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Abstract

The PC-algorithm ([13]) was shown to be a powerful method for esti-

mating the equivalence class of a potentially very high-dimensional acyclic

directed graph (DAG) with the corresponding Gaussian distribution [7].

Here we propose a computationally efficient robustification of the PC-

algorithm and prove its consistency. Furthermore, we compare the robus-

tified and standard version of the PC-algorithm on simulated data using

the new corresponding R-package pcalg.

Keywords: Gaussian graphical modeling; Partial correlation analysis; R-

package pcalg; Qn-estimator

1 Introduction

Graphical models are a popular probabilistic tool to analyze and visualize con-

ditional independence relationships between random variables [see 4, 8]. Major

building blocks of the models are nodes, which represent random variables and

edges, which encode conditional dependence relations of the enclosing vertices.

The structure of conditional independence among the random variables can be

explored using the Markov properties. Of particular interest are directed acyclic

graphs (DAGs), containing directed rather than undirected edges, which restrict

in a sense the conditional dependence relations. These graphs can be interpreted

by applying the directed Markov property [see 8].

Although estimation of a DAG from data is difficult and computationally

non-trivial due to the enormous size of the space of DAGs, there have been quite

successful approaches like MWST [Maximum Weight Spanning Trees; see 3, 5]

or GES [Greedy Equivalent Search, see 2]. In the past, interesting hybrid meth-

ods have been developed. Very recently, [14] proposed a computationally very

competitive algorithm. We also refer to their paper for a large-scale numerical

comparison study among a wide range of algorithms.

An attractive alternative to greedy or structurally restricted approaches is

the PC-algorithm (after its authors, Peter and Clark) from [13]. It starts from
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a complete, undirected graph and deletes recursively edges based on conditional

independence decisions. This yields an undirected graph which can then be

partially directed and further extended to represent the underlying DAG. The

PC-algorithm runs in the worst case in exponential time (as a function of the

number of nodes), but if the true underlying DAG is sparse, which is often a

reasonable assumption, this reduces to a polynomial runtime.

It was shown in [7], that the PC-algorithm for Gaussian data is asymp-

totically consistent for finding the equivalence class or the skeleton of a DAG,

even if the number of nodes is much larger than the sample size. Here, we

propose a robustification of the Gaussian PC-algorithm. The latter is based

on the maximum likelihood estimate for the covariance matrix of the variables.

An effective robustification can be achieved by using a covariance estimator

which is robust for every matrix element only: such elementwise robustness is

feasible in high-dimensional settings and our results support that there is no

need for simultaneous robustness of the whole covariance matrix. In fact, we

prove asymptotic consistency and a 50% breakdown point of the robustified

PC-algorithm. Furthermore, we report on some finite sample numerical results.

The robust PC-algorithm turns out to be very useful in presence of severely

contaminated data or heavy outliers. Finally, our implementation of the robust

PC-algorithm is computationally feasible for a large number of nodes, i.e., in

the hundreds or thousands, if the underlying DAG is sparse.

2 Finding the Equivalence Class of a DAG

2.1 Definitions and Preliminaries

A graph G = (V, E) consists of a set of nodes or vertices V = {1, . . . , p} and

a set of edges E ⊆ V × V , i.e. the edge set is a subset of ordered pairs of

distinct nodes. In our setting, the set of nodes corresponds to the components

of a random vector X ∈ Rp. An edge (i, j) ∈ E is called directed if (i, j) ∈ E

but (j, i) /∈ E; we then use the notation i→ j. If both (i, j) ∈ E and (j, i) ∈ E,

the edge is called undirected; we then use the notation i− j. A directed acyclic

graph (DAG) is a graph G where all edges are directed and that does not contain

any cycle.

If there is a directed edge i→ j, node i is said to be a parent of node j. The

set of parents of node j is denoted by pa(j). The adjacency set of a node j in

graph G, denoted by adj(G, j), are all nodes i which are directly connected to

j by an edge (directed or undirected). The elements of adj(G, j) are also called

neighbors of or adjacent to j.

We use the concept of d-separation, which is defined as follows [see 10]: A

path p is said to be d-separated by a set of nodes Z if and only if

• p contains a chain i→ m→ j or a fork i← m→ j such that the middle

node m is in Z, or
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• p contains an collider i → m ← j such that the middle node m is not in

Z and such that no descendant of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from

a node in X to a node in Y .

A probability distribution P on Rp is said to be faithful with respect to a

graph G if conditional independencies of the distribution can be inferred from

d-separation in the graph G and vice-versa. More precisely: consider a random

vector X ∼ P . Faithfulness of P with respect to G means: for any i, j ∈ V with

i 6= j and any set s ⊆ V ,

X(i) and X(j) are conditionally independent given {X(r); r ∈ s}
⇔ node i and node j are d-separated by the set s.

We remark here that faithfulness is ruling out some classes of probability distri-

butions but non-faithful distributions of the multivariate normal family (which

we limit ourselves to) form a Lebesgue null-set in the space of distributions

associated with a DAG G, see [13, Th. 3.2, Ch. 13.3].

The skeleton of a DAG G is the undirected graph obtained from G by sub-

stituting undirected edges for directed edges. A v-structure in a DAG G is an

ordered triple of nodes (i, j, k) such that G contains the directed edges i → j

and k → j, and i and k are not adjacent in G.

It is well known that for a probability distribution P which is generated

from a DAG G, there is a whole equivalence class of DAGs with corresponding

distribution P [see 2, Section 2.2 ], and we can only identify an equivalence

class of DAGs, even when having infinitely many observations. Using a result

from [15], we can characterize equivalent classes more precisely: Two DAGs are

equivalent if and only if they have the same skeleton and the same v-structures.

A common tool for visualizing equivalence classes of DAGs are completed

partially directed acyclic graphs (CPDAG). A partially directed acyclic graph

(PDAG) is a graph where some edges are directed and some are undirected

and one cannot trace a cycle by following the direction of directed edges and

any direction for undirected edges. Equivalence among PDAGs or of PDAGs

and DAGs can be decided as for DAGs by inspecting the skeletons and v-

structures. A PDAG is completed, if (1) every directed edge exists also in

every DAG belonging to the equivalence class of the DAG and (2) for every

undirected edge i− j there exists a DAG with i→ j and a DAG with i← j in

the equivalence class. CPDAGs encode all independence informations contained

in the corresponding equivalence class. It was shown in [1] that two CPDAGs

are identical if and only if they represent the same equivalence class, that is,

they represent a equivalence class uniquely.

Although the main goal is to identify the CPDAG, the skeleton itself already

contains interesting information. In particular, if P is faithful with respect to a
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DAG G,

there is an edge between nodes i and j in the skeleton of DAG G

⇔ for all s ⊆ V \ {i, j}, X(i) and X(j) are conditionally dependent

given {X(r); r ∈ s}, (1)

[13, Th. 3.4, Ch. 13.5].

As we will see later in more detail, estimating the CPDAG consists of two

main parts: (1) Estimation of the skeleton and (2) partial orientation of edges.

This provides the structure of the remaining part of this paper. First, we discuss

the part of the PC-algorithm that leads to the skeleton. Afterwards, we complete

the algorithm by discussing the extensions for finding the CPDAG. We use the

same format when discussing theoretical properties of the PC-algorithm.

2.2 The PC-algorithm for Finding the Skeleton

A naive strategy for finding the skeleton would be to check conditional indepen-

dencies given all subsets s ⊆ V \ {i, j} (see formula (1)), i.e. all partial correla-

tions in the case of multivariate normal distributions as first suggested by [16].

This would become computationally infeasible and statistically ill-posed for p

larger than sample size. A much better approach is used by the PC-algorithm

which is able to exploit sparseness of the graph.

2.2.1 Population Version for the skeleton

In the population version of the PC-algorithm, we assume that perfect knowl-

edge about all necessary conditional independence relations is available. We re-

fer here to the PC-algorithm what others call the first part of the PC-algorithm;

the other part is described in Algorithm 2 in Section 2.3.

The (first part of the) PC-algorithm is given in Algorithm 1. A proof that

this algorithm produces the correct skeleton can be easily deduced from Theorem

5.1 in [13, Ch. 13.15].

2.2.2 Sample Version for the Skeleton

For finite samples, we need to estimate conditional independencies. We limit

ourselves to the Gaussian case, where all nodes correspond to random variables

with a multivariate normal distribution. Furthermore, we assume faithful mod-

els, i.e. the conditional independence relations can be read off the graph and

vice versa; see Section 2.1.

In the Gaussian case, conditional independencies can be inferred from partial

correlations. They can be defined recursively: for i, j ∈ V, k ⊂ V \{i, j} and

some h ∈ k,

ρi,j|k =
ρi,j|k\h − ρi,h|k\hρj,h|k\h

√

(1− ρ2
i,h|k\h

)(1− ρ2
j,h|k\h

)
. (2)
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Algorithm 1 The PCpop-algorithm

1: INPUT: Vertex Set V , Conditional Independence Information

2: OUTPUT: Estimated skeleton C, separation sets S (only needed when

directing the skeleton afterwards)

3: Form the complete undirected graph C̃ on the vertex set V.

4: ` = −1; C = C̃

5: repeat

6: ` = ` + 1

7: repeat

8: Select a (new) ordered pair of nodes i,j that are adjacent in C such

that |adj(C, i) \ {j}| ≥ `

9: repeat

10: Choose (new) k ⊆ adj(C, i) \ {j} with |k| = `.

11: if i and j are conditionally independent given k then

12: Delete edge i, j

13: Denote this new graph by C.

14: Save k in S(i, j) and S(j, i)

15: end if

16: until edge i, j is deleted or all k ⊆ adj(C, i) \ {j} with |k| = ` have

been chosen

17: until all ordered pairs of adjacent variables i and j such that |adj(C, i) \
{j}| ≥ ` and k ⊆ adj(C, i) \ {j} with |k| = ` have been tested for condi-

tional independence

18: until for each ordered pair of adjacent nodes i,j: |adj(C, i) \ {j}| < `.
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Estimation of the partial correlations is done via the plug-in principle. Hence,

due to the recursive nature, ρ̂i,j|k can be inferred from the correlation matrix

[ρ̂i,j ]i,j=1,...,p. Usually, ρ̂i,j is the sample correlation, i.e. the Gaussian maximum

likelihood estimator. We discuss a robust version of it in section 3. For testing

whether a partial correlation is zero or not, we apply Fisher’s z-transform

Z(i, j|k) =
1

2
log

(

1 + ρ̂i,j|k
1− ρ̂i,j|k

)

. (3)

Classical hypothesis testing yields then the following rule when using the sig-

nificance level α. Reject the null-hypothesis H0(i, j|k) : ρi,j|k = 0 against

the two-sided alternative HA(i, j|k) : ρi,j|k 6= 0 if
√

n− |k| − 3|Z(i, j|k)| >

Φ−1(1− α/2), where Φ(·) denotes the cdf of N (0, 1).

The sample version of the PC-algorithm is almost identical to the population

version in Section 2.2.1.

The PC-algorithm

Run the PCpop(m)-algorithm as described in Section 2.2.1 but replace in

line 11 of Algorithm 1 the if-statement by

if
√

n− |k| − 3|Z(i, j|k)| ≤ Φ−1(1− α/2) then.

The only tuning parameter of the PC-algorithm is α, i.e. the significance level

for testing partial correlations.

2.3 Extending the Skeleton to the Equivalence Class

While finding the skeleton as in Algorithm 1, we recorded the separation sets

that made edges drop out in the variable denoted by S. This was not necessary

for finding the skeleton itself but is essential for extending the skeleton to the

equivalence class. In Algorithm 2 we describe the work of [10, p.50f] to extend

the skeleton to a CPDAG belonging to the equivalence class of the underlying

DAG.

The output of Algorithm 2 is a CPDAG, which was first proved by [9]. The

computational complexity of the PC-algorithm is difficult to evaluate exactly,

but the worst case is bounded by O(n max{pq, p2}), where q is the maximal size

of the adjacency sets. We note that the bound may be very loose for many

distributions. For non-worst cases we can do the computations for quite large

values of q and fairly dense graphs, e.g. some nodes j have neighborhoods of

size up to |adj(G, j)| = 30.

3 Robustification of the PC-algorithm

The only quantity that has to be estimated from data in order to run the PC-

algorithm is the correlation among all pairs of variables X(i) and X(j). The
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Algorithm 2 Extending the skeleton to a CPDAG

INPUT: Skeleton Gskel, separation sets S

OUTPUT: CPDAG G

for all pairs of nonadjacent variables i, j with common neighbour k do

if k /∈ S(i, j) then

Replace i− k − j in Gskel by i→ k ← j

end if

end for

In the resulting PDAG, try to orient as many undirected edges as possible by

repeated application of the following three rules:

R1 Orient j− k into j → k whenever there is an arrow i→ j such that i and

k are nonadjacent.

R2 Orient i− j into i→ j whenever there is a chain i→ k → j.

R3 Orient i − j into i → j whenever there are two chains i − k → j and

i− l→ j such that k and l are nonadjacent.

R4 Orient i − j into i → j whenever there are two chains i − k → l and

k → l → j such that k and l are nonadjacent.

correlation estimates are then used to iteratively compute estimates of partial

correlations as in (2), which in turn are used to obtain z-values in (3). It is well

known, that the standard sample correlation estimator (the Gaussian MLE) is

not robust. Therefore, a small quantity of outliers suffices to completely distort

the resulting graph. In order to robustify the PC-algorithm, we first note,

that the correlation ρ(X(i),X(j)) = ρi,j can be written in terms of standard

deviations σX =
√

V ar(X):

ρi,j = ρX(i) ,X(j) =
σ2

aX(i)+bX(j) − σ2
aX(i)−bX(j)

σ2
aX(i)+bX(j) + σ2

aX(i)−bX(j)

(4)

where a = 1
σ
X(i)

and b = 1
σ
X(j)

, see [6]. To robustify the scale estimate, we

replace the empirical standard deviation by a robust scale estimate. A good

choice is the Qn estimator [11] which is defined as a scaled order statistics of

differences in a sample of n realisations X1, ..., Xn:

Qn;X = d{|Xi −Xj |; i < j}(k), (5)

where d = 2.2219 is a constant factor and k =
(

h
2

)

≈ (n

2)
4 with h = [n/2] + 1

roughly equal to half the number of observations. The Qn estimator has some

attractive properties. Apart from its simple and explicit formula, the definition

is suitable for asymmetric distributions. The breakdown point is 50% and the

efficiency with Gaussian distributions is 82%. By using an algorithm by [11], Qn

can be computed with O(n) memory storage and O(n log n) essential operations.
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Thus, we obtain a robust estimate for the individual correlations by using

ρ̂Qn;i,j =
Q2

n;aX(i)+bX(j) −Q2
n;aX(i)−bX(j)

Q2
n;aX(i)+bX(j) + Q2

n;aX(i)−bX(j)

(6)

The robust version of partial correlation is, analogously to (2),

ρ̂Qn;i,j|k =
ρ̂Qn;i,j|k\h − ρ̂Qn;i,h|k\hρ̂Qn;j,h|k\h
√

(1− ρ̂2
Qn;i,h|k\h

)(1− ρ̂2
Qn;j,h|k\h

)
. (7)

The corresponding z-value is then defined as

ZQn
(i, j|k) =

1

2
log

(

1 + ρ̂Qn;i,j|k
1− ρ̂Qn;i,j|k

)

. (8)

Finally, we define the robust PC-algorithm as follows.

The robust PC-algorithm

Run the PC-algorithm as described in section 2.2.2 but replace Z(i, j|k)

by ZQn
(i, j|k).

4 Consistency of the PC algorithm

The standard PC algorithm on Gaussian data was shown to be asymptotically

consistent for finding the equivalence class or the skeleton of a DAG [7]. This

result also holds for high-dimensional settings where p� n.

In this section, we show that in the Gaussian case (i.e. uncontaminated

model) and assuming a finite dimension p <∞, i.e. a stricter assumption than

in [7], the PC algorithm is consistent whenever every element of the covariance

matrix is estimated consistently. Thus, the previous result is generalized under

stricter conditions. This yields the consistency of the robust PC-algorithm as a

special case.

We use the following assumptions:

(A1) The distribution P is multivariate Gaussian N (µ,Σ) with finite dimen-

sionality p <∞.

(A2) The distribution P is faithful to the DAG G.

(A3) The distribution P is not degenerated, i.e., Σii > 0 and |ρij | = |Σij/(ΣiiΣjj)
1
2 | <

1 for all i 6= j.

Denote by Ĝskel(α) the estimate of the skeleton using the PC-algorithm

(standard or robust version) when using significance level α. Moreover, we

denote by Gskel the skeleton of a DAG G.
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Theorem 1 Assume (A1)-(A3) and let Σ̂ij be any estimate of Σij which is

(elementwise) consistent for all i, j ∈ {1, ..., p} having convergence rate n−r

(r ≤ 1
2), i.e., nr(Σ̂ij−Σij) = Op(1) for all i, j. Then, for any sequence (αn)n∈N

with 1−Φ(n−r+ 1
2 )

αn
→∞, αn

1−Φ(
√

n)
→∞ (n→∞),

IP[Ĝskel(αn) = Gskel]→ 1 (n→∞).

A proof is given in the online appendix.

Remark: Typically, r = 1
2 and hence we require αn → 0, αn

1−Φ(
√

n)
→ ∞

(n→∞).

The consistency result of Theorem 1 can be easily extended to the equivalence

class of the DAG. We denote by GCPDAG the CPDAG of a DAG G.

Theorem 2 Assume (A1)-(A3) and let Σ̂ij be any estimate of Σij which is

(elementwise) consistent for all i, j ∈ {1, ..., p} having convergence rate n−r

(r ≤ 1
2), i.e., nr(Σ̂ij−Σij) = Op(1) for all i, j. Then, for any sequence (αn)n∈N

with 1−Φ(n−r+ 1
2 )

αn
→∞, αn

1−Φ(
√

n)
→∞ (n→∞),

IP[ĜCPDAG(αn) = GCPDAG]→ 1 (n→∞).

A proof is given in the online appendix. Using Theorem 1, it is now easy to

analyze the consistency properties of the robust PC-algorithm:

Lemma 1 Assume (A1). Then, the estimate ρ̂Qn;i,j defined in (6) and the cor-

responding covariance estimate Σ̂Qn;ij = ρ̂Qn;i,jQn;X(i)Qn;X(j) are
√

n-consistent.

A proof is given in the online appendix. Combining Theorem 1 and Lemma 1,

we obtain:

Corollary 1 Assume (A1)-(A3). The robust PC-algorithm based on the Qn-

estimator is consistent in the sense of Theorem 1 and Theorem 2 (with r = 1
2).

A proof is given in the online appendix. Furthermore, the breakdown point of

the robust PC-algorithm can be easily found:

Proposition 1 The breakdown point of the robust PC-algorithm is 50%.

A proof is given in the online appendix.

5 Numerical results

5.1 Simulating data

Our codes and data corresponding to this section are available on the JCGS

homepage. In order to simulate data, we first construct an adjacency matrix A

as follows:
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1. Fix an ordering of the variables.

2. Fill the adjacency matrix A with zeros.

3. Replace every matrix entry in the lower triangle (below the diagonal)

by independent realizations of Bernoulli(s) random variables with success

probability s where 0 < s < 1. We call s the sparseness of the model.

4. Replace each entry with a 1 in the adjacency matrix by independent real-

izations of a Uniform([0.1, 1]) random variable.

This then yields a matrix A whose entries are zero or in the range [0.1, 1]. The

corresponding DAG draws a directed edge from node i to node j if i < j and

Aji 6= 0. The DAGs (and skeletons thereof) that are created in this way have

the following property: IE[Ni] = s(p − 1), where Ni is the number of neighbors

of a node i.

Thus, a low sparseness parameter s implies few neighbors and vice-versa.

The matrix A is used to generate the data as follows. The value of the random

variable X(1), corresponding to the first node, is given by

ε(1) ∼ N(0, 1)

X(1) = ε(1)

and the values of the next random variables (corresponding to the next nodes)

can be computed recursively as

X(i) =

i−1
∑

k=1

AikX(k) + ε(i) (i = 2, . . . , p),

where all ε(1), . . . , ε(p) are i.i.d., and ε(i) is independent from {X(j), j < i}. Re-

garding the distribution of ε, we consider either N(0, 1), 0.9N(0, 1)+0.1t3(0, 1)

(i.e. 10% contamination by a t-distribution with three degrees of freedom) or

0.9N(0, 1) + 0.1Cauchy(0, 1) (i.e. 10% contamination by a standard Cauchy

distribution).

5.2 Performance of the robust PC-algorithm

We compare the standard Gaussian and robust version of the PC-algorithm

on Gaussian and contaminated Gaussian (10% t3 or Cauchy) data on a wide

range of parameter settings. To this end, we simulated each combination of the

following variable settings:

• n ∈ {100, 500, 1000, 5000, 10000}

• p ∈ {10, 25, 50}

• α ∈ {0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3}
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Figure 1: Comparison between standard Gaussian (triangles) and robust (cir-

cles) PC-algorithm: The average Structural Hamming Distance (SHD) over a

wide range of parameter settings is shown versus the tuning parameter α (to-

gether with 95% confidence intervals). Without or with moderate outliers, the

standard Gaussian PC-algorithm performs slightly better. If the outliers are

very severe, the standard Gaussian PC-algorithm breaks down and the robust

version is superior.

• IE[N ] ∈ {3, 6}

For each of the possible 210 combinations, 30 replicates were produced. In

order to investigate the influence of the single tuning parameter α, we show the

average Structural Hamming Distance [SHD; 14] together with 95% confidence

intervals of the simulation results grouped by various values of α. Roughly

speaking, the SHD counts the number of edge insertions, deletions and flips in

order to transfer the estimated CPDAG into the correct CPDAG. Thus, a large

SHD indicates a poor fit, while a small SHD indicates a good fit.

In Figure 1 (a) and Figure 1 (b) the rather similar results for the Gaussian

distribution and the Gaussian distribution with 10% contamination from a t3
distribution are shown. One can see that the standard Gaussian PC-algorithm

performed better, since the average SHD is lower. The difference is highly

significant (one-sided, paired Wilcoxon Test). For the standard Gaussian PC-

algorithm, the values α = 0.01 and α = 0.03 yield a significantly lower average

SHD (two sided Wilcoxon Test with Bonferroni correction) than for the remain-

ing values of α. For the robust PC-algorithm, the value of α = 0.01 also seems to

produce the lowest average SHD, but the result is not as clear (not significant).

Therefore, when dealing with problems in the realm of the covered parameter

settings, we would advocate α ≈ 0.01.

In Figure 1 (c), we show the corresponding result for Gaussian data with 10%

contamination from a standard Cauchy distribution. The situation looks com-

pletely different than before. For values of α ≤ 0.03, the robust PC-algorithm

performs significantly better than the standard Gaussian PC-algorithm while

for α > 0.03, the standard PC-algorithm performs better. For the standard

Gaussian PC-algorithm, the average SHD for α = 0.1 is significantly lower than

for the remaining values of α. For the robust PC-algorithm, α = 0.3 and α = 0.1
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Figure 2: Example of typical behavior of TPR and FPR (n = 100, p = 50,

α = 0.01, IE[N ] = 5 on 100 repetitions). In contrast to the standard method,

the TPR and FPR of the robust method don’t change very much, when outliers

are introduced. Moreover, the robust method achieves significantly higher TPR

while keeping FPR at a level comparable to the standard method.(N: Standard

Normal Error, C: 10% Cauchy, Std: Standard method, Qn: Robust method)

produce significantly worse results. For α ≤ 0.03, no choice of α leads to signifi-

cantly better results than another. Note that by using the robust PC-algorithm,

the SHD can be decreased substantially yielding a much better fit.

We also analyzed the behavior of the true positive rate (TPR) and the false

positive rate (FPR) and show the typical results by using an example. We used

n = 100, p = 50, α = 0.01, average neighborhood size IE[N ] = 5 and we con-

ducted 100 repetitions. In each of the 100 replications, we chose a graphical

structure and generated errors according to a standard normal distribution and

according to a mixture of 90% standard normal and 10% standard Cauchy. We

then used the standard and the robust PC-algorithm to estimate the underlying

skeleton of the graph. The result is given in Figure 2. As can be seen in Fig-

ure 2(a), the TPR for the standard estimate drops dramatically if outliers are

introduced, whereas it does not drop significantly for the robust method. Analo-

gously, the FPR in Figure 2(b) increases significantly for the standard estimate,

while it does not change significantly for the robust method. Furthermore, in

the contaminated setting, the TPR for the robust method is significantly higher

than for the standard method, while the FPR of both methods don’t vary much.

Thus, the main advantage of the robust method lies in achieving a higher TPR

while keeping the FPR rather constant.

5.3 Computational Complexity

The computational complexity of the robust PC-algorithm is up to a log(n)-

factor the same as for the analogue with the standard Gaussian PC-algorithm,
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(b) Contamination: 10% t3
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(c) Contamination: 10% Cauchy

Figure 3: Average processor time of the standard Gaussian and robust PC-

algorithm for graphs of different sizes and different kinds of contamination by

outliers. The standard Gaussian PC-algorithm is on average roughly by a factor

of 25 faster.

namely O(n log(n) max{pq, p2}) in the worst case.

We provide a small example of the processor time for estimating a CPDAG

by using the PC-algorithm. The runtime analysis was done on an AMD Athlon

64 X2 Dual Core Processor 5000+ with 2.6 GHz and 4 GB RAM running on

Linux and using R 2.4.1. The number of variables varied between p = 10 and

p = 1000 while the number of samples was fixed at n = 1000. The sparseness

was E[N ] = 3. For each parameter setting, 3 replicates were used. In each case,

the significance level used in the PC-algorithm was α = 0.01. Figure 3 gives a

graphical impression of the results of this example. The runtimes seem not to be

influenced much by the type of contamination. For both uncontaminated and

contaminated (t3 or Cauchy) data, the standard Gaussian PC-algorithm is on

average roughly by a factor of 25 faster. The average processor times together

with their standard deviations for estimating the CPDAG are given in Table

5.1. We only give the values for Cauchy-contamination, since the values in the

other cases are very similar.

p standard PC [s] robust PC [s]

10 0.07 (0.02) 1.53 (0.3)

30 0.59 (0.09) 14.4 (0.1)

100 3.4 (0.1) 151 (1)

300 31 (0.4) 1148 (192)

1000 614 (88) 10600 (860)

Table 5.1: Average processor time of the standard Gaussian and robust PC-

algorithm for graphs of different sizes, with standard errors in parentheses. The

standard PC-algorithm is on average roughly by a factor of 25 faster.

Using the standard and the robust PC-algorithm, graphs of p = 1000 nodes

could be estimated in about 10 minutes and 3 hours, while graphs with p = 100

nodes it took about 3 seconds and about 2 minutes, respectively.
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5.4 Decision Heuristic

The simulation studies show that the standard PC-algorithm already is rather

insensitive to outliers, provided, they are not too severe. The effect of very

heavy outliers can be dramatically reduced by using the robust PC-algorithm;

this increases the computational burden by roughly one order of magnitude.

We provide a simple method for deciding whether the data at hand has worse

outliers than a given reference distribution. Using this, we see two heuristics for

deciding whether to use the robust version of the PC-algorithm or not. On the

one hand, one could use the normal distribution as reference distribution and

apply the robust PC-algorithm to all data that seem to contain more outliers

than an appropriate normal distribution (Heuristic A). On the other hand, one

could, inspired by the results of the simulation study in section 5.2, only want

to apply the robust method in the case where the contamination is worse than

a normal distribution with 10% outliers from a t3 distribution. Then, we would

use a normal distribution with 10% outliers from a t3 distribution as reference

distribution (Heuristic B).

In order to decide whether data has worse outliers than a given reference

distribution, we proceed as follows. We compute a robust estimate of the covari-

ance matrix of the data (e.g. OGK with Qn-estimator) and simulate (several

times) data from the reference distribution with this covariance matrix. For

each dimension i (1 ≤ i ≤ p), we compute the ratio of standard deviation σi

and a robust version of it si (e.g., Qn-estimator) and compute the average over

all dimensions. (Since the main input for the PC-algorithm are correlation es-

timates which can be expressed in terms of scale estimates (as in section 3), we

base our test statistics on scale estimates.) Thus, we obtain the distribution of

this averaged ratio R = 1
p

∑p
i=1 σi/si under the null hypothesis that the data

can be explained by the reference distribution with given covariance matrix. We

now can test this null hypothesis by using the ratio computed with the current

data set r = 1
p

∑p

i=1 σ̂i/ŝi on a given significance level.

In order to test both heuristics, we tried to decide on using the robust

PC-algorithm for samples drawn from a randomly generated DAG model with

10% contamination (t3 and Cauchy for Heuristic A and Cauchy for Heuristic

B), while the reference distribution is either normal for Heuristic A or normal

with t3 contamination for Heuristic B. As in section 5.2, the DAG models were

generated using all combinations of the following variable settings:

• n ∈ {100, 500, 1000, 5000, 10000}

• p ∈ {10, 25, 50}

• IE[N ] ∈ {3, 6}

For each possible combination, ten replicates were produced. When using

Heuristic A, our method produces a true positive rate of 0.97 and a false positive
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rate of 0.05. For Heuristic B, the true positive rate is 1 and the false positive

rate ist 0.

For convenience, we provide the function decHeuristic in our R package

which yields a boolean variable indicating whether the robust version should be

used or not. Of course, our method only provides a heuristic and one might want

to choose a favorite method for detecting outliers in high dimensions instead.

6 R-Package pcalg

The R-package pcalg can be used to estimate from data the underlying skeleton

or equivalence class of a DAG. To use this package, the statistics software R needs

to be installed. Both R and the R-package pcalg are publicly available (with

open source code) at

http://www.r-project.org.

In the following, we show an example of how to generate a random DAG,

draw samples and infer from data the skeleton and the equivalence class of the

original DAG. The line width of the edges in the resulting skeleton and CPDAG

can be adjusted to correspond to the reliability of the estimated dependencies.

The line width is proportional to the smallest value of
√

n− |k| − 3 Z(i, j,k)

causing an edge, see also formula (3). Therefore, thick lines are reliable.

library(pcalg)

## define parameters

p <- 10 # number of random variables

n <- 10000 # number of samples

s <- 0.2 # sparsness of the graph

For simulating data as described in Section 5.1:

## generate random data

set.seed(10)

g <- randomDAG(p,s) # generate a random DAG

d <- rmvDAG(n,g,errDist=’’mixt3’’) # generate random samples

Then we estimate the underlying skeleton by using the function pcAlgo and

extend the skeleton to the CPDAG by using the function udag2cpdag.

gSkel <-

pcAlgo(d,alpha=0.05,corMethod=’’QnStable’’) # estimate of the skeleton

gCPDAG <-

udag2cpdag(gSkel)

The results can be easily plotted using the following commands:

plot(g)

plot(gSkel,zvalue.lwd=TRUE)

plot(gCPDAG,zvalue.lwd=TRUE)
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Figure 4: These plots were generated using the R-package pcalg as described

in section 6. (a) The true DAG. (b) The estimated skeleton using the R-

function pcAlgo with α = 0.05. (c) The estimated CPDAG using the R-function

udag2cpdag. Double-headed arrows indicate undirected edges. Line width en-

codes the reliability (z-values) of the dependence estimates (thick lines are reli-

able).

The original DAG is shown in Figure 4(a). The estimated skeleton and the

estimated CPDAG are shown in Figure 4(b) and Figure 4(c), respectively. Note

the differing line width, which indicates the reliability (minimal z-values as in

(3)) of the involved statistical tests (thick lines are reliable).

Acknowledgments
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