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Given data sampled from a number of variables, one is often interested in the underlying causal
relationships in the form of a directed acyclic graph. In the general case, without interventions on some
of the variables it is only possible to identify the graph up to its Markov equivalence class. However, in
some situations one can find the true causal graph just from observational data, for example, in structural
equation models with additive noise and nonlinear edge functions. Most current methods for achieving
this rely on nonparametric independence tests. One of the problems there is that the null hypothesis is
independence, which is what one would like to get evidence for. We take a different approach in our work
by using a penalized likelihood as a score for model selection. This is practically feasible in many settings
and has the advantage of yielding a natural ranking of the candidate models. When making smoothness
assumptions on the probability density space, we prove consistency of the penalized maximum likelihood
estimator. We also present empirical results for simulated scenarios and real two-dimensional data sets
(cause–effect pairs) where we obtain similar results as other state-of-the-art methods.

Keywords: causal inference; structure learning; hidden variables; latent variables; path diagrams;
structural equation models

1. Introduction

Statistical causal inference is an important but relatively new field. Traditionally, most statis-
tical statements and assertions are associational (X and Y are correlated), rather than causal
(changes in X cause changes in Y ). While the former are statements about the joint distribution,
the latter are about the underlying causal mechanisms. In practice, the relevant question often
is whether variable X has a causal effect1 on variable Y, possibly mediated by some other vari-
ables Z1, . . . , Zd in the causal network. In general, the only way to completely identify the causal
model is by performing experiments (interventions). However, it is often possible to at least
narrow down the space of candidate models by using only observational data.[2,3] There are
many situations where one is dependent on purely observational data – either because performing
experiments is infeasible (e.g. astronomical data), unethical (e.g. clinical cancer studies), or both
(e.g. economical data). Some real-life examples include identifying gene expression networks
[4,5] and analysing fMRI data from the human brain.[6]

When modelling causal networks between some given variables, structural equation models
(SEMs) are used frequently, where each variable is expressed as a function of some other vari-
ables (its causes) as well as some noise. Thus, the model is determined by the cause–effect
structure (in the form of a directed graph over the variables), the functional dependencies, and
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472 C. Nowzohour and P. Bühlmann

the joint distribution of the noise terms. Assumptions typically made include that the underlying
causal model is acyclic (i.e. there are no feedback loops) and that the noise terms are independent
(i.e. there are no unobserved variables). We furthermore assume that the noise is additive, that
is, the effect variable minus some noise term is a deterministic function of the cause variables.
Although quite restrictive, this is a common assumption in many other settings (e.g. regression)
and allows straightforward estimation. The standard case then is to parameterize the model by
making the functional dependencies linear and the noise Gaussian.2 In this case the space of
candidate models (in the form of directed acyclic graphs) clusters in equivalence classes, which
prohibit full identification – every model in a given equivalence class can induce the same joint
distribution over the variables. In a sense, this is quite exceptional, however. It has been shown
that as soon as one departs from the linearity or the Gaussianity assumptions the model becomes
fully identifiable.3 [8–12] We are thus interested in the nonparametric case, where either the
functional dependencies are nonlinear or the noise terms are non-Gaussian (or both). An infer-
ence procedure for this case based on nonparametric independence tests has been suggested by
Mooij et al.[13] Their method is using the fact that when fitting the wrong model the noise terms
will not be independent. There are a few problems with this approach, however. First, the null
hypothesis of the tests employed is independence, which is what one would like to show, and
statistical hypothesis testing only allows to reject such hypotheses. Second, because of the many
tests involved there is a multiple testing problem. Third, nonparametric independence testing
among many variables is statistically hard, and the tests tend to be computationally intensive.

We take a different approach in the form of a score-based method, which is consistent, fast, and
easily adaptable to greedy methods for large problems. Score-based methods are widely used for
fitting Gaussian SEMs [14] or discrete Bayesian networks.[15] Maximum a posteriori estimation
was used in the setting of nonlinear models with Gaussian noise by Imoto et al.[16] Two other
score-based methods have recently been proposed: for the parametric setting of Gaussian and
linear models with same error variances [9] and for linear models with non-Gaussian noise.[17]
Most closely related to this paper is an approach from Bühlmann et al.[18] They consider a
semi-parametric SEM with additive, nonlinear functions in the parental variables and additive
Gaussian noise, and they prove consistency and present an algorithm for cases with potentially
many variables. In contrast, we consider here a model with a nonparametric specification of
the error distribution (while the focus is on cases with few variables only). Thus, our model
is more general but harder to estimate from data. We propose a penalized maximum likelihood
method and prove its asymptotic consistency for finding the true underlying graph provided some
technical assumptions about the class of probability densities hold. Our nonparametric setting
also includes the well-known LiNGAM model [11] as a special case, and thus we provide here a
score-based approach for LiNGAM. Independent work by Kpotufe et al. [19] considers a similar
problem as ours: however, while they only treat the case with two variables, we allow for more
realistic multivariate settings.

This paper is organized as follows: In Section 2 we review the basic notation and definitions we
will use later on before describing our method. In Section 3 we present our main theorem and the
assumptions for proving consistency in the large sample limit. In Section 4 we discuss simulation
results showing that the method works in practice under controlled conditions. In Section 5, we
test our method on some real-world data sets and compare it to other causal inference methods.

2. The method

Suppose data are sampled from real-valued random variables X1, . . . , Xd , which have some
causal structure. We are interested in finding this causal structure (in the form of a directed acyclic
graph) just by using observational data. Before we describe our method and the assumptions it
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Statistics 473

rests on, we will give definitions of some of the basic terms used in this paper (some of which
can be found in for example, Lauritzen,[20] Pearl,[1] Triebel.[21]

2.1. Notation and definitions

Given a set of vertices V = {1, . . . , d} and edges E ⊂ V × V , we define the d-dimensional graph
G as the ordered pair (V , E). If E is asymmetric, G is called a directed graph. Given two vertices
α, β ∈ V , a directed path of length n from α to β is a sequence of vertices α = v0, . . . , vn = β,
s.t. (vi, vi+1) ∈ E for all i = 0, . . . , n − 1. If G is directed and for all v ∈ V there is no path of
length n ≥ 1 from v to itself, then G is called a directed acyclic graph (DAG). If V � ⊆ V and
E � ⊆ E |V �×V � , then G� = (V �, E �) is called a subgraph of G, and we write G� ⊆ G. If E � ⊂ E |V �×V � ,
we call G� a proper subgraph of G and write G� ⊂ G. In a graph G, we define the parents of
a vertex v as the set paG(v) := {u ∈ V : (u, v) ∈ E}. The structural Hamming distance (SHD)
between two graphs G, G� is defined as the number of single edge operations (edge additions,
deletions, reversals) necessary to transform G into G�.

A joint density p over X1, . . . , Xd is Markov with respect to a DAG D, if it factorizes along D:

p(x1, . . . , xd) =
d�

k=1

p(xk|{xl}l∈paD(k)). (1)

A DAG D is causally minimal with respect to a joint density p, if �D� ⊂ D s.t. p is Markov with
respect to D�.

An SEM M = {fk , p�k }k=1,...,d is a set of functions fk and densities p�k , specifying each variable
Xk as a function of some of the other variables and a noise term �k (independent of the other noise
terms) with density p�k . The model M induces a DAG D, where a directed edge (k, l) is added if
the function for Xl directly depends on Xk . We will assume in this paper, that M is recursive, i.e.
its graph D is actually a DAG. We can write the model equations as

Xk = fk({Xl}l∈paD(k)), �k), k = 1, . . . d.

If the functions are additive in the noise, i.e. if

Xk = fk({Xl}l∈paD(k))) + �k , k = 1, . . . , d, (2)

the model is called an additive noise model (ANM). We call M := (F ,P�) a functional model
class4 of dimension d if F ⊂ C0(Rd−1) is a class of functions containing the possible edge
functions fk and P� is a class of univariate probability densities containing the possible error
densities p�k .

The joint density of an ANM is of the form (1) and thus Markov to its DAG D. Vice versa we
say that D induces a class of joint densities P on X1, . . . , Xd from a functional model class M,
where

P =
�

d�

k=1

pk(xk − fk({xl}l∈paD(k))) : fk ∈ F , pk ∈ P�

�
. (3)

Thus, P contains all joint densities that can be generated by ANMs from class M with DAG
D. The class M is said to be identifiable, if the intersection of any two density classes P1,P2

induced by distinct graphs D1, D2 only contains densities for which there exists a unique graph
that is causally minimal. We assume throughout the paper that the data-generating process is an
ANM with associated causally minimal DAG D0 with induced density class P0 and true joint
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474 C. Nowzohour and P. Bühlmann

density p0 ∈ P0. Causal minimality here essentially means that every edge in D creates a depen-
dency in the joint distribution (i.e. there is an edge from Xl to Xk only if fk is not constant in xl).

For the density class, we often consider the weighted Sobolev space of functions W s
r (Rn, �·	β)

which is defined as follows:

W s
r (R

n, �·	β) := {f ∈ Lr(Rn) : Dα(f · �·	β) ∈ Lr(Rn) ∀|α| ≤ s},

where �x	β = (1 + �x�2)β/2 is a polynomial weighting function parameterized by β ∈ R, Dα is
the partial derivative operator according to the multi-index α, and r, s are integers at least 1. Note
that for β = 0 this is the usual Sobolev space, while for β > 0 this is more restrictive (as the tails
get bigger weights), and for β < 0 it is less restrictive. We will mostly be interested in the β < 0
case.

2.2. Penalized maximum likelihood estimation

We now describe our method to learn the true causal structure from data. Suppose we measure d
variables, and we have n i.i.d. samples {xj

k} with j = 1, . . . , n and k = 1, . . . , d. Let D1, . . . , DN

be the candidate DAGs under consideration5 and P1, . . . ,PN their induced density classes for
some model class M. If M is identifiable, we aim to infer the true DAG D0 by finding the
density class P0 that contains the true joint density p0 (if there is more than one such class, we
choose the one corresponding to the smallest graph). Of course, we do not know p0 – instead
we estimate it by computing ‘best representatives’ p̂i

n from each class P i. These are chosen via
nonparametric maximum likelihood:

p̂i
n = arg max

p∈P i

n�

j=1

log p(xj
1, . . . , xj

d).

Then, each model is scored with a penalized log-likelihood:

Si
n = 1

n

n�

j=1

log p̂i
n(x

j
1, . . . , xj

d) − #(edges)i · an, (4)

where an controls the strength of the penalty. Taking the maximum over these scores, we get the
estimator

D̂n = DÎn
, where În = arg max

i=1,...,N
Si

n.

Hence, the estimated DAG is DÎ . We will show in Section 3 that this procedure is consistent for
an proportional to 1/ log n and that therefore D̂n = D0 in the large sample limit.

The question arises how to find the maximum likelihood estimators p̂i
n in each class in this

nonparametric setting. We present here an exemplary procedure that has proved useful in prac-
tice. To estimate the edge functions of the SEM, we employ a nonparametric regression method.
The error densities are then inferred from the residuals using a density estimation method. The
estimated joint density is finally given by the product of the residual densities, in accordance
with Equation (3).

This gives the following three-step procedure for each DAG Di:

(1) For each node k estimate the residuals �̂k by nonparametrically regressing Xk on {Xl}l∈paDi(k)
.

If paDi(k) = ∅, set �̂k = xk .
(2) For each node k estimate the residual densities p̂�k from the estimated residuals �̂k .
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Statistics 475

(3) Compute the penalized likelihood score

Si
n = 1

n

n�

j=1

d�

k=1

log p̂�k (�̂
j
k) − #(edges)i · an.

Of course, an exhaustive search over all DAGs is only feasible for small values of d, since
the number of DAGs grows super-exponentially with the number of vertices6 and nonparametric
regression in d dimensions is ill-posed in general without making structural constraints, due to
the curse of dimensionality.7 The methods used in steps 1 and 2 should be chosen depending on
the model class M. Examples are (generalized) additive model (GAM) regression for step 1 and
kernel density estimation for step 2.

As an illustration we look at the two-dimensional case, where there are only two variables X1

and X2. There are three DAGs inducing the following models:

D1 :X1 −→ X2

X1 = �1

X2 = f (X1) + �2

p1(x1, x2) = pX1(x) · pX2|X1(x2|x1) = p�1(x1) · p�2(x2 − f (x1))

D2 :X1 ←− X2

X1 = g(X2) + �1

X2 = �2

p2(x1, x2) = pX1|X2(x1|x2) · pX2(x2) = p�1(x1 − g(x2)) · p�2(x2)

D3 :X1 ⊥⊥ X2

X1 = �1

X2 = �2

p3(x1, x2) = pX1(x1) · pX2(x2) = p�1(x1) · p�2(x2).

We do steps 1, 2, and 3 as described above and choose the model with the highest (log-)likelihood
penalized likelihood score.

Comparing this score-based approach with independence-test-based methods, the main dif-
ference occurs at step 2, where we estimate the residual densities instead of testing their
independence. In terms of complexity, we swap one d-dimensional independence test against
d univariate density estimations. Simulations show that this is faster by a factor on the order of
100 with current implementations. However, even though we do not test residual independence
directly, it is still the discriminatory property by which to identify the true model. By construct-
ing the densities according to Equation (3), we enforce the error terms to be independent in the
estimated joint density. If they are not actually, the considered model will obtain a poor score.
Thus, we are searching for the best fitting densities where the errors are independent.

3. Theoretical results

We now show that our method is consistent, that is, that it will identify the true underlying DAG
given enough samples. In the following PD denotes the induced density class of DAG D. We
make the following assumptions:
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476 C. Nowzohour and P. Bühlmann

(AS1) Identifiability: The data {xj
k}k=1,...,d

j=1,...,n
are i.i.d. realizations (over j = 1, . . . , n) of an iden-

tifiable SEM with induced d-dimensional DAG D0. In particular, the SEM can be the
ANM (2) with nonlinear edge functions fk or non-Gaussian noise variables8 �k for all
k = 1, . . . , d.[10, Lemma 1] There are no hidden variables, that is, the noise terms are
jointly independent.

(AS2) Causal minimality: There is no proper subgraph D� of D0, s.t. p0 is Markov with
respect to D�.

(AS3) Smoothness of log-densities: For all DAGs D the log-densities of PD (restricted to their
respective support) are elements of a bounded weighted Sobolev space. That is, ∃r ≥ 1,
s > d, β < 0, C > 0 s.t.

�

|α|≤s

�Dα(�·	β · 1{p > 0} · log p)�r < C ∀p ∈ PD,

where � · �r is the usual Lr-norm.
(AS4) Moment condition for densities: For all DAGs D, we have

∃γ > s − d/r s.t. �p · �·	γ−β�r < ∞ ∀p ∈ PD,

where r, s, d, and β are determined by (AS3).
(AS5) Uniformly bounded variance of log-densities: For all DAGs D, we have

∀p0 ∈ PD there exists K > 0 s.t. sup
p∈PD

varp0(log p(X1, . . . , Xd)) < K.

(AS6) Closedness of density classes: For all DAGs D, the induced density class PD is a closed
set, with the topology given by the Kullback–Leibler (KL) divergence DKL(p(x)�q(x)) =�

p(x) log p(x)

q(x)
dx.

The first two assumptions concern the general model set-up and ensure identifiability (i.e.
non-overlapping induced density classes). (AS1) requires the data to come from an identi-
fiable ANM due to nonlinearity or non-Gaussianity, as in [8]. (AS2) ensures there are no
‘superfluous’ edges in the true DAG, that is, the true model is the most parsimonious fitting
the data.

The last four assumptions are technical and used to prove consistency of the penalized max-
imum likelihood estimator. (AS3) essentially requires the log-densities to be smooth. (AS4)
requires the densities to have some (at least fractional) finite moments. (AS5) requires the
log-densities, for every underlying density p0, to have uniformly bounded second moments.
Finally, (AS6) guarantees the existence of the maximizers of the likelihood and the nega-
tive information entropy in each class. Furthermore, it is needed to ensure the true density
p0 has positive KL distance from all wrong density classes. Note that the latter statement
alone would suffice to show consistency, since all statements can be written in terms of
the supremums of likelihood and negative entropy, instead of their actual maximizers. How-
ever, for better comprehensibility we chose the present formulation with the slightly stronger
assumption.

Making these assumptions, the penalized maximum likelihood estimator is consistent. We
show this by proving that the probability of the true model obtaining a smaller score than any
other model vanishes in the large sample limit.
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Theorem 1 Assume (AS1)–(AS6). Let Si
n be the penalized likelihood score of DAG Di,

given by

Si
n = 1

n

n�

j=1

log p̂i
n(x

j
1, . . . , xj

d) − #(edges)i · an,

where #(edges)i is the number of edges in DAG Di, and an = 1/ log n. Denote by i0 the index of
the true DAG D0 = Di0 . Then, we have

P(Si0
n ≤ Si

n) → 0 as n → ∞ ∀i �= i0.

The proof relies on entropy methods and is presented in the appendix. In practice the 1/ log n
penalty rate might be too large. We used an = 1/

√
n for some simulations in Section 4 (where the

noise is Gaussian), which lead to reasonably good performance for finite sample size n = 300.
Moreover, under stronger assumptions, we have the following result.

Remark 1 When replacing (AS5) with the stronger assumption of sub-Exponential tails of
log p(X1, . . . , Xd), we can improve the penalty rate an in Theorem 1 from 1/ log n to cn−1/(2+d/s),
for some c > 0 sufficiently large.

4. Numerical results

In this section we present simulation results to show that our method works under controlled
conditions. In each case, the data-generating process is an ANM with acyclic graph structure. We
first reproduce some results from an earlier paper by Hoyer et al.,[8] where the model involves
just two variables and is parameterized by two parameters, controlling linearity and Gaussianity,
respectively. Then, we extend this setup to a slightly more general class of models. Finally, we
look at cases with more than two variables.

In our implementation, we use GAM regression [22] or local polynomial regression (LOESS,
see Cleveland [23]) for step 1 and logspline density estimation (see Kooperberg et al. [24])
or kernel density estimation for step 2. For models with more than two variables, penalization
becomes important. We used a factor of an = 1/

√
n instead of the very severe 1/ log n. This

can be justified since in the relevant simulations the noise is Gaussian and the log-densities can
be assumed to be sub-Exponential. In this case, the faster rate can be used (see Remark 1). All
computations were carried out in the statistical computing language R (using packages mgcv and
logspline) and the code is available on request from the authors.

4.1. Identifiability depending on Linearity and Gaussianity

Hoyer et al. [8] illustrate their method with a two-dimensional ANM of the form

X1 = �1,

X2 = X1 + bX 3
1 + �2,

with the parameter b ranging from −1 to 1, thus controlling the linearity of the model. The noise
terms �1, �2 are transformed Normal random variables:

�k = sgn(νk) · |νk|q, νk
iid∼ N (0, 1),

where the parameter q ranges from 0.5 to 2 and thus controls Gaussianity. The true direction
M1 : X1 → X2 cannot be identified with traditional methods (e.g. the PC algorithm), since the
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478 C. Nowzohour and P. Bühlmann

(a) (b) (c)

Figure 1. False decision rates for a two-dimensional ANM with two parameters b and q, controlling linearity and
Gaussianity (n = 300). For b = 0 the model is linear, for q = 1 the noise is Gaussian: (a) Full b × q grid. (b) b fixed. (c)
q fixed.

backwards model M2 : X1 ← X2 entails precisely the same conditional independence relations
(none) and thus belongs to the same Markov equivalence class. If b = 0 and q = 1 there exists
a backwards model entailing the same joint density. As soon as we move away from this point,
however, the model becomes identifiable.[8] We confirm this numerically, showing our method
performs as expected in this setting.

We discretize the parameter space (b, q) ∈ [−1, 1] × [0.5, 2], and for each grid point we repeat
the simulation 1000 times, with n = 300 samples per trial. We then count the number of times
the backwards model gets wrongly chosen by the method,9 and this false decision rate serves as
our measure of quality of the method. As can be seen in Figure 1, the false decision rate peaks
around (b, q) = (0, 1) with around 50% wrong decisions, corresponding to random guessing.
Away from this region it quickly drops to zero. In this setting the regressions were done using
LOESS and the density estimations using logsplines.

4.2. Random edge functions

We now generalize the set-up of the scenario from Section 4.1 in allowing a bigger function class
for the edge function. Specifically, we randomly generate functions by sampling a random path
from a Wiener process and smoothing it with cubic splines.10 To measure their nonlinearity, we
use the normalized L2-difference between the function and its best linear approximation on the
interval [−1, 1], as described in [25]. A number of randomly generated functions with different
nonlinearity values are shown in Figure 2. We again choose a uniform grid of nonlinearity values
(in the interval [0, 0.4]) and, for each grid point, generate 100 random functions. With each
function we perform 100 simulations and average the results. The noise is standard Gaussian
in this setting. In Figure 2, we see the results for a small sample (n = 300) and a large sample
(n = 1500) case. The findings are analogous to the simple cubic model – the false decision rate
decreases with nonlinearity of the edge function and sample size. Again, the regressions were
done using LOESS and the density estimations using logsplines.

4.3. Larger networks and thresholding

In a practical situation, the reliability of any method invariably depends on whether its assump-
tions are met, as well as some other factors. In our case this would include the nonlinearity of the
edge functions, the non-Gaussianity of the noise, the sample size, and the number of nodes. It
would be desirable to have some criterion indicating there is insufficient information to make a
decision. While this is hard to make concrete, a good first heuristic seems to be the separation of
the best-scoring model from the rest. We concretely look at the ratio of the smallest (�1) and the
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largest (�2) score difference (see Figure 3(b)). If this is smaller than some threshold t, we make
no decision (no selection of a model).

The effect of this can be seen in Figure 3(a). Starting from a full DAG with three nodes as
the ground truth, we randomly generate 100 different sets of nonlinear11 edge functions, and for
each set of edge functions we generate 100 data sets with standard Gaussian noise of sample
size n = 300. With each data set, we run an exhaustive search over all 25 candidate models and,
if making a decision after thresholding, compute the SHD between the best-scoring DAG and
the ground truth. Comparing the thresholds t = 0 and t = 0.01, the false decision rate falls from
3.9% to 2.4% while in 3.1% of the cases no decision is made.

We also look at two simulation settings suggested in [10], where the graph consists of four
nodes and the edge functions are nonlinear but parametrized by four and five parameters, respec-
tively. In both cases, nonlinear1 and nonlinear2, 100 sets of parameters are drawn from
a uniform distribution and then data (with a sample size of n = 400) is generated. Our method
identifies the correct DAG in 96/97 out of the 100 cases for nonlinear1/2 (in the other cases,
there is one additional edge). This certainly improves upon the results reported in [10] (86 correct
decision in both cases).

0.0 0.1 0.2 0.3 0.4
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Figure 2. (a) False decision rates with randomly sampled edge functions and Gaussian noise decreases with
nonlinearity of the functions. (b) Examples of randomly generated functions, where parameter s controls nonlinearity.

t=0 t=0.01

(a) (b)

No decision
SHD=3
SHD=2
SHD=1
Correct DAG

S
co

re

1

2

Figure 3. (a) SHD between the best-scoring DAG and the ground truth for a 3-node simulation with (t = 0.01)
and without (t = 0) thresholding. (b) Illustration of thresholding for a single simulation run. Let s1, . . . , sD be the
(increasingly) ordered scores. Then �1 = s1/s2 and �2 = s1/sN .
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480 C. Nowzohour and P. Bühlmann

Table 1. Success rates of different causal inference methods on cause–effect pairs at a decision rate of 100%.

Method SCL AN Lingam PNL IGCI GPI

Accuracy 66% 63% 58% 68% 75% 70%

Notes: SCL, Score-based Causal Learning (our method); AN, Additive Noise with independence testing; PNL. Post-Nonlinear; IGCI,
Information-Geometric Causal Inference; GPI, Gaussian Process Inference.
All values except SCL taken from [28]. All data sets were subsampled three times (if n > 500), and the results were averaged.

In all of these multivariate settings, we used GAM for regression and logsplines for density
estimation.

5. Real data

To determine the performance on real-world data sets, we apply our method to so-called cause–
effect pairs. These are bivariate data sets where the true causal direction is known. An example
would be the altitude and the average temperature of weather stations. Mooji and Janzing [26]
describe eight such pairs and compare several methods that were submitted as part of the
Causality Pot-Luck Challenge. Our method identifies seven out of the eight pairs correctly,12

thus beating all other compared methods except,[27] who take into account post-nonlinear
additive noise.

We next consider the extended collection of cause–effect pairs, which can be found at
http://webdav.tuebingen.mpg.de/cause-effect. This currently comprises 86 data sets, 81 of which
are bivariate. Using our method on these 81 bivariate data sets, we identify the true model in 66%
of the cases.13 In [28] a subset of these data sets were used to compare various causal inference
methods. Running our method on those data sets, it compares well with the other methods (see
Table 1), being slightly better than independence testing (AN) and outperforming the Lingam
method.

In both of these settings, we used LOESS and kernel density estimation.

6. Conclusions

We presented a new fully nonparametric likelihood score-based method for causal inference in
nonlinear or non-Gaussian ANMs. We proved consistency of the penalized maximum likelihood
estimator for finding the correct model. We showed via simulation studies that our method works
well in practice when the ground truth is an ANM with sufficiently nonlinear edge functions or
non-Gaussian error terms. Our method compares favourably to other causal inference procedures
on both simulated and real-world data.

As a major open challenge, the current approach of exhaustively searching through the whole
model space becomes computationally infeasible for more than a handful of variables. Since
our method is score-based and the scoring criterion is local (i.e. decomposable), it is straightfor-
ward to implement a greedy algorithm although there will be no guarantee for finding a global
optimum.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes

1. X has a causal effect on Y if manipulating X changes the distribution of Y, see Pearl.[1]
2. In fact, this is how SEMs where first introduced and continue to be used today.[7]
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3. Except for a set of degenerate cases of measure zero.
4. Here, we implicitly assume that the model has additive noise.
5. For example, all DAGs with d nodes.
6. The first few values of the number of DAGs N(d) with d nodes are N(2) = 3, N(3) = 25, N(4) = 543, N(5) =

29,281, N(6) = 3,781,503, for example.
7. The latter problem can be dealt with in certain cases, for example, additive models, where the edge functions are

additive in the parental variables.
8. Excluding a set of exceptions of measure zero.[8, Theorem 1].
9. That is, when the likelihood score of the backwards model is lower than that of the forwards model.

10. A Wiener path (random normal increments) is sampled on a 1000 point grid spanning [−1, 1] and the resulting
vector rescaled to an interval of length 2 and consequently smoothed using cubic splines. The resulting functions
are linear outside [−1, 1] and nonlinear inside.

11. With nonlinearity values in [0.39, 0.4].
12. This corresponds to a p-value of .0352 under the random guessing null hypothesis.
13. This corresponds to a p-value of .005 under the random guessing null hypothesis.
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Appendix: Consistency Proof

The proof heavily relies on entropy methods and empirical process theory. For a good overview of the necessary material,
we refer to [29,30]. For an overview of Sobolov and related function spaces, we refer to [21].

Throughout this section, we will adopt the following notation for taking expectations of some random variable f with
respect to a distribution Q (following van de Geer [29]):

Qf :=
�

f dQ.

In particular, this means we will write expectations and means as

Pf = E[f (X )],

Pnf = 1

n

n�

j=1

f (X j),

where P is the true distribution with density p0, f : Rd → R is some function, X is a vector of random variables (one cor-
responding to each node) with distribution P, {X j}j=1,...,n are independent copies of X, and Pn is the empirical distribution
(placing weight 1/n on each X j).

With this notation, we can write the maximum likelihood estimator p̂i
n and the entropy minimizer pi in class Pi (which

exist by assumption (AS6) but need not be unique) as

p̂i
n = arg maxp∈P i Pn log p, (A1)

pi = arg maxp∈P i P log p. (A2)

Note that the true density p0 minimizes the information entropy over the complete density space
�N

i=1 P i since the
Kullback–Leiber divergence P log(p0/p) is positive for all densities p �= p0.

One of the building blocks of the proof of Theorem 1 is a uniform law of large numbers (ULLN) for the classes of
log-densities:

sup
p∈P i

|(Pn − P) log p| P−→ 0 as n → ∞ ∀i.

To show this, an entropy argument is used. We first define the bracketing entropy of a function space. Let G be a set of
functions from Rd to R. Two functions gL, gU : Rd → R (not necessarily in G) form an �-bracket for some g ∈ G, if
gL ≤ g ≤ gU and �gL − gU �1,μ < �, where � · �1,μ is the weighted L1-norm, that is, �f �1,μ =

�
|f (x)μ(x)| dx. Suppose

{gL
i , gU

i }i=1,...,N[] is the smallest set s.t. ∀g ∈ G ∃i s.t. gL
i , gU

i form an �-bracket for g, where N[] denotes the number of
such pairs. Then, H[](�,G, � · �1,μ) := log N[] is called the bracketing entropy of G.

The following result connects bracketing entropy H[](�,G, � · �1,p0 ) with respect to the L1-norm weighted with

the true density p0 and the uniform convergence of the empirical process (Pn − P)g. Note that here and through-
out this section we use the notation ‘ a(�) � b(�)’ as shorthand for ‘ a(�) ≤ cb(�) ∀� > 0 for some constant c not
depending on �’.
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Lemma A.1 Suppose that:

(i) ∃0 ≤ α < 1 s.t. H[](�,G, � · �1,p0 ) � �−α ∀� > 0 and
(ii) ∃K s.t. var(g(X1, . . . , Xd )) < K ∀g ∈ G

Then, G satisfies the ULLN:

P
�

sup
g∈G

|(Pn − P)g| > δn

�
→ 0 as n → ∞,

where δn = c/ log n for some c > 0.

Proof We first show that it suffices to look at the supremum over the bracketing functions. Let g ∈ G and gL
i , gU

i be its
δn-brackets. We then have

(Pn − P)g < (Pn − P)gU
i + δn,

and > (Pn − P)gL
i − δn.

So we have

|(Pn − P)g| < max
i=1,...,N[]

(|(Pn − P)gL
i |, |(Pn − P)gU

i |) + δn

and hence

sup
g∈G

|(Pn − P)g| < max
g∈{gL

i ,gU
i }i

|(Pn − P)g| + δn.

Now

P
�

sup
g∈G

|(Pn − P)g| > 2δn

�
≤ P

�
max

g∈{gL
i ,gU

i }i

|(Pn − P)g| > δn

�

≤ 2N[](δn) max
g∈{gL

i ,gU
i }i

P(|(Pn − P)g| > δn)

� exp(δ−α
n )

K2

nδ2
n

, (A3)

where the last line follows from Chebyshev’s inequality. Substituting for δn gives

P(. . .) � log2 n · exp(c−α logα n − log n) −→ 0 as n → ∞.

�

Note that if we replace condition (ii) with the assumption that g(X1, . . . , Xd ) are sub-Exponential (as in Remark 1),
we apply the sub-Exponential tail bound (see, e.g. [31, Lemma 14.9]) instead of Chebyshev’s inequality and obtain
exp(δ−α

n − nδ2
n/const.) instead of Equation (A3), which converges to zero for δn = cn−1/(2+α), for c > 0 sufficiently

large.
Lemma A.1 shows that a sufficient condition for the ULLN is finite bracketing entropy. To this end, we make use of

the following result:

Lemma A.2 (Nickl and Pötscher [32, Theorem 1]) Suppose G is a (non-empty) bounded subset of the weighted Sobolev
space Ws

p(Rd , �x	β ) for some β < 0. Suppose ∃γ > s − d/p > 0 s.t. the moment condition

��·	γ−β�1,μ = �μ(x)�x	γ−β�1 < ∞

holds for some Borel measure μ on Rd . Then

H[](�,G, � · �1,μ) � �−d/s.

The relevant sets of functions G in this context are the log-densities of each class, that is, {1{p > 0} log p|p ∈ P i},
with the relevant Borel measure μ being the true density p0.

Essentially, the idea of the proof of Theorem 1 is to show that the maximum log-likelihood in each induced density
class converges to the minimal entropy. For non-overlapping models (e.g. X1 → X2 and X1 ← X2), the minimal entropy
will be different in each class (with the minimum occurring in the true model class), and the likelihood will eventually
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484 C. Nowzohour and P. Bühlmann

pick up on this difference. Since the penalty term vanishes asymptotically, an ever so small difference in entropy will
differentiate the true model class from the others. For overlapping (e.g. hierarchical) models, the minimal entropy can
occur in more than one class. In this case, the penalty term picks out the most parsimonious model (which is the true
model according to the Causal Minimality assumption). Note that the penalty 1/ log n is quite large compared with for
example, the BIC penalty (log n/n). This is due to the slow convergence of maximum likelihood to minimal entropy
(Lemmas A.3 and A.1). If the penalty vanishes too quickly, it will be drowned out by the noise in the likelihood and have
no effect. The convergence can be improved (and thus the penalty relaxed) when making stronger assumptions on the
distributions, for example, sub-Gaussian tails.

The following lemma shows convergence of maximum log-likelihood to minimal entropy in each class, given that a
ULLN holds.

Lemma A.3 Suppose that a ULLN for the classes logP i holds with convergence rate δn, that is,

P

�
sup

p∈P i
|(Pn − P)(1{p > 0} log p)| > δn

�
→ 0 as n → ∞.

Then

P(|Pn log p̂i
n − P log pi| > δn) → 0 as n → ∞.

Proof By the definition of the MLE Equation (A1), we have

Pn log p̂i
n ≥ Pn log pi = P log pi + (Pn − P) log pi,

i.e.

Pn log p̂i
n − P log pi ≥ (Pn − P) log pi. (A4)

Let P̃ i
n be the restriction of P i to densities whose support contains the data, i.e. P̃ i

n = {p ∈ P i|supp(p) ⊇ {X 1, . . . , X n}}.
Note that the maximum log-likelihood as well as minimum entropy are the same over P i and P̃ i

n, since densities with
support not including the data will yield values of −∞. So we also have:

Pn log p̂i
n = max

p∈P i
Pn log p = max

p∈P̃ i
n

Pn log p

= max
p∈P̃ i

n

(P log p + (Pn − P) log p)

≤ P log pi + sup
p∈P̃ i

n

(Pn − P) log p,

i.e.

Pn log p̂i
n − P log pi ≤ sup

p∈P̃ i
n

(Pn − P) log p.

This together with Equation (A4) yields:

|Pn log p̂i
n − P log pi| ≤ max

�
|(Pn − P) log pi|, sup

p∈P̃ i
n

(Pn − P) log p

�

≤ max

�
|(Pn − P) log pi|, sup

p∈P̃ i
n

|(Pn − P)| log p

�

≤ sup
p∈P̃ i

|(Pn − P) log p|

≤ sup
p∈P i

|(Pn − P)(1{p > 0} log p)|.

We thus have

P(|Pn log p̂i
n − P log pi| > δn) ≤ P

�
sup

p∈P i
|(Pn − P)(1{p > 0} log p)| > δn

�
,

which converges to zero as n → ∞ by assumption. �
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Finally, before proving Theorem 1, we show the following useful lemma.

Lemma A.4 Let a, b, a�, b� ∈ R and � > 0. If one of the following holds:

(1) a − b > � and a� − b� ≤ 0
(2) a − b < � and a� − b� ≥ 2�

we have |a − a�| > �/2 or |b − b�| > �/2.

Proof Assume (i). Then, we have

� = � − 0 ≤ a − b + b� − a� = |a − a� − (b − b�)| ≤ |a − a�| + |b − b�|,

and the result follows. Similarly for (ii):

� = 2� − � ≤ a� − b� + b − a = |a� − a − (b� − b)| ≤ |a� − a| + |b� − b|.

�

We can now prove the main theorem.

Proof of Theorem 1 We will make repeated use of Lemma A.3. For that matter, note that assumptions (AS3)–(AS5),
together with Lemmas A.1 and A.2 (taking μ = p0) satisfy the sufficient conditions. (AS6) ensures the existence of p̂i

n, pi

as defined in Equations (A1) and (A2).
Let i �= i0. We differentiate two cases: (i) where P i includes the true density p0 and (ii) where it does not. Let

δn = (#(edges)i − #(edges)i0 ) · 1/log n denote the difference of the penalties in the two scores.
Case (i). p0 ∈ P i, which implies pi = p0. Assumptions (AS1) and (AS2) together with Theorem 2 in [10] guarantee

identifiability of the true graph. In particular, this means that in this case P i must correspond to a graph containing the
true graph. Hence, #(edges)i > #(edges)i0 , i.e. δn > 0. We then have

P(Si0
n ≤ Si

n) ≤ P

�
Pn log p̂i

n − Pn log p̂i0
n >

δn

2

�

≤ P

�
|Pn log p̂i0

n − P log p0| >
δn

4
∨ |Pn log p̂i

n − P log pi| >
δn

4

�

≤ P

�
|Pn log p̂i0

n − P log p0| >
δn

4

�
+ P

�
|Pn log p̂i

n − P log pi| >
δn

4

�
→ 0

as n → ∞, where the second line follows from pi = p0 and Lemma A.4 (first case), and the convergence in the last line
follows from Lemma A.3.

Case (ii). p0 /∈ P i, which implies P log p0 > P log pi. Hence, ∃δ > 0 s.t. P log p0 > P log pi + 4δ. Let N > 0 s.t.
#(edges)i0 · 1/log n < δ∀n ≥ N . Then, we have

P(Si0
n ≤ Si

n) = P(Pn log p̂i0
n − Pn log p̂i

n ≤ −δn)

≤ P(Pn log p̂i0
n − Pn log p̂i

n < δ)

≤ P(|Pn log p̂i0
n − P log p0| > δ ∨ |Pn log p̂i

n − P log pi| > δ)

≤ P(|Pn log p̂i0
n − P log p0| > δ) + P(|Pn log p̂i

n − P log pi| > δ) → 0

as n → ∞, where the third line follows from Lemma A.4 (second case), and the convergence in the last line follows
again from Lemma A.3. �
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