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Abstract: We propose a general, modular method for significance testing of groups (or clusters) of variables
in a high-dimensional linear model. In presence of high correlations among the covariables, due to serious
problems of identifiability, it is indispensable to focus on detecting groups of variables rather than
singletons. We propose an inference method which allows to build in hierarchical structures. It relies on
repeated sample splitting and sequential rejection, and we prove that it asymptotically controls the
familywise error rate. It can be implemented on any collection of clusters and leads to improved power
in comparison to more standard non-sequential rejection methods. We complement the theoretical analysis
with empirical results for simulated and real data.
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1 Introduction

Error control of false selection or false positive statements based on p-values is a primary goal of statistical
inference and an established, broadly used tool in many areas of science. It relies on standard statistical
hypothesis testing and procedures which give provable guarantees in presence of multiple, potentially very
large scale multiple testing [1-3]. While being standard in the classical low-dimensional setup, statistical
significance testing in the more challenging high-dimensional setting where the number of variables p
might be much larger than the sample size n has only received attention recently.

We consider here a linear regression model

Y=XB° +¢&, £~A"(0,0%), D

with nxp design matrix X, px1 regression vector 8° and nx1 response Y. We allow for high-dimensional
scenarios where p > n. We assume that the regression coefficient vector is sparse with many coefficients of
BO being equal to zero, that is, the active set of variables

So={j; B #0}

is assumed to be a small subset of {1, ..., p} corresponding to all variables.

A few methods for assigning p-values and constructing confidence intervals for individual parameters
B?(j =1, ...,p) have been suggested [4-10], and some of them have been compared against each other in
various settings [11, 12]. The inferential statements can easily be adjusted for multiplicity, thanks to the
methodology and theory in multiple testing ([1], cf.). However, and important for practical applications,
some major issues in presence of highly correlated variables still need further attention: typically, when
p>n, none or only a few of the individual B]p’s turn out to be significant which is a consequence of their
near non-identifiability (even when some theoretical conditions on well-posedness on the design matrix X
([13], cf.). However, a group of (correlated) variables is often much better identifiable, but one can then not
determine anymore the relevant variables within such a group [14-16].
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Thus, our main goal is testing of significance of groups of parameters: for a group or cluster
C C {1, ...,p} we consider the following null- and alternative hypothesis, respectively:

HO,C:/S](.’=0 forall j e C, HA,C:B;.);éO for at least one j € C.

Given a collection % of clusters, we propose a general method for obtaining a collection # C % of rejected
clusters such that familywise error rate (FWER) is strongly controlled. That is, for a given nominal level
ae€ (0,1):

P C 7]>1-a,

where 7 ={C € € s.t. Hy ¢ is false} i.e., # is the collection of false null hypotheses. Our new method has

the following main features:

— It can be implemented on any collection of clusters @.

— It is modular in the sense that it requires four basic building blocks that have to satisfy certain
assumptions.

— Its modular conception allows for a better insight of the procedure’s power and improvements thereof.

We are particularly interested to use the procedure for hierarchically ordered clusters of (correlated)
variables. Such a hierarchical structure can be obtained from the output of a hierarchical clustering
algorithm: since it operates on the design matrix X only and does not involve the response Y, the
inference for BO remains correct (for fixed design or by conditioning on X). With such a hierarchical
cluster tree, our inference method (Sections 2.5 and 4.2) first tests the cluster C={1, ...,p} containing
all the variables (the top node in the tree): if the corresponding null-hypothesis is rejected, we test
some refined clusters, and we proceed down the cluster tree, in a sequential manner, until a cluster is
not significant anymore. Figures 1 and 2, based on the results of the simulations in Section 5, provide
some graphical illustrations. This procedure has the remarkable property that the resolution level of the
significant clusters is automatically controlled by the sequential testing method: if the signal is strong
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Figure 1: Dendrograms for a paradigmatic simulation run of the “equi correlation”-design with p =200 and SNR = 4. The active
variables are labeled in black and the truly detected non-zero variables along the hierarchy are depicted in black.
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Figure 2: Dendrograms for a paradigmatic simulation run of the “high correlation within small blocks”-design with p=200 and
SNR = 4. The active variables are labeled in black and the truly detected non-zero variables along the hierarchy are depicted in
black.

(e.g. large absolute values of components of ﬁo) and the variables are not too highly correlated, one
can detect small clusters or even single variables and vice-versa, if the signal isn’t very strong or the
variables are highly correlated, only larger groups can be detected as significant.

1.1 Relation to other work

Our proposed method is based on the multi sample splitting method from Meinshausen et al. [7] and the
sequential rejection principle of Goeman and Solari [17]. It is a generalization and power improvement
over the multi sample splitting technique for inference of single variables [7] and for hierarchically
ordered clusters of variables [15]. The improvement in power is strict, and in analogy to the gain of
power of Holm’s procedure [23] over the Bonferroni adjustment. Thus, even if the increased power might
be only small for some datasets, one cannot do worse with the new procedure. The only price to pay is a
slightly more complicated algorithm: we provide an implementation in the R-package hdi. We note that
the mentioned improvement, based on the work by Goeman and Solari [17] and Goeman and Finos [18], is
not entirely trivial to derive in the setting of the multiple sample splitting scheme. The modular set-up
based on four building blocks presented here is addressing the issue how the improvement can be
constructed.

1.2 Outline of the paper

In Section 2 we describe the four basic building blocks of the method and the assumptions that are
sufficient to establish in Section 3 its strong FWER control. In Sections 4.1 and 4.2, respectively, we focus
on the inference of two specific kinds of cluster collections: singletons and hierarchically ordered clusters.
In Section 4.3 we show how logical relationships can be used to improve the power. Finally, we provide in
Section 5 a comparison based on empirical results for error control and power, with a focus on minimal true
detections, and we apply the new method to a real dataset.
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2 A construction based on four building blocks

Our method is based on four basic building blocks that satisfy certain assumptions.

One main ingredient is multi sample splitting. For b=1, ...,B where B is the number of repeated
sample splitting, the original data of sample size n is split into two disjoint groups, N, b and Nout, ie, a
partition

{1,,..,n}= uNéﬁt

is randomly chosen. The groups are chosen of equal size if n is even or satisfy |N(§ﬁg| = |I\Ii(f)| +1if nis odd.
The idea is to use data from N, (") to select a few variables and the other data from Néﬁg to perform the
statistical hypothesis testing in the low-dimensional submodel with the selected variables from N . The
details are described next.

2.1 Screening of variables

We consider variable screening where an estimator S C {1, ...,p}, based on data corresponding to Nl(f),
is aiming at including all active variables Sy. A prime example is the Lasso [19], while a detailed empirical
comparison of five popular screening procedures can be found in Biithlmann and Mandozzi [20]. Assume

that the screening procedure satisfies the following properties for any sample split b:

(A1) Sparsity property : |S®)| <n/2.
(A2) & — Screening property : ]P’[S“’) D So]=1-6, where 0<§<1.

The sparsity property in (A1) implies that for each sample split b it holds that |S )| < |Noﬁ>t| a condition
which is necessary for applying classical tests as described in Section 2.2 below. The §-screening
property in (A2) ensures that all the relevant variables are retained with high probability (where §>0
is typically small). We indicate in Section 3.1 that under some assumptions, the Lasso satisfies (A1)
and (A2).

2.2 Testing and p-values

The idea is to perform a classical statistical test on the other half sample from Nf,ﬁg in a low-dimensional
problem with variables from S®) only. For each sample split b, based on the second half of the sample
corresponding to N, gui, consider a testing procedure, e.g. the classical partial F-test (see also Section 3.1),

that provides correct p-values p® (%) for the null hypothesis H_ . v for each screened set 5®), in the sense
that for each nominal level a € (0,1) ’

(A3) Correct testing property :  Under the null hypothesis H0 g it holds
Pp©® <aj<a.

We note that the probability is with respect to the data generating random variables corresponding to the
second half N'”), and the null- hypothesis is fixed with respect to N, ®) Due to the screening property (A2),

out> out*

when § — 0, the null- hypothe51s H0 cn » approximates the unconditional hypothesis Hy, ¢ which we aim to

test for. If Cn S®) = () define p& ®) =1, ThlS provides a (correct) p-value p© () for each cluster C € % and each
sample split b € {1...B}.
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2.3 Multiplicity adjustment

Consider for each sample split b and each cluster C € % a multiplicity adjustment procedure méb) 2% — 1,00
that for each collection # of rejected clusters provides a multiplicity adjustment m<cb ) (#) 21 and satisfies the
following properties:

(A4) Monotonicity property : If 2 C & then m(Cb) (%) zm(cb )(,9”).

ob)

1{CnS

(A5) Single-step property : Z {?T#@} <1
cee\z M¢ (%)

>

where we define 1/c0o=0. Such a family of multiplicity adjustments for b=1, ..., B are often naturally
induced from a global multiplicity adjustment procedure mc.

2.4 Aggregation of p-values

Consider a collection of screened sets of variables S?), a cluster C € %, a collection of p-values p¢ ®) for the
null-hypothesis H;, ¢ s» (wWhich approximates Hy, ¢, see comment after (A3)) and a collection of multiplicity
adjustments m(cb> >1 (we drop here the dependence on %).

The goal is to aggregate the p-values p&®, ..., p&®) to a single p-value which is adjusted for multi-
plicity. An aggregation procedure is a monotone increasing function aggr :[0, 1]B — [0,1]. Assume it
satisfies the following property:

(A6) Aggregation property: If Pp©® <a]<a, Va € [0,1], then

Plaggr (p© "m, ..., p& Pm) <af
B ~(b)
a 1{CnS =0}
: 1§ZW, Va € [0,1].

b=1 me

2.5 The procedure

Our procedure is based on the four building blocks above. First, we proceed with screening of the variables
based on the first half sample from Nl.(f) (Section 2.1), e.g., in Section 5.1 we use the Lasso with regulariza-
tion parameter chosen by 10-fold cross-validation (see also Section 3.1). Then, we construct the p-values
based on the second half sample from Néﬁz by using the partial F-test (Section 2.2 and see also Section 3.1).
This leads to a (correct) p-value p& ) for each cluster C € % and each sample split b € {1...B}.

The multiplicity adjustment is done sequentially (Section 2.3). Based on a chosen significance level
a € (0,1) and for a collection of currently rejected sets #, define the successor of # as

N(R)={C € €\ s.t. aggr(pSIm (@), ...,p>PmP (#)) <a}

Start from “no rejections” %o =10, define %;.1=%;0 N (%;) and Re = lim; ... #; (although Z.. is never
constructed due to finite-ness of all possible subset of the variables). Concrete choices of
m(cl)(%), ce m(CB ) (2) are discussed in Section 4.

Finally, we aggregate the p-values as indicated in Section 2.4. Concrete aggregation methods are
described in Proposition 1 in Section 3.1.
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3 Familywise error control
We show here that the method from Section 2.5 (strongly) controls the FWER at each step i=0,1,2, ...

Theorem 1 Assume that (A1)-(A6) hold. Then for any i € Ny U oo
P[%; C 7= (1-6)° -a,

where # ={C € ¥ s.t. Cn Sy = ()} is the collection of false null hypotheses.

A proof is given in the Appendix.

3.1 Screening, testing and aggregation: their properties

We discuss here some choices for screening, testing and aggregation which we use in the implementation in
the R-package hdi. The issue of sequential multiplicity adjustment is treated separately in Section 4.

For variable screening, we use the Lasso with regularization parameter chosen by 10-fold cross-
validation. Theoretical justification of the sparsity and screening property (A1) and (A2) can be derived
by assuming a compatibility or restricted eigenvalue condition on the fixed design matrix X and a beta-min
assumption requiring that min s, |B7| >> \/[So|log(p)/n is sufficiently large: we refer to Bithlmann and van
de Geer ([13], Ch. 2.7 and Ch. 6) for the details.

For construction of the p-values (in the low-dimensional setting, due to variable screening in the first
half of the sample) we use the partial F-test. Then, assuming fixed design X and Gaussian errors, condition
(A3) holds.

For aggregation of the p-values, ensuring that (A6) holds, we have the following result for two slightly
different methods.

Proposition 1 Denote by q,(u) the empirical y-quantile of the values occurring in the components of a vector u.
The monotone increasing functions [0,1® — [0,1]

@Y, ...,p") — Q(y) = min{1,q,(" /y, ..., p® /y)}
f
Ynin’l) Q(Y)}

(", ..., p®) = min {1, (1~ 10g y,y,) et

satisfy the aggregation property (A6) for any y, y, € (0,1).

A proof, which was basically given in Meinshausen et al. [7], can be found in the Appendix.

4 Some concrete methods for multiplicity adjustment

We discuss here the issue of multiplicity adjustment, and justify assumption (A4) and (A5) for different
inference procedures.

4.1 Inference of single variables

This first example is paradigmatic for the advantages of the modular approach: a simple improvement of
the multiplicity adjustment procedure allows for a better power, basically in the same way as in a low-
dimensional setting in Goeman and Solari [17].
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Concretely, we consider the problem of inferring single variables, i.e., the collection of clusters
@ ={{i};si=1, ...,p}. The method proposed in Meinshausen et al. [7] corresponds to the method of
Theorem 1 with the aggregation procedures of Proposition 1 and the following Bonferroni-based [21, 22]
multiplicity adjustment procedure:

mig) () = |57 @

As the multiplicity adjustments are independent from the (previously) rejected collection of sets, the
monotonicity property (A4) is trivially satisfied, while the single-step property (A5) follows from

Z l{CmS‘(b) #0} _ 1{{i}m.§‘(b) =0} s

A(b>|

oy 1.
ccon  Me (A) {ifev\# |S

The power of the method can be improved taking instead of (2) the following Bonferroni-Holm-based [23]
multiplicity adjustment procedure:

m) (#) = |S® 0 (6\R)| = [{j € 8 s.t. {j} ¢ #}|. €)
The monotonicity property (A4) is still satisfied since
ISP 0 (@\#)[ 2[5 (4\ )]

for # C &, whereas

5 1{cnS” 20} 1{iyn 8" =0} »
Ceb\# m(cb) (%) {ifes\2 |§(b> N (C\2)|

proves the single step property (A5).

4.2 Inference of hierarchically ordered clusters of variables

When dealing with the challenge of inferring hierarchically ordered clusters of variables, e.g. from the tree-
structured output of a hierarchical clustering algorithm, one considers a collection of clusters % ={C;};
where for any two clusters C;, Cy € ¥, either one cluster is a subset of the other, or they have an empty
intersection. The method proposed in Mandozzi and Biihlmann ([15], Section 2), which is based on the
procedure of Meinshausen [24], corresponds to the one as in Theorem 1 with the aggregation methods of
Proposition 1 and the following multiplicity adjustment:

oo, if anc(C) Z #

o) 1,  ifanc(C)C #and$” nc=0

57 A ¢

otherwise.

Here, anc(C) denotes the ancestors in a hierarchically ordered cluster tree. To check the monotonicity
property (A4), consider # C . For Ce€ % with anc(C) C# it holds anc(C) C.¥ and hence
m(cb>(<%)=m<cb)(,§ﬁ), while for C € ¥ with anc(C) Z # one has mém(.%):oozm(cb (). The single step
property (A5) follows from

1{cn$” 0y 1

b =0
ceo\a m<C>(§f?) |S< )| Ce@\Z sit. anc(C)C

ISP (| <1,
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where in the inequality we have used the fact that for two sets in the sum above, one cannot be a subset of
the other and hence, by definition of the hierarchy %, they are disjoint.

4.2.1 The inheritance procedure in the high-dimensional setting

In Goeman and Solari ([17], Section 6.3) and Goeman and Finos [18], the authors propose various possibi-
lities on how the sequential rejection principle can be used to improve the power of the hierarchical
procedure in Meinshausen [24].

We consider here the most powerful one, the inheritance procedure of Goeman and Finos [18] which we
extend to the high-dimensional setting with hierarchical cluster trees. In order to do that, we apply the
method of Theorem 1 with the aggregation procedures of Proposition 1 and the following multiplicity
adjustment:

oo, if anc(C) Z #

O B if anc(C) C # and §” nC=0
me (A)=94 .o ®)
A(z;)7| ng’) (#), otherwise,
‘S ﬂC|DEanc(C)
where

1
ny () =

= ISP nE|
|S"" N D| Ee ch D)\ ()

and
ER)={C € ¥ s.t. of (C) C %}

the set of extinct branches, i.e., the set of hypotheses which have been rejected together with all their
offspring denoted by of (C) (as before, anc(C) denotes the ancestors of cluster C). Note that since ng’) (2)<1
this procedure leads to an uniform improvement over the method of the previous section.

The monotonicity property (A4) follows from the same considerations as above and
RCS = ER)CEY) = (@) :=nl ().

To check that the single step property (A5) holds note that

1{cn 8" #0} 5% A ¢l 0 5" AD|

ab)

b alb
Ceb\% m(C )(,%) Ceb\Z s.t. anc(C)C2# ‘S | Deanc(C) ZEech(D)\(f(,%) |S< ) OE|

Z at (#)
Cet\2

where aé’” is as in Goeman and Finos ([18], eq. (5)) with the weights wéb) =|5®) n C|; therefore the single step
property follows directly from the considerations in Goeman and Finos [18].

4.3 Exploiting logical relationships: Shaffer improvements

Logical relationships between hypothesis can be exploited to improve the power of the sequential rejection
procedure. A first example of such an improvement for hierarchically ordered clusters was given in
Meinshausen [24], while in Goeman and Finos [18] the improvement is applied to the inheritance procedure.
Since those improvements are based on the considerations of Shaffer [25] they are called “Shaffer
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improvements”. For the high-dimensional setting a possible Shaffer improvement consists of multiplying
the multiplicity adjustment m(cm (#) with the Shaffer factor

s<Cb> (%)= max{m(cb)(@/) / m(Cb)(,%’) s.t. C¢ O R, 9 congruent }, (6)

where a set % C % is called congruent if, by the logical implications, it can be a complete set of false
hypothesis (e.g. for a collection % of hierarchically ordered hypothesis % C % is congruent if for each C € %
it holds anc(C) C % and at least one offspring leaf node of C is in #%).

Note that multiplication with the Shaffer factor never decreases the power of the method since by the
monotonicity property (A4), s(Cb) (2) <1. Moreover, if # is congruent, then s(cb ) (#) =1 and since the collection
Z of all false hypothesis is congruent, the Shaffer improvement doesn’t affect the validity of eq. (8). Finally,
for # C &,

méb) (%)S(Cb) (%)= max{m(cw (W) st. C¢U O R, U congruent }
> max{m(cw () st. Céu O %, 9 congruent }
b b
=mg(9)s¢(2)

and hence the Shaffer improvement doesn’t affect the validity of eq. (7) neither.

We want to apply this Shaffer improvement to the inheritance procedure described in Section 4.2.1.
Following the same reasoning as in Goeman and Finos ([18], Section 6), with the weights w(cw = |§(b) nC| we
get the Shaffer factor

(b) , ,(b) _(b)
) eI Y i Ceansi(C) C 2\
Sc (%)= we +ug
1, otherwise,

where si(C)=ch(pa(C))\{C} denotes the siblings of C, ¥ C ¥ denotes the collection of leaf nodes,

u(Cb )= 2 _Desi(C) w,(Jb) and v(cb) = MiNpesi(c) w,(Jb). If % is a binary tree the Shaffer factor becomes

5" A ¢
b, " "
s’ @) =4 15" ¢+ 15 si(o)

1, otherwise.

, if C¢,si(C) C 2\%

Unlike as for the inheritance procedure in (5), the Shaffer factor (6) for the procedure in (4) is always 1.
Nevertheless, a possibility how to exploit logical relationships to improve the power of the procedure (4) for
binary trees, which provides a Shaffer improvement very similar to the one above, is illustrated in Mandozzi
and Biihlmann [15].

5 Empirical results

5.1 Implementation of the methods and considered scenarios

In this section we compare the performance of the four methods illustrated in Sections 4.1 and 4.2 and
refined in Section 4.3, i.e. single variable method with Bonferroni multiplicity adjustment (2), hierarchical
method with Bonferroni-based adjustment (4) along with Shaffer improvement as in Mandozzi and
Biihlmann [15], single variable method with Bonferroni-Holm multiplicity adjustment (3) and hierarchical
method with inheritance procedure (5) along with Shaffer improvement (6). In the following we refer to the
first two methods as the “non-sequential methods” (strictly seen, the hierarchical method with Bonferroni-
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based adjustment is actually sequential, but there previous rejections are not used to improve subsequent

multiplicity corrections) and the latter two methods as the “sequential methods”.

We consider the same implementation of the methods and the same scenarios (with exactly the same
sample splits) as in Mandozzi and Biihlmann [15], although here we use only standard hierarchical
clustering for the hierarchical methods. Concretely, the following choices have been made for
implementation:

— construction of the clusters with standard hierarchical clustering (using the R-function hclust) with
distance between two covariables equal to 1 minus the absolute correlation between the covariables,
and using complete linkage;

— screening with the Lasso [19] with regularization parameter chosen by 10-fold cross-validation;

-  B=50 sample splits (for each scenario exactly the same splits as in Mandozzi and Biihlmann [15]);

- for aggregation, the p-values P{ in Proposition 1 are computed over a grid of y-values between
Ymin = 0.05 and 1 with grid-steps of size 0.025;

- nominal significance level a=5%.

The following scenarios are considered (for the details we refer to Mandozzi and Biihlmann [15]):

— 42 scenarios based on 7 designs;

—  for each design we consider 6 settings by varying the number of variables p in the model and the signal
to noise ratio defined by

SNR = \/(ﬁO)TxTXﬁOn-lo-Z,

namely for p=200 we use SNR =4 and SNR =8, for p=500 we use SNR =8 and SNR =16 and for
p=1000 we use SNR =16 and SNR =32;

— 3 designs based on synthetic data (“equi correlation”, “high correlation within small blocks” and “high
correlation within large blocks”) and 4 designs based on semi-real data (“Riboflavin with normal
correlation”, “Breast with normal correlation”, “Riboflavin with high correlation”, “Breast with high
correlation™);

—  sparsity so =6 for the two “Riboflavin”-designs and sy =10 for the other five designs.

5.2 Familywise error rate control (FWER)

For each of the 42 scenarios described in Section 5.1 we consider exactly the same 100 independent
simulation runs as in Mandozzi and Biihlmann ([15], section 4.2.2) by varying only the synthetic noise
term € and count the number where at least one false selection is made. According to Theorem 1, we expect
this number to be at most 100a=5 (a=0.05). The results for the Bonferroni-based methods can be seen in
Mandozzi and Bithlmann ([15], Table 1): FWER control holds for 40 of the 42 scenarios and in 37 scenarios
there is no false selection at all.

The results for the methods with sequential rejection are very similar, the only differences being that for
the “high correlation within small blocks”-design with p =500 and SNR = 8 the number of runs with at least
a false selection increases (compared to Bonferroni-type methods) from 7 to 9 for the single variable
method, and from 7 to 13 for the hierarchical method, respectively; for the same design with p=1000
and SNR =16 the number of runs with at least a false selection increases from 5 to 6 for both the single
variable and hierarchical method. For all other scenarios, inclusively the “high correlation within large
blocks”-design with p=200 and SNR =4, where the non-sequential hierarchical method slightly failed to
control FWER (6 runs with at least a false detection), the sequential methods exhibit the same FWER control
as their non-sequential counterparts.

Summarizing, FWER holds for all four methods in 39 out of 42 scenarios and the designs where it
doesn’t fully hold are “high correlation within small blocks” and “high correlation within large blocks”,
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Table 1: Empirical results, averaged over 100 simulation runs, for single variable method with Bonferroni (SB) and with
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Bonferroni-Holm (SH), resp. hierarchical method with Bonferroni (HB) and with sequential rejection induced by the inheritance
procedure (HSR).

Design p # MTDs # STDs Perf 1 (in %) Perf 2 (in %)
SB SH HB HSR HB HSR SB SH HB HSR HB HSR

low SNR  equi corr 200 4.79 5.00 5.40 5.59 434 4.55 47.9 50.0 44.2 46.3 46.1  48.1
500 3.97 4.13 4.74 4.84 3.73 3.84 39.7 41.3 37.7 38.7 383 393

1,000 1.77 1.79 2.54 2.54 1.73 1.73 17.7 17.9 17.4 17.4 17.6 17.6

small blocks 200 4.45 4.78 6.85 7.12 4.36 4.84 44.5 47.8 53.7 57.5 60.7 64.0
500 3.15 3.33 5.18 5.27 3.15 3.42 31.5 33.3 38.3 40.1 44.2 455

1,000 1.31 1.35 2.53 2.57 1.31 1.37 13.1 13.5 15.1 15.6 17.2 17.7

large blocks 200 0.29 0.30 6.50 6.50 0.28 0.28 2.9 3.0 6.7 6.7 31.3 31.3
500 0.06 0.06 2.76 2.76 0.06 0.06 0.6 0.6 11 11 1.1 1.1

1,000 0.00 0.00 0.60 0.60 0.00 0.00 0.0 0.0 0.1 0.1 0.1 0.1

Riboflavin normal corr 200 1.41 1.43 2.41 2.46 1.33 1.35 23.5 23.8 23.4 23.8 25.2 25.7
500 0.90 0.90 1.84 1.85 0.77 0.79 15.0 15.0 13.5 13.8 14.2 145

1,000 0.72 0.73 1.60 1.63 0.63 0.66 12.0 12.2 10.8 11.2 11.0 11.4

Breast normal corr 200 4.05 4.16 5.00 5.11 3.84 3.94 40.5 41.6 39.5 40.6 41.6 429
500 3.95 4.02 5.04 5.11 3.82 3.87 39.5 40.2 38.8 39.3 39.6 40.2

1,000 3.30 3.34 4.25 4.27 3.10 3.13 33.0 33.4 31.2 31.5 31.7 31.9

Riboflavin high corr 200 1.44 1.49 2.96 2.96 1.41 1.44 24.0 24.8 26.0 26.4 31.8 32.1
500 1.72 1.79 295 2.98 1.69 1.72 28.7 29.8 29.9 30.4 32.8 33.3

1,000 1.51 1.51 2.54 2.56 1.49 1.52 25.2 25.2 25.3 25.8 25.7 26.1

Breast high corr 200 3.98 4.10 591 5.95 3.87 3.91 39.8 41.0 41.2 41.6 46.1 46.6
500 5.13 5.22 6.51 6.56 4.87 4.93 51.3 52.2 49.9 50.4 51.7 52.3

1,000 4.73 4.77 5.95 5.98 4.64 4.67 47.3 47.7 47.0 47.3 48.3 48.6

high SNR equi corr 200 9.77 9.83 9.79 9.80 9.73 9.74 97.7 98.3 97.4 97.5 97.4 97.5
500 7.28 7.38 7.63 7.67 7.18 7.24 72.8 73.8 72.0 72.5 721 72.6

1,000 2.81 2.84 3.50 3.50 2.78 2.78 28.1 28.4 27.9 279 28.1 28.1

small blocks 200 9.18 9.31 9.98 10.00 9.29 9.48 91.8 93.1 96.3 97.4 98.1 98.7
500 6.99 7.03 8.05 8.14 7.02 7.15 69.9 70.3 73.5 74.7 76.4 77.4

1,000 2.26 2.27 3.40 3.41 2.26 2.28 22.6 22.7 243 245 26.3 26.5

large blocks 200 2.17 2.26 9.58 9.58 2.13 2.14 21.7 22.6 27.9 28.0 61.4 61.4
500 1.17 1.20 5.38 5.38 1.15 1.15 11.7 12.0 12.6 12.6 13.2 13.2

1,000 0.43 0.45 1.11 1.11 0.43 0.43 4.3 4.5 4.4 44 4.4 4.4

Riboflavin normal corr 200 3.39 3.46 3.89 3.92 3.33 3.34 56.5 57.7 56.3 56.5 58.7 59.1
500 2.24 2.25 2.90 2.90 2.15 2.15 37.3 37.5 36.4 36.4 369 36.9

1,000 0.98 1.00 1.83 1.83 0.96 0.96 16.3 16.7 16.2 16.2 16.3 16.3

Breast normal corr 200 8.65 8.70 8.89 8.93 8.60 8.65 86.5 87.0 86.4 86.8 87.2 87.7
500 6.81 6.86 7.33 7.35 6.72 6.74 68.1 68.6 67.6 67.8 68.3 68.5

1,000 3.95 3.97 4.81 4.84 3.79 3.82 39.5 39.7 38.1 38.4 38.4 387

Riboflavin high corr 200 3.86 3.97 4.79 4.83 3.82 3.86 64.3 66.2 66.0 66.7 69.4 70.1
500 3.69 3.72 4.40 4.43 3.65 3.68 61.5 62.0 61.8 62.3 63.7 64.2

1,000 2.48 2.51 3.24 3.27 2.43 2.45 41.3 41.8 40.7 41.0 41.1 41.4

Breast high corr 200 9.09 9.15 9.59 9.61 9.09 9.14 90.9 91.5 91.9 92.3 93.8 94.1
500 7.75 7.82 8.38 8.40 7.71 7.72 77.578.2 77.8 78.0 78.9 79.1

1,000 5.85 5.89 6.73 6.76 5.72 5.75 58.5 58.9 57.5 57.9 58.1 585

Average 3.65 3.72 4.98 5.02 3.58 3.64 40.4 41.1 41.0 41.6 43.9 44.4
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which is not surprising since each active predictor is highly correlated with one or more inactive predictors
from S§ and hence it is rather difficult for our screening method (the Lasso) to guarantee that SO So.

5.3 Power

For measuring the power we consider four different aspects: the one-dimensional statistics defined in
Mandozzi and Biithlmann ([15], section 4.2.1) as “Performance 1” and “Performance 2” (see below), the
number of minimal true detections (MTDs, i.e., smallest significant groups of variables of any cardinality,
containing at least one active variable, see below) and singleton true detections (STDs, i.e., MTDs with
cardinality 1). Concretely, a cluster is said to be a MTD if it satisfies all of the following:

- Cis a significant cluster, e.g., has p-value <5% (“Detection”);

—  There is no significant sub-cluster D C C (“Minimal”);

-  C e Z, i.e., there is at least one active variable in C (“True”);

and we define:

1 1
Performance 1= — —,
|SO| M;C ‘C|
1 1,1
Performance 2= — — (— + 1).
ISol 2\(C|

MTD C with|C| <20

For each of the 42 scenarios outlined in Section 5.1, we consider exactly the same 100 independent
simulation runs obtained in Mandozzi and Biithlmann ([15], section 4.2.3-4) by varying the synthetic noise
term ¢ and the synthetic regression vector 8°. We then calculate the average Performance 1, Performance 2,
number of MTDs and number STDs, over the 100 simulation runs. The results are shown in Table 1 (for the
single variable methods each MTD is an STD and by definition Performance 1 and 2 are the same).

Considering both low and high SNR, the methods with sequential rejection improve the considered
power measures in comparison to the analogous method without sequential rejection in 207 out of 252
cases, the absolute improvement being at least 0.05 for MTDs and STDs, and at least 0.5% for
Performance 1 and Performance 2 in 133 cases out of 252 cases. For better interpretation of these results:
an absolute improvement of 0.05 MTDs (resp. STDs) basically means that in one out of 20 runs one more
MTD (resp. STD) could be detected. Averaging over all scenarios, the improvement given by the sequen-
tial rejection procedures lies between 0.04 and 0.06 for MTDs and STDs, and between 0.5% and 0.7% for
Performance 1 and Performance 2. The biggest gain with sequential rejection can be found in the “high
correlation within small blocks”-design with p =200 and low SNR: it consists of 0.48 more STDs, 0.33
more MTDs and an absolute increase of 3.8% of Performance 1 and 3.3% of Performance 2, respectively.
This basically means that in half of the runs the method with sequential rejection could find one STD
more and in one third of the runs it could find one MTD more. Other particularly favorable scenarios for
an improvement with sequential rejection are the “equi correlation”-design and the “breast normal
correlation”-design, both with p =200 and low SNR and the “high correlation within small blocks”-design
with high SNR and p =200, resp. p=500.

In general, the improvement given by the sequential rejection procedures decreases with increasing
number p of covariables and is substantial only when the power of the method without sequential rejection
is intermediate. These empirical findings are not surprising, since looking at how the methods are defined
and in particular at the eqs (2)-(5), we conclude that an improvement with the sequential rejection methods
is only possible if the related non-sequential method provides at least an STD (and gets more likely the
more STDs are provided by the non-sequential method). Moreover, an improvement with sequential
rejection is more likely to happen when the number |S| of screened variables is small.
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For a better illustration of what kind of an improvement is possible using sequential rejection, we show
in Figures 1 and 2 the dendrograms (in gray) for a paradigmatic simulation run of the “equi correlation” —
and the “high correlation within small blocks”-design, respectively, both with p =200 and SNR =4.

Figure 1 illustrates that sequential rejection allows the detection of a further singleton, increasing the
number of STDs from 6 to 7 and the number of MTDs 8 to 9. In Figure 2 sequential rejection allows to detect a
singleton that could previously only be detected together with another non-relevant variable in a cluster of
cardinality 2, increasing the number of true STDs from 4 to 5 (while the number of MTDs remains to be 6).

Finally, we have performed a simulation with the same scenarios (and the same sample splits) as in
Mandozzi and Biihlmann ([15], section 4.3), i.e. “small blocks”-designs and “large blocks”-designs with 8
different correlations

p € {0,0.4,0.7,0.8,0.85,0.9, 0.95,0.99}.

The full results are shown in Table 2 in the Appendix. While the methods with sequential rejection control
the FWER in exactly the same scenarios where it is also controlled by the non-sequential methods, they
increase the average number of MTDs from 5.51 to 5.62 for the single variable method, and from 8.11 to 8.18
for the hierarchical method, and the number of STDs for the hierarchical method from 5.44 to 5.55, with
improvements for a single scenario up to 0.48 MTDs and 0.56 STDs (averaged over 100 runs).

The empirical results can be summarized as follows. The methods with sequential rejection essentially
controls the FWER in the same way as the non-sequential methods. Regarding power, sequential rejection
allows for improvements, to a similar extent for the single variable and the hierarchical procedures. As
already noted in Mandozzi and Biihlmann [15], for the non-sequential methods, the hierarchical methods have
similar STDs as the single variable methods but allow for substantially more MTDs. Thus, our proposed
hierarchical method with the inheritance procedure can be seen as the best of the considered methods.

5.4 Real data application: Motif Regression

We consider here a problem of motif regression [26] from computational biology. We apply the four
methods described above, plus the two hierarchical methods (with and without sequential rejection)
using the recently proposed canonical correlation clustering of Biithlmann et al. [14], to a real dataset
with n=287 and p =195, used in Meinshausen ([24], section 4.3) and Mandozzi and Biihlmann ([15], section
4.4). The sequential rejection methods detects exactly the same significant structures as non-sequential
methods, namely a single variable and a cluster containing 165 variables (the latter can be detected only
with the hierarchical method with canonical correlation clustering). This can barely be considered as
surprising, as with only one STD by the non-sequential methods, further improvements by the sequential
methods are rather unlikely (see Section 5.3 for more explanation and empirical evidence).

6 Conclusions

We propose a general sequential rejection testing method for clusters and single variables in a high-
dimensional linear model. In presence of high correlations among the covariables, due to serious problems
of identifiability, it is essentially mandatory to focus on detecting significant groups of variables rather than
single individual covariables. Our method asymptotically controls the familywise error rate (FWER), while,
as a consequence of its modular structure, allowing for unburdened power optimization. We provide an
implementation in the R-package hdi.

We use and study the procedure for inference of single variables but much more importantly, for
hierarchically ordered clusters of variables. With the latter, we establish a powerful scheme for meaningful
inference in a high-dimensional regression model, much beyond considering single variables only. Our
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presented mathematical analysis on control of the FWER and power improvement is complemented by
empirical results based on semi-real and simulated data confirming the theoretical results.

Appendix

Proof of Theorem 1

Proof. We show that the procedure satisfies monotonicity and single-step conditions as required by Goeman
and Solari ([17], Theorem 1), i.e.

RCS = N(R)CN(F)UF @)
Pl (F) C Z]>(1-6)" -a. (8)
Assume # C & and C € /(). Then by definition

aggr(p® Vml (#), ..., p> EmP (#)) <a.

The monotonicity property (A4) of the multiplicity adjustment and the fact that the aggregation procedure is
monotone increasing imply

aggr (p& Vml (#), ..., p¢OmP (7)) < aggr (p& Vml (@), ..., p¢ EmP ()
and hence either C € ¥ or C € /(%) which proves (7). Consider the event
o ={8® DSy, vb=1...B}
where all screenings are satisfied. Because of the §-screening assumption (A2) it holds P(.«#) > (1 - 6)” and hence
PAN(F) & F1=PN(F) & F|LP(A) + PN (F) L T |PA] ()
<PIN(F) L F |+ (1-(1-6)P).

Since
Pl (F) ¢ 7 | 4] <P[| {ager (0" Om (7), ..., p" P mP) (7)) < )]
C\F
< > Plaggr(p“ Vm (7), ...,p" PmP (7)) <a}]
NF
(43)(46) 1{cn§” 201 us a &
< 2324 < Elea

G\F " b=1 mﬁ;b) (7) b=1
we can prove (8) as follows:
PN(F) C F|=1-PN(F)L F
>1-(a+(1-(1-6)%)=(1-6)" -a.

Proof of Proposition 1

Proof. The proof was basically given in the Appendix of Meinshausen et al. [7]. In the following we omit the
function min{1, -} from the definition of Q(y) in order to simplify the notation (this is possible since the
level a is smaller than 1). Define for u € (0, 1) the function
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1B
P 7(P)
m(u):= BZl{p <u}.
b=1
Then it holds
Ay sas q,@W/y. ....0%/y)sas q,@", ... p")<ay
B
= S 11" <ay} =By & n(ay) 2.
b-1

Thus,

P(Q(y) <@) - E(1{Q(y) <a}) ~E(1{m(ay) > y}) < %E(n(am

113 ~b) 11& - b)
==Y E1{p" cay}) = -2 > P <ay)
yBiH yBi+

a(b)
11 ay . aE~1{CnS" =0}
N 2L (b) ==y =2 77
< B b§=1 o H{CN S =0} B b%l @ ,

where the first inequality is a consequence of the Markov inequality and the last inequality is a conse-
quence of the assumptions that P(p?) <a) = P(p®?)m®) <a) <a/m® and the definition p*) =1 for CnS® =0.
For a random variable U taking values in [0, 1],

0, Uza
1{U=<
sup M={a/U, ay i <U<a
7<0mins 1) 1/ymin’ Us XY rin-

and if U has an uniform distribution on [0, 1]

1 U < XY min a
E< sup ﬂ) =J YrmindX + J oxtdx
YEWmin» 1) Y 0 a

Ymin

_ a1
= Ymin

X[ =g +alog x|yZg, =a(1- 108 yp,)-

We apply this using as U the uniform distributed p*) /m®) = p®) for CnS® = () and obtain

1Up®) /m® <
E| sup —{p /m?” <ay} <a(1- 108 ypin)>
YEVmin> 1) Y

and similarly as above

IP’< inf Q(y)sa>=E< sup 1{n(ay)zy}>

YE(Vmins 1) Y€ (Ymins 1)

1 & 1{p? <
<E sup _ZM
YEWmins VP =1 Y

B 14p® < ()
=E< sup 121{;7 <ay}1{CnS ¢®})

VeV V) P h1 Y

Y€ (Vmin> 1) Y

B (D) /13 (b) (b) (b)
S%ZE( sup 1{p"”/m®) <ay/m®)}1{CnS ¢(Z)}>
EXB:I{CQS“’) #0}

< (1 - IOg ymin) B m®
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Additional empirical results

Table 2: Results of the simulation with the “small blocks”- and “large blocks”-design for 8 different correlations p, for single
variable method with Bonferroni (SB) and with Bonferroni-Holm (SH), resp. hierarchical method with Bonferroni (HB) and with
sequential rejection induced by the inheritance procedure (HSR).

p FWER # MTDs # STDs
SB SH HB HSR SB SH HB HSR HB HSR
“small blocks”-design with low SNR (SNR = 4)
0 0 0 0 0 9.57 9.69 9.53 9.63 9.42 9.53
0.4 0 0 0 0 8.84 9.06 8.65 8.81 8.36 8.51
0.7 0 0 0 0 5.87 6.26 7.28 7.60 5.65 6.13
0.8 0 0 0 0 5.53 5.76 6.79 7.22 5.33 5.89
0.85 0.03 0.04 0.03 0.04 2.97 3.08 5.21 5.56 2.82 3.14
0.9 0.01 0.01 0.01 0.01 3.35 3.55 5.49 5.86 3.22 3.60
0.95 0.46 0.47 0.46 0.48 1.02 1.11 4.04 4.07 0.9 0.99
0.99 0.55 0.56 0.54 0.58 3.62 3.78 6.01 6.27 3.42 3.71
“large blocks”-design with low SNR (SNR = 4)
0 0 0 0 0 8.42 8.68 8.38 8.50 7.98 8.11
0.4 0 0 0 0 7.61 8.09 8.98 8.98 7.44 7.48
0.7 0 0 0 0 0.67 0.71 5.90 5.91 0.59 0.59
0.8 0 0 0 0 0.27 0.27 6.02 6.02 0.24 0.24
0.85 0 0 0 0 0 0 3.38 3.38 0 0
0.9 0 0 0.06 0.06 0.38 0.39 7.59 7.60 0.38 0.38
0.95 0.03 0.03 0.16 0.16 0.45 0.45 8.67 8.68 0.44 0.44
0.99 0.97 0.97 1.00 1.00 1.47 1.48 5.28 5.27 1.47 1.48
“small blocks”-design with high SNR (SNR = 8)
0 0 0 0 0 9.87 9.89 9.90 9.90 9.86 9.86
0.4 0 0 0 0 10 10 10 10 10 10
0.7 0 0 0 0 10 10 10 10 10 10
0.8 0 0 0 0 9.85 9.89 9.98 9.98 9.90 9.91
0.85 0 0 0 0 9.26 9.38 9.89 9.92 9.39 9.53
0.9 0 0 0 0 9.59 9.65 10 10 9.67 9.79
0.95 0.21 0.23 0.21 0.28 8.36 8.46 9.82 9.78 8.36 8.61
0.99 0.92 0.93 0.92 0.95 6.72 6.85 8.06 8.04 6.73 6.99
“large blocks”-design with high SNR (SNR = 8)
0 0 0 0 0 10 10 10 10 10 10
0.4 0 0 0 0 9.98 9.98 10 10 9.99 9.99
0.7 0 0 0 0 5.12 5.35 9.60 9.60 5.10 5.12
0.8 0 0 0 0 9.23 9.43 10 10 9.14 9.15
0.85 0 0 0 0 3.86 4.03 9.98 9.98 3.84 3.85
0.9 0 0 0 0 0.06 0.06 7.17 7.17 0.06 0.06
0.95 0 0 0 0 1.26 1.29 9.99 9.99 1.27 1.28
0.99 0.33 0.33 0.99 0.99 3.26 3.26 7.92 7.92 3.26 3.26
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