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Autoregressive models (recap)

(Xt )t∈Z is autoregressive of order q (AR(p)) if

Xt =

p∑
j=1

ϕjXt−j + εt , t ∈ Z,

(εt )t∈Z a sequence of i.i.d. variables, E[εt ] = 0.

with backshift operator B and corresponding AR(p)-polynomial:

Φ(z) = 1−
p∑

j=1

ϕjz j (z ∈ C)

rewrite the model as

(Φ(B)X )t = εt , t ∈ Z.



Stationarity and causality
Assume

(A) : Φ(z) 6= 0 for |z| ≤ 1

Then:

Xt = (Ψ(B)ε)t , Ψ(z) =
1

Φ(z)
= 1 +

∞∑
j=1

ψjz j ,

and thus Xt =
∞∑

j=1

ψjεt−j + εt

Conclusion:
Assume (A) and E|εt | <∞: then, (Xt )t∈Z is stationary and
causal

in fact: assume E|εt | <∞
(Xt )t∈Z is stationary⇔ (A)



Moving average (MA(q))

(Xt )t∈Z is a moving average of order q (MA(q)) if

Xt =

q∑
k=1

θkεt−k + εt , t ∈ Z,

(εt )t∈Z sequence of i.i.d. variables, E[εt ] = 0.

Because an MA(q) is of the form Xt = fct .(εt , εt−1, . . . , εt−q):
; it is always stationary and causal
Representation with the backshift operator:

Xt = (Θ(B)ε)t , t ∈ Z,

Θ(z) = 1 +

q∑
k=1

θkzk (z ∈ C).



Invertibility
Analogously to AR(p) models, we can invert Θ(·) if its roots are
outside the unit circle.

Theorem
Consider an MA(q) process and assume that Θ(z) 6= 0 for
|z| ≤ 1 and E|εt | <∞. Then,

εt =
∞∑

j=0

γjXt−j , γ0 = 1, t ∈ Z,

Γ(z) = Θ−1(z) =
1

Θ(z)
=
∞∑

j=0

γjz j , γ0 = 1.

That is, we have an AR(∞) process:

Xt =
∞∑

j=1

−γjXt−j + εt



Implication: can model an infinite conditional dependence with
1 or a few parameters
For example: in AR(p) model, we have that

E[Xt |Xt−1,Xt−2, . . .] = E[Xt |Xt−1, . . . ,Xt−p] =

p∑
j=1

φjXt−j .

But with an MA(q) model,

E[Xt |Xt−1,Xt−2, . . .]

depends on the infinite past



As a concrete example: consider an MA(1)

Xt = θεt−1 + εt .

Then:

Θ(z) = 1 + θz, Γ(z) = 1/Θ(z) = 1 +
∞∑

j=1

(−θ)jz j .

For |θ| < 1: Γ(z) is well-defined for |z| ≤ 1
; for |θ| < 1 and E|εt | <∞: can represent

Xt =
∞∑

j=1

(−θ)jXt−j + εt , t ∈ Z,

which is an AR(∞) process,
i.e., a non-Markovian process whose conditional distribution
depends on an infinite past.



Autoregressive moving average of orders p and q
(ARMA(p,q))

Combination of AR(p) and MA(q) provides a flexible modeling
framework!

(Xt )t∈Z is a autoregressive moving average of orders p and q
(ARMA(p,q)) if

Xt =

p∑
j=1

φjXt−j +

q∑
k=1

θkεt−k + εt , t ∈ Z.

With the backshift operator: representation

(Φ(B)X )t = (Θ(B)ε)t , t ∈ Z,

Φ(z) = 1−
p∑

j=1

φjz j , Θ(z) = 1 +

q∑
k=1

θkzk , z ∈ C.



model can be over-parameterized

Example: consider the (seemingly) ARMA(1,1) equation

Xt = 0.8Xt−1 − 0.8εt−1 + εt ,

i.e. (Φ(B)X )t = (Θ(B)ε)t , Φ(z) = Θ(z) = 1− 0.8z.

Note that the i.i.d. sequence (ε)t∈Z satisfies the equation above
(just use Xt = εt )
i.e., equation above is satisfied by an i.i.d. sequence (which we
usually do not represent as an ARMA(1,1) process)

problem occurs because Φ(·) and Θ(·) have common roots (i.e.
z0 = 1/0.8)
; can factor out terms on both sides of (Φ(B)X )t = (Θ(B)ε)t

problem disappears and ARMA(p,q) model is identifiable if the
set of roots of Φ(·) and the set of roots of Θ(·) have no common
element
i.e., polynomials Φ(·) and Θ(·) have no common factors



Stationarity and causality
with analogous arguments as before: can invert Φ(·) and/or
Θ(·) if the corresponding roots are outside the unit circle

Theorem
Consider an ARMA(p,q) with Φ(z) 6= 0 (|z| ≤ 1),
Θ(z) 6= 0 (|z| ≤ 1) and assume that the roots of Φ(·) and Θ(·)
are distinct. Then we have: MA(∞) representation

Xt =
∞∑

j=1

ψjεt−j + εt , t ∈ Z,

Ψ(z) =
Θ(z)

Φ(z)
=
∞∑

j=0

ψjz j , ψ0 = 1 (|z| ≤ 1),

and the AR(∞) representation

εt =
∞∑

j=0

γjXt−j , γ0 = 1, t ∈ Z,

i.e. Xt =
∞∑

j=1

−γjXt−j + εt , t ∈ Z,

Γ(z) =
Φ(z)

Θ(z)
=
∞∑

j=0

γjz j (|z| ≤ 1).



Condition Φ(z) 6= 0 (|z| ≤ 1) implies stationarity and causality
of the ARMA(p,q) process since Xt =

∑∞
j=1 ψjεt−j + εt is then a

function of infinitely many εt , εt−1, . . .



Brief illustration

set.seed(22)
x1← arima.sim(n=500,model=list(ar=0.9))
acf(x1)
plot(x1)

set.seed(22)
x2← arima.sim(n=500,model=list(ma=0.9))
acf(x2)
plot(x2)

set.seed(22)
x3← arima.sim(n=500,model=list(ar=0.9,ma=0.9))
acf(x3)
plot(x3)
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