p-Values for High-Dimensional Regression
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Assigning significance in high-dimensional regression is challenging. Most computationally efficient selection algorithms cannot guard
against inclusion of noise variables. Asymptotically valid p-values are not available. An exception is a recent proposal by Wasserman and
Roeder that splits the data into two parts. The number of variables is then reduced to a manageable size using the first split, while classical
variable selection techniques can be applied to the remaining variables, using the data from the second split. This yields asymptotic error
control under minimal conditions. This involves a one-time random split of the data, however. Results are sensitive to this arbitrary choice,
which amounts to a “p-value lottery” and makes it difficult to reproduce results. Here we show that inference across multiple random splits
can be aggregated while maintaining asymptotic control over the inclusion of noise variables. We show that the resulting p-values can be
used for control of both family-wise error and false discovery rate. In addition, the proposed aggregation is shown to improve power while

reducing the number of falsely selected variables substantially.
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1. INTRODUCTION

The problem of high-dimensional variable selection has re-
ceived tremendous attention in the last decade. Sparse estima-
tors like the Lasso (Tibshirani 1996) and extensions thereof
(Zou 2006; Meinshausen 2007) have been shown to be very
powerful because they are suitable for high-dimensional data
sets and because they lead to sparse, interpretable results.

In the usual workflow for high-dimensional variable selec-
tion problems, the user sets potential tuning parameters to their
prediction optimal values and uses the resulting estimator as
the final result. In the classical low-dimensional setup, some er-
ror control based on p-values is a widely used standard in all
areas of sciences. So far, p-values are not available in high-
dimensional situations, except for the proposal of Wasserman
and Roeder (2009). An ad hoc solution for assigning relevance
is to use the bootstrap to analyze the stability of the selected pre-
dictors and focus on those selected most often (or even always).
Bach (2008) and Meinshausen and Biihlmann (2008) showed
that for the Lasso, this leads to a consistent model selection pro-
cedure under fewer restrictions than for the nonbootstrap case.

More recently, some progress has been made in obtaining er-
ror control (Meinshausen and Biihlmann 2008; Wasserman and
Roeder 2009). Here we build on the approach of Wasserman
and Roeder (2009) and show that an extension of their “screen
and clean” algorithm leads to a more powerful variable se-
lection procedure. Moreover, family-wise error rate (FWER)
and false discovery rate (FDR) can be controlled, whereas
Wasserman and Roeder (2009) focused on variable selection
rather than assigning significance via p-values. We also ex-
tend the methodology to control of the false discovery rate
(Benjamini and Hochberg 1995) for high-dimensional data.
Although the main application of our procedure is for high-
dimensional data, where the number p of variables can greatly
exceed sample size n, we show that the method also is quite
competitive with more standard error control for n > p settings,
indeed often providing better detection power in the presence
of highly correlated variables.
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This article is organized as follows. We briefly discuss the
single-split method of Wasserman and Roeder (2009) in Sec-
tion 2, noting that the results can depend strongly on the ar-
bitrary choice of a random sample split. We propose a multi-
split method, which eliminates this dependence. In Section 3
we prove FWER and FDR control of the multisplit method,
and in Section 4 we show numerically that for simulated and
real data sets, the method is more powerful than the single-split
version while significantly reducing the number of false dis-
coveries. We outline some possible extensions of the proposed
methodology in Section 5.

2. SAMPLE SPLITTING AND HIGH-DIMENSIONAL
VARIABLE SELECTION

We consider the usual high-dimensional linear regression
setup with a response vector Y = (¥y,...,Y,) and an n X p
fixed design matrix X such that

Y=XB+e,

where & = (g1, ...,&,) is a random error vector with ¢; iid
N(0,02) and B € R is the parameter vector. Extensions to
other models are given in Section 5.

Denote by

S=1{: B #0}

the set of active predictors, and similarly by N = $° = {j; 8; =
0} the set of noise variables. Our goal is to assign p-values for
the null hypotheses Hy j: B; = 0 versus Hy j: B; # 0 and to infer
the set S from a set of n observations (X;, Y;),i=1,...,n. We
allow for potentially high-dimensional designs, that is, p > n.
This makes statistical inference very challenging. An approach
proposed by Wasserman and Roeder (2009) is to split the data
into two parts, reducing the dimensionality of predictors on one
part to a manageable number of predictors (keeping the impor-
tant variables with high probability), and then assign p-values
and make a final selection on the second part of the data, using
classical least squares estimation.
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2.1 Family-Wise Error Rate Control With
the Single-Split Method

The procedure of Wasserman and Roeder (2009) attempts to
control the family-wise error rate (FWER), defined as the prob-
ability of making at least one false rejection. The method relies
on sample splitting, performing variable selection and dimen-
sionality reduction on one part of the data and classical signifi-
cance testing on the other part. The data are split randomly into
two disjoint groups, Dj, = Xin, Yin) and Dour = Xouts Your)s
of equal size. Let S be a variable selection or screening proce-
dure that estimates the set of active predictors. Abusing notation
slightly, we also denote by S the set of selected predictors. Then
variable selection and dimensionality reduction is based on Dj,;
that is, we apply S only on D;,. This includes the selection of
potential tuning parameters involved in S. The idea is to break
down the large number, p, of potential predictor variables to a
smaller number, k < p, with k at most a fraction of n, while
keeping all relevant variables. The regression coefficients and
the corresponding p-values, Pl, el Pp, of the selected predic-
tors are determined based on D,,; using ordinary least squares
estimation on the set S and setting f’j =1 for all j ¢ S. If the
selected model S contains the true model S (.e., S 2 9), then
the p-values based on D,,,; are unbiased. Finally, each p-value,
f’j, is adjusted by a factor |S| to correct for the multiplicity of
the testing problem.

The selected model is given by all variables in S for which
the adjusted p-value is below a cutoff, o € (0, 1),

Ssingte = {j € S: PjIS| < a}.

Under suitable assumptions (discussed later), this yields asymp-
totic control against inclusion of variables in N (false positives)
in the sense that
limsup P[|N N Ssingle| >1]<a,
n—odo

that is, control of the FWER. The method is easy to implement
and yields the asymptotic control under weak assumptions. The
single-split method relies on an arbitrary split into D;, and D,,;,
however, and the results can change drastically if this split is
chosen differently. This in itself is unsatisfactory, because then
the results are not reproducible.

2.2 Family-Wise Error Rate Control With
the New Multisplit Method

An obvious alternative to a single arbitrary split is to divide
the sample repeatedly. For each split, we end up with a set of
p-values. How to combine and aggregate the results is not obvi-
ous, however. Here we describe a possible approach. For each
hypothesis, a distribution of p-values is obtained for random
sample splitting. We propose that error control can be based on
the quantiles of this distribution. We show empirically that, pos-
sibly unsurprisingly, the resulting procedure is more powerful
than the single-split method. The multisplit method also makes
the results reproducible, at least approximately if the number of
random splits is chosen to be very large.

The multisplit method uses the following procedure:

Forb=1,...,B:

1. Randomly split the original data into two disjoint groups,
D§i’ ) and Dé?,, of equal size.
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2. Using only D), estimate the set of active predictors, S®.

(77
3. (a) Using only Df,i),, fit the selected variables in S® with
ordinary least squares and calculate the correspond-
ing p-values, P]@, forje SO
(b) Set the remaining p-values to 1, that is,

PO =1, g5,

4. Define the adjusted (nonaggregated) p-values as

PP =min(PP|SP|, 1), j=1...p. @D

Finally, aggregate over the B p-values Pgb), as discussed later.

This procedure leads to a total of B p-values for each predic-
torj=1, ..., p. It will turn out that suitable summary statistics
are quantiles. For y € (0, 1) define

0i(y) :min{l,qy({P;b)/V; b=1,...,B})},

where g, () is the (empirical) y -quantile function.

A p-value for each predictor j = 1,...,p is then given by
Qj(y), for any fixed 0 < y < 1. In Section 3 we show that this
is an asymptotically correct p-value, adjusted for multiplicity.

Properly selecting ¥ may be difficult. Error control is not
guaranteed if we search for the best value of y. We propose
to instead use an adaptive version that selects a suitable value
of the quantile based on the data. Let ymin € (0, 1) be a lower
bound for y, typically 0.05, and define

2.2)

P; :min!l, (1 ~logymn) _inf 2.3)
ye

f0,)}.

The extra correction factor, 1 — log Ymin, ensures that the
FWER remains controlled at level o despite of the adaptive
search for the best quantile (see Sec. 3). For the recommended
choice of ypin = 0.05, this factor is upper-bounded by 4; in fact,
1 —1og(0.05) ~ 3.996.

‘We comment briefly on the relation between the proposed ad-
justment to the FDR (Benjamini and Hochberg 1995; Benjamini
and Yekutieli 2001) or FWER (Holm 1979) controlling proce-
dures. While we provide a family-wise error control and as such
use union-bound corrections as done by Holm (1979), the defi-
nition of the adjusted p-value (2.3) and its graphical representa-
tion in Figure 1 are vaguely reminiscent of the FDR procedure,
rejecting hypotheses if and only if the empirical distribution of
p-values crosses a certain linear bound. The empirical distrib-
ution in (2.3) is taken for only one predictor variable, though,
which is either in S or N. This corresponds to a multiple-testing
situation in which we are testing a single hypothesis with mul-
tiple statistics. Figure 1 shows an example. Panel (a) presents

a histogram of the adjusted p-values, P(b), forb=1,...,B, of
the selected variable in the real data example in Section 4.3.
The single-split method is equivalent to picking one of these
p-values randomly and selecting the variable if this randomly
chosen p-value is sufficiently small. To avoid this “p-value lot-
tery,” the multisplit method computes the empirical distribution
of all p-values, P;b), for b=1,..., B, and rejects the null hy-
pothesis Hy: ; = 0 (thus selecting variable j and including it
into the model) if the empirical distribution crosses the bro-
ken line in Figure 1(b). A short derivation of the latter is as
follows. Variable j is selected if and only if P; < o, which oc-
curs if and only if there exists some y € (0.05, 1) such that
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Figure 1. (a) A histogram of adjusted p-values, P;b), for the selected variable in the motif regression data example of Section 4.3. The
single-split method randomly picks one of these p-values (a “p-value lottery”) and rejects if it is below «. For the multisplit method, we reject
if and only if the empirical distribution function of the adjusted p-values crosses the broken line [which is f(p) = max{0.05, (3.996/«)p}] for
some p € (0, 1). This bound is shown as a broken line for o« = 0.05 in (b). For this example, the bound is indeed exceeded, and the variable is

thus selected.

0i(y) <a/(1 —10g0.05) ~ a/3.996. Equivalently, using def-
inition (2.2), the y-quantile of the adjusted p-values, ¢, (P;b)),
must be smaller than or equal to @y /3.996. This in turn is
equivalent to the situation where the empirical distribution of
the adjusted p-values, P}b), forb=1,..., B, is crossing above
the bound f(p) = max{0.05, (3.996/«)p} for some p € (0, 1).
This bound is shown as a broken line in Figure 1(b).

The resulting adjusted p-values, Pj,j=1, ..., p, can then be
used for both FWER and FDR control. For FWER control at
level @ € (0, 1), simply all p-values below « are rejected, and
the selected subset is

A

Sulti = {i:Pj <a}. 2.4

In Section 3.2 we show that indeed, asymptotically, P(V > 0) <
o, where V = |3’mu1,,- N N| is the number of falsely selected vari-
ables under the proposed selection (2.4). Besides better repro-
ducibility and asymptotic family-wise error control, the multi-
split version is, maybe unsurprisingly, more powerful than the
single-split selection method.

2.3 False Discovery Rate Control With
the Multisplit Method

Control of the FWER often is considered too conservative.
If many rejections are made, Benjamini and Hochberg (1995)
proposed instead controlling the expected proportion of false
rejections—the FDR. Let V = |3‘ N N| be the number of false
rejections for a selection method S and let R = |S’ | be the to-
tal number of rejections. The FDR is defined as the expected
proportion of false rejections,

E(Q), with Q=V/max{l,R}.

For no rejections, R = 0, the denominator ensures that the false
discovery proportion, Q, is 0, conforming with the definition of
Benjamini and Hochberg (1995).

(2.5)

The original FDR controlling procedure of Benjamini and
Hochberg (1995) first orders the observed p-values as P(j) <
Py <--- < P and defines

k:max{i:P(i) < éq}. (2.6)
It then rejects all variables or hypotheses with the smallest & val-
ues, with no rejection made if the set in (2.6) is empty. FDR
is controlled in this way at level g under the condition that
all p-values are independent. Benjamini and Yekutieli (2001)
showed that this procedure is conservative under a wider range
of dependencies between p-values (see Blanchard and Roquain
2008 for related work). A great leap of faith would be re-
quired to assume any such assumption for our setting of high-
dimensional regression, however. For general dependencies,
Benjamini and Yekutieli (2001) showed that control is guaran-
teed at level ¢ Y0 i~ ~ g(1/2 + log(p)).

The standard FDR procedure is to work with the raw
p-values, which are assumed to be uniformly distributed on
[0, 1] for true null hypotheses. The division by p in (2.6) is an
effective correction for multiplicity. But the proposed multisplit
method produces already adjusted p-values, as in (2.3). Because
we are already working with multiplicity-corrected p-values,
the division by p in (2.6) turns out to be superfluous. Instead,
we can order the corrected p-values, Pj,j=1, ..., p, in increas-
ing order, P(1) < P) <--- < P, and select the i variables
with the smallest p-values, where

h= max{i Py < iq}. 2.7

The set of variables selected is denoted, with the value of &
given in (2.7), by

Snutti- FDR = {j:Pi <P}, (2.8)

~

with no rejections, S,u:rpr = 9, if Py > ig for all i =
1,...,p.
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The procedure (2.8) will achieve FDR control at level
qZ‘f:] i~! a q(1/2 + logp). To get FDR control at level g,
we replace g in (2.7) by g/ (Zle i~1), completely analogous
to the standard FDR procedure under arbitrary dependence of
the p-values of Benjamini and Yekutieli (2001). In the next sec-
tion, we prove error control. Later, we empirically demonstrate
the advantages of the proposed multisplit version over both the
single-split and standard FDR controlling procedures, provid-
ing numerical results.

3. ERROR CONTROL AND CONSISTENCY
3.1 Assumptions

To achieve asymptotic error control, Wasserman and Roeder
(2009) made a few assumptions about the crucial requirements
for the variable selection procedure S:

(A1) Screening property:}imnﬁoo IP’[S’ o8 =1.
(A2) Sparsity property: |S| < n/2.

The screening property (A1) ensures that all relevant variables
are retained. Irrelevant noise variables are allowed to be se-
lected as well, as long as there are not too many, as required
by the sparsity property (A2). A violation of the sparsity prop-
erty would make it impossible to apply classical tests on the
retained variables.

The Lasso (Tibshirani 1996) is an important example that
satisfies (A1) and (A2) under appropriate conditions discussed
by Meinshausen and Biihlmann (2006), Zhao and Yu (2006),
van de Geer (2008), Meinshausen and Yu (2009), and Bickel,
Ritov, and Tsybakov (2009). The adaptive Lasso (Zou 2006;
Zhang and Huang 2008) also satisfies (A1) and (A2) under suit-
able conditions. Other examples include, assuming appropriate
conditions, Ly boosting (Friedman 2001; Bithlmann 2006), or-
thogonal matching pursuit (Tropp and Gilbert 2007), and sure
independence screening (Fan and Lv 2008).

We typically use the Lasso (and extensions thereof) as
a screening method. Other algorithms are possible as well.
Wasserman and Roeder (2009) studied various scenarios under
which these two properties are satisfied for the Lasso, depend-
ing on the choice of the regularization parameter. We refrain
from repeating these and similar arguments, and operate on the
assumption that we have a selection procedure, S, that satisfies
both the screening property and the sparsity property.

3.2 Family-Wise Error Rate Control

We propose two versions of multiplicity-adjusted p-values:
Q;(y), as defined in (2.2), which relies on a choice of y € (0, 1),
and the adaptive version P; defined in (2.3), which makes
an adaptive choice of y. We show that both quantities are
multiplicity-adjusted p-values providing asymptotic FWER er-
ror control.

Theorem 3.1. Assume that (Al) and (A2) apply. Let o, y €
(0, 1). If the null hypothesis Ho;:B; = 0 gets rejected when-
ever Q;(y) < «, then the FWER is asymptotically controlled at
level «, that is,

lim sup ]P’[min Qi(y) < oz] <a,
n—00 JeN
where P is with respect to the data sample and the statement
holds for any of the B random sample splits.
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The proof is given in the Appendix.

Theorem 3.1 is valid for any predefined value of the quan-
tile y. However, the adjusted p-values, Q;(y), involve the some-
how arbitrary choice of y, which could possibly pose a prob-
lem for practical applications. Thus we propose the adjusted
p-values, Pj, that search for the optimal value of y adaptively.

Theorem 3.2. Assume that (Al) and (A2) apply. Let a €
(0, ). If the null hypothesis Hy;: 8; = 0 is rejected whenever
Pj < a, then the FWER is asymptotically controlled at level o,
that is,

limsupIP’[minP' < a] <a,
) J
n—00 JEN

where the probability PP is as in Theorem 3.1.

The proof is given in the Appendix.

A brief remark regarding the asymptotic nature of the re-
sults seems to be in order. The proposed error control relies
on all truly important variables being selected in the screening
stage with very high probability. This is our screening prop-
erty (Al). Let A be the event S C S. The results for the example
in Theorem 3.2 can be formulated in a nonasymptotic way as
P[A N {minjey P; < a}] <, and P(A) — 1, typically expo-
nentially fast, for n — oco. Analogous remarks apply to Theo-
rems 3.1 and 3.3.

3.3 False Discovery Rate Control

The adjusted p-values can be used for FDR control, as laid
out in Section 2.3. The set of selected variables, S‘mum; FDR» Was
defined in (2.8). Here we show that FDR is indeed controlled at
the desired rate with this procedure.

Theorem 3.3. Assume that (A1) and (A2) apply. Let ¢ > 0
and Smulti; Fpr be the set of selected variables, as defined in
(2.8), with a cutoff value of ¢ =g/Y " i~ in (2.7). Let
V= |Smulli;FDR N N| and R = |Smulti;FDR|~ The FDR (25) with
0 = V/max{l, R} is then asymptotically controlled at level g,
that is,

limsupE(Q) < gq.
n—oo

The proof is given in the Appendix.

As with FWER control, we could use, for any fixed value
of y, the values Q;(y),j=1,...,pinstead of P;, j=1,...,n.
We refrain from giving the full details here, because in our
experience, the foregoing adaptive version works reliably and
does not require an a priori choice of the quantile y that is nec-
essary otherwise.

3.4 Model Selection Consistency

If we let level « = «;;, — 0 for n — oo, then the probabil-
ity of falsely including a noise variable vanishes because of the
preceding results. To get the property of consistent model se-
lection, we must analyze the asymptotic behavior of the power.
It turns out that this property is inherited from the single-split
method.

Corollary 3.1. Let S’S,-,,gle be the selected model of the single-
split method. Assume that &, — 0 can be chosen for n — oo
at a rate such that lim,,_, oo P[Sgingre = S| = 1. Then, for any
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Ymin [see (2.3)], the multisplit method is also model selection—
consistent for a suitable sequence «y; that is, for Sy = {j €
S; P; < ay}, it holds that

lim P[S,i = S] = 1.
n—oo

Wasserman and Roeder (2009) discussed conditions that en-
sure that lim,— oo IE”[S' single = 5] =1 for various variable selec-
tion methods, such as the Lasso or some forward variable se-
lection scheme.

The reverse of Corollary 3.1 is not necessarily true. The mul-
tisplit method can be consistent if the single-split method is
not. A necessary condition for consistency of the single-split
method is limsup,,_, o, ]P’[P;b) <a]=1forall j €S, where the
probability is with respect to both the data and the random
split-point, because otherwise there is a positive probability that
variable j will not be selected with the single-split approach.
For the multisplit method, on the other hand, we need only a
bound on quantiles of Pj@ over b=1, ..., B. We refrain from
going into more detail here and instead show, with numerical
results, that the multisplit method is indeed more powerful than
the single-split analog. We also remark that the Bonferroni cor-
rection in (2.1), multiplying the raw p-values by the number,
IS®)|, of selected variables, possibly could be improved using
ideas of Hothorn, Bretz, and Westfall (2008), further increasing
the power of the procedure.

4. NUMERICAL RESULTS

In this section we compare the empirical performance of the
different estimators on simulated and real data sets. Simulated
data allow a thorough evaluation of the model selection prop-
erties. The real data set demonstrates that we can find signals
in data with our proposed method that would not be picked up
by the single-split method. We use a default value of o = 0.05
everywhere.

4.1 Simulations
We use the following simulation settings:

(A) Simulated data set with n = 100, p = 100, and a Toeplitz
design matrix coming from a centered multivariate nor-
mal distribution with covariance plU=*% between vari-
ables j and k, with p =0.5.

(B) Asin (A), but with n =100 and p = 1000.

(C) Real data set with n =71 and p = 4088 for the design
matrix X and artificial response Y.

The data set in (C) is from gene expression measurements in
Bacillus subtilis. The p = 4088 predictor variables are log-
transformed gene expressions, and there is a response measur-
ing the logarithm of the production rate of riboflavin in B. sub-
tilis. The data were kindly provided by DSM Nutritional Prod-
ucts, Switzerland. Because the true variables are not known,
we consider a linear model with design matrix from real data
and simulate a sparse parameter vector 8 as follows. In each
simulation run, a new parameter vector f is created by either
“uniform” or “varying-strength” sampling. Under uniform sam-
pling, |S| randomly chosen components of B are set to 1, and
the remaining p — |S| components are set to 0. Under varying-
strength sampling, |S| randomly chosen components of B are
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set to values 1, ..., |S|. The error variance o2 is adjusted such
that the signal-to-noise ratio (SNR) is maintained at a desired
level at each simulation run. We perform 50 simulations for
each setting.

The sample-splitting is done such that the model is trained on
a data set of size | (n — 1)/2], and the p-values are calculated
on the remaining data set. This slightly unbalanced scheme pre-
cludes situations where the full model might be selected on the
first data set. Calculation of p-values would not be possible on
the remaining data in such a situation. We use a total of B = 50
sample splits for each simulation run. Following Wasserman
and Roeder (2009), we compute p-values for all procedures us-
ing a normal approximation. The results are qualitatively simi-
lar when using a ¢ distribution instead.

We compare the average number of true positives and the
FWER for the single-split and multisplit methods for the three
simulation settings (A)—(C), using SNRs of 0.25, 1, 4, and 16
(corresponding to population R* values of 0.2, 0.5, 0.8, and
0.94, respectively). The number of relevant variables, |S|, is
either 5 or 10. As the initial variable selection or screening
method, S, we use three approaches, all based on the Lasso
(Tibshirani 1996). The first approach, denoted by S fixed» uses the
Lasso and selects those |n/6] variables that appear most often
in the regularization path when varying the penalty parameter.
The constant number of |n/6] variables is chosen, somewhat
arbitrarily, to ensure a reasonably large set of selected coeffi-
cients on the one hand and on the other hand, to ensure that
least squares estimation will work reasonably well on the sec-
ond half of the data with sample size |n/2]|. While the choice
seems to work well in practice and can be implemented very
easily and efficiently, it is still slightly arbitrary. Avoiding any
such choices of non—data-adaptive tuning parameters, the sec-
ond method, S.,, uses the Lasso with penalty parameter chosen
by 10-fold cross-validation, selecting the variables whose corre-
sponding estimated regression coefficients are different than 0.
The third method, S’adap, is the adaptive Lasso of Zou (2006),
in which regularization parameters are chosen based on 10-fold
cross-validation, with the Lasso solution used as the initial es-
timator for the adaptive Lasso. The selected variables are again
those whose corresponding estimated regression parameters are
different than 0.

Figures 2 and 3 show results for both the single-split and mul-
tisplit methods with the default setting Ymin = 0.05. Using the
multisplit method, the average number of true positives (i.e., the
variables in S which are selected) typically is slightly increased,
while the FWER (i.e., the probability of including variables
in N) is reduced sharply. The single-split method often has a
FWER above the level @ = 0.05 at which it is asymptotically
controlled, while for the multisplit method, the FWER is above
the nominal level in only a few scenarios. The asymptotic con-
trol seems to give a good control in finite-sample settings with
the multisplit method, possibly apart from the method Sﬁxed on
the very high-dimensional data set (C). The single-split method,
in contrast, selects too many noise variables, exceeding the de-
sired FWER sometimes substantially, in nearly all settings. This
suggests that the asymptotic error control seems to work better
for finite sample sizes for the multisplit method. Even though
the multisplit method is more conservative than the single-split
method (having a substantially lower FWER), the number of
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Figure 2. Simulation results for setting (A) in the top and (B) in the bottom row. Average number of true positives vs. the family-wise error
rate (FWER) for the single split method (‘S’) against the multi-split version (‘M’). FWER is controlled (asymptotically) at o« = 0.05 for both
methods and this value is indicated by a broken vertical line. From left to right are results for Sﬁxeda Sep and Sadap~ Results of a unique setting of
SNR, sparsity and design are joined by a line, which is solid if the coefficients follow the ‘uniform’ sampling and broken otherwise. Increasing
SNR is indicated by increasing symbol size.

true discoveries often is increased. We note that for data (C), 4.2 Comparisons With the Adaptive Lasso
with p = 4088, and in general for low SNRs, the number of true

positives is low, because we control the very stringent family- Here we compare the multisplit selecto.r with the adapti\{e
wise error criterion at a significance level of « = 0.05. As an  Lasso (Zou 2006). We have used the adaptive Lasso as a vari-

alternative, controlling less conservative error measures is pos-  able selection method in our proposed multisplit method. Usu-

sible, as discussed in Section 5. ally, the adaptive Lasso is used by itself. A few choices must
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Figure 3. Results of simulation setup (C).
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Table 1. Comparison of the multisplit method with CV-Lasso selection, Sadap’ and the selection made using the adaptive Lasso and a CV
choice of the involved penalty parameters for a setting with n = 100 and p = 200

E(true positives) E(false positives) P(false positives > 0)
Uniform sampling |S] SNR Multisplit Adaptive Lasso Multisplit Adaptive Lasso Multisplit Adaptive Lasso
NO 10 0.25 0.00 2.30 0 9.78 0 0.76
NO 10 1 0.58 6.32 0 20.00 0 1
NO 10 4 4.14 8.30 0 25.58 0 1
NO 10 16 7.20 9.42 0.02 30.10 0.02 1
YES 10 0.25 0.02 2.52 0 10.30 0 0.72
YES 10 1 0.10 7.46 0.02 21.70 0.02 1
YES 10 4 2.14 9.96 0 28.46 0 1
YES 10 16 9.92 10.00 0.04 30.66 0.04 1
NO 5 0.25 0.06 1.94 0 11.58 0 0.84
NO 5 1 1.50 3.86 0.02 19.86 0.02 1
NO 5 4 3.52 4.58 0.02 23.56 0.02 1
NO 5 16 4.40 4.98 0 27.26 0 1
YES 5 0.25 0.02 2.22 0 12.16 0 0.8
YES 5 1 0.82 4.64 0.02 22.18 0.02 1
YES 5 4 4.90 5.00 0 24.48 0 1
YES 5 16 5.00 5.00 0 28.06 0 1

be made when using the adaptive Lasso; we make the same
choices as previously. The initial estimator is obtained as the
Lasso solution with a 10-fold cross-validation (CV) choice of
the penalty parameter. The adaptive Lasso penalty is also ob-
tained by 10-fold CV.

Despite desirable asymptotic consistency properties (Huang,
Ma, and Zhang 2008), the adaptive Lasso does not offer error
control in the same way as Theorem 3.1 does for the multisplit
method. In fact, the FWER (i.e., the probability of selecting
at least one noise variable) is very close to 1 with the adap-
tive Lasso in all of the simulations that we have seen. In con-
trast, our multisplit method offers asymptotic control, which
was very well matched by the empirical FWER in the vicin-
ity of @ = 0.05. Table 1 compares the simulation results for the
multisplit method using S'adap and the adaptive Lasso by itself
for a simulation setting with n = 100, p = 200, and the same
settings as in (A) and (B) otherwise. The adaptive Lasso se-
lects roughly 20 noise variables (out of p = 200 variables), even
though the number of truly relevant variables is just 5 or 10. The
average number of false positives is at most 0.04 and often sim-
ply O with the proposed multisplit method.

There is clearly a price to pay for controlling the FWER. Our
proposed multisplit method detects fewer truly relevant vari-
ables than the adaptive Lasso on average. The difference is most
pronounced for very low SNRs. The multisplit method gener-
ally selects neither correct nor incorrect variables for SNR =
0.25, while the adaptive Lasso averages between 2 and 3 cor-
rect selections, among 9—12 wrong selections. Depending on
the objectives of the study, either outcome is preferred. For
larger SNRs, the multisplit method detects almost as many truly
important variables as the adaptive Lasso, while still reducing
the number of falsely selected variables from 20 or more to
roughly 0.

The multisplit method seems to be beneficial in settings
where the cost of making an erroneous selection is rather high.
For example, expensive follow-up experiments are usually re-
quired to validate results in biomedical applications, and stricter

error control will channel more of the available resources into
experiments more likely to be successful.

4.3 Motif Regression

We apply the multisplit method to a real data set related to
motif regression (Conlon et al. 2003). For a total of n = 287
DNA segments, we have the binding intensity of a protein to
each of the segments. These are our response values, Y7, ..., Y.
Moreover, for p = 195 candidate words (“motifs”), we have
scores, x;j, that measure how well the jth motif is represented
in the ith DNA sequence. The motifs are typically 5- to 15-bp-
long candidates for the true binding site of the protein. The hope
is that the true binding site is included in the list of significant
variables with the strongest relationship between motif score
and binding intensity. Using a linear model with S’adap, the mul-
tisplit method identifies one predictor variable at the 5% signif-
icance level. In contrast, the single-split method cannot identify
a single significant predictor. In view of the asymptotic error
control and the empirical results in Section 4, there is substan-
tial evidence indicating that the selected variable corresponds
to a true binding site. For this specific application, it seems de-
sirable to pursue a conservative approach with low FWER. As
mentioned earlier, we could control other, less conservative er-
ror measures, as discussed in Section 5.

4.4 Comparison With Standard Low-Dimensional
False Discovery Rate Control

We mentioned that control of FDR can be an attractive al-
ternative to FWER if a sizeable number of rejections is ex-
pected. Using the corrected p-values Py, ..., Py, a simple FDR-
controlling procedure was derived in Section 2.3, and its as-
ymptotic control of FDR was shown in Theorem 3.3. We now
empirically evaluate the behavior of the resulting method and
its power to detect truly interesting variables, using the standard
Lasso with CV in the initial screening step. Turning again to the
simulation setting (A), we vary the sample size n, the number
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Figure 4. Results of FDR controlling simulations for the multisplit method (dark bar) and standard FDR control (light bar). The settings of
n,p, p,|S|, and SNR are given below each simulation. The height of the bars corresponds to the average number of selected important variables.
For p > n, the standard method breaks down, and the corresponding bars are set to height 0.

of variables p, the SNR, the correlation between neighboring
variables p, and the number of truly interesting variables s.

We previously demonstrated that the multisplit method is
preferable to the single-split method. Here we are more inter-
ested in a comparison with well-understood traditional FDR-
controlling procedures. For p < n, the standard approach is
to compute the least squares estimator once for the full data
set. For each variable, a p-value is obtained, and the FDR-
controlling procedure as in (2.6) can be applied. This ap-
proach obviously breaks down for p > n. Our proposed ap-
proach can be applied to both low-dimensional (p < n) and
high-dimensional (p > n) settings.

In all settings, the empirical FDR of our method (not shown)
is often close to 0 and always below the controlled value of g =
0.05 (where the correction factor, ?:1 i~! has already been
taken into account). Results for power are shown in Figure 4
for control at g = 0.05.

Possibly unexpectedly, the multisplit method tracks the
power of the standard FDR controlling procedure quite closely
for low-dimensional data with p < n. In fact, the multi-split
method is doing considerably better if n/p is below, say, 1.5 or
the correlation among the tests is large. An intuitive explana-
tion for this behavior is that, as p approaches n, the variance
in each estimated coefficient vector under the ordinary least
squares (OLS) estimate is increasing substantially. This in turn
increases the variance of all OLS components ﬁj, j=1...,p,
and diminishes the ability to select the truly important vari-

ables. The multisplit method, in contrast, trims the total num-
ber of variables to a substantially smaller number in one half of
the samples and then suffers less from increased variance in the
estimated coefficients in the second half of the samples. Repeat-
ing this over multiple splits thus leads to a surprisingly power-
ful variable selection procedure even for low-dimensional data.
Nevertheless, we believe that the main application will be in
high-dimensional data, for which the standard approach breaks
down completely.

5. EXTENSIONS

Because of the generic nature of our proposed methodol-
ogy, extensions to any situation where (asymptotically valid)
p-values, 131-, for hypotheses Ho; (j=1,...,p) are available
are straightforward. An important class of examples comprises
generalized linear models (GLMs), or Gaussian graphical mod-
els. The dimension-reduction step typically involves some form
of shrinkage estimation. An example for Gaussian graphical
models is the recently proposed “graphical Lasso” (Friedman,
Hastie, and Tibshirani 2008). The second step relies on classi-
cal tests (e.g., likelihood ratio) applied to the selected submodel,
analogous to the proposed methodology for linear regression.

In some settings, control of FWER at, say, o = 0.05 is too
conservative. One can either resort to controlling FDR, as al-
luded to earlier, or adjust FWER control to control the expected
number of false rejections. As an example, consider the ad-
justed p-value P; defined in (2.3). Variable j is rejected if and
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only if P; < c. [In what follows, assume that adjusted p-values,
as defined in (2.1), are not capped at 1. This is a technical de-
tail only; it does not modify the proposed FWER-controlling
procedure.] Variable j is rejected if and only if P; < « controls
FWER at level «. Alternatively, one can reject variables if and
only if P;/K < a, where K > 1 is a correction factor. Call the
number of falsely rejected variables V, and calculate it as

V= Z 1{P;/K < a}.

jeN

Then the expected number of false positives is controlled at
level limsup,,_, o, E[V] < aK. A proof of this result follows di-
rectly from the proof of Theorem 3.2. Of course, we can equiv-
alently set k = K and obtain a control, limsup,_, ., E[V] <k.
For example, setting k = 1 offers a much less conservative error
control compared with controlling the FWER, if this is desired.

6. DISCUSSION

We have proposed a multisplit method for assigning statisti-
cal significance and constructing conservative p-values for hy-
pothesis testing for high-dimensional problems where the num-
ber of predictor variables may be much larger than sample
size. Our method is an extension of the single-split approach of
Wasserman and Roeder (2009) and is extended to FDR control.
Combining the results of multiple data splits, based on quantiles
as summary statistics, improves reproducibility compared with
the single-split method. The multisplit and single-split meth-
ods share the properties of asymptotic error control and model
selection consistency. We argue empirically that the multisplit
method usually selects much fewer false positives than the
single-split method, with a slightly higher number of true pos-
itives. The main area of application will be high-dimensional
data, where the number p of predictor variables exceeds sample
size n, because standard approaches rely on least squares esti-
mation and thus fail in this setting. We have shown that the mul-
tisplit method is also an interesting alternative to standard FDR
and FWER control in lower-dimensional settings, because the
proposed FDR control can be more powerful if p is reasonably
large but smaller than sample size n. The method is very generic
and can be used in a broad spectrum of error-controlling proce-
dures in multiple testing, including linear models and GLMs.

APPENDIX: PROOFS

Proof of Theorem 3.1

For technical reasons, we define

KO~ pP1{s <30 + 1[5 250}, (A1)

where k) are the adjusted p-values if the estimated active set con-
tains the true active set. Otherwise, all p-values are set to 1. Because
of assumption (A1), for fixed B, ]P’[Kj(b) = P}b) forallb=1,...,B]on
a set A, with P[A;] — 1. Thus we can define all of the quantities in-
volving P;b) also with Kj(b) , and under this slightly altered procedure,
it is sufficient to show that

P[}};ig} Qi(y) < oz] <a.

In particular, here we can omit the limes superior.

For the proofs, we also omit the function min{1, -} from the defini-
tions of Qj(y) and P; in (2.2) and (2.3). The selected sets of variables
are clearly unaffected, and the notation is simplified considerably.
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Define for u € (0, 1) the quantity mj(u) as the fraction of bootstrap
samples that yield Kj(b) less than or equal to u,

B
1
70 = = > 1K <u}.
b=1

Note that the events {Qj(y) < @} and {7j(ay) > y} are equivalent.
Thus

11»[5_2113 0jn =a| = jEZNIE[l{Qj(V) <a}]

=Y E[l{mj@n =yl (AD)

JEN

Using a Markov inequality,

1
Y E[limiay) = y)] < ” > Elmjey)].

jeN jeN
By the definition of m;(-),
l ZE[?T'(O()/)] = ll i Z E[I{K.(b) < ay}]
14 N J y B b= e J = :
Moreover, using the definition of Kj(b) in (A1),
81K <ay )] <P[r” <ar[s <5V =

This is a consequence of the uniform distribution of f’;b) given S C

S®) Summarizing these results, we get

ay
E —_— s
[ 2 |S<b>|]§“

JENNS®

B
. 11
P[jnég} 0j(y) < oe] =% bgl

which completes the proof.

Proof of Theorem 3.2

k®

As in the proof of Theorem 3.1, here we work with instead of

P;b), Analogously, instead of P](b) , we work with IN(] ) For any I?;b)
withje N and o € (0, 1),

HE <ay)
]E[—] <a. (A.3)

4

Furthermore,

max

. HK” <ay)
JEN )4

1K, say}]
Y

< JE[Z

jeN
®)
UK <ay}
<E 17}
P
jeNNS®)
and thus, with (A.3) and using the definition (A.1) of K",

J-o 5

jeNNS®)

HK® <ay)
E[max - - - (A4

o :| -
—— .
jeN y SO |~

For a random variable U taking values in [0, 1],

0 U>a
H{U < =
sup ﬂ:{a/U OYmin <U <«
¥ €(¥min. 1) Y 1/Ymin U < aymin-
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Moreover, if U has a uniform distribution on [0, 1], then
HU < O Ymin
E[ sup M} :/ ymlhdx—{-/ axVdx
¥ €(Ymin» 1) 14 0 ®Ymin
= a(1 —10g Ymin)-
Thus, using the fact that f(j(b) has a uniform distribution on [0, 1] for
all j € N, conditional on § € S'(b),

HE <ay)
E|: sup 17] §E|:

Z®)
HK;™ <ay} N
i = ‘Sgs(b)]
7 €(Ymin, 1) 4

sup
¥ €(¥min, 1) 4

= a/(1 — 108 Ymin)-

Analogously to (A.4), we then can deduce that
[ 1K <ay)
E -4

sup

:| < a(l —log ¥min)-
ye(ymin»l) 4

jeN

Averaging over all bootstrap samples yields

A/BSh UK 1y <a)
sup

E[ s , ]Sa(l_l()g)’min)~
JEN ¥ €(Ymin»

Again using a Markov inequality,

ZIE[ sup

Hmj(@y) 2 7] = (1 — log ynin),
¥ €(Ymin, 1)

JEN
where 7;(-) is defined as in the proof of Theorem 3.1.

Because the events {Q;(y) < a} and {mj(ay) > y} are equivalent,
it follows that

ZIP’[ inf

0j(y) = a] = (1 = 10g yimin),
jeN ¥ €(Ymin, 1)

which implies that

SB[ inf )1~ logymim) <o <.
jeN ¥ €(Vmin, 1)
Using the definition of P; in (2.3),

D PIPj<al<a,

JEN

(A.5)

and thus, by the union bound,

PlminPj <a] <a,
JEN J

which completes the proof.
Proof of Theorem 3.3

As in the proofs of Theorems 3.1 and 3.2, we implicitly use a cor-
rection as in (A.1) for all p-values. Otherwise, our notation is identical
to that in the proof of theorem 1.3 of Benjamini and Yekutieli (2001).
An exception is our use of the value ¢ instead of g/m in the FDR-
controlling procedure, because we are working with adjusted p-values.
Let

pijk = P({Pi € [( — Dg. jql} and C"),

where Cl(f) is the event that if variable i were rejected, then k — 1 other
variables were rejected as well. Now, as shown in eq. (10) as well as
in eq. (28) of Benjamini and Yekutieli (2001),

14 k
50 = Y31 Yrw

ieNk=1" j=1
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With this result, we use a argument similar to that of to Benjamini and
Yekutieli (2001),

p k
EQ) = ZZ;ZI’%—ZZZ ~Pijk
ieNk=1 j=1 ieN j=1 k=j
Poyp
= ZZZ Puk-ZZl Zpt]k
ieN j= lk—j ieN j=1
L p
=272 piik (A6)
=17 ieN k=1
We denote
p
fO)=3Y > "pijk- j=L....p.

ieN k=1

Equation (A.6) can then be rewritten as

(Zf(] ) — Zfo )) (A7)

E(Q)<Z ) f(1)+Z

Jl 12

=g(——m> Zf(;)+ Zf(z)

Note that, analogously to eq. (27) of Benjamini and Yekutieli (2001),

p
D_Pik =P< {Pi€1G = Da.jgl} N (UC(’)>)
k=1

= P(P; €[ — 1q.jq))

(A.8)

and thus

14
F =Y pj=Y_P(Piel(—1q.jq)).

ieN k=1 ieN

from which it follows by (A.5) in the proof of Theorem 3.2 that

J
ST =Y PP <jg) <Jg.

j=1 ieN

Using this in (A.8), we obtain

=l |
E I
(Q)SE (J. j+]>1q+ -pq

j=1
p—1 1
B (me

which completes the proof.

(A.9)

)61 qZ;Zé

Proof of Corollary 3.1

Because the single-split method is model selection—consistent, it
must hold that P[max;eg f’j|3’| < ap] — 1 for n — oo. Using multi-
ple data splits, thlS property holds for each of the B splits, and thus
P[max;cs max, P |S SO | <] — 1, implying that, with probability
converging to 1 for n — 00, the quantile max;eg Q;(1) is bounded from
above by ;. The maximum over all j € S of the adjusted p-values,
Pi=(1
(1 — 10g Ymin)on, again with probability converging to 1 for n — oo.

[Received November 2008. Revised July 2009.]

—10g Yimin) infy, ¢ (i, 1) @j(¥), is thus bounded from above by
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