖1 ≤ κ

that

min
b∈F

V
β̂;b ≥ V ∗ −

√
2 log(G/α)√

m
κ2 − 4κ‖δg‖∞ − 3Dκ2,(35)

which shows the first part of the claim in (14) if we use a union bound to ex-
clude the event which does not correspond to the Pareto condition, and hence this
excluded event has corresponding probability at most γ . The value of D can be
bounded with the help of (13) with probability 1 − α to yield

min
b∈F

V
β̂;b ≥ V ∗ − 6

√
2 log(2p2G/α)√

m
κ2 − 4‖δg‖∞κ,
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and the latter bound will then hold true with probability at least 1 − 3α − γ . The
second part in (14) follows as (35) implies

2β̂t�bmaximin − β̂t�β̂ ≥ V ∗ − 6

√
2 log(2p2G/α)√

m
κ2 − 4‖δg‖∞κ.(36)

The claim follows by V ∗ = bt
maximin�bmaximin and rearranging terms.
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