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This script gives a brief introduction into theory and methods of time series
analysis. For examples and illustrations of the concepts and methods, you
should look at the R-demonstrations which are also on my web page.
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1 Introduction

A time series is a sequence of observations of a system/phenomenon which varies
irregularly in time. We interprete the irregular behavior as the effect of ran-
domness. Observations at a fixed time point can be univariate or multivariate.
The time points where observations are made can be equispaced or irregular
(equispaced observations with missing values gives an intermediate situation).

The basic plot shows the observations versus time. From this plot one can
usually obtain a first descriptive characterization of a time series. Things to
look for are for instance whether the level is constant or changes slowly and
thus exhibits a trend. In the case of a trend, one then looks if the fluctuations
change with the level or remain constant. Another feature to look for is whether
periodic behavior is present or absent. Periodic behavior can either have a
simple explanation as a seasonal effect with known period (day, week, year), or
it can be due to the internal dynamics of the system. In that case the period
is typically not known a priori and both period and cyclic pattern change over
time. Finally, one will look whether the behavior of the series in different time
windows is essentially the same or changing with time, either by slow or by
sudden changes.

Goals of time series analysis can be classified in one of the following

• Description

• Modeling

• Prediction

• Signal extraction.

1.1 Stochastic processes

A stochastic process is a mathematical model for a time series.

Stochastic process = Collection of random variables (Xt(ω); t ∈ T ). Alternative
view: Stochastic process as a random function from T to R.

A basic distinction is between continuous and discrete equispaced time T . Mod-
els in continuous time are prefered for irregular observation points. In this
course we will restrict ourselves mostly to discrete equispaced time.

In all interesting cases, there is dependence between the random variables at
different times. Hence need to consider joint distributions, not only marginals.
Gaussian stochastic processes have joint Gaussian distribution for any number
of time points.

A stochastic process describes how different time series (when different ω’s are
drawn) could look like. In most cases, we observe only one realization xt(ω) of
the stochastic process (a single ω). Hence it is clear that we need additional as-
sumptions, if we want to draw conclusions about the joint distributions (which
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involves many ω’s) from a single realization. The most common such assump-
tion is stationarity.

Stationarity means the same behavior of the observed time series in different
time windows. Mathematically, it is formulated as invariance of (joint) distri-
butions when time is shifted. Stationarity justifies taking of averages (mathe-
matically, one needs ergodicity in addition).

Simple examples of stochastic processes in discrete time:

• White noise: Xt(.) i.i.d.. This model is stationary. It is not of interest
by itself, but useful as building block for more complicated models. The
reason for the name will become clear later.

• Harmonic oscillations plus white noise

Xt(ω) =

K∑
k=1

αk cos(λkt+ φk) + εt(ω)

where the εt(.) are i.i.d. and the αk, λk and φk are (unknown) parameters.
The “signal” is periodic iff λk/λj ∈ Q for all j, k. This model is not
stationary.

• Moving averages:

Xt(ω) = F (εt(ω), εt−1(ω), . . . , εt−k(ω))

where the εt(.) are i.i.d. and F is a fixed function. This model is station-
ary. The special case where F is linear is often used.

• Autoregressive models: These models are defined recursively:

Xt(ω) = F (Xt−1(ω)) + εt(ω)

where the εt(.) are i.i.d. and F is a fixed function. In order to define a
model, we also need an initial condition Xt0(ω) which is usually assumed
to be independent of all εt(.) for t > t0. This model is usually not station-
ary, but depending on f it can converge to a stationary model as t→∞
or t0 → −∞. Again, the linear case F (x) = β0 + β1x is often used. In
this case, the model is asymptotically stationary iff |β1| < 1.

• Autoregressive conditionally heteroscedastic models

Xt(ω) = F (Xt−1(ω))εt(ω)

where the εt(.) are i.i.d. and F is a fixed function. The same comments
as in the autoregressive model apply.

The last two examples are special cases of a Markov process.

Deterministic chaotic models also show a behavior which is difficult to predict.
They have been considered as an alternative model class.
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Among the processes in continuous time, we only mention Gaussian processes.
These are processes where all finite dimensional distributions are Gaussian.
These processes are determined by the mean function µ(t) and the covariance
function C(t, s). Whereas the mean function is arbitrary, not every function of
two arguments is a valid covariance function because the matrix (C(ti, tj); 1 ≤
i, j ≤ n) must be positive definite for all n and all times t1, . . . , tn. We will
come back to this in Section 2.1.

1.2 Treatment of trend and seasonal component

Series with trends and/or seasonal component have a mean value which changes
with time and thus they are not stationary. Hence one would like to be able to
eliminate them so that the remaining irregular part can be modeled hopefully
by a stationary process.

A seasonal component is periodic with a period which is is fixed and known
in advance. We denote the number of observations in a full period by M . It
is either strictly periodic or it changes very slowly in time. Time series may
contain other periodic features whose period and shape are more variable and
not due to a known periodic external influence like the motion of the sun or
the organisation of our society in working days and weekends. In that case,
the time series often can still be considered to be stationary and we should not
speak about seasonality.

Transformation of variables: Transform Xt → Yt = h(Xt) s. th. there is an
additive decomposition

Yt = Tt + St + It

into trend, seasonal component and irregular component. This means in partic-
ular that the amplitude of the seasonal cycle remains constant in time. Ideally,
It is (approximately) stationary. The most common transformations h are from
the Box-Cox family

h(x) =
xλ − 1

λ
(λ 6= 0), = log(x) (λ = 0).

Parametric models for trend and seasonal:

Yt =
K∑
k=0

αkt
k +

J∑
j=1

(βj cos(2π
jt

M
) + γj sin(2π

jt

M
)) + It.

where M is the number of time points in one cycle and J ≤ M/2. Estimate
the parameters by least squares. Usually this is not flexible enough (e.g. the
seasonal component is assumed to be constant over time).

Nonparametric decompositions: We can estimate the trend by the moving av-
erages:

T̂t =
1

M
(
1

2
Yt−M/2 + Yt−M/2+1 + · · ·+ 1

2
Yt+M/2).
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The seasonal component can then be estimated from Rt = Xt − T̂t:

Ŝt =
1

2k + 1
(Rt−kM +Rt−(k−1)M + · · ·+Rt+kM )

The function stl in R provides a more sophisticated version of this basic idea.

Differencing: Since Tt changes slowly, Tt ≈ Tt−1. Hence the differenced series
∆Yt = Yt−Yt−1 is approximately trend free. Similarly, St−M ≈ St, i.e. seasonal
differences ∆MYt = Yt−Yt−M is approximately free of the seasonal component.
In order to eliminate both, we can consider

∆M (∆Y )t = ∆(∆YM )Yt = Yt − Yt−1 − (Yt−M − Yt−M−1).
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2 The autocovariance function

If (Xt) is a stationary process whose first and second moments exist, then E(Xt)
is independent of t, E(Xt) = µ and Cov(Xt, Xs) depends only on t− s:

Cov(Xt, Xs) = C(t− s).

C is called the autocovariance function of the process. C(0) is the variance of
Xt and thus

ρ(u) =
C(u)

C(0)

is the autocorrelation function. Because

C(−h) = Cov(Xt−h, Xt) = Cov(Xt, Xt+h) = Cov(Xt+h, Xt) = C(h),

the autocovariance and the autocorrelation are symmetric.

Example: White noise If (Xt) is i.i.d., C(h) = 0 for all h 6= 0.

Example: Moving averages. If

Xt =
K∑
k=0

αkεt−k

with (εt) i.i.d., then

E(Xt) = E(εt)
K∑
k=1

αk

and

C(h) = Var(εt)

K∑
k=h

αkαk−h (0 ≤ h ≤ K), C(h) = 0 (h > K).

This result can be extended to two-sided infinite moving averages

Xt =

∞∑
k=−∞

αkεt−k

with
∑

k |αk| <∞. It still holds

E(Xt) = E(εt)

∞∑
k=−∞

αk, C(h) = Var(εt)

∞∑
k=−∞

αkαk−h.

(One has to address the issues of convergence and the exchange of expectation
and limits, this can be done).

A process with E(Xt) = µ and Cov(Xt, Xs) = C(t − s) for all t, s is called
weakly stationary. For Gaussian processes, stationarity and weak stationarity
are equivalent, but for other processes the two concepts differ.
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Example: Autoregression Iterating the equation Xt = φXt−1 + εt gives

Xt = φtX0 +
t−1∑
j=0

φjεt−j .

Taking expectations gives

E(Xt) = φtE(X0) +

t−1∑
j=0

φjE(εt).

Hence, if |φ| < 1, E(Xt) → E(εt)/(1 − φ). If moreover X0, ε1, ε2, . . . are all
independent, we obtain for h ≥ 0 and t→∞

Cov(Xt+h, Xt)→ Var (ε1)

∞∑
j=0

φjφh+j =
Var (ε1)

1− φ2
φh.

In particular, we have shown that the process is asymptotically weakly station-
ary if |φ| < 1.

ARCH processes The strategy to iterate the recursion does not generalize be-
yond linear autoregressions. Because of this, there are in general no simple for-
mulae for nonlinear autoregressions. But for ARCH processes Xt = F (Xt−1)εt
with E(εt) = 0, we can show that the autocorrelations are zero. Note that
by definition, Xt depends only on X0 and ε1, . . . , εt. Because we assume that
the random variables εt are i.i.d. and independent of X0, it follows that εt is
independent of Xs for s < t. Therefore

E(Xt) = E(F (Xt−1)εt) = E(F (Xt−1))E(εt) = 0

and for h > 0

Cov(Xt+h, Xt) = E(Xt+hXt) = E(εt+hF (Xt+h−1)Xt) = E(εt+h)E(F (Xt+h−1)Xt) = 0.

Although Xt+h and Xt are uncorrelated, they are dependent: One can verify
for instance that |Xt+h| and |Xt| are correlated, and so are X2

t+h and X2
t .

The standard estimators of mean, autocovariance and autocorrelation are

µ̂ = X̄n =
1

n

n∑
t=1

Xt

Ĉ(h) =
1

n

n−|h|∑
t=1

(Xt − X̄n)(Xt+h − X̄n)

and

ρ̂(h) =
Ĉ(h)

Ĉ(0)
.

The reason why the denominator in Ĉ(h) is n and not n− |h| will be discussed
below. If the time series plot does not show clear evidence against stationarity,
one usually looks next at a plot of ρ̂(h) against h in order to obtain information
about linear dependence in the series.
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2.1 Linear prediction and partial autocorrelations

The best linear prediction of Xt based on (Xr, Xr+1, . . . Xs) for r ≤ s < t or
t < r ≤ sis the linear combination

X̂t|r:s = α+
s−r∑
k=0

βkXs−k

which minimzes the mean square error of prediction:

E((Xt − X̂t|r:s)
2).

X̂t|r:s is determined by a system of linear equations which involve the mean and
autocovariance of Xt only:

E(Xt − X̂t|r:s) = 0

E((Xt − X̂t|r:s)Xu) = 0 (r ≤ u ≤ s)

Example: Let r = s = t− 1. One easily verifies that

X̂t|t−1 = µ+ ρ(1)(Xt−1 − µ), E((Xt − X̂t|t−1)2) = C(0)(1− ρ(1)2).

The Durbin-Levinson algorithm allows to compute the coefficients of the linear
predictions

X̂p|0:p−1 = α(p) +

p∑
k=1

β
(p)
k Xp−k

and the mean square errors σ2
p = E((Xp−X̂p|0:p−1)2) recursively. We start with

σ2
0 = C(0) and α0 = µ. Then we have

β
(p)
k = β

(p−1)
k + τ(p)β

(p−1)
p−k (1 ≤ k < p),

β(p)
p = τ(p),

α(p) = µ(1−
p∑

k=1

β
(p)
k ),

σ2
p = σ2

p−1(1− τ(p)2)

where

τ(p) =
C(p)−

∑p−1
k=1 β

(p−1)
k C(p− k)

σ2
p−1

where τ(p) is the so-called partial autocorrelation of lag p. According to the
above formula, τp is the coefficient of X0 in X̂p|0:p−1, and 1 − τ2

p gives the
reduction in mean square error if one more observation from the past becomes
available. For a derivation of these formulae, see for instance Brockwell and
Davies, Chapter 5.2.
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Example: For an autoregression we have C(h) = C(0)φ|h| and therefore

τ(2) =
C(2)− φ · C(1)

σ2
1

= 0.

This means that if we know Xt−1, then there is no additional information in
Xt−2 that can be used for predicting Xt. This holds because Xt = φXt−1 + εt
and εt is independent of all past values.

If we allow arbitrary (non-linear) functions of (Xr, Xr+1, . . . Xs), we obtain the
conditional mean as the best prediction. To compute it, we need the joint
distribution of (Xr, Xr+1, . . . Xs, Xt), not only the first and second moment.
For Gaussian processes, the best linear and the best prediction coincide.

2.2 Regression with correlated errors

The autocovariance function is needed for the variance of the arithmetic mean,
or more generally for the variance of least squares estimators with time series
errors.

Variance of the arithmetic mean:

Lemma 1. Let (Xt) be stationary with autocovariance C. Then it holds

a)

Var

(
1

n

n∑
t=1

Xt

)
=

1

n

n−1∑
k=−n+1

(1− |k|
n

)C(k).

b) If
∑∞

k=1 |C(k)| <∞, then as n→∞

nVar

(
1

n

n∑
t=1

Xt

)
→ σ2

∞ =

∞∑
k=−∞

C(k) = Var (Xt) (1 + 2

∞∑
k=1

ρ(k)).

Proof. The first claim follows from

Var

(
n∑
t=1

Xt

)
=

n∑
t=1

n∑
s=1

C(t− s)

=

n−1∑
k=−n+1

C(k) · (Number of pairs with t− s = k)︸ ︷︷ ︸
(=n−|k|)

For the second claim, we write

n−1∑
k=−n+1

(1− |k|
N

)C(k) =
∞∑

k=−∞
max(0, 1− |k|

n
)C(k)︸ ︷︷ ︸

→C(k) for n→∞

The claim thus follows by dominated convergence (Lebesgue’s Theorem).
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Hence dependence typically inflates the standard deviation of the arithmetic
mean by a constant. In order to estimate this standard deviation, we have to
estimate the sum of the autocovariances. It will become clear later how this
can be done.

In models of long range dependence, the autocorrelations decay like a constant
times |h|2d−1 with 0 < d < 1

2 , and thus the condition
∑∞

k=1 |C(k)| < ∞ does
not hold. One can show that in such a situation, the variance of the arithmetic
mean decays like n2d−1 times another constant, that is more slowly than under
independence.

Regression model:

Yt =

p∑
k=1

βkxt,k + εt (t = 1, . . . , n)

where εt is stationary with autocovariance C. The covariance of the ordinary
least squares estimator is in matrix form

(XTX)−1(XTΣnX)(XTX)−1

where Σn is the n × n matrix with elements C(i − j). Like in the case of
the mean, the correlation of the errors changes the covariance of the estimated
coefficients – often substantially. In order to detect correlations of the errors,
the Durbin-Watson test can be used. It is based on the test statistic

T =

∑n−1
i=1 (ri+1 − ri)2∑n

i=1 r
2
i

≈ 2

(
1−

∑n−1
i=1 riri+1∑n
i=1 r

2
i

)
.

In order to take the correlations of the errors into account for the estimated
standard errors, the standard procedure is to assume a parametric model (e.g.
an ARMA-model, to be introduced below) for the autocovariance function of
the errors εt and to estimate these parameters from the residuals.

The generalized least squares estimator is the best linear unbiased estimator of
the coefficients βk. It is the maximum likeleihood estimator of β and it is given
by

β̂ = (XTΣ−1
n X)−1XTΣ−1

n y,

and has covariance (XTΣ−1
n X)−1. Again, one can use a parametric model for Σn

and then estimate β and the parameters in Σn by (joint) maximum likelihood.

2.3 Properties of estimated ACF

The variance of the estimated autocovariances depends on the fourth moments
of the process and are very complicated. It turns out that in the case of a moving
average, the asymptotic variance of the estimated autocorrelations depends only
on the autocorrelations
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Theorem 1. If Xt =
∑

k akεt−k where the εt are i.i.d. with E(ε2
t ) < ∞,∑

k |ak| < ∞ and
∑

k a
2
k|k| < ∞, then for n → ∞ the standardized sequence√

n(ρ̂(h)− ρ(h)) is asymptotically normal with mean zero and covariances

∞∑
j=1

(ρ(j + h) + ρ(j − h)− 2ρ(j)ρ(h))(ρ(j + k) + ρ(j − k)− 2ρ(j)ρ(k)).

We omit the proof (see Brockwell and Davies, Chapter 7.3)

In general, the asymptotic variance of ρ̂(h) is thus complicated and depends
on the unknown autocorrelations for all lags. Some simplification occurs in
special cases: If Xt is white noise, then the estimated autocorrelations are
asymptotically independent and N (0, 1/n)-distributed. For a moving average
process Xt =

∑K
k=0 αkεt−k, the asymptotic variance of ρ̂(h) is for |h| > K

equal to (1 + 2ρ(1)2 + . . . + 2ρ(K)2)/n. Because the estimates are dependent
for different lags, the interpretation of the sample autocorrelation function is
not straightforward.

2.4 Herglotz’s theorem: The spectrum

The autocovariance function of any stationary process has the property that
the matrix Σn with elements C(i − j) for 1 ≤ i, j ≤ n is positive definite for
any n:

n∑
t=1

n∑
s=1

C(t− s)atas = Var

(
n∑
t=1

atXt

)
≥ 0

for any a1, . . . , an. Such a function is called positive definite. The converse is
also true: Any positive definite function is the autocovariance of some stationary
process.

The reason for the denominator n in the definition of the estimated autocovari-
ance Ĉ(h) is that with this choice Ĉ is guaranteed to be positive definite: If we
set Xu = X̄ for u > n, then for 1 ≤ t, s ≤ n

Ĉ(t− s) =
1

n

n−1∑
u=0

(Xu+t − X̄)(Xu+s − X̄).

This implies (by exchanging the order of summation)

n∑
t=1

n∑
s=1

Ĉ(t− s)atas =
1

n

n−1∑
u=0

(
n∑
t=1

at(Xu+t − X̄)

)2

≥ 0.

With the denominator n−|h|, this is not true in general: Consider for instance
the case of three observations X1 = 1, X2 = 0, X3 = −1.

It is in general difficult to decide whether a function is positive definite. The
Theorem of Herglotz gives a characterization in terms of the Fourier transform:
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Theorem 2. A function C : Z→ R with C(h) = C(−h) is positive definite iff
there exists a finite, symmetric measure S on [−1

2 ,
1
2 ] such that

C(h) =

∫ 1/2

−1/2
exp(2πihλ)S(dλ) =

∫ 1/2

−1/2
cos(2πhλ)S(dλ).

If
∑
|C(k)| <∞, then S has the density

s(λ) =

∞∑
h=−∞

C(h) exp(−2πihλ) =

∞∑
h=−∞

C(h) cos(2πhλ),

that is

C(h) =

∫ 1/2

−1/2
exp(2πihλ)s(λ)dλ =

∫ 1/2

−1/2
cos(2πhλ)s(λ)dλ.

S is called the spectral measure, and s the spectral density. Note that s(0) is
the asymptotic variance of the mean (for summable covariances).

Proof. The “if” part is easy:

n∑
t=1

n∑
s=1

C(t−s)atas =

∫ n∑
t=1

n∑
s=1

exp(2πi(t−s)λ)atasS(dλ) =

∫ ∣∣∣∣∣
n∑
t=1

exp(2πitλ)at

∣∣∣∣∣
2

S(dλ) ≥ 0.

For the “only if” part, we start with

0 ≤
n∑
t=1

n∑
s=1

C(t− s) exp(−2πi(t− s)λ) =

n−1∑
h=−n+1

(n− |h|)C(h) exp(−2πihλ)

If
∑
|C(h)| <∞, we can divide by n and let n go to infinity to obtain

s(λ) =
∞∑

h=−∞
C(h) exp(−2πihλ) ≥ 0.

Finally, multiplying both sides by exp(2πikλ) and integrating over λ gives

C(k) =

∫ 1/2

−1/2
exp(2πikλ)s(λ)dλ.

For the general case, we have to look at the spectral distribution function:

Sn(λ) =

∫ λ

−1/2

n−1∑
h=−n+1

(1− |h|/n)C(h) exp(−2πihν)dν

is monotonically increasing and Sn(1
2) = C(0). By compactness of the space

of distributions on [−1/2, 1/2] (Prohorov’s Theorem), one then obtains conver-
gence of Sn.
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Examples:

• White noise: We find easily

s(λ) ≡ Var(Xt).

Since white light has a flat spectrum, this explains the name “white noise”.

• Moving average: We have seen before that C(h) =
∑

k αkαk−h. Hence we
have

C(h) exp(−2πihλ) =
∑
k

αk exp(−2πikλ)αk−h exp(2πi(k − h)λ).

By a change of summation we obtain therefore

s(λ) =
∞∑

h=−∞
C(h) exp(−2πihλ) =

∣∣∣∣∣∑
k

αk exp(−2πikλ)

∣∣∣∣∣
2

• Autoregressive process. Because C(h) = φ|h|C(0), we obtain

s(λ) = C(0)

( ∞∑
h=0

(φh exp(−2πihλ) + φh exp(2πihλ))− 1

)

= C(0)

(
1

1− φ exp(−2πiλ)
+

1

1− φ exp(2πiλ)
− 1

)
=

C(0)(1− φ2)

|1− φ exp(2πiλ)|2
.

• Random harmonic oscillations. Consider the process

Xt(ω) =
J∑
j=1

(Aj(ω) cos(2πλjt) +Bj(ω) sin(2πλjt))

where the Aj and Bj are independent with means zero and variances σ2
j

and the λj are deterministic. This process has mean zero and

Cov(Xt+h, Xt) =
∑
j

σ2
j (cos(2πλj(t+ h)) cos(2πλjt) + sin(2πλj(t+ h)) sin(2πλjt))

=
∑
j

σ2
j cos(2πλjh)

by the well known formula for cos(x − y). Hence it is weakly stationary,
and the spectrum is the sum of point masses at ±λj with weights σ2

j /2.

In the last example, the process was a superposition of harmonics, and the
spectrum encodes the information about frequencies present and variances of
the amplitudes. The example is however not very useful for applications because
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for each realization of Xt(ω) the amplitudes Aj and Bj are fixed and thus we
cannot obtain information about the average size σj of the amplitude. Later,
we will see that all stationary processes can be decomposed in (infinitely many)
harmonics whose amplitudes are determined by the spectrum. Moreover, we
typically can recover the spectrum from a single long realization.

The argument above for the moving average can be generalized.

Lemma 2. If (Xt) is a weakly stationary process with autocovariance CX and
spectrum SX and if (αk) are coefficients with

∑
k |αk| <∞, then the process

Yt =
∑
k

αkXt−k

is also weakly stationary with

CY (h) =
∑
j

CX(j)
∑
k

αkαj+k−h

and

SY (dλ) =

∣∣∣∣∣∑
k

αk exp(−2πikλ)

∣∣∣∣∣
2

SX(dλ).

Proof.

CY (h) = Cov(
∑
k

αkXt+h−k,
∑
`

α`Xt−`) =
∑
k,`

αkα`CX(h+`−k) =
∑
k,j

αkαk+j−hCX(j).

Because |CX(j)| < CX(0) for all j, the double sum on the right hand side
converges. This also shows that

Var(
∑
|k|>n

αkXt−k)→ 0 (n→∞),

that is
∑

k αkXt+h−k converges in L2 and thus we can indeed exchange covari-
ance and sum above.

Finally, by the spectral representation of CX(j)

CY (h) =

∫ ∑
k,`

αkα` exp(2πi(h+`−k)λ)SX(dλ) =

∫
exp(2πihλ)

∣∣∣∣∣∑
k

αk exp(−2πikλ)

∣∣∣∣∣
2

SX(dλ).

This allows a different derivation of the spectrum of an autoregression: Because
Xt − φXt−1 = εt and because εt is white noise, we conclude

Sε(dλ) = |1− φ exp(−2πiλ)|2 SX(dλ) = Cε(0)dλ.
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3 ARMA models

3.1 Definition of ARMA models: Causality, stationarity, in-
vertibility

3.1.1 Linear difference equations

We collect here some results about the solutions of homogeneous difference
equations that will be useful in the following. Hence for given (real) coefficients
φ1, . . . φp with φp 6= 0 we consider complex valued sequences (ut)t∈Z which
satisfy

ut = φ1ut−1 + φ2ut−2 + . . .+ φput−p (t ∈ Z).

Theorem 3. The set of sequences (ut) that satisfy the above difference equation
is a vector space of dimension p. A basis is given by the sequences of the form

ut = tjλt

where λ−1 is a root of the polynomial

Φ(z) = 1− φ1z − . . . φpzp

with multiplicity M and 0 ≤ j < m.

Proof. It is clear that a linear combination of two solutions is again a solution.
Moreover, if p consecutive values uk+1, . . . , uk+p of a solution (ut) are given,
then the solution is unique: Values ut for t > k+ p follow by forward iteration,
those for t ≤ k follow by backward iteration

ut−p =
ut − φ1ut−1 − . . .− φp−1ut−p+1

φp
.

Therefore the dimension of the vector space is p.

Next, we show that the above sequences are indeed solutions. First we take
j = 0:

λt − φ1λ
t−1 − . . . φpλt−p = λtΦ(λ−1) ≡ 0.

Similarly, for j = 1 we have

tλt − φ1(t− 1)λt−1 − . . . φp(t− p)λt−p = λttΦ(λ−1)− λt−1Φ′(λ−1) ≡ 0.

The general case follows because

Φ(j)(λ−1) = −λj
p∑
k=j

φkk(k − 1) · · · (k − j + 1)λ−k = 0 (j < m)

implies that also
p∑

k=1

φkk
jλ−k = 0 (j < m).
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The proof will be completed if we can show that the above solutions are linearly
independent since the number of zeroes of a polynomial of degree p counted with
their multiplicity is equal to p. For a proof of the linear independence, we refer
to Brockwell and Davies, Theorem 3.6.2.

Often we are interested in real valued solutions. These can be obtained easily
because complex valued solution of real polynomials occur in conjugate pairs:
Hence if r exp(iν) is a zero of Φ(z), then so is r exp(−iν). By the vector space
property

tjr−t
exp(iνt) + exp(−iνt)

2
= tjr−t cos(νt)

and

tjr−t
exp(iνt)− exp(−iνt)

2i
= tjr−t sin(νt)

are also solutions, and one can easily show that they are linearly independent.

The above theorem shows that all solutions have the property ut → 0 as t→∞
iff |z| > 1 for all zeroes of Φ(z). In this case, all solutions decay exponentially
to zero. If we require only that the solutions remain bounded as t → ∞, we
can allow zeroes with multiplicity 1 on |z| = 1.

All the results here remain valid if we consider sequences (ut)t≥t0 which satisfy
the recursion for all t ≥ t0 + p .

3.1.2 Causal and stationary autoregressions

A stochastic process (Xt)t∈Z is called a Markovian autoregressive process of
order p if

Xt = φ1Xt−1 + . . .+ φpXt−p + εt

where εt is independent of all Xs, s < t. The variable εt is called the innovation
at time t.

For a Markovian autoregression, φ1Xt−1 + . . . + φpXt−p + E(εt) is the best
prediction of Xt from the past. Furthermore, the innovations at different times
are independent: For t > s εt is independent of Xs−φ1Xs−1−. . .−φpXs−p = εs.

When is a Markovian autoregression stationary ? First it is clear that un-
der stationarity, the innovations are not only independent, but also identically
distributed. For an AR(1)-process, we obtain by iteration

Xt =

t−1∑
j=0

φjεt−j + φtX0.

Hence if second moments exist and if (Xt) is stationary, then

C(0) = Var(ε)
t−1∑
j=0

φ2j + φ2tC(0)

since by assumption all terms on the right are independent. Clearly this implies
that |φ| < 1. The general case is covered by the next Theorem.
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Theorem 4. A stationary Markovian autoregression with finite second mo-
ments exists iff all zeroes of the polynomial

Φ(z) = 1− φ1z − . . .− φpzp

are outside the unit circle {z; |z| ≤ 1}. In that case the process has the repre-
sentation

Xt =

∞∑
j=0

ψjεt−j ,

where the coefficients ψj are the solution of the recursion

ψj = φ1ψj−1 + . . .+ φpψj−p (j ≥ 1)

with initial conditions ψ0 = 1, ψ−1 = . . . ψ1−p = 0 and thus converge to zero
exponentially fast. Moreover, if we define for t > 0

X∗t = φ1X
∗
t−1 + . . . φpX

∗
t−p + εt

with arbitrary initial conditions X∗0 , X
∗
−1, . . . , X

∗
1−p, Xt−X∗t → 0 almost surely

and in L1.

Proof. We write the autoregression of order p as a vector autoregression of order
1: If we set Zt = (Xt, Xt−1, . . . , Xt−p+1)T , ηt = (εt, 0, . . . , 0)T and

Φ =


φ1 . . . φp−1 φp

0

Ip−1
...
0


(with Ip−1 the identity matrix in dimension p− 1), then

Zt = ΦZt−1 + ηt.

Iterating this autoregression, we obtain

Zt =

t−1∑
j=0

Φjηt−j + ΦtZ0.

If Zt is stationary with finite variance, then Φt must converge to zero, and this
is known to be equivalent to the condition that all eigenvalues of Φ are smaller
than one in absolute value. The characteristic polynomial of Φ is however
nothing else than the polynomial zpΦ(1/z) = zp − φ1z

p−1 − . . .− φp.

Taking the limit in the above recursion, we obtain

Zt =

∞∑
j=0

Φjηt−j

Because of the way Φ is defined, the first column of Φt, say c(t), satisfies the
recursion

c(t) = ((φ1, . . . , φp)
T c(t−1), c

(t−1)
1 , . . . , c

(t−1)
p−1 ).

This implies the recursion for ψt.
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This Theorem shows that a stationary Markovian autoregression can be written
as a linear combination of past innovations. A process with such a representa-
tion is called causal. It is clear that a causal autoregression with independent
εt is Markovian.

Without the Markovian (or the causal) assumption, the Theorem is false. To
see why, take any |φ| > 1 and set

Xt = −
∞∑
j=1

φ−jεt+j .

Clearly this is stationary if the εt are i.i.d. Moreover,

φXt−1 = −εt +Xt,

so the recursion is satisfied. However, εt contributes to the sum defining Xs for
s < t, and thus the two variables are dependent.

Example: AR(2). The roots of Φ(z) = 1− φ1z − φ2z
2 are

z1,2 = −φ1 ±
√
φ2

1 + 4φ2

2φ2

One can verify that z1 and z2 are both outside the unit circle iff

−1 < φ2 < 1, φ2 < 1− |φ1|

Hence the set of parameters which correspond to a stationary Markovian au-
toregression is a triangle. The roots are complex for φ2 < −1

4φ
2
1.

3.1.3 Invertible moving averages

A linear moving average of order q

Xt = εt + θ1εt−1 + . . . θqεt−q

with εt i.i.d. is always stationary. Moreover εt is always independent of Xs

for s < t. However we cannot call εt the innovation of the process unless the
other terms θ1εt−1 + . . . θqεt−q on the right hand side can be expressed with the
values Xs for s < t.

We therefore call a moving average invertible if there are coefficients (πj) with∑
|πj | <∞ such that

εt =
∞∑
j=0

πjXt−j .

(An autoregression is always invertible, just set π0 = 1, πj = −φj for 1 ≤ j ≤ p
and πj = 0 for j > p).
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Theorem 5. A moving average is invertible iff all zeroes of the polynomial

Θ(z) = 1 + θ1z + . . .+ θqz
q

are outside the unit circle {z; |z| ≤ 1}. In that case the coefficients πj are the
solution of the recursion

πj = −θ1πj−1 − . . .− θqπj−q

with initial conditions π0 = 1, π−1 = . . . π1−q = 0 and thus converge to zero
exponentially fast.

Proof. For q = 1, we simply iterate the equation Xt = εt + θεt−1. For q > 1,
we write the process as a vector moving average of order 1.

3.1.4 ARMA-Processes

An autoregressive moving average process of order (p, q) (ARMA(p, q)) com-
bines the properties of the two previous models. The recursion is

Xt =

p∑
j=1

φjXt−j +

q∑
j=1

θjεt−j + εt.

For a reasonable model εt should again be independent of Xs for s < t and εt
should depend only on past values Xs, s ≤ t, i.e. the model should be invertible

εt =
∞∑
j=0

πjXt−j .

Again it then follows that the variables εt are independent for different times
t, and if (Xt) is stationary, the εt are even i.i.d. Causality is defined as in the
autoregressive case: There are summable coefficients ψj such that

Xt =
∞∑
j=0

ψjεt−j .

For a causal ARMA model with (εt) i.i.d., εt is obviously independent of Xs for
s < t.

If one wants to generalize the arguments for the autoregressive case one sees
that a problem occurs: For instance for any φ

Xt = φXt−1 + εt − φεt−1

has the stationay solution Xt = εt which is also invertible and εt is independent
of Xs for s < t. The reason for this problem is that Φ and Θ have common
zeroes.

If we assume that Φ and Θ have no common zeroes, then the conditions that
all zeroes of Φ and Θ are outside of the unit circle are again necessary and
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sufficient for the existence of a stationary ARMA model which is invertible and
causal.

For a more compact notation, I introduce now the backshift operator B which
acts on infinite sequences (BX)t = Xt−1. The recursion of the ARMA process
can then be written as

Φ(B)Xt = Θ(B)εt.

Formally, we thus can write

Xt = Φ(B)−1Θ(B)εt, εt = Θ(B)−1Φ(B)Xt.

If Φ(z) has no zeroes in {z; |z| ≤ 1}, the Taylor series

Θ(z)

Φ(z)
=

∞∑
j=0

ψjz
j

converges on {z; |z| ≤ 1} and thus we can define

Φ(B)−1Θ(B) =

∞∑
j=1

ψjB
j .

From the equality

Θ(z) = Φ(z) ·
∞∑
j=0

ψjz
j ,

we obtain by comparing the coefficient of zj on both sides the equations

ψj −
min(p,j)∑
k=1

φkψj−k = θj (0 ≤ j ≤ q), = 0 (j > q)

(we set θ0 = 1). This is the most convenient way to compute ψj numerically.
In particular, ψj again satisfies a difference equation except for an initial part
of length q.

A similar argument applies for the coefficients in the invertibility representation

εt = Θ(B)−1Φ(B)Xt.

3.2 Properties

Let (Xt) be a stationary, causal and invertible ARMA(p, q) process. Then by
the linearity of the expectation we obtain

E(Xt) = E(εt)
Θ(1)

Φ(1)
.

Hence the mean centered processes also satisfy the ARMA recursion.
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We next compute the autocovariance C(h) of the process. Because the covari-
ance is linear in both arguments, we obtain for h ≥ 0

C(h) = Cov(Xh, X0) =

p∑
j=1

φj Cov(Xh−j , X0) +

q∑
k=0

θk Cov(εh−k, X0)

=

p∑
j=1

φjC(h− j) +

q∑
k=h

θk Cov(εh−k, X0).

In the last equality, we have used the property that εt is independent and thus
uncorrelated with X0 for t > 0. For h > q, the second sum on the right
runs over an empty set and is thus zero. Therefore, we have shown that for
h ≥ max(p, q + 1) the autocovariance function satisfies the difference equation

C(h) =

p∑
j=1

φjC(h− j).

In particular, it decays to zero exponentially fast. Moreover, the properties are
closely linked to properties of the zeroes of the polynomial Φ. If Φ has two
zeroes r exp(±iν) with r close to one, then the covariance is (approximately) a
damped harmonic with period 2π/ν.

In order to compute the values C(h) for h < max(p, q+1), we need Cov(εs, X0)
for s ≤ 0. These covariances can be computed from the causal representation:

Xt =

∞∑
j=0

ψjεt−j ⇒ Cov(εs, X0) = Var(ε)ψ−s (s ≤ 0).

Example: Autoregressions. For autoregressions, we only need Cov(ε0, X0)
which is equal to Var(ε). The autocovariances C(h) for 0 ≤ h ≤ p are then
obtained from the equations

C(0)−
p∑
j=1

φjC(j) = Var(ε)

C(h)−
h∑
j=1

φjC(h− j)−
p∑

j=h+1

φjC(j − h) = 0 (1 ≤ h ≤ p).

These equations are called Yule-Walker equations. In Section 2.1 we computed
the best linear prediction X̂p|0:p−1: There we started with the covariances and

computed the coefficients β
(p)
k . We end up with the same equations and β

(p)
k =

φk.

Example: ARMA(1,1). From

Xt = φXt−1 + εt + θεt−1

we obtain
Xt = φ2Xt−2 + εt + (φ+ θ)εt−1 + φθεt−2
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and therefore ψ0 = 1, ψ1 = (φ+ θ). Hence the autocovariances C(0) and C(1)
can be found by solving the equations

C(0) = φC(1) + Var(ε)(1 + θ(φ+ θ))

C(1) = φC(0) + Var(ε)θ.

This gives the variance

C(0) = Var(ε)
1 + 2θφ+ θ2

1− φ2

and the autocorrelations

ρ(1) = φ+
θ(1− φ2)

1 + 2θφ+ θ2
, ρ(h) = φh−1ρ(1) (h > 1).

The spectrum of an ARMA model follows easily from Lemma 2:

s(λ) = Var(ε)
|Θ(exp(−2πiλ))|2

|Φ(exp(−2πiλ))|2
.

If Φ has two zeroes r exp(±iν) with r close to 1, then the spectral density
will have a peak near λ = ν/(2π) and the process will have an approximately
periodic behavior with period 2π/ν.

Prediction from the infinite past: We assume that both Xt and εt have mean
zero (i.e. we have subtracted the mean). For a causal and invertible ARMA
model

X̂t|−∞:t−1 =

p∑
j=1

φjXt−j +

q∑
j=1

θjεt−j

is then the best prediction of Xt based on the infinite past (Xs, s < t), and εt
is the prediction error. In order to compute it, one can either express εt−j with
past observations by computing the coefficients πj according to the formula
given above, or one can set εs−1 = · · · = εs−q = 0 for a time point s << t and
then iterate the relation

εu = Xu −
p∑
j=1

φpXu−p −
q∑
j=1

θkεu−k

for u = s, s + 1, . . . t. The error due to assuming εs−1 = · · · = εs−q = 0 decays
exponentially as t− s→∞.

Predictions from the infinite past for more than one time step ahead can be
made as follows: Because the best prediction is linear, we obtain for k > 0

X̂t+k|−∞:t−1 =

min(p,k−1)∑
j=1

φjX̂t+k−j|−∞:t−1 +

p∑
j=k

φjXt+k−j +

q∑
j=k

θjεt+k−j .

Hence we see that the predictions for different lead times satisfy the difference
equation associated with the AR part, except for finitely many lead times at
the beginning. In particular, as the lead time increases, the predictions tend to
zero, the mean of Xt.
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3.3 Statistical inference for ARMA models

3.3.1 Estimation of coefficients

Estimation of the unknown parameters φj , θk and σ2
ε = Var(εt) is usually done

with exact or approximate Gaussian maximum likelihood (MLE). An unknown
mean is usually estimated first by the arithmetic mean of the data and then
subtracted.

We have the following general formula for the density of X1, . . . , Xn

f(x1, . . . , xn) = f(x1)f(x2|x1) · · · f(xn|x1, . . . , , xn−1).

In the Gaussian case, the conditional densities f(xt|x1, . . . , , xt−1) are again
Gaussian with mean equal to the best linear prediction X̂t|1:t−1 and variance

equal to Var(Xt−X̂t|1:t−1). For the exact MLE, one computes these means and
variances exactly as a function of the unknown parameters. An approximate
likelihood uses X̂t|−∞:t−1 and Var(εt) instead where X̂t|−∞:t−1 is computed
recursively starting with ε0 = · · · = ε1−q = 0. In order to reduce the effect of
these artificial starting values, one typically omits the first r = max(p, q + 1)
factors in the likelihood, that is one takes

f(xr+1, . . . , xn|x1, . . . , xr) =
n∏

t=r+1

f(xt|x1, . . . xt−1).

For the AR(p) model, this reduces to the least squares estimator

arg min
n∑

t=p+1

(xt −
p∑
j=1

φjxt−j)
2

which is particularly simple to compute. In the autoregressive case, there are
other estimators: The Yule-Walker estimator determines the unknown φj and

σ2
ε from the Yule-Walker equations with estimated covariances Ĉ(h) (0 ≤ h ≤
p). . The Burg estimator proceeds recursively with respect to p, that is, it
estimates the partial autocorrelations, and it does this by minimizing forward
and backward prediction errors.

For long series, all the different versions give similar estimates, but for shorter
series and parameters close to the boundary of the causality and invertibility
region, the choice of the estimator can matter. Usually one prefers the exact
MLE or the Burg estimator.

3.3.2 Asymptotic properties of estimators

One can show that all estimators introduced in the previous section are consis-
tent, and the vector √

n((φ̂− φ)T , (θ̂ − θ)T )T
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is asymptotically normal with mean zero and covariance matrix Γ(φ, θ). Here
the elements of Γ−1 are given by the covariances of the two autoregressive
processes

Ut =

p∑
j=1

φjUt−j + Zt, Vt =

q∑
k=1

θkVt−j + Zt

where Zt is i.i.d. with mean zero and variance one. Because the same innova-
tions are used, these two processes are correlated. More precisely,(

Γ−1
)
jk

= Cov(Uj , Uk) (j ≤ p, k ≤ p)
= Cov(Vj−p, Vk−p) (j > p, k > p),

= Cov(Uj , Vk−p) (j ≤ p, k > p)

This holds if (Xt) is a causal and invertible ARMA model with no common
zeroes in Φ(z) and Θ(z) and the innovations are i.i.d. with mean zero and
variance σ2. It is not required that the innovations are normal although we use
the Gaussian MLE (the same is true in regression).

Example: For an AR(1) process
√
n(φ̂−φ) is asymptotically normal with mean

zero and variance (1− φ2) because Cov(U1, U1) = 1/(1− φ2).

3.3.3 Order selection

A simple technique is to identify the orders p and q from the plot of the au-
tocorrelations and partial autocorrelations. For an MA(q) process, all autocr-
relations ρ(h) = 0 for h > q whereas the partial autocorrelations τ(h) decay
exponentially or like a damped harmonic as h → ∞. For an AR(p) process,
the partial autocorrelations τ(h) are zero for h > p and the autocorrelations
decay exponentially or like a damped harmonic as h→∞. For an ARMA(p,q)
process with p > 0 and q > 0 both τ(h) and ρ(h) decay exponentially or like a
damped harmonic.

Nowadays it is also possible to fit ARMA(p,q) models for all p ≤ p0 and q ≤ q0

and to choose the one with the best fit afterwards. The most popular methods
to choose the order are then the selection critera AIC (Akaike Information
Criterion) or BIC (Bayesian Information Criterion). They are defined as follows:

−2 sup `(φ, θ, σ2
ε) + C(p+ q)

where ` is the log likelihood function and C = 2 in case of the AIC and C =
log(n) in case of the BIC. If the order increases, the first term always increases
because the supremeum is taken over a larger set. The second term is a penalty
for the complexity of the model. If the estimates φ̂ and θ̂ are based on an
approximate likelihood, then one uses this approximate likelihood in the AIC
or BIC instead of the exact likelihood `.

I do not discuss here the justification of these criteria, but just mention two
results: 1) The AIC is an unbiased estimate of a distance between the fitted
and the true model. 2) The AIC favors complex models and does not provide
a consistent estimate of the true order if the true order is finite.
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3.3.4 Goodness of fit

Once a model has been fitted (that is both the orders and the parameters
have been estimated), one should check whether the fit is adequate. As a
minimum, one should look at the time series plot and the acf of the residuals
ε̂t which approximate the innovations εt and thus should be approximately
i.i.d.. It is also a good idea to simulate from the fitted model and compare
the plot of a simulated series with the plot of the original series. Ideally, the
two plots should be visually indistinguishable. One can also look for nonlinear
dependence among the residuals, by using for instance lag plots (ε̂t+h versus ε̂t)
or the acf of the squared residuals, or for non-Gaussianity with a normal plot
of the residuals.

3.4 ARIMA-Models

So far all ARMA models were stationary. One way to analyze nonstationary
data is to take differences, see 1.2. This can be included in the ARMA model:

Φ(B)(1−B)dXt = Φ∗(B)Xt = Θ(B)εt.

The polynomial Φ∗(z) has degree d+p and it has a root at z = 1 of multiplicity d
and p roots outside of the unit circle. Such a model is called an ARIMA(p, d, q)
model (autoregressive integrated moving average). Note that an ARIMA model
is not unique: If (Xt, εt) satisfies the above recursion, then so does (Xt +A0 +
. . . Ad−1t

d−1, εt) for arbitrary coefficients A0, . . . , Ad−1. In other words, the
ARIMA model only specifies the conditional distribution of X1, X2, . . . given
the initial values X0, X−1, . . . , Xd−1, and not the distribution of these initial
values. Also note that if E(εt) 6= 0, then E(Xt) contains a term ctd with c 6= 0.
Because of this, one usually assumes that E(εt) = 0 if d > 0.

Whether we should choose d > 0 usually becomes clear from the inspection of
the time series plot (slowly changing level or slowly changing slope of the series)
and of the acf (behaviour of ρ̂(h) ∼ 1 − const.h with a small value of const.).
Identifying p and q and estimating the coefficients is then done based on the
differenced series Yt = (1−B)dXt.

For forecasting, one usually assumes that the initial values X0, X−1, . . . , Xd−1

are independent of the differenced series Yt = (1 − B)dXt. Then the same
formula can be used for recursive computation of the forecast k steps ahead as
in the stationary case.

If a series contains a seasonal component, then we often need to take also
seasonal differences to achieve stationarity. This means that we use a model of
the form

Φ(B)(1−B)d(1−BM )DXt = Θ(B)εt

where M is the number of observations in one seasonal cycle. Moreover, em-
pirically the seasonal behavior also shows up in the structure of the polyno-
mials Φ and Θ. For instance in the autoregressive case, Xt depends usually
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on Xt−1, Xt−M and maybe Xt−M−1. This leads to the so-called seasonal
ARIMA(p, d, q, P,D,Q) model:

Φ(B)ΦM (BM )(1−B)d(1−BM )DXt = Θ(B)ΘM (BM )εt

An example is given by the so-called airline model (because it fits the data on
airline passengers, one of the standard data sets in R, well):

(1−B)(1−BM )Xt = (1− θ1B)(1− θM,1B
M )εt.

4 Spectral methods

4.1 The spectral representation

4.1.1 Some results from deterministic spectral analysis

Fourier theory is concerned with the representation of signals g as a superposi-
tion of harmonics with different frequencies and amplitudes. If g is a signal in
continuous time t with finite energy∫ ∞

−∞
g(t)2dt <∞,

then it can be represented as

g(t) =

∫ ∞
−∞

G(ν) exp(i2πνt)dν (1)

where

G(ν) =

∫ ∞
−∞

g(t) exp(−i2πνt)dt. (2)

Hence g is a superposition of harmonics with continuous frequencies ν. If we
write G(ν) in polar coordinates G(ν) = |G(ν)| exp(iφ(ν)), we see that the
harmonic G(ν) exp(i2πνt) has amplitude |G(ν)| and phase φ(ν). Since g is
real, G(−ν) = G(ν) and we also have a representation in terms of sine and
cosine functions with frequencies ν > 0. Moreover, Parseval’s theorem says
that ∫ ∞

−∞
g(t)2dt =

∫ ∞
−∞
|G(ν)|2dν,

i.e. the energy is the integral of squared amplitudes.

Next, we consider a signal (gt) observed at time points t∆ with t = 0,±1, . . .
with finite energy

∑∞
t=−∞ g

2
t < ∞. If we replace the integrand in (2) by a

function which is constant on intervals of length ∆, then we obtain

Gp(ν) = ∆

∞∑
t=−∞

gt exp(−i2πt∆ν), (3)
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and we can represent the signal with Gp:

gt =

∫ 1/(2∆)

−1/(2∆)
Gp(ν) exp(i2πt∆ν)dν. (4)

Hence again g is a superposition of harmonics, but the continuous frequencies ν
are now restricted to |ν| ≤ 1/(2∆). The reason for this is that in discrete time
we cannot distinguish between harmonics at frequencies ν, ν ± 1/∆, ν ± 2/∆
etc. . This is called aliasing, and 1/(2∆) is called the Nyquist frequency.

If we consider Gp as a function of arbitrary ν, then it is periodic with period 1/∆
(this is the reason for the subscript p). Note that Gp(ν) 6= G(ν) for |ν| ≤ 1/∆,
but rather

Gp(ν) =
∞∑

k=−∞
G(ν + k/∆) = G(ν) +

∞∑
k=1

(G(ν + k/∆) +G(−ν + k/∆)).

This means that we add up the amplitudes at all frequencies we cannot distin-
guish. Finally, for a discrete time signal, Parseval’s theorem says that

∆

∞∑
t=−∞

g2
t =

∫ 1/(2∆)

−1/(2∆)
|Gp(ν)|2dν.

In the last step, we consider a signal g observed at finitely many discrete time
points t∆ with t = 0, 1, . . . n−1. By replacing the integrand in (4) by a function
which is constant on intervals of length 1/(n∆), we obtain the representation

gt =
1

n∆

n−1∑
k=0

Gk exp(i2πt∆
k

n∆
) =

1

n∆

n−1∑
k=0

Gk exp(i2πtk/n) (5)

whose inversion is

Gk = ∆

n−1∑
t=0

gt exp(−i2πtk/n). (6)

Hence the signal is now a superposition of harmonics with a finite number of
frequencies νk = k/(∆n), the so-called Fourier frequencies. Again Parseval’s
theorem holds

∆

n−1∑
t=0

g2
t =

1

n∆

n−1∑
k=0

|Gk|2.

If we use (5) or (6) to define gt for any t ∈ Z or Gk for any k ∈ Z, we obtain
periodic sequences. If we restrict an infinite sequence with Fourier representa-
tion

gt =

∫ 1/(2∆)

−1/(2∆)
Gp(ν) exp(i2πt∆ν)dν,

to 0 ≤ t < n, then the relation between Gp(ν) and the discrete amplitudes Gk
is

Gk = n∆

∫ 1/(2∆)

−1/(2∆)
Gp(ν) exp(−iπ(n− 1)(νk − ν)∆)Dn(|ν − νk|∆)dν
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where Dn is the so-called Dirichlet kernel

Dn(ν) =
sin(nπν)

n sin(πν)
.

This means that the amplitude Gk in the discrete representation is a weighted
average of the amplitudes Gp(ν) for ν around νk. The phase shift in the above
formula occurs because the time points are not symmetric around the origin.
The proof of this formula uses the the summation formula of a geometric series

n−1∑
t=0

eiλt =
eiλn − 1

eiλ − 1
= ei(n−1)λ/2 e

inλ/2 − e−inλ/2

eiλ/2 − e−iλ/2
= ei(n−1)λ/2 sin(nλ/2)

sin(λ/2)
.

The discrete Fourier transform (gt)→ (Gk) can be computed by the Fast Fourier
Transform (FFT) with O(n log2(n)) operations instead of O(n2) operations in
a naive implementation. This algorithm is crucial for the widespread use of
Fourier methods in many applications.

4.1.2 The spectral representation of stationary stochastic processes

For a stationary stochastic process (Xt; t ∈ Z), the energy
∑∞

t=−∞X
2
t is infinite,

but if second moments exist, the power (energy per time unit) converges to a
finite value

1

2T + 1

T∑
t=−T

X2
t → E(X2

t ).

Hence we cannot expect to have a representation of the form

Xt(ω) =

∫ 1/2

−1/2
exp(i2πνt)Z(ν, ω)dν.

However, a deep result says that we have the representation

Xt(ω) = E(Xt) +

∫ 1/2

−1/2
exp(i2πνt)Z(dν, ω)

where Z is a (complex) stochastic process with uncorrelated increments:

1. Z(−ν)− Z(−ν − h) = Z(ν + h)− Z(ν) for all ν, h.

2. E(Z(ν + h)− Z(ν)) = 0 for all ν, h.

3. E|Z(ν+h)−Z(ν)|2 = S(ν+h)−S(ν) where S is the spectral distribution
function S(ν) = S([−1/2, ν]).

4. For ν < ν+h < ν′ < ν ′+h′, E((Z(ν+h)−Z(ν))(Z(ν ′ + h′)− Z(ν ′))) = 0.
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Here the integral is defined as the limit of∑
j

exp(i2πνjt)(Z(νj , ω)− Z(νj−1, ω))

as the partition ν0 = −1/2 < ν1 < . . . < νJ = 1/2 becomes finer. Hence
intuitively, the process is a superposition of harmonics with uncorrelated mean
zero amplitudes, and the variance of the amplitudes are given by the increments
of the spectrum. In other words, the spectrum spectrum says how strongly the
different frequencies are represented in the process. If the spectral density exists,
E(|Z(νj , ω) − Z(νj−1, ω)|2) is of the order νj − νj−1 and therefore |Z(νj , ω) −
Z(νj−1, ω)| is typically of the order

√
νj − νj−1 > νj − νj−1. This is the crucial

difference between the spectral representation here and the representations in
the previous subsection.

Formally, we can write the properties of Z as

E(Z(dν)Z(dν ′)) = δν,ν′S(dν)

where δν,ν′ = 0 for ν 6= ν ′ and δν,ν = 1 (the Kronecker delta). We then obtain
the spectral representation of the autocovariances (Herglotz’s Theorem)

C(k) = Cov(Xt+k(ω), Xt(ω)) =

∫ 1/2

−1/2

∫ 1/2

−1/2
exp(i2πν(t+ k)) exp(−i2πν ′t)E(Z(dν, ω)Z(dν ′, ω))

=

∫ 1/2

−1/2
exp(i2πνk)S(dν).

In particular,

E((Xt − E(Xt)
2) =

∫ 1/2

−1/2
S(dν)

which is the analogue of Parseval’s theorem.

4.1.3 Linear filters

A (time invariant) linear filter is a transformation of an input time series (Xt)
into an output time series (Yt) of the following form

Yt =
∑
k

akXt−k

The input or output can be either deterministic or stochastic. Usually one
assumes that

∑
k |ak| <∞ or some other condition in order that the right hand

side is well defined.

If the input is an impulse at time zero, Xt = δt0, then the output is equal to
Yt = at. Because of this, the coefficients ak are called the impulse response
coefficients. If the input is a harmonic with frequency ν, Xt = G exp(i2πνt)
then the output is again a harmonic with the same frequency

Yt = GA(ν) exp(i2πνt), A(ν) =
∑
k

ak exp(−i2πνk).
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There is however a change in amplitude by |A(ν)| and also a phase shift unless
the coefficients are symmetric (a−k = ak). A(ν) is called the transfer function.

By linearity of the linear filter, a superposition of harmonic oscillations is
transformed into another superposition of harmonics where the amplitudes and
phases are changed by the transfer function. Stationary stochastic processes
are superpositions of harmonic oscillations:

Xt = E(Xt) +

∫ 1/2

−1/2
exp(i2πνt)Z(dν).

If the coefficients (ak) are summable,

Yt = A(0)E(Xt) +

∫ 1/2

−1/2
exp(i2πνt)A(ν)Z(dν).

Therefore the spectral increment process of (Yt) is A(ν)Z(dν) and we have the
following relation between the spectral measures of (Xt) and (Yt):

SY (dν) = |A(ν)|2SX(dν)

(compare Lemma 2).

4.2 The periodogram

The periodogram of a time series of length n with sampling interval ∆ is defined
as

In(ν) =
∆

n

∣∣∣∣∣
n∑
t=1

(Xt −X) exp(−i2πνt∆)

∣∣∣∣∣
2

.

In words, we compute the absolute value squared of the Fourier transform of
the sample, that is we consider the squared amplitude and ignore the phase.

Note that In is periodic with period 1/∆ and that In(0) = 0 because we have
centered the observations at the mean. The centering has no effect for Fourier
frequencies ν = k/(n∆), k 6= 0.

By mutliplying out the absolute value squared on the right, we obtain

In(ν) =
∆

n

n∑
t=1

n∑
s=1

(Xt−X)(Xs−X) exp(−i2πν(t−s)∆) = ∆

n−1∑
h=−n+1

Ĉ(h) exp(−i2πνh).

Hence the periodogram is nothing else than the Fourier transform of the esti-
mated acf. In the following, we assume that ∆ = 1 in order to simplify the
formula (although for applications the value of ∆ in the original time scale
matters for the interpretation of frequencies).

By the above result, the periodogram seems to be the natural estimator of the
spectral density

s(ν) =

∞∑
h=−∞

C(h) exp(−i2πνh).

31



However, a closer inspection shows that the periodogram has two serious short-
comings: It has large random fluctuations, and also a bias which can be large.

We first consider the bias. Using the spectral representation, we see that up to
a term which involves E(Xt)−X

In(ν) =
1

n

∣∣∣∣∣
∫ n∑

t=1

e−i2π(ν−ν′)tZ(dν ′)

∣∣∣∣∣
2

= n

∣∣∣∣∫ e−iπ(n+1)(ν−ν′)Dn(ν − ν ′)Z(dν ′)

∣∣∣∣2 .
Taking the expectation on both sides and using the properties of Z, we obtain

E(In(ν)) = n

∫
Dn(ν − ν ′)2s(ν)dν ′.

In order to gain insight from this formula, we need to understand the behavior
of the Dirchlet kernel Dn and the so-called Fejér kernel

Fn(ν) = nDn(ν)2.

It can be checked that Fn(0) = n, Fn(ν) → 0 as n → ∞ for all 0 < |ν| ≤ 1/2

and
∫ 1/2
−1/2 Fn(ν) = 1 for all n. Hence Fn approximates the Dirac delta function

and for a continuous density we obtain E(In(ν))→ s(ν) for any ν 6= 0.

Still, for some applications, the bias of the periodogram can be substantial. In
such cases the bias is reduced if we use a so-called taper. This is a set of weights
h1, h2, . . . , hn which are one for t close to n/2 and decay smoothly to zero for
t near 1 and n. With these weights, we compute the tapered periodogram as
follows

Ihn(ν) =
1∑n
t=1 h

2
t

∣∣∣∣∣
n∑
t=1

ht(Xt −X) exp(−i2πνt)

∣∣∣∣∣
2

.

If we use a taper, then we obtain

E(Ihn(ν)) =

∫
Hn(ν − ν ′)s(ν ′)dν ′

where

Hn(ν) =
1∑n
t=1 h

2
t

∣∣∣∣∣
n∑
t=1

ht exp(−2πiνt)

∣∣∣∣∣
2

.

If ht is as described above, Hn(ν) has smaller sidelobes than the Fejér kernel.

The variances and covariances of the periodogram depend in principle on the
fourth moments of the process. However, for many processes a Central Limit
Theorem applies for the Fourier transform and thus the real and imaginary
part of

∑
ht(Xt − X) exp(2πiνt) have asymptotically a normal distribution

with mean zero and variance s(ν)/2 for ν 6= 0, 1/2. Because of this

Ihn(ν)

s(ν)
approximately ∼ Exp(1).
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In particular, the periodogram is an asymptotically unbiased, but not consistent
estimator for the spectral density, and[

Ihn(ν)

− log(0.025)
,

Ihn(ν)

− log(0.975)

]
is an approximate 95% confidence interval for s(ν). On the logarithmic scale,
this interval has constant width.

For two different frequencies ν 6= ν ′, the periodogram values are asymptotically
independent, in particular the covariance tends to zero. This explains the ir-
regular behavior of the periodogram as a function of frequency. Because of this
and because of the inconsistency, the periodogram is of limited value.

For two frequencies close together, we have the following approximation

Cov(Ihn(ν), Ihn(ν ′)) ≈ s(ν)s(ν ′)∑n
t=1 h

2
t

∣∣∣∣∣
n∑
t=1

h2
t exp(−2πi(ν − ν ′)t)

∣∣∣∣∣
2

.

Without a taper, i.e. for ht ≡ 1, the periodogram values at two Fourier fre-
quencies j/n and j′/n are thus approximately uncorrelated. This does not hold
if we use a taper.

I refer to the literature for exact statements and proofs of these results.

4.3 Smoothing the periodogram

The reason why the periodogram is not consistent is that as the length n of the
time series increases , we obtain independent estimates of the spectral density at
an increasingly dense set of Fourier frequencies νk = k/n. If the spectral density
is smooth, we can therefore pool the information from nearby frequencies.

The tapered and smoothed spectral estimate is

ŝ(ts)(k/n) =
J∑

j=−J
wjI

h
n((k − j)/n),

where the wj ’s are weights with the following properties

wj > 0, wj = w−j (−J ≤ j ≤ J),
J∑

j=−J
wj = 1.

If k ≤ J , the smoothing includes the periodogram at the origin which is equal
or very close to zero if the mean µ is estimated. In this case, we exclude j = k
from the sum and renormalize the weights.

The properties of this estimator can be derived by the same arguments that are
used for kernel smoothers in nonparametric regression. If we neglect the bias
of the tapered periodogram, the bias of ŝ(ts) is approximately

s′′(k/n)

2

1

n2

J∑
j=−J

j2wj .
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The variance of ŝ(ts)(k/n) depends on whether or not a taper is used. Without
a taper the summands are approximately uncorrelated, and we obtain for k 6=
0, n/2

Var(ŝ(ts)(k/n)) ≈ s(k/n)2
J∑

j=−J
w2
j .

With a taper, we have to take the correlation of the summands into account.
We skip the details and just state that in this case the variance is increased by
the factor

M(h) =
1
n

∑n
t=1 h

4
t

( 1
n

∑n
t=1 h

2
t )

2
.

By Cauchy-Schwarz, M(h) is strictly greater than one unless ht is constant,
and thus asymptotically tapering entails some loss of precision. However, this
is often more than compensated by a reduction in bias.

The choice of J , that is the number of frequencies involved in the smoothed
estimate, is difficult. Small values of J give a small bias, but a large variance,
and vice versa. Asymptotically, the optimal choice is J = O(n4/5), but the
constants involve both s and s′′ which are unknown. In practice, one often
looks at the estimate for different values of J and then makes a subjective
choice.

The above results imply that to a first approximation

E

(
ŝ(ts)(k/n)

s(k/n)

)
= 1, Var

(
ŝ(ts)(k/n)

s(k/n)

)
=

J∑
j=−J

w2
j M(h).

Because the periodogram values have asymptotically an exponential distribu-
tion and the sum of m independent exponential random variables is distributed
as 1/2 times a chisquared random variable with 2m degrees of freedom, one
approximates the distribution of ŝ(ts)(k/n)/s(k/n) by Zd/d where Zd ∼ χ2

d and
the degrees of freedom d are chosen to match the variance given above. This
then leads to the following confidence interval for s(k/n)[

ŝ(ts)(k/n) d

χ2
d,1−α/2

,
ŝ(ts)(k/n) d

χ2
d,α/2

]
where d =

2∑J
j=−J w

2
j M(h)

.

4.4 Alternative estimators of the spectrum

So far, we have averaged over the values of the periodogram at the Fourier
frequencies k/n because they are approximately independent in the case of no
taper and because the fast Fourier transform can be used for computation. We
can also use a different grid k/n′ with n′ > n (we then have to set Xt = X̄ for
n < t ≤ n′ in order to use the fast Fourier transform). In the limit we then
have a continuous average

ŝ(lw)(ν) =

∫
W (ν − ν ′)Ihn(ν ′)dν ′.
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This can be shown to be equal to

n−1∑
k=−n+1

wkĈ
h(k) exp(−2πiνk)

where

wk =

∫
W (ν) exp(2πiνk)dν

and

Ĉh(k) =
1∑n
t=1 h

2
t

n−|k|∑
t=1

ht(Xt − X̄)ht+|k|(Xt+|k| − X̄)

are the autocovariances of the tapered series. In other words, smoothing of the
periodogram is equivalent to downweighting the estimated autocovariances in
the inversion formula

s(ν) =
∞∑

k=−∞
C(k) exp(−2πikν).

This estimator is therefore called a lag weight estimator (which explains the
superscript lw). For computational reasons, ŝ(ts) is usually prefered.

A different approach consists in averaging the periodograms for segments of
m < n consecutive observations:

ŝ(os)(ν) =
1

J
∑m

t=1 h
2
t

J−1∑
j=0

∣∣∣∣∣
m∑
t=1

ht(Xt+jd − X̄)e−2πiνt

∣∣∣∣∣
2

where J is the integer part of (n−m)/d. The parameter d regulates how much
the segments overlap: For d = 1 we have maximal overlap whereas for d = m
there is no overlap (os stands for overlapping segments). It can be shown that in
case of maximal overlap, this is essentially a lag weight estimator. It has however
the advantage that it gives also information about changes in the periodogram
over time. It is thus the first step towards a time-frequency analysis where
one wants to analyze how strongly different frequencies are present at different
times. This is however an ill-posed question since by Heisenberg’s uncertainty
principle a high resolution in time entails a low resolution in frequency and vice
versa.

An entirely different approach to spectral estimation consists in using the spec-
tral density of a fitted autoregressive model. Usually, one chooses the order
of the autoregression by AIC. This usually gives very smooth estimates, but
sometimes details are lost that can be detected by ŝ(ts). A combination of both
methods fits an autoregression, usually of low order without assuming that the
innovations

εt = Xt −
p∑

k=1

φkXt−k
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are exactly white noise. In any case, the general formula

sX(ν) =
sε(ν)

|1−
∑
φk exp(−2πiνk)|2

.

holds, and one estimates sε(ν) by smoothing the periodogram of the residuals.
Even when sε(ν) is not exactly constant, it is at least much flatter than sX(ν)
and thus the problems with the bias are less serious. This approach is called
prewhitening.

4.5 Wavelets in time series analysis

Wavelets are a rather recent invention which is suitable both for smoothing
time series and for a time-frequency analysis. We can only give a very brief
introduction. The discrete wavelet transform decomposes an equispaced time
series of length n as follows:

Xt =
J∑
j=1

2−jn−1∑
k=0

dj,k2
−j/2ψ(2−jt−k)+

2−Jn−1∑
k=0

aJ,k2
−J/2φ(2−J t−k) (t = 0, 1, . . . , n−1)

where ψ is the so-called mother wavelet – a small wave located near zero – and
φ is the so-called father wavelet or scaling function which represents a smooth
part. Hence we have a decomposition into oscillations with frequencies 2−j

located at times k2j for j = 1, 2, . . . , J and a part which contains the lower
frequencies. The simplest example is the Haar wavelet where

ψ(t) = 1[0,1/2)(t)− 1[1/2,1)(t), φ(t) = 1[0,1)(t).

For other cases, ψ and φ are defined through a limiting operation and thus have
to be calculated numerically.

The amplitudes dj,k and aJ,k are computed from the original series by iterative
application of an orthogonal transformation. We start with a0,t = Xt and set
for j = 1, 2, . . . , J ≤ log2(n)

aj,t =
L−1∑
`=0

g` aj−1,2t+1−`, dj,t =

L−1∑
`=0

h` aj−1,2t+1−` (t = 0, 1, . . . , 2−jn− 1).

(all indices are extended periodically). In words, we take the coefficients aj−1,t

for odd times and apply to them two linear filters with impulse response coef-
ficients g` and h` = (−1)`gL−`−1, respectively. The coefficients g` are defined
through the father wavelet (details omitted). They can be chosen arbitrarily
subject to the constraints that L must be even and

L−1∑
`=0

g` =
√

2,
L−1−2n∑
`=0

g`g`+2n = δn,0 (n = 0, 1, . . . , L/2− 1).

For L = 2, 4 there is essentially only one solution, e.g. for L = 2 we have
g0 = g1 = 1/

√
2. For L ≥ 6, there are several solutions.
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Because the discrete wavelet transform is a product of orthogonal linear trans-
formations and thus is again linear and orthogonal, the computation of the
inverse is easy. For smoothing, one typically sets dj,k and aJ,k equal to zero
if their absolute value is small and then applies the inverse transform. This
retains features in the data which are not smooth in a conventional sense.

In the maximal overlap discrete wavelet transform, one uses the above recursions
without omitting coefficients aj−1,t for even t:

ãj,t = 2−j/2
L−1∑
`=0

g` ãj−1,t−2j−1`, d̃j,t = 2−j/2
L−1∑
`=0

h` ãj−1,t−2j−1` (t = 0, 1, . . . , n−1).

This creates redundancies, but is sometimes easier for a time-frequency inter-
pretation.

If Xt is a stochastic process, the amplitudes aj,t and dj,t are random variables,
and one can study their distributions. Because the wavelet transform is orthog-
onal, these amplitudes are again i.i.d. for Gaussian white noise. It turns out
that also under dependence they become apprxoimately independent like the
periodogram values. In addition, the average of the a2

j,t for fixed j is essentially

an estimate of the spectrum integrated over the frequency interval [2−j−1, 2−j ].
A key difference is however that this holds also for integrated processes: We
only need that (1−B)dXt is stationary for some d < L/2.

5 Further topics

5.1 Multivariate time series

In a multivariate time series we have at each observation time a random vector
Xt = (Xti). The definition of stationarity is unchanged. The mean E(Xt) is
then also a vector which is independent of t under the assumption of stationarity.
The covariance Cov(Xt+h,Xt) is now a matrix which depends only on h in the
stationary case:

C(h)ij = Cov(Xt+h,i, Xtj).

It is called the cross covariance function. Because the covariance is symmetric,
we obtain

C(−h)ij = Cov(Xt−h,i, Xtj) = Cov(Xti, Xt+h,j) = C(h)ji,

that is C(−h) = C(h)T . The cross correlations are defined as

ρ(h)i,j =
C(h)ij√

C(0)iiC(0)jj
.

The estimation of the mean, the cross covariances and the cross correlations is
done as in the univariate case. The judgement of estimated cross correlations is
however delicate because the variance depends on cross- and autocorrelations
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of all lags. If either (Xt1) or Xt2 is white noise and if the true value ρ12(h) = 0,
then ρ̂12(h) is asymptotically normal with mean zero and variance 1/n.

Multivariate ARMA-models are defined similarly to the univariate case:

Xt =

p∑
j=1

φjXt−j + εt +

q∑
j=1

θjεt−j

where the φj and θj are now matrices and εt is so-called multivariate white
noise, that is Cε(h) = 0 for h 6= 0 whereas Cε(0) is an aribtrary positive
definite matrix (the innovations for different components of the time series can
be correlated). Causality and invertibility of multivariate ARMA models are
defined as in the univariate case. The condition for causality becomes

det(Φ(z)) 6= 0 for |z| ≤ 1, where Φ(z) = I −
p∑
j=1

φjz
j .

and for invertibility

det(Θ(z)) 6= 0 for |z| ≤ 1, where Θ(z) = I +

p∑
j=1

θjz
j .

Also the computation of cross covariances and of linear predictions for known
parameters is similar to the univariate case. The estimation of the unknown
parameters is however much more difficult in the multivariate case than in the
univariate case: First, the number of parameters grows quickly with the orders
p and q, and the likelihood surface can have easily multiple maxima.

In a multivariate AR model, Xti is influenced by all other components of past
observations. In some applications, one assumes that the influence goes only in
one direction:

Xt2 =

∞∑
j=0

βjXt−j,1 + Ut

where (Ut) is a stationary process uncorrelated with (Xt1). This is called a
transfer function model. In order to be able to estimate the infinitely many
coefficients βj , we assume that they are obtained through a Taylor series of a
rational function

∞∑
j=0

βjzj =
1 +

∑q
j=1 αjz

j

1−
∑p

j=1 γjz
j
.

Moreover, one also assumes that the error process Ut is an ARMA process. Then
for given orders, we have a parametric model and can estimate the parameters.
The choice of the orders can however be difficult.

Cointegration is a rather recent method (for which Clive Granger got the No-
bel Prize in Economics in 2003). This is a special method for multivariate
integrated series. In order to explain the main idea, We consider the bivariate
case and assume that both (Xt1) and Xt2 are nonstationary, but (1 − B)Xt1
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and (1−B)Xt2 are stationary. Then it can happen that some linear combina-
tion Yt = β1Xt1 + β2Xt2 is stationary. For instance, a macroeconomic series of
two countries can both be nonstationary, but the difference can be stationary
because of strong economic relations between the two countries. If this is the
case, then (β1, β2) is called a cointegrating vector. If such a cointegrating vector
exists, then fitting a model to the differenced series (1 − B)Xt is not a good
procedure.

As in the univariate case, the cross covariance cannot be an aribtrary function
of the lag h. There is a condition of positive definiteness which is satisfied if
and only if we have the representation

C(h)jk =

∫ 1/2

−1/2
e2πihνS(dν)jk

where S is a non-negative definite matrix distribution. If
∑

h |C(h)jk| < ∞,
then the Sjk have densities (s(ν)jk) where

s(ν)jk =

∞∑
h=−∞

C(h)jke
−2πiνh.

However, the densities sjk(ν) are typically not real for j 6= k, but sjk(−ν) =

sjk(ν) = skj(ν) holds and the matrix (sjk(ν)) is nonnegative definite. The
real part of sjk is called the cospectrum and minus the imaginary part the
quadspectrum.

Spectra of multivariate ARMA processes. The following formula holds

s(ν) = Φ(e2πiν)−1Θ(e2πiν)Cε(0)Θ(e−2πiν)TΦ(e−2πiν)−T .

In the multivariate case, we have again the spectral representation

Xtj =

∫ 1/2

−1/2
e2πiνtZj(dν)

where
E(Zj(dν)Zk(dν ′)) = δν,ν′S(dν)jk.

This says that the amplitudes in the spectral representation are uncorrelated
for different frequencies, and the spectrum contains the information about the
absolute values and the linear relations between amplitudes at the same fre-
quencies.

As an example of the use of the spectrum, we mention the problem of approxi-
mating Xt2 linearly by the values of the series (Xs1). Assuming that both series
have mean zero,

X̂t2 =
∞∑

j=−∞
ψjXt−j,1.
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We want to find the coefficients (ψj) such that the mean square error E((Xt2−
X̂t2)2) is minimal. It turns out that the solution is most easily found in the
frequency domain:

ψj =

∫ 1/2

−1/2

s21(ν)

s11(ν)
e2πiνjdν

and

E((Xt2 − X̂t2)2) =

∫ 1/2

−1/2

(
1− |s2,1(ν)|2

s11(ν)s22(ν)

)
s22(ν)dν.

Without the first series, the best prediction is zero and the mean squared error

is
∫ 1/2
−1/2 s22(ν)dν.

Estimation of the spectrum begins with the matrix periodogram

In(ν)jk =
1

n
(
n∑
t=1

(Xtj − X̄.j)e
−2πitν)(

n∑
t=1

(Xtk − X̄.k)e
2πitν)

and smoothes it by averaging over neighboring frequencies.

5.2 Long range dependence

A stationary process (Xt) is called long range dependent (or long memory) with
parameter d ∈ (0, 0.5), if

C(h) = Cov(Xt+h, Xt) ∼ c h2d−1 (h→∞).

Note that for such a process
∑

h |C(h)| = ∞. Under additional technical con-
ditions, this is equivalent to

Var(

n∑
t=1

Xt) ∼
c

d(1 + 2d)
n1+2d

and

S(dν) = s(ν)dν, with s(ν) ∼ cΓ(1− d)Γ(d)

(2π)2dΓ(1− 2d)
|ν|−2d (ν → 0).

The first result implies that the variance of the arithmetic mean decays to zero
like n−1+2d, i.e. at a lower rate than in the case where the autocovariances are
summable.

There are two explicit models which show this behavior. The first one are the
increments of fractional Brownian motion (Bd(t); t ≥ 0) with parameter d: This
is a Gaussian (nonstationary) process with E(Bd(t)) = 0, Var(Bd(t)) = t2d+1

and Var(Bd(t)−Bd(s)) = Var(Bd(t− s)). Hence, the increments Xt = Bd(t)−
Bd(t− 1) form a stationary Gaussian process with autocovariance

C(h) =
1

2
(|h+ 1|2d+1 − 2|h|2d+1 + |h− 1|2d+1)
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This process is central because for any Gaussian long range dependent process,
the block sums

Zt =
1

n1/2+d

tn∑
s=(t−1)n+1

(Xs − E(Xs))

converge in distribution to it. The formula for the spectral density is however
rather complicated.

The other important example of a long range dependent process is given by
fractional differences:

(1−B)dXt = εt ⇔ Xt = (1−B)−dεt

where B is the backshift operator that we used for ARMA models and (εt) is
white noise. We define fractional differences through the Taylor expansion of
(1− z)−d, that is

Xt =

∞∑
j=0

Γ(j + d)

Γ(j + 1)Γ(d)
εt−j .

The coefficients on the right are not summable, but their squares are and one
can show that the series converges and defines a stationary process. Moreover,
the theory of linear filters gives the spectral density

s(ν) =
σ2
ε

|1− exp(2πiν)|2d
=

σ2
ε

(2 sin(πν))2d
∼ σ2

ε

(2π)2d
|ν|−2d.

For fractional differences, one can also compute the acf. One obtains

C(h) =
σ2
εΓ(1− 2d)

Γ(1− d)Γ(d)

Γ(h+ d)

Γ(h− d+ 1)
∼ σ2

εΓ(1− 2d)

Γ(1− d)Γ(d)
h2d−1.

Fractional differences exist also for d < 0: In this case the spectrum has a
zero at ν = 0. Combined with integer differences we can therefore define the
fractionally differenced process for any d: It is stationary for d < 1/2, whereas
for d ≥ 1/2 the [d+1/2]-th difference is stationary. Finally, instead of assuming
that (1−B)dXt is white noise, we can assume that this is a stationary, causal
and invertible ARMA process:

Φ(B)(1−B)dXt = Θ(B)εt.

This is the fractional ARIMA(p, d, q) model.

The best way to decide whether long range dependence is present, is to look at
the periodogram in log-log scale, that is we plot log(In(k/n)) versus log(k/n)
for k = 1, 2, . . . n/2. If these points scatter around a line with negative slope,
this indicates long range dependence. Moreover, we can estimate d as −1

2 times
the slope. The approximate independence of periodogram values still holds. In
fact, we can obtain estimates of the parameters of a fractional ARIMA model
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by treating the In(k/n) as independent exponential(1/s(k/n))-random variables
and using maximum likelihood. We thus maximise

−
n/2∑
k=1

(
log s(k/n) +

In(k/n)

s(k/n)

)
with respect to the unknown parameters which appear in the spectrum s(ν)
of the model. It is asymptotically equivalent to the exact Gaussian MLE, but
much easier to compute. It also turns out that the estimator of d converges
with rate n−1/2, despite the long rnage dependence.

5.3 State space models

Due to lack of time, this topic is not covered in this course.

5.4 Nonlinear parametric models

I intended to discuss threshold autoregressions, ARCH and GARCH models.
Due to lack of time, I could not cover it.
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