
Review of Chapters 2 and 3



1. Recap

prediction with the Lasso:

‖X(β̂ − β0)‖22/n = OP(

√
log(p)

n
‖β0‖1) (n→∞)

assuming
I fixed design matrix X (analogous result for random design)
I Gaussian errors (can be relaxed)



2. Variable screening and ‖β̂ − β0‖q-norms

estimation of parameters:

‖β̂ − β0‖q = oP(1) (n→∞)

assuming
I compatibility condition on the (fixed) design X
I Gaussian errors (can be relaxed)

more details: for λ �
√

log(p)/n,

‖β̂(λ)− β0‖1 = OP(s0
√

log(p)/n),
‖β̂(λ)− β0‖2 = OP(

√
s0 log(p)/n),

the latter result needs a slightly stronger condition on the design



Variable screening

active set (of variables): S0 = {j ; β0
j 6=}

estimated active set: Ŝ0 = {j ; β̂j 6= 0}

Question: is Ŝ0 = S0 with high probability?
; often too ambitious goal

problems with small |β0
j |’s

denote by Srelevant(C)
0 = {j ; |β0

j | ≥ C}
result: if ‖β̂ − β0‖1 ≤ an with high probability, then:
if Cn > an,

Ŝ ⊃ Srelevant(Cn)
0 with high probability

Proof is elementary (Problem 2.3)



implication: typically,

‖β̂ − β0‖1 ≤ O(s0
√

log(p)/n) with high prob.

hence, when assuming a

”beta-min condition” : min
j∈Sc

0

|β0
j | � s0

√
log(p)/n

; Ŝ ⊃ S0

in addition: |Ŝ| ≤ min(n,p)
hence: huge dimensionality reduction if p � n

for this we require
I compatibility condition on the (fixed) design X
I beta-min condition
I Gaussian errors (can be relaxed)



Variable selection

under more restrictive irrepresentable condition or
neighborhood stability condition on the design X
and assuming beta-min condition minj∈Sc

0
|β0

j | �
√

s0 log(p)/n:

P[Ŝ = S0]→ 1 (n→∞)

the irrepresentable condition is sufficient and essentially
necessary for consistent variable selection

these conditions are often not fulfilled in practice
; variable screening is realistic; variable selection is not very
realistic
better “translation”:
LASSO = Least Absolute Shrinkage and Screening Operator
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version of Table 2.2 in the book:

property design condition size of non-zero coeff.
slow prediction conv. rate no requirement no requirement
fast prediction conv. rate compatibility no requirement
estimation error bound ‖β̂ − β0‖1 compatibility no requirement
variable screening compatibility beta-min condition

or restricted eigenvalue weaker beta-min cond.
variable selection neighborhood stability beta-min condition

⇔ irrepresentable cond.



Adaptive Lasso

is a good way to address the bias problems of the Lasso

for orthonormal design
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two-stage procedure:
I initial estimator β̂init, e.g., the Lasso
I re-weighted `1-penalty

β̂adapt(λ) = argminβ

‖Y− Xβ‖22/n + λ

p∑
j=1

|βj |
|β̂init,j |



adaptive Lasso works well in practice (more sparse than Lasso)
and has better theoretical properties than Lasso for variable
screening (and selection)

alternatives: thresholding the Lasso; Relaxed Lasso



Computational algorithm for Lasso

can use a very generic coordinate descent algorithm

motivation of the algorithm:
consider the objective function and the corresponding
Karush-Kuhn-Tucker (KKT) conditions by taking the
sub-differential:

∂

∂j
(‖Y− Xβ‖22/n + λ‖β‖1)

= Gj(β) + λej ,

G(β) = −2XT (Y− Xβ)/n,
ej = sign(βj) if βj 6= 0, ej ∈ [−1,1] if βj = 0



this implies (by setting the sub-differential to zero) the
KKT-conditions (Lemma 2.1):

Gj(β̂) = −sign(β̂j)λ if β̂j 6= 0,

|Gj(β̂)| ≤ λ if β̂j = 0.



1: Let β[0] ∈ Rp be an initial parameter vector. Set m = 0.
2: repeat
3: Increase m by one: m← m + 1.

Denote by S [m] the index cycling through the coordinates
{1, . . . ,p}:
S [m] = S [m−1] + 1 mod p. Abbreviate by j = S [m] the value
of S [m].

4: if |Gj(β
[m−1]
−j )| ≤ λ : set β[m]

j = 0,

otherwise: β[m]
j = argminβj

Qλ(β
[m−1]
+j ),

where β[m−1]
−j is the parameter vector where the j th

component is set to zero and β[m−1]
+j is the parameter

vector which equals β[m−1] except for the j th component
where it is equal to βj (i.e. the argument we minimize
over).

5: until numerical convergence



for the squared error loss: the up-date in Step 4 is explicit

active set strategy can speed up the algorithm for sparse
cases: mainly work on the non-zero coordinates and up-date all
coordinates e.g. every 20th times



Generalized linear models (GLMs)

univariate response Y , covariate X ∈ X ⊆ Rp

GLM: Y1, . . . ,Yn independent

g(E[Yi |Xi = x ]) = µ+

p∑
j=1

βjx (j)

︸ ︷︷ ︸
=f (x)=fµ,β(x)

g(·) real-valued, known link function; µ an intercept term

Lasso: defined as `1-norm penalized negative log-likelihood
(µ is not penalized)

Example: logistic (penalized) regression
Y ∈ {0,1}, g(π) = log(π/(1− π)) (π ∈ (0,1))


