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Summary. We propose a flexible generalized auto-regressive conditional heteroscedasticity
type of model for the prediction of volatility in financial time series. The approach relies on the
idea of using multivariate B-splines of lagged observations and volatilities. Estimation of such
a B-spline basis expansion is constructed within the likelihood framework for non-Gaussian
observations. As the dimension of the B-spline basis is large, i.e. many parameters, we use
regularized and sparse model fitting with a boosting algorithm. Our method is computationally
attractive and feasible for large dimensions. We demonstrate its strong predictive potential for
financial volatility on simulated and real data, and also in comparison with other approaches,
and we present some supporting asymptotic arguments.
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1. Introduction

In the last 25 years there has been a growing literature on financial volatility with a huge number
of new models proposed to predict volatility. The reason why researchers have devoted such an
attention to this particular topic can be explained by the central role that volatility plays in most
financial applications in practice. Most of the models that have been proposed are simple with
a small number of parameters only. In general, we are confronted with finding a good trade-
off between parameter parsimony and model flexibility. The main research stream on financial
volatility has focused more on the former, and also by the desire for econometric interpreta-
tion. More flexible approaches can be found in the non-parametric setting: see, for example,
Gourieroux and Monfort (1992), Härdle and Tsybakov (1997), Hafner (1998), Yang et al. (1999),
Audrino (2005) and Andersen et al. (2005) for a survey of methods for non-parametric volatility
modelling.

We propose a flexible model that is based on a high dimensional parameterization from a
B-spline basis expansion. So far, to our knowledge, the only other study that used splines to
estimate financial volatility was by Engle and Rangel (2005) who introduced the spline gen-
eralized auto-regressive conditional heteroscedasticity (GARCH) model. However, the use of
splines in their work is completely different from ours: they found that an exponential spline is a
convenient non-negative parameterization for the slow changes over time of the unconditional
variance whereas we use B-spline basis functions for approximating the general conditional
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variance function. Our approach is in the spirit of a sieve approximation of the conditional vari-
ance function, where the relevant B-spline basis functions are estimated by using a regularization
procedure.

Nowadays there is a large literature about adaptive, non-parametric estimation. Powerful
results about model selection have been developed in a series of papers by Birgé and Mass-
art (1997, 1998), Barron et al. (1999) and Laurent and Massart (2000), with applications to
the adaptive estimation of density or regression functions. More recently, Comte and Rozen-
holc (2002) studied adaptive estimation of the mean and volatility functions in a penalized
regression framework, with possible applications to financial volatility. However, there are sev-
eral differences from the model and methodology that we propose. In particular, the volatility
dynamics that were considered by Comte and Rozenholc (2002) followed an ARCH(1)-type
process, whereas we generalize to the more realistic GARCH(1,1) type of financial volatility
dynamics. Moreover, both the empirical risk criterion and the penalty function that were used
in the adaptive procedure applied in Comte and Rozenholc (2002) are very different from those
that we propose here which are computationally feasible for high dimensional parameteriza-
tions with tensor product B-spline basis functions. Our approach bears some similarities with
Lin (2000) for function estimation in high dimensional non-parametric regression. However,
the setting with GARCH(1,1) models exhibiting infinite memory and our estimation algorithm
are entirely different.

One aim of this paper is to bring regularized and sparse model fitting into the field of volatility
estimation: even when having overparameterized the model a priori, our estimation method will
regularize by selecting the relevant basis functions and shrinking all others exactly or close to
zero. B-splines have been mathematically justified for function approximation; see for example
de Boor (2001). In fact, B-splines represent piecewise polynomial functions and, consequently,
they can approximate any given continuous function of interest. Moreover, B-splines also give
rise to an easy interpretation of the model. For example, if we construct the additive expan-
sion for the conditional variance with B-splines of order 1 (i.e. piecewise constant functions in
different regions of the predictor variables), the model can be interpreted as a threshold regime
model for the volatility, where regimes are associated with different regions of the predictor
space and the conditional variance is locally constant. Another nice feature of our approach is
that it is computationally feasible although the number of parameters to be estimated can be
large. The computations rely on fitting a possibly overcomplete dictionary of basis functions, in
our case from B-splines, by using a greedy boosting algorithm (Friedman, 2001): the approach
is related to the work by Bühlmann (2006) but with a loss function that is tailored for volatility
estimation.

We validate the goodness of our model in terms of volatility forecasting accuracy on simulated
and real data. We collect strong empirical evidence for superiority of our model in comparison
with two other approaches: the first being the standard, widely used parametric GARCH(1,1)
model and the second being the univariate non-parametric functional gradient descent method
in Audrino and Bühlmann (2003). The use of the former as a benchmark model is motivated
by the remarkable consensus that it is appropriate to describe the dynamics of financial vol-
atility, despite its simplicity, and by the empirical evidence that it is very difficult to beat the
GARCH(1,1) model with more sophisticated methods (Lunde and Hansen, 2005). The choice
of the latter approach has been motivated by comparing with a very competitive non-parametric
estimator.

The data that are analysed in the paper can be obtained from

http://www.blackwellpublishing.com/rss
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2. The model

As a starting point, we consider a non-parametric GARCH(1,1) model for the dynamics of the
time series of interest, e.g. the dynamics of the log-returns

Xt = log.Pt/− log.Pt−1/≈ .Pt −Pt−1/=Pt−1

of a financial instrument with prices Pt :

Xt =μt +σtZt .t ∈Z/,

σ2
t =f.Xt−1, σ2

t−1/, f : R×R+ →R+, .2:1/

where .Zt/t∈Z is a sequence of independent identically distributed innovation variables with
zero mean and variance equal to 1, and, for each t, the random variable Zt is independent from
{Xs; s< t}. (If f satisfies a contraction property of the type

sup
x∈R

|f.x, σ2/−f.x, τ2/|�D|σ2 − τ2| for some 0 <D< 1, and for all σ2, τ2 ∈R+,

and assuming moment conditions E|σt|4 � C1 < ∞ and E|Xt−1|4 � C2 < ∞ for all t ∈ Z, there
is an expansion h.Xt−1, Xt−2, . . . , Xt−m/ which converges in the L2-sense to σ2

t . An explicit
construction has been given in Bühlmann and McNeil (2002) (theorem 1 using σ2

t,0 = X2
t−1/.)

Therefore, μt =E[Xt|Ft−1] and σ2
t =var.Xt|Ft−1/, where Ft−1 is the σ-algebra that is generated

from the random variables {Xs; s� t −1}. Generally, in financial applications, there is no need
to allow for a large degree of flexibility in the dynamics of the conditional mean. We assume
that

μt =α0 +α1Xt−1 .2:2/

follows a simple auto-regressive AR(1) equation. Much more attention must be devoted to
the modelling of the time varying dynamics of the so-called volatility σt =√

var.Xt|Ft−1/. The
estimation and prediction of volatility are a central task in the financial field because of its
primary importance in many practical applications: finding a methodology that yields accu-
rate volatility predictions is one of the main goals in both academic research and practice.
We first consider the general conditional variance function in a non-parametric GARCH(1,1)
model,

σ2
t =var.Xt|Ft−1/=f.Xt−1, σ2

t−1/: .2:3/

The unknown function f.·, ·/ ∈ R+ above may be non-linear or even not smooth. Non-
parametric techniques can be used for the estimation of f.·, ·/. Their advantages include gener-
ality which is often discounted by decreased or non-improved average prediction performance.
Even worse, non-parametric methods exhibit poor performance at edges which represent the
periods of high volatility that are of major interest in practical applications. Additional diffi-
culties are due to the strong sensitivity of choosing smoothing parameters.

Our approach is in the spirit of a sieve approximation with a potentially high dimensional
parametric model (i.e. several dozens up to hundreds of parameters) for the non-parametric
function f.·, ·/. As we shall describe in Section 3, our estimation technique is computation-
ally efficient and addresses a major obstacle of estimating many parameters in a non-linear
model. We model the dynamics of the logarithm of the squared volatility σ2

t as an additive
expansion of simple bivariate B-spline basis functions on a predictor space R × R+ arising
from the lagged values .Xt−1, σ2

t−1/. Using the log-transform allows us to remove positivity
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restrictions and enables the use of a convex loss function λ.·, ·/ in formula (3.2). In detail, we
model

log{σ2
t .θ/}= log{fθ.Xt−1, σ2

t−1.θ/}

=gθ0{Xt−1, σ2
t−1.θ/}+

k1∑
j1=1

k2∑
j2=1

βj1,j2 Bj1,j2{Xt−1, σ2
t−1.θ/}, .2:4/

where gθ0.·, ·/ is a simple, parametric starting function and θ denotes the parameter set
composed by {θ0, βj1,j2 , j1 = 1, . . . , k1, j2 = 1, . . . , k2}. We propose to take gθ0.·, ·/ from the
logarithm of a parametric GARCH(1,1) process; see Bollerslev (1986). We may view our spec-
ification in equation (2.4) as a sieve approximation which is parametrically guided by gθ0.·, ·/.
If all βj1,j2 ≡ 0, which may arise in our sparse estimation procedure from Section 3, we obtain
the classical parametric GARCH(1,1) model; in general, we try to improve using the second
term

k1∑
j1=1

k2∑
j2=1

βj1,j2 Bj1,j2{Xt−1, σ2
t−1.θ/}

with the bivariate B-spline basis functions Bj1,j2.·, ·/.
Multivariate B-splines can be written as products of univariate B-splines and, therefore, can

be computed in an easy way. In our particular case, we have

Bj1,j2{Xt−1, σ2
t−1.θ/}=Bj1.Xt−1/Bj2{σ2

t−1.θ/}, j1 =1, . . . , k1, j2 =1, . . . , k2: .2:5/

In fact, B-splines represent piecewise polynomial functions and, consequently, they can be
used to approximate a general continuous, non-parametric conditional variance function in
model (2.3). B-splines allow for a large flexibility in the shape of the conditional variance
function, depending on how we choose the following two tuning parameters: the degree and
the number of breaks (or knots) of each univariate B-spline basis function. In our particu-
lar case, we have two predictors given by past lagged returns and past lagged squared vol-
atilities. We allow that the squared volatility function can be quadratic in Xt−1 and, thus,
we fix the degree of the Bj1.Xt−1/ splines to be equal to 3. Furthermore, we choose a piece-
wise linear relation in σ2

t−1 and, thus, we fix the degree of the Bj2.σ2
t−1/ splines to be equal

to 2. The number of breaks is a measure for the accuracy of the approximation: with a larger
number of breaks, we obtain a better approximation but a higher variability due to larger
complexity. In our empirical analysis, we always choose as break points the empirical
α-quantiles of the corresponding predictor variables with α= i=mesh, i= 1, . . . , mesh − 1, and
mesh∈ N. (In general, we can also use a third tuning parameter to control the smoothness of
the approximation at each break, i.e. the knot’s multiplicity. We impose our approximation to
be continuous and smooth at each break. This means that we set the knot’s multiplicity to
be equal to 1 for all knots except for the first and last; for more details we refer to de Boor
(2001).)

3. The estimation algorithm and its properties

We estimate the model that is specified in equations (2.1)–(2.5) by (pseudo-) maximum-likelihood
using a Gaussian assumption for the conditional innovations. Owing to the potentially large
number of parameters, we employ additional regularization in terms of a boosting algorithm.
This will lead to improved prediction performance but also ensures computational feasibility
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in high dimensions. Assuming that the innovations Zt in equation (2.1) are standard normally
distributed, the negative log-likelihood in the model is given by

−log{L.α, θ; XT
2 /}=

T∑
t=1

1
2

[
log.2π/+ log{σ2

t .θ/}+ {Xt −μt.α/}2

σ2
t .θ/

]

=
T∑

t=1

1
2

(
log.2π/+gθ{Xt−1, σ2

t−1.θ/}+ {Xt −μt.α/}2

exp[gθ{Xt−1, σ2
t−1.θ/}]

)
, .3:1/

where gθ{Xt−1, σ2
t−1.θ/}= log{σ2

t .θ/}. The log-likelihood is always considered conditional on
X1 and some reasonable starting value σ2

1.θ/, e.g. σ2
1.θ/ = var.X1/. Note that the influence of

the starting value decays exponentially fast under for example the contraction assumption that
is stated under expression (2.1).

We estimate the (many) parameters in the model by using essentially the functional gradient
descent (FGD) algorithm from Friedman (2001) which belongs to the class of boosting proce-
dures. Three ingredients are required: a loss function and its partial derivative, a base procedure
or weak learner and an initial starting estimate. We choose the loss function from the likelihood
framework above, i.e.

λ.y, g/= 1
2

{
log.2π/+g + y2

exp.g/

}
, .3:2/

where y = x − μ is mean centred; see also Audrino and Bühlmann (2003). When summing
the values of the loss function (3.2) over the data sample, i.e. the empirical risk, we obtain
the negative log-likelihood in equation (3.1). To proceed with the minimization, we need the
partial derivative of the loss function with respect to the log-squared volatility g. This is the
direction of g that yields the best improvements in the (pseudo-) maximum-likelihood optimi-
zation:

@λ.y, g/

@g
= 1

2

{
1− y2

exp.g/

}
: .3:3/

As a weak learner or base procedure, we propose the use of a componentwise least squares
method, which fits one B-spline basis function at a time. Finally, as an initial starting estim-
ate g0.θ/, we propose the use of the log-transformed estimates from the simple parametric
GARCH(1,1) model.

In more detail, our co-ordinatewise gradient descent algorithm is as follows.

Step 1 (initialization): choose the starting parameters α̂ and θ̂0 from a simple parametric
AR(1) or GARCH(1,1) model respectively. Denote

μ̂.t/= α̂1 + α̂2Xt−1

and

exp{ĝ0.t/}= θ̂0,1 + θ̂0,2X2
t−1 + θ̂0,3 exp{ĝ0.t −1/}:

Set m=1.
Step 2 (projection of the gradient to the B-splines): compute the negative gradient vector

Ut =−1
2

[
1− .Xt − μ̂t/

2

exp{ĝm−1.t/}

]
, t =2, . . . , T:
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Then, fit the negative gradient vector with individual bivariate B-spline basis functions. Here,
we shall exclusively consider the componentwise linear least squares base procedure

Ŝm =arg min
1�d�k

{
T∑

t=2
.Ut − β̂d Bd[Xt−1, exp{ĝm−1.t −1/}]/2

}
,

where d = .d1, d2/ is a bivariate index, β̂d is the least squares estimated coefficient when
regressing Ut versus the spline basis function Bd[Xt−1, exp{ĝm−1.t − 1/}] (t = 2, . . . , T ) and
k = .k1, k2/ is the bivariate order of the B-splines. (k1 and k2 are the number of univariate
B-spline basis functions for Xt−1 and σ2

t−1 respectively and in our case can be computed as
k1 = .meshXt−1 −1/+3 and k2 = .meshσ2

t−1
−1/+2.)

Step 3 (line search): perform a one-dimensional optimization for the step length βŜm
when

updating ĝm−1:

β̂Ŝm
=arg min

w

{
T∑

t=2
λ.Xt − μ̂t , ĝm−1.t/+wBŜm

[Xt−1, exp{ĝm−1.t −1/}
}

:

Update

ĝm.t/= ĝm−1.t/+ β̂Ŝm
BŜm

[Xt−1, exp{ĝm−1.t −1/}]:

Step 4 (iteration and stopping): increase m by 1 and iterate steps 2 and 3 until stopping with
m=M. This produces the estimate

ĝM.t/= ĝ0.t/+
M∑

m=1
β̂Ŝm

BŜm
[Xt−1, exp{ĝm−1.t −1/}]

for the log-squared volatility function in expression (2.4).

Analogously to Audrino and Bühlmann (2003), the stopping value M is chosen by using
sample splitting, i.e. the optimal model structure is estimated on the first 70% of the data (the
estimation sample) and then fitted to the remaining 30% of the data (the validation sample).
The optimal stopping value M is the value that minimizes the empirical risk of the validation
sample. Note that the parameter M is of fundamental importance to avoid overfitting and to
obtain reliable results in an out-of-sample analysis.

Furthermore, it is often desirable to introduce shrinkage to zero in step 3, to reduce the vari-
ance of the estimated B-spline components. The update β̂Ŝm

BŜm
in step 3 of the algorithm above

is then replaced by

κβ̂Ŝm
BŜm

, with 0 <κ�1:

In our empirical analysis, we find that values κ∈{0:1, 0:2} are very reasonable. Regarding the
choice of the breaks (or the knots) in the two predictors of the bivariate B-splines, we choose
break points corresponding to empirical quantiles of the predictor variables. Since volatility is
not observable, we fix the structure (i.e. the break sequence) of the B-splines for σ2

t−1.θ/ as the
quantiles of the estimates exp{ĝ0.t/} from the simple GARCH(1,1) starting model. The optimal
values of the tuning parameters differ from application to application and can be found by using
cross-validation or similar techniques.

Finally, it is worth emphasizing that our algorithm proceeds with a computationally efficient
updating rule in step 3 (using the notation θ for the entire parameter vector):

σ2
t .θnew/=σ2

t .θold/ h{Xt−1, σ2
t−1.θold/}, .3:4/
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where h{Xt−1, σ2
t−1.θold/}=BŜm

[Xt−1, exp{ĝm−1.t −1/}] using the notation from step 3 in iter-
ation m. The update is very fast and does not require O.t/ operation counts for recursive com-
putation of σ2

t .θnew/ in the parameterization (2.4).

3.1. Connections to penalized maximum likelihood
The estimation algorithm from Section 3 above yields sparse solutions and a regularized max-
imum likelihood estimate, depending on the stopping iteration M. The sparsity is induced by
the nature of the co-ordinatewise procedure: it fits only one parameter (i.e. β̂Ŝm

in the mth iter-
ation) at a time. Because of early stopping (i.e. a ‘small’ M), the estimated parameter vector
β̂ will be sparse, in terms of the number of non-zero elements or also in terms of the l1-norm
‖β̂‖1 =Σj|β̂j|.

In the case of the squared error loss function with λ.y, g/= .y−g/2, there is a striking similar-
ity between a co-ordinatewise gradient descent and the l1-penalized squared error regression,
i.e. the lasso (Tibshirani, 1996); see Efron et al. (2004). An extension of this result for more
general cases than squared error loss has been given by Zhao and Yu (2007). It is argued
that under some conditions on the design matrix the solutions from the co-ordinatewise gra-
dient descent algorithm approximate, as κ→ 0, the solutions from the lasso which is defined
as

θ̂.ξ/=arg min
β

[−2 log{L.β/}+ ξ‖β‖1], .3:5/

where L.β/ denotes the likelihood function, ξ � 0 is a penalty parameter and ‖β‖1 = Σj |βj|.
Or, in more practical terms, the whole range of lasso solutions in equation (3.5) when varying
the penalty parameter ξ is similar to the solutions from the co-ordinatewise gradient descent
method when varying the stopping iteration M over a large range of values. This is in the spirit
of an approximate path following algorithm (Rosset and Zhu, 2007).

3.2. Supporting asymptotics
We shall provide some asymptotic theory for fitting a non-parametric ARCH(p) model. A rig-
orous asymptotic analysis of our estimation method for fitting a non-parametric GARCH(1,1)
model seems very difficult. However, we assume that the data-generating process .Xt/t∈Z is quite
general and, in particular, it does not need to be a non-parametric ARCH(p) or GARCH(1,1)
process.

For the model to be fitted (which is not assumed to be the data-generating model), we consider
an ARCH(p) model which is parameterized by a B-spline basis:

Ut =σtZt , log.σ2
t /=gp.β; Ut−1, . . . , Ut−p/ .t ∈Z/,

gp.β; u1, . . . , up/=
k∑

j1=1,:::,jp=1
βj1,j2,:::,jp Bj1.u1/ Bj2.u2/ . . . Bjp.up/, .3:6/

where .Zt/t∈Z is as in model (2.1). As k and p increase, we can approximate (some subclass of)
non-parametric GARCH(1,1) processes. We use the notation .Ut/t∈Z to distinguish the model
process from the data-generating process .Xt/t∈Z.

The estimation algorithm from Section 3 can be adapted in a straightforward way to model
(3.6). The co-ordinatewise gradient descent method is an approximation of the following pro-
totype Gauss–Southwell algorithm which has been formulated by Bickel et al. (2006). Consider
the empirical risk
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w{gp.β/}=n−1
n∑

t=p+1
λ{Xt , gp.β; Xt−1, . . . , Xt−p/}, .3:7/

where λ.·, ·/ is as in equation (3.2). The prototype algorithm updates the parameter vector β̂m

as follows:

β̂m,Ŝm
= β̂m−1,Ŝm

+κm .κm ∈R/,

β̂m,d = β̂m−1,d for d 	= Ŝm,

such that w{gp.β̂m/}� min
κ∈R,d

[w{gp.β̂m−1 +κδd/}]: .3:8/

Here, δd denotes a vector whose entries are 1 for index d and 0 elsewhere. The prototype estima-
tion procedure is a greedy algorithm striving for maximal reduction of the empirical risk when
updating β̂m linearly with a (selected) B-spline basis function.

We make the following assumptions for the data-generating process .Xt/t∈Z (which may be
different from model (3.6)).

Assumption 1. The data-generating process .Xt/t∈Z is strictly stationary and α mixing with
geometrically decaying mixing coefficients α.j/�Cρj for some 0 <C<∞ and some 0 <ρ< 1.

Assumption 2. The data-generating process .Xt/t∈Z satisfies E|Xt|2+δ <∞ for some δ > 0.

Assumption 3. For model (3.6) to be fitted, the knots of the B-spline basis functions are
in a compact subspace of Rp and the parameter space C, with β ∈C, is a compact subspace of
Rkp.

Assumption 1 has been shown to hold for certain classes of ARCH and GARCH processes;
see for example Carrasco and Chen (2002), Ango Nze and Doukhan (2004) and Francq and
Zakoian (2006). However, we emphasize again that we do not assume that the data-generating
process .Xt/t∈Z is from a GARCH-type model.

The following consistency result holds.

Theorem 1. Consider the prototype estimation algorithm as described in formula (3.8).
Assume that the data-generating process .Xt/t∈Z in model (3.6) satisfies assumptions 1 and 2
and assume assumption 3 for the model to be fitted. Then, for any 0 < p < ∞, there is a
stopping iteration M =Mp such that

EV [λ{Vt , gp.β̂M,T ; Vt−1, . . . , Vt−p/}]=ω0 +oP.1/ .T →∞/,

ω0 = inf
β∈C

.E[λ{Vt , gp.β; Vt−1, . . . , Vt−p/}]/, .3:9/

where C is as in assumption 3, β̂M,T is based on the observed sample X1, . . . , XT and .Vt/t∈Z

is an independent copy from .Xt/t∈Z.

A proof is given in Appendix A. Theorem 1 says that the out-of-sample loss of the esti-
mated model converges to the minimal risk, which is achievable when fitting a non-parametric
ARCH(p) model to a general data-generating process. Note that the risk is a strictly convex
function of the parameters β and, hence, the minimizer

βÅ =arg min
β∈C

.E[λ{Vt , gp.β; Vt−1, . . . , Vt−p/}]/

is unique. This fact and theorem 1 then imply consistency for the parameter vector (because of
uniform integrability of the loss function for any fixed parameter vector β),

β̂M,T −βÅ =oP.1/ .T →∞/:



Splines for Financial Volatility 663

4. Numerical results

We consider the spline GARCH(1,1) model, which was introduced in equations (2.1)–(2.5), on
simulated and real data. We compare performance measures with those obtained from a simple
parametric GARCH(1,1) fit (Bollerslev, 1986) and from a univariate FGD estimation as pro-
posed by Audrino and Bühlmann (2003). The first comparison is important, since the classical
GARCH(1,1) model is recognized to be a benchmark model for financial volatility which is
difficult to outperform significantly; see for example Lunde and Hansen (2005). Furthermore,
the FGD method is an excellent competitor using a non-parametric estimation method. We
always report with the use of mesh ∈ {4, 8} as described in Section 2 and a shrinkage factor
κ∈{0:1, 0:2} as introduced in Section 3: these specifications have led to very reasonable spline
GARCH(1,1) forecasts.

4.1. Simulated data
We report here goodness-of-fit results for synthetic data. We generate 2000 observations from a
model which can mimic well-stylized facts of financial daily return data. We always use the first
1000 simulated data as in-sample period to estimate the model and the successive 1000 values
as the out-of-sample testing period. This is repeated for 100 independent model simulations.

The data-generating process for the squared volatility dynamics is a two-regime process with
the first lagged return as a threshold variable with a threshold value fixed at 0. The local time
varying conditional variance dynamics in the two regimes evolve according to a fractionally
integrated GARCH (FIGARCH(1,d ,1)) model (see Baillie et al. (1996)) and the model from
Audrino and Bühlmann (2001) which is not of GARCH-type form. In detail, we consider a
squared volatility function σ2

t = f.Xt−1, Xt−2, σ2
t−1/ (which we use instead of f.Xt−1, σ2

t−1/ in
model (2.1)) given by

f.x1, x2, σ2/=
{

0:12+0:3σ2 +{1−0:3L− .1−10−6L/.1−L/d}x2
1, if x1 �d1 =0,

.0:4+0:28|x1|3/exp.−0:15x2
2/, if x1 >d1 =0:

.4:1/

Here, in the first expression, L denotes the lag or backshift operator and the fractional differenc-
ing operator .1−L/d has a binomial expansion which is most conveniently expressed in terms
of the hypergeometric function F : .1 − L/d = F.−d, 1, 1; L/; for more details, see Baillie et al.
(1996). In our simulations, we fix d = 0:4. Therefore, the resulting process is a non-parametric
GARCH(2,1) process and it allows for long memory in second moments and for asymmetric
(leverage) effects in volatility in response to past positive and negative returns. These are stylized
facts that are exhibited by real financial return time series. Note that our spline GARCH(1,1)
model is misspecified in terms of the order for the ARCH part.

The distribution of innovations is chosen as standard normal, i.e. Zt ∼N .0, 1/, and we set
μt =E[Xt|Ft−1]≡0 in model (2.1).

For quantifying the goodness of fit, we consider various measures:

IS-Lp = 1
T

T∑
t=1

|σ2
t − σ̂2

t |p, p=1, 2 .in-sample loss/, .4:2/

the in-sample and out-of-sample log-likelihood given in equation .3:1/, .4:3/

OS-Lp = 1
T

2T∑
t=T+1

|σ2
t − σ̂2

t .X2T
T+1/|p, p=1, 2 .out-of-sample loss/, .4:4/
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Table 1. Performance results averaged over 100 independent simulations from
the general non-parametric GARCH(2,1) model with volatility dynamics specified
in expression (4.1): in-sample and out-of-sample mean absolute errors (IS-L1 and
OS-L1), mean-squared errors (IS-L2 and OS-L2) and negative log-likelihood statistic†

Model M̂opt Averaged in-sample errors Averaged out-of-sample errors

−log- IS-L1 IS-L2 −log- OS-L1 OS-L2
likelihood likelihood

GARCH(1,1) 1132.78 0.1602 0.1995 1143.81 0.1596 0.1366
FGD 13.29 1126.90 0.1585 0.1981 1143.43 0.1588 0.1357
Spline 30.32 1120.34 0.1387 0.1720 1138.88 0.1407 0.1231

GARCH(1,1)

†M̂opt is the optimal stopping parameter averaged over the 100 simulations in the FGD
methodology and the spline GARCH(1,1) model that are introduced in Section 3. The
FGD algorithm is estimated by using regression trees with three terminal nodes as base
learners, shrinkage factor κ=0:1 and the correct number of predictor variables (two) given
by the last two-lagged past returns. The tuning parameters in the spline GARCH(1,1)
estimation procedure are chosen as mesh = 8 for univariate splines constructed on past
lagged returns, mesh =4 for those constructed on past (squared) volatilities and shrinkage
κ=0:1.

where, for the out-of-sample measures, σ̂2
t .X2T

T+1/ uses the model that is estimated from the
data XT

1 but evaluates it on the successive test data X2T
T+1, T = 1000. Both the out-of-sample

OS-Lp and the out-of-sample log-likelihood statistic are measures for predictive performance.
The IS-Lp and even more so the OS-Lp statistic are interesting measures for our simulations,
but note that we cannot calculate them for real data since the true volatility σt is unknown. In
the real data analysis that is shown in Section 4.2, we shall overcome this problem by substi-
tuting realized volatility for the true volatility, where the former is constructed exploiting the
information from high frequency data.

Detailed results averaged over 100 independent realizations from model (2.1) with conditional
variance function f given in expression (4.1) are reported in Table 1.

The spline GARCH(1,1) method consistently outperforms both competitor approaches. In
particular, the out-of-sample gains over the standard GARCH(1,1) model are about 10% with
respect to both OS-Lp statistics. The reason for this may be assigned to the lack of ability of
the (symmetric) GARCH(1,1) model for estimating an asymmetric volatility process. However,
virtually the same out-of-sample gains occur over the non-parametric (not-symmetric) FGD
model. In addition, the spline GARCH(1,1) model fitting needs about 30% less computing time
than the FGD.

Detailed results for the OS-L1 statistic across the 100 simulations are shown in Fig. 1. Qual-
itatively similar figures could be plotted for the other performance measures, also.

In Fig. 1(a) the OS-L1 results are plotted against the relative gains over the classical
GARCH(1,1) model. The better forecasting accuracy of the spline GARCH(1,1) model across
the simulations is clearly evident: only in one case (out of 100) does the spline GARCH(1,1)
method perform worse than the GARCH(1,1) model. Gains over the GARCH(1,1) model range
up to 30%. In Fig. 1(b), the same plot is made for the relative gains over the FGD method. Also
in this case, the better forecasting potential of the spline GARCH(1,1) method is easily seen,
although the number of times that the FGD method yields better OS-L1 results rises to 8 (out
of 100). Gains over the FGD model are again up to 30%, as before when comparing with a
GARCH(1,1) model.
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Fig. 1. Mean absolute errors (OS-L1 statistic) for the (squared) volatilities estimated by using the spline
GARCH(1,1) model against relative gains of mean absolute errors over (a) the classical GARCH(1,1) model
and (b) the FGD approach: results are reported for 100 independent simulations from the general non-para-
metric GARCH(2,1) model with volatility function specified in expression (4.1)

4.2. Two real data examples
We consider two financial instruments with 3376 daily log-returns (in percentages, annual-
ized): from the US Standard and Poors index S&P500 and from the 30-years US Treasury
bonds between January 1990 and October 2003. Note that we consider here annualized returns
whereas the simulation model in Section 4.1 is on the scale of daily returns. We use the first 2212
observations (i.e. from January 1990 to December 1998) as the in-sample estimation period and
the successive remaining 1164 observations as out-of-sample test data. For these data, some
additional high frequency observations are available to construct realized volatilities which we
use as a highly accurate measure for the unknown underlying true volatility. In particular, we
employ the multiscale discrete sine transform realized volatility estimator that was proposed
by Curci and Corsi (2003) which consists of a multifrequency regression based approach that
is made robust by a discrete sine transform filter that optimally decorrelates the price signal
from microstructure noise. (A similar estimator has been proposed by Zhang et al. (2005).) We
then compute the same performance statistics (4.2)–(4.4) that were introduced in Section 4.1 by
substituting underlying true volatilities with realized volatilities. Using realized volatilities we are
less exposed to the danger of obtaining wrong rankings due to noisy proxies for volatilities and
biased performance measures; see, among others, Hansen and Lunde (2006) and Patton (2006).

To begin the analysis, Fig. 2 shows the optimal conditional variance estimates (in sample)
that were obtained by using our spline GARCH(1,1) approach.

Both estimated conditional variance functions (for the S&P500 and Treasury bond returns)
are highly non-linear, and asymmetric in past lagged returns of the series. As expected, a sort of
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Table 2. Performance results for (a) the S&P500 annualized returns and (b) the 30-years US Treasury bond
annualized returns between January 1990 and October 2003 for a total of 3376 daily observations (in sample
until December 1998, 2212 observations): in-sample and out-of-sample mean absolute errors (IS-L1 and
OS-L1), mean-squared errors (IS-L2 and OS-L2) and negative log-likelihood statistic†

Model M̂opt Number of Averaged in-sample errrors Averaged out-of-sample errors
parameters

−log- IS-L1 IS-L2 −log- OS-L1 OS-L2
likelihood likelihood

(a) S&P500-returns
GARCH(1,1) 5 8661.73 90.4795 40569.5 5053.23 148.882 80281.4
FGD 23 118 8588.21 90.5723 39611.5 5047.80 144.161 76931.9
Splines 45 95 8606.69 85.7587 34316.7 5047.69 143.427 75644.3

(b) 30-years US Treasury bond returns
GARCH(1,1) 5 7760.16 36.6546 2895.50 4189.61 34.9955 3102.79
FGD 1 10 7754.80 36.9716 2915.56 4198.67 35.7989 3159.56
Splines 11 35 7743.19 34.7944 2890.44 4186.44 33.8643 3046.64

†M̂opt denotes the optimal stopping parameter in the FGD and spline GARCH(1,1) estimation procedures, and
number of parameters reports the total number of parameters. The L-statistics are computed by using realized
volatilities as a proxy for the true unknown volatilities. The FGD algorithm is estimated by using regression
trees with three terminal nodes as base learners, shrinkage factor κ= 1 and the last five-lagged past returns as
predictor variables. The tuning parameters in the spline GARCH(1,1) estimation procedure are mesh =8 for both
univariate splines constructed on past lagged returns and past (squared) volatilities for the S&P500-data, and we
use mesh =4 for the US bond examples. The shrinkage factor for both data sets is κ=0:2.

leverage effect is visible in both series, in particular for high values of past lagged returns:
negative past shocks increase conditional variance more than positive past shocks of the same
size. A simple additive structure of the logarithm of the conditional variance function in terms
of past volatilities and lagged returns is clearly not supported from our spline GARCH(1,1)
model: in fact, almost all terms in the additive expansions are products of functions of the two
predictor variables.

Performance results where squared volatility estimates and forecasts are obtained from a stan-
dard GARCH(1,1) fit, the univariate FGD fit (Audrino and Bühlmann, 2003) and the spline
GARCH(1,1) model are summarized in Table 2.

As for the simulated data, the spline GARCH(1,1) model consistently outperforms both com-
petitors. In both real data analyses under investigation, the predictive gains over the classical
GARCH(1,1) model and the univariate FGD procedure range from 1% to 6%, depending on the
performance measure. Note in particular that, when fitting the models on 30-years US Treasury
bond returns, the FGD approach cannot improve the out-of-sample results that are obtained
from a GARCH(1,1) fit, in contrast with the spline GARCH(1,1) model which again improves
on the classical GARCH(1,1) fit.

The reported gains could be considered only as marginal and too small. However, such small
differences are to be expected for real data because of the high noise component that is intro-
duced by the estimation of the ‘true’ unknown conditional variances using realized conditional
variances that are needed to measure the performance of the competing approaches. To verify
whether the gains are statistically relevant, we perform a series of classical superior predictive
ability tests, which were first introduced by Diebold and Mariano (1995). (Note that in this
analysis we are not interested in building model confidence sets (see Hansen et al. (2003) for
all details), but only in pairwise comparisons.) The results are summarized in Table 3. Positive
values of the statistic always favour our spline GARCH(1,1) model.
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Table 3. Tests on differences of out-of-sample negative log-likelihood L1 and L2 performance terms
for (a) the S&P500 annualized returns and (b) the 30-years US Treasury bond annualized returns†

Models Out-of-sample OS-L1 OS-L2−log-likelihood

(a) Tests for superior predictive ability: S&P500
GARCH(1,1) versus splines 0.7381 (0.2302) 1.7411 (0.0408‡) 1.9931 (0.0231‡)
FGD versus splines 0.0655 (0.4740) 0.3201 (0.3744) 0.4973 (0.3095)

(b) Tests for superior predictive ability: 30-years US Treasury bond
GARCH(1,1) versus splines 1.3453 (0.0892§) 0.9995 (0.1588) 1.4604 (0.0721§)
FGD versus splines 5.0553 (≈0§§) 2.3210 (0.0101‡) 1.9231 (0.0272‡)

†The out-of-sample period goes from January 1999 to October 2003, for a total of 1164 daily observa-
tions. Positive values of the statistic are always in favour of the spline GARCH(1,1) model. p-values are
reported in parentheses.
‡Significant at the 5% level.
§Significant at the 10% level.
§§Significant at the 1% level.

Table 3 confirms the higher predictive power of our approach in terms of conditional variance
prediction over the competitors. Only in the case of the S&P500-returns do the FGD and the
spline GARCH(1,1) approach yield similar results.

5. Conclusions

We propose the use of B-splines for approximating a general non-parametric GARCH(1,1)-type
squared volatility process of a financial time series. Our model is flexible and involves a relatively
large dimension of the unknown parameters, e.g. in the dozens or even in the hundreds. For
accurate prediction and estimation, regularization is essential: we advocate the use of a co-ordi-
natewise FGD algorithm, in the spirit of boosting methods which are very popular in the area
of machine learning. We present some supporting asymptotics of our estimation algorithm and
we demonstrate, using simulated and real data, the excellent prediction capacity of our method.

Our modelling and computational framework can be extended to the case of multivariate time
series, although most financial institutions still use univariate models for their applications; see,
for example, the study by Berkowitz and O’Brien (2002). Nevertheless, we can easily incorporate
our spline GARCH(1,1) procedure for univariate conditional variances in a standard dynamic
conditional correlation GARCH setting (see Engle (2002)). For an N-dimensional time series
(N can be also very large), first estimate N univariate spline GARCH models for the individ-
ual conditional variances. Then estimate conditional correlations in the classical way. Another
extension is for non-stationary models with time varying parameters (and hence a time vary-
ing volatility function). Exemplifying this approach, which would be in the spirit of Engle and
Rangle (2005), we could easily replace the parameter vector β in expression (2.4) (and also
the parameter vector θ0 of the starting function) by a slowly changing function which is again
parameterized by a B-spline basis, i.e.

βj1,j2.t/=∑
r

αr;j1,j2 Br.t/, .5:5/

where Br.·/ is a B-spline basis function for the time point t. Plugging this into expression (2.4),
we would obtain a trivariate B-spline basis (a product of three B-spline basis functions) and
a larger parameter vector whose estimation would be pursued with the same methodology as
described in Section 3.
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Appendix A: Proof of theorem 1

We first argue that the population version of the prototype estimation algorithm (i.e. with T =∞) converges
to the minimizer

ω0 = inf
β∈C

.E[λ{Xt , gp.β; Xt−1, . . . , Xt−p/}]/, .A:1/

where C is a compact set. This claim follows from verifying in a straightforward way condition (GS1) from
Bickel et al. (2006). Thereby, we use that the B-spline basis is bounded by placing the knots in a compact
subset of Rp.

Thus, for "> 0, there is a stopping iteration M =M."/ for the population algorithm such that

E[λ{Xt , gp.βM ; Xt−1, . . . , Xt−p/}]�ω0 + ": .A:2/

Here, the Mth iterate of the population algorithm is denoted by βM .
Hence, we only need to control the errors due to finite sample size n for the first M."/ iterations. Since

there are only finitely many B-spline basis functions and because of the finite iteration number M."/, a
uniform law of large numbers

sup
β∈C

∣∣∣.T −p/−1
T∑

t=p+1
λ{Xt ; gp.β; Xt−1, . . . , Xt−p/}−E[λ.Xt ; gp.β; Xt−1, . . . , Xt−p/}]

∣∣∣=oP .1/ .A:3/

is sufficient to complete the proof. To show that equation (A.3) holds, note that

.T −p/−1
T∑

t=p+1
λ{Xt ; gp.β; Xt−1, . . . , Xt−p/}−E[λ{Xt ; gp.β; Xt−1, . . . , Xt−p/}]

= 1
2.T −p/

T∑
t=p+1

k∑
j1=1, :::,jp=1

βj1,:::,jp{Bj1 .Xt−1/. . . Bjp .Xt−p/−E[Bj1 .Xt−1/. . . Bjp .Xt−p/]}

+ 1
2.T −p/

T∑
t=p+1

(
X2

t

exp{gp.β; Xt−1, . . . , Xt−p/} −E

[
X2

t

exp{gp.β; Xt−1, . . . , Xt−p/}
])

:

For both parts of the right-hand side, we can invoke a uniform law of large numbers where uniformity
is with respect to β. More precisely, for the first term, the function is linear and hence Lipschitz with
bounded Lipschitz constant since the B-spline basis functions are bounded (moreover, the function is
bounded). Hence, using our assumptions 1 and 2, a uniform law of large numbers follows by theorem 2.2
and corollary 2.3 from Andrews and Pollard (1994). For the second term, the functions

X2
t

exp{gp.β; Xt−1, . . . , Xt−p/} .A:4/

are not bounded. We invoke theorem 3 from de Jong (1998): note that the α-mixing property of .Xt/t∈Z

implies the α-mixing property of the vector-valued process .Xt−p, . . . , Xt/t∈Z (with fixed p) and the latter
process is also near epoch dependent on itself with trivial coefficients v.q/≡0 for all q�1; de Jong (1998),
page 249. The Lipschitz conditions in de Jong (1998) follow by using differentiability of expression (A.4)
with respect to β and with respect to Xt−p, . . . , Xt and using boundedness of gp.β; Xt−1, . . . , Xt−p/ with
respect to β ∈C and with respect to Xt−1, . . . , Xt−p. Therefore, formula (A.3) holds and the proof of theorem
1 is complete.
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