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Abstract We thank the discussants for their interesting, inspiring and thoughtful com-
ments and ideas. We provide here some responses.
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1 Non-sparse regression parameters and “double robustness” (Bradic
and Zhu 2017)

Bradic and Zhu present a fascinating newway for inference in high-dimensional linear
models but with non-sparse regression parameters, based on their own earlier work
(Zhu and Bradic 2016). They provide an insightful array of simulations, covering also
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non-sparse cases, for comparing various bootstrap schemes: this pushes the method-
ology into an interesting range of settings.

They propose a so-called CorrT test-statistics which, when scaled with
√
n, con-

verges to a Gaussian limit, even for settings with non-sparse regression parameters.
What is required instead is a corresponding sparsity of a sub-matrix of the design: if
the focus is on inference for a single regression parameter say β0

1 , the assumption is
that the regression of the first covariate X1 against all others X−1 = (X2, . . . , X p)

is sparse. Their test is related to the de-biased or de-sparsified estimator b̂1
via
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with Z1 = X1−X−1γ̂ . It is known that this asymptotic normality of b̂1 does not require
the sparsity of γ for suitable Z1 (Javanmard and Montanari 2014). A kind of double
robustness property is in play here to capture the symmetry roles between the two
residual vectors in the numerator of the above expression, especially for the Gaussian
design: if both the regression parameter and the design are sparse, the estimator is
efficient as in Geer et al. (2014); and if only one of them is sparse and the other non-
sparse, the estimator is still

√
n consistent. This is very interesting in theory and useful

in practice in the high-dimensional setting. Loosely related ideas exist in the literature
on model-misspecification (Scharfstein et al. 1999; Bang and Robins 2005, cf.).

2 Small subsets of unpenalized variables (Lockhart and Samworth 2017)

Lockhart and Samworth suggest an interesting modification of the de-biased or de-
sparsified Lasso which is computationally cheaper (as we will mention below), at the
expense of more stringent conditions on the design. The idea is motivated by leaving
some variables (in a group G) unpenalized or using “full” adjustment (for the target
of interest β0

G), as explained below: since the estimator will be non-sparse for the
covariates in G, it should be regular and with a Gaussian limit (as made rigorous by
Lockhart and Samworth). They consider for λ > 0,

β̂ = argminβ

⎛

⎝‖Y − Xβ‖22/n + λ
∑

j∈Gc

|β j |
⎞

⎠ , (1)

where G ⊂ {1, . . . , p} is a “small subset” with |G| < n (and the cardinality of the
complement |Gc| is large). The estimator is not unbiased for the true parameter β0

G ,
but the bias occurs only through the components of the true parameter β0

Gc : it is easy
to derive (and in the analysis of Lockhart and Samworth) that
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β̂G = β0
G + RGXGc (β0

Gc − β̂Gc ) + RGε, RG = (XT
G XG)−1XT

G .

Thus, for every component j ∈ G we have that

β̂ j = β0
j +

∑

k∈Gc

(RG) j,•Xk(β
0
k − β̂k) + mean zero noise term. (2)

The sum only involves indices in Gc: for |G| > 1 (or |Gc| < p − 1); this is in
contrast to the de-biased or de-sparsified Lasso which involves the bias term

∑

k �= j

Q j,k(β
0
k − β̂k)

for some Q j,k . Therefore, we say that the estimator in (1) for β0
G “fully” adjusts for

all the variables in G: the word “fully” means that the bias term involves only a sum
(as above) with indices in Gc.

As an alternative, a form like in (2) can be easily obtained by the de-biased or
de-sparsified Lasso: for j ∈ G, we consider the regularized regression of X j versus
all other covariates X− j , with unpenalized variables in G:

γ̂ = argminγ

(

‖X j − X− jγ ‖22/n + λX

∑

k∈Gc

|γk |
)

. (3)

The corresponding residual vector is denoted by Z j = X j − X− j γ̂ , and we then
proceed with the de-biased estimator b̂ as in our paper (Dezeure et al. 2017), but now
with this modified residual vector which “fully” adjusts for the variables in G. This
then leads to the form: for j ∈ G,

b̂ j = β0
j +

∑

k∈Gc

ZT
j Xk

ZT
j X j

(β0
k − β̂k) + mean zero noise term.

Zhang and Zhang (2014) proposed this as the restricted low-dimensional projection
estimator to fully de-bias for variables in G in the case where G is the index set
of Xk with high |XT

j Xk/n|. This is in analogy to (2). The advantage is that due to
the KKT conditions of the penalized regression (of X j versus X− j ) we have that
maxk∈Gc |ZT

j Xk/n| ≤ λX/2 which leads to the same bound for the estimated bias as
in the original paper (Dezeure et al. 2017). In fact, the entire theory carries over when
using the de-biasing step with the residual vector Z j in (3) which “fully” adjusts forG.
This view seems very much related to what Lockhart and Samworth suggest in their
Sect. 3 with their estimator β̂G in (1). Our strategy by simply replacing the residuals
Z j with the version in (2) requires no further proofs: everything is immediate from
the KKT conditions saying that

ZT
j Xk = 0 for k ∈ G, |ZT

j Xk/n| ≤ λX/2 for k ∈ Gc.
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From a computational viewpoint, the estimator β̂G in (1) fromLockhart and Samworth
is substantially cheaper than the de-sparsified Lasso. It requires once the Lasso for
a problem with dimension |Gc| and twice a least squares problem in dimension |G|;
in contrast, the (“fully” adjusted) de-sparsified Lasso requires |G| times a (“fully
adjusted”) Lasso in dimension |Gc| and once a Lasso in dimension p. In terms of
computational complexity, assuming that |G| < n 	 p we have: for the components
in G

estimator in (1) for components inG : O(n2|Gc| + n|G|2) = O(n2 p),

“fully” adjusted de-sparsified Lasso with residuals in (2) : O(|G|n2|Gc|+n2 p)=O(|G|n2 p).

Although the orders of magnitude do not reflect more refined computation times, we
already see that for “somewhat larger” groups, e.g., |G| 
 n, there is a substantial
gain with the estimator in (1). The price to be paid for the computational speed-up
is the much more stringent assumption about ‖Θ‖∞ in Corollary 2 in Lockhart and
Samworth: we conjecture that their condition is “not too far” from being necessary
and thus perhaps implying that the estimator is not very reliable in some scenarios.

To cope with the latter problem, Lockhart and Samworth propose to de-bias (or
de-sparsify) the estimator β̂Gc in (1) which is then used for constructing an estimator
b̂G =: b̂LoSa;G for β0

G (where the notation b̂LoSa;G is used for the proposed estimator
by Lockhart and Samworth). It would be interesting to see the (empirical) properties
of b̂LoSa;G in comparison to the standard de-biased (or de-sparsified) estimator b̂G as
considered in the original paper (Dezeure et al. 2017).

3 Higher-order asymptotic results (Chatterjee 2017)

Chatterjee points out that empirical results suggest better theoretical properties of the
bootstrap than the standard (non-bootstrapped) de-biased estimator.We do not have an
answer to this interesting remark. Of particular interest would be a theoretical result
saying that bootstrapping the entire estimator including the bias correction term, as we
propose in the original paper (Dezeure et al. 2017) leads to better performance than
(bootstrapping) the linearized estimator studied by Zhang and Cheng (2016). Such a
result would be interesting as it would not involve some studentization, BCa correction
or double bootstrapping which is typically required for higher-order accuracy in the
classical low-dimensional setting (Hall 1988, cf.).

4 Different norms, adaptivity and confidence sets for prediction (Löffler
and Nickl 2017)

Löffler and Nickl emphasize the important point that different norms are not equiv-
alent in high-dimensional spaces. Indeed, our work is focusing on the �∞-norm and
corresponding max-type statistics. We should add here that all our results (Dezeure
et al. 2017) are uniform when the o(1) is uniform in conditions (A1)–(A6). Moreover,
the o(1) in (A1) and (A4) are uniform over �0-sparse parameters in the set

Θ(s0) = {β; ‖β‖00 ≤ s0}
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under conditions (B1) and (B2). However, the �∞-norm results exclude confidence
sets for prediction or sum-type or “dense” functionals, as pointed out by Löffler and
Nickl.

The case for inference of β0
G = {β0

j ; j ∈ G} for large groups G ⊆ {1, . . . , p} is
particularly interesting in practice. When the group size is modest with |G| = o(n),
�2-norm results with optimal rates have been given by using a version of the de-biased
or de-sparsified Group Lasso (Mitra and Zhang 2016; van de Geer and Stucky 2016).
For larger groups with |G|  n, such �2-norm results are—presumably, as also noted
by Löffler and Nickl—impossible to achieve (even when dropping the request for
“honesty” with uniform convergence). However, the following is worth pointing out:
in practical applications (e.g., genomics, genetics) one is often interested in the easier
problem of testing the statistical null hypothesis H0,G : β0

G ≡ 0 versus the alternative
HA,G : β0

G �≡ 0. The max-type test statistics from the paper (Dezeure et al. 2017)
should exhibit good power when the alternative is sparse with only a few nonzero
coefficients. When the alternative is (“modestly”) dense, one would think that a sum-
type statistics should perform better in terms of power. This line of thinking might
be misleading though when the covariates exhibit fairly high correlation (or small
subsets of covariates are nearly linearly dependent) as is often the case in many high-
dimensional real datasets. Then, even when β0 is dense but with highly correlated
variables, a max-type statistics might work quite well for detecting the alternative.
Thus, the notion of a “sparse” or “dense” alternative by considering the structure
of β0 only is too short-sighted: the “correlation structure” among the covariates is
relevant as well. We are not aware of a result which addresses this issue.

Löffler and Nickl point out fascinating facts for the ambitious task of construct-
ing honest confidence sets in high-dimensional settings, namely: the difficulty for
problems like prediction, the distinction whether the error variance is known or not,
and their positive and encouraging results on matrix inference problems. These are
important benchmarks about limitations and possibilities for high-dimensional infer-
ence.

5 Simplicity, ranking, and mean squared error (Liu and Yu 2017)

Liu and Yu raise various points, often in connection with issues about practical value
and simplicity.

We agree that their proposals for bootstrapping the Lasso or LassoOLS (Liu and Yu
2013) are simpler and computationally much more efficient than the de-biased Lasso,
with the disadvantage that coverage is not guaranteed for small and large nonzero
coefficients, see their Figures 3 and S1 in the electronic supplementary material (Liu
and Yu 2017). The empirical study in (Dezeure et al. 2015) confirms substantial dis-
advantage in coverage probability for directly bootstrapping the Lasso or LassoOLS;
and the latter study also shows that other computationally efficient methods such as
multi-sample splitting (Meinshausen et al. 2009) or bias-corrected Ridge estimation
(Bühlmann 2013) perform comparatively well and robustly in terms of coverage, at
the price of being less statistically efficient. We note that the LassoOLS does cor-
rect the bias within the selected model, but unlike de-biasing methods studied in
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the paper (Dezeure et al. 2017), it does not remove the biased due to model selec-
tion error. We emphasize also that the inaccuracy for coverage of the bootstrapped
Lasso or LassoOLS is clearly present for large non-zero coefficients, and thus, such a
super-efficiency is in our view a relevant issue: if it were only for the small non-zero
coefficients, we would agree with Liu and Yu that this wouldn’t be a major obstacle
in practice.

Liu and Yu also mention other metrics than p values. It is established statistical
practice that confidence intervals aremore informative than p values since they explic-
itly report on effect sizes (with corresponding uncertainties). In practice though one
does not want to display, e.g., O(104) confidence intervals, see also (Benjamini and
Yekutieli 2005). Ranking, as proposed by Liu and Yu, is certainly a very important
and informative metrics; the MSE is useful as well but one cannot easily construct the
numbers from a given data set (i.e., we would need to estimate the MSE which would
be cumbersome).

Regarding the MSE, the de-biased Lasso should be viewed as raw estimators with

b̂ j ≈ N (β j , σ
2
j /n) ( j = 1, . . . , p),

that is, a correlated approximate Gaussian sequence model. This enables many pos-
sible downstream options for further use, and for loss functions like the MSE the
Lasso should be compared with the thresholded version of the de-biased Lasso. The
advantage of the thresholded de-biased Lasso is that all large coefficients, meaning
> C0λ 
 √

log(p)/n, are retained while the zeroes are correctly removed, see The-
orem 3 in (Zhang and Zhang 2014). On the other hand, the (thresholded) Lasso with
or without OLS is not guaranteed to retain all coefficients larger than C0λ. In fact, in
the worst case scenario, the Lasso will presumably zero out a large coefficient of the
order

√
s0λ. The MSE properties of a thresholded de-biased Lasso should be much

improved in comparison with the non-thresholded version shown in the numerical
experiments from Liu and Yu.

6 Simultaneous versus post-selection inference (Chatterjee 2017)

Chatterjee raises an interesting issue about post-selection inference, thereby pointing
to the “practitioners point of view”.

In our own view, the simultaneous inference is the “cleanest” approach, although
perhaps sometimes too conservative (but less conservative than guarding against all
sub-models as inBerk et al. (2013), see below).Whenhaving adopted amodel, such as a
linear or a logistic regressionmodelwith all the covariates, simultaneous inference over
all the (e.g., regression) parameters is clean and has a solid confirmatory interpretation.
Building upon confidence intervals for individual parameters in the traditional sense,
such simultaneous inference is also relatively easy to explain to practitioners.

Post-selection inference techniques are interesting since they address to a certain
extent the issues when practitioners have chosen certain sub-models or scientific
hypotheses based on data, and the same data is used again for inference. A major
problem seems to us, especially in the high-dimensional context, that a chosen ran-

123



Rejoinder on: High-dimensional simultaneous inference with… 757

dom sub-model or hypothesis might look very different when the data would have
been different (e.g., other realizations from the same true underlying data generating
probability distribution). A prime example is the Lasso in a linear model: in the high-
dimensional scenario, a data-chosen sub-model would look substantially different for
different data realizations (and the entire regularization path could look very differ-
ent). This is particularly true in presence of moderately large number of weak signals
paired with significantly correlated covariates. When the Lasso-estimated sub-models
will vary substantially, such post-selection inference would produce results which are
not replicable when having other new data from the same underlying (probability)
mechanism. Of course, more general post-selection inference techniques can address
this instability issue of an estimated sub-model: Berk et al. (2013) protect against
all possible sub-models by paying a price to be very conservative—and in fact more
conservative than the simultaneous inference in the full model.

Feasibility of statistical inference for individual regression coefficients is question-
able in presence of highly correlated covariates and corresponding selected models
based on individual variable inclusion are instable. This selection instability in turn is
unpleasant in the scientific interpretation of post-selection inference. For example, if
the j th covariate is measuring the expression of a gene j , assume that the regression
coefficient β0

1 is “fairly large” and β0
2 = 0, and that X1 and X2 are highly corre-

lated. Then, a Lasso-estimated sub-model would typically either include X1 or X2;
and if the sub-model is selected where X1 is missing, we would miss the true rel-
evant gene 1 in the stage of post-selection inference. This would not happen, when
considering groups of variables simultaneously: there, we typically would find that
the group of covariates {X1, X2} is significant. For simultaneous inference, Mitra and
Zhang (2016) and van de Geer and Stucky (2016) consider group inference and Man-
dozzi and Bühlmann (2016a, b) advocate a hierarchical group inference procedure. For
post-selection inference, Lee et al. (2016) use the instable Lasso as model selector:
post-selection inference after a stable model selection based on group of variables
inclusion seems to be an open topic.
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