Review of Chapters 2 and 3

1. Recap

prediction with the Lasso:

$$\|\mathbf{X}(\hat{\beta}-\beta^0)\|_2^2/n = O_P(\sqrt{\frac{\log(p)}{n}}\|\beta^0\|_1) \ (n \to \infty)$$

assuming

fixed design matrix X (analogous result for random design)

(日)

Gaussian errors (can be relaxed)

2. Variable screening and $\|\hat{\beta} - \beta^0\|_q$ -norms

estimation of parameters:

$$\|\hat{eta} - eta^{\mathsf{0}}\|_{q} = o_{P}(1) \ (n o \infty)$$

assuming

- compatibility condition on the (fixed) design X
- Gaussian errors (can be relaxed)

more details: for $\lambda \asymp \sqrt{\log(p)/n}$,

$$\begin{aligned} \|\hat{\beta}(\lambda) - \beta^0\|_1 &= O_P(s_0\sqrt{\log(p)/n}), \\ \|\hat{\beta}(\lambda) - \beta^0\|_2 &= O_P(\sqrt{s_0\log(p)/n}), \end{aligned}$$

the latter result needs a slightly stronger condition on the design

Variable screening

active set (of variables): $S_0 = \{j; \beta_j^0 \neq\}$ estimated active set: $\hat{S}_0 = \{j; \hat{\beta}_j \neq 0\}$

Question: is $\hat{S}_0 = S_0$ with high probability? \sim often too ambitious goal problems with small $|\beta_i^0|$'s

denote by $S_0^{\text{relevant}(C)} = \{j; |\beta_j^0| \ge C\}$ result: if $\|\hat{\beta} - \beta^0\|_1 \le a_n$ with high probability, then: if $C_n > a_n$,

$$\hat{S} \supset S_0^{ ext{relevant}(C_n)}$$
 with high probability

(日) (日) (日) (日) (日) (日) (日)

Proof is elementary (Problem 2.3)

implication: typically,

$$\|\hat{\beta} - \beta^0\|_1 \le O(s_0 \sqrt{\log(p)/n})$$
 with high prob.

hence, when assuming a

"beta-min condition" :
$$\min_{j \in S_0^c} |\beta_j^0| \gg s_0 \sqrt{\log(p)/r}$$

 $\rightsquigarrow \ \hat{S} \supset S_0$

in addition: $|\hat{S}| \le \min(n, p)$ hence: huge dimensionality reduction if $p \gg n$

for this we require

- compatibility condition on the (fixed) design X
- beta-min condition
- Gaussian errors (can be relaxed)

Variable selection

under more restrictive irrepresentable condition or neighborhood stability condition on the design **X** and assuming beta-min condition $\min_{j \in S_{0}^{c}} |\beta_{j}^{0}| \gg \sqrt{s_{0} \log(p)/n}$:

$$\mathbb{P}[\hat{S} = S_0] o \mathsf{1} \ (n o \infty)$$

the irrepresentable condition is sufficient and essentially necessary for consistent variable selection

these conditions are often not fulfilled in practice \rightsquigarrow variable screening is realistic; variable selection is not very realistic

better "translation": LASSO = Least Absolute Shrinkage and Screening Operator

Variable selection

under more restrictive irrepresentable condition or neighborhood stability condition on the design **X** and assuming beta-min condition $\min_{j \in S_0^c} |\beta_j^0| \gg \sqrt{s_0 \log(p)/n}$:

$$\mathbb{P}[\hat{S} = S_0] o \mathsf{1} \ (n o \infty)$$

the irrepresentable condition is sufficient and essentially necessary for consistent variable selection

these conditions are often not fulfilled in practice \rightsquigarrow variable screening is realistic; variable selection is not very realistic

better "translation":

LASSO = Least Absolute Shrinkage and Screening Operator

version of Table 2.2 in the book:

property	design condition	size of non-zero coeff.
slow prediction conv. rate	no requirement	no requirement
fast prediction conv. rate	compatibility	no requirement
estimation error bound $\ \hat{\beta} - \beta^0\ _1$	compatibility	no requirement
variable screening	compatibility	beta-min condition
	or restricted eigenvalue	weaker beta-min cond.
variable selection	neighborhood stability	beta-min condition
	\Leftrightarrow irrepresentable cond.	

Adaptive Lasso

is a good way to address the bias problems of the Lasso

for orthonormal design

two-stage procedure:

- initial estimator $\hat{\beta}_{init}$, e.g., the Lasso
- re-weighted l₁-penalty

$$\hat{\beta}_{\text{adapt}}(\lambda) = \operatorname{argmin}_{\beta} \left(\|\mathbf{Y} - \mathbf{X}\beta\|_{2}^{2}/n + \lambda \sum_{j=1}^{p} \frac{|\beta_{j}|}{|\hat{\beta}_{\text{init},j}|} \right)$$

adaptive Lasso works well in practice (more sparse than Lasso) and has better theoretical properties than Lasso for variable screening (and selection)

alternatives: thresholding the Lasso; Relaxed Lasso

Computational algorithm for Lasso

can use a very generic coordinate descent algorithm

motivation of the algorithm:

consider the objective function and the corresponding Karush-Kuhn-Tucker (KKT) conditions by taking the sub-differential:

$$\begin{aligned} &\frac{\partial}{\partial j} (\|\mathbf{Y} - \mathbf{X}\beta\|_2^2 / n + \lambda \|\beta\|_1) \\ &= G_j(\beta) + \lambda e_j, \\ &G(\beta) = -2\mathbf{X}^T (\mathbf{Y} - \mathbf{X}\beta) / n, \\ &e_j = \operatorname{sign}(\beta_j) \text{ if } \beta_j \neq 0, \ e_j \in [-1, 1] \text{ if } \beta_j = 0 \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへで

this implies (by setting the sub-differential to zero) the KKT-conditions (Lemma 2.1):

$$G_j(\hat{eta}) = -\operatorname{sign}(\hat{eta}_j)\lambda ext{ if } \hat{eta}_j \neq 0,$$

 $|G_j(\hat{eta})| \leq \lambda ext{ if } \hat{eta}_j = 0.$

- 1: Let $\beta^{[0]} \in \mathbb{R}^{p}$ be an initial parameter vector. Set m = 0.
- 2: repeat
- 3: Increase *m* by one: $m \leftarrow m + 1$. Denote by $S^{[m]}$ the index cycling through the coordinates $\{1, \ldots, p\}$: $S^{[m]} = S^{[m-1]} + 1 \mod p$. Abbreviate by $j = S^{[m]}$ the value of $S^{[m]}$.
- 4: if $|G_j(\beta_{-j}^{[m-1]})| \leq \lambda$: set $\beta_j^{[m]} = 0$, otherwise: $\beta_j^{[m]} = \operatorname{argmin}_{\beta_j} Q_\lambda(\beta_{+j}^{[m-1]})$, where $\beta_{-j}^{[m-1]}$ is the parameter vector where the *j*th component is set to zero and $\beta_{+j}^{[m-1]}$ is the parameter vector which equals $\beta^{[m-1]}$ except for the *j*th component where it is equal to β_j (i.e. the argument we minimize over).
- 5: until numerical convergence

for the squared error loss: the up-date in Step 4 is explicit

active set strategy can speed up the algorithm for sparse cases: mainly work on the non-zero coordinates and up-date all coordinates e.g. every 20th times

Generalized linear models (GLMs)

univariate response Y, covariate $X \in \mathcal{X} \subseteq \mathbb{R}^p$

GLM:
$$Y_1, \dots, Y_n$$
 independent
 $g(\mathbb{E}[Y_i|X_i = x]) = \mu + \sum_{\substack{j=1 \ =f(x)=f_{u,\beta}(x)}}^p \beta_j x^{(j)}$

 $g(\cdot)$ real-valued, known link function; μ an intercept term

Lasso: defined as ℓ_1 -norm penalized negative log-likelihood (μ is not penalized)

Example: logistic (penalized) regression $Y \in \{0, 1\}, g(\pi) = \log(\pi/(1 - \pi)) \ (\pi \in (0, 1))$