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Autoregressive models (recap)

(Xt)tez is autoregressive of order g (AR(p)) if

P
Xi = ngth,j + e, tE€Z,
j=1
(et)tez @ sequence of i.i.d. variables, E[e¢] = 0.

with backshift operator B and corresponding AR(p)-polynomial:
p .
O(2)=1-) ¢z (z€C)
j=1
rewrite the model as

((B)X); =1, t € Z.



Stationarity and causality

Assume
(A): o(z)#0for|z] <1
Then:
1 N
X = (V(Be), W(2) = gy =1+ ;@u,zf,
and thus X; = > " thjerj + &
j=1

Conclusion:

Assume (A) and E|e¢| < oo: then, (X)iez is stationary and
causal

in fact: assume E|e¢| < oo
(Xt)tez is stationary < (A)



Moving average (MA(Q))

(Xt)tez is @ moving average of order g (MA(q)) if

q
Xi = ZQKEI—k + &4, t €7,

k=1
(et)tez Sequence of i.i.d. variables, E[e¢] = 0.

Because an MA(q) is of the form X; = fct.(et,et—1, ..., €t—q):
~» it is always stationary and causal
Representation with the backshift operator:

Xt = (©(Be)r, t e Z,

O(z) =1+ quekzk (z€C).
k=1



Invertibility

Analogously to AR(p) models, we can invert ©(-) if its roots are
outside the unit circle.

Theorem

Consider an MA(q) process and assume that ©(z) # 0 for
|z| <1 andE|et| < co. Then,

(0.0
€t = Z’ijt—ju Yo = 17 te Za
/=0

r(2)=67'(2) = @22) =S 7, = 1.
j=0

That is, we have an AR(oo) process:

(e}

Xe =) —nXj+et
j=1



Implication: can model an infinite conditional dependence with
1 or a few parameters
For example: in AR(p) model, we have that

p
E[Xt| Xi—1, Xi—2, .. ] = E[Xe|Xi—1, ..., Xepl = > ¢ X
j=1

But with an MA(g) model,
E[X¢| Xt—1, Xt—2,.. ]

depends on the infinite past



As a concrete example: consider an MA(1)
Xt = Osi_q1 + &t

Then:

O(z) =140z, T(z)=1/0(z —1+Z oYz

For || < 1: I'(z) is well-defined for |z] < 1
~> for |#] < 1 and El|e¢| < oo: can represent
Xe=> (=0YX_j+er, teZ,
j=1
which is an AR(c0) process,

i.e., a non-Markovian process whose conditional distribution
depends on an infinite past.



Autoregressive moving average of orders p and g
(ARMA(p; )

Combination of AR(p) and MA(q) provides a flexible modeling
framework!

(Xt)tez is @ autoregressive moving average of orders p and q
(ARMA(p, q)) if

p q
Xt = Z $jXi—j + Z Oket—k +et, t € Z.
J=1 k=1
With the backshift operator: representation

(¢(B)X):t = (©(B)e)s, t € Z,

p q
O(2)=1-> ¢z, O(2)=1+) 62" zeC.
= p



model can be over-parameterized
Example: consider the (seemingly) ARMA(1, 1) equation

X = 0.8X;_1 — 0.85_1 + &4,
e, (6(B)X); = (O(B)e), d(2) = 0O(2) = 1— 0.82.

Note that the i.i.d. sequence (¢)tcz satisfies the equation above
(just use X; = &¢)

i.e., equation above is satisfied by an i.i.d. sequence (which we
usually do not represent as an ARMA(1,1) process)

problem occurs because ®(-) and ©(-) have common roots (i.e.
20 = 1/08)
~» can factor out terms on both sides of (®(B)X); = (©(B)e):

problem disappears and ARMA(p, g) model is identifiable if the
set of roots of ®(-) and the set of roots of ©(-) have no common
element

i.e., polynomials ®(-) and ©(-) have no common factors



Stationarity and causality
with analogous arguments as before: can invert ®(-) and/or
©(-) if the corresponding roots are outside the unit circle

Theorem

Consider an ARMA(p, q) with ®(z) # 0 (|z| < 1),

©(z) # 0 (|z| < 1) and assume that the roots of (-) and ©(-)
are distinct. Then we have: MA(x) representation

Xt = ZI/J/'E;,/—F&, teZ,
Jj=1

O(z

W(z) ¢(Z§ _ §¢,~zf, wo=1 (2] < 1),

and the AR(>0) representation

o0
&t = Z’ijf—b Y0 = 1; te Za
j=0



Condition ®(z) # 0 (|z| < 1) implies stationarity and causality
of the ARMA(p, q) process since X; = Z/?’; Yjer—j + et isthen a
function of infinitely many e¢,¢e;_+4, ...



Brief illustration

set.seed(22)

x1 < arima.sim(n=500,model=list(ar=0.9))
acf(x1)

plot(x1)

set.seed(22)

x2 «— arima.sim(n=500,model=list(ma=0.9))
acf(x2)

plot(x2)

set.seed(22)

x3 < arima.sim(n=500,model=list(ar=0.9,ma=0.9))
acf(x3)

plot(x3)
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