Review of Chapters 2 and 3



1. Recap

prediction with the Lasso:

IX(3 — 8013/ = Op(1/ 222 8%)) (n  oc)

assuming
» fixed design matrix X (analogous result for random design)
» Gaussian errors (can be relaxed)



2. Variable screening and ||3 — 3%]|4-norms

estimation of parameters:
18 = 8%llq = 0p(1) (n = oo)

assuming
» compatibility condition on the (fixed) design X
» Gaussian errors (can be relaxed)

more details: for A < /log(p)/n,

1B(X) — 82|+ = Op(s0+/log(p)/n
1B(X) — B%|2 = Op(+/s0 l0g(p)/n),

the latter result needs a slightly stronger condition on the design
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Variable screening

active set (of variables): Sp = {J; BIQ #}
estimated active set: Sy = {j; f; # 0}

Question: is Sy = Sy with high probability?
~» often too ambitious goal
problems with small 57|'s

denote by S5""(®) = {j; |59 > C}

result: if || 3 — 8°||1 < a, with high probability, then:
if Cnh > an,

5 > s’ with high probability

Proof is elementary (Problem 2.3)



implication: typically,
18— %11 < O(sp+/log(p)/n) with high prob.

hence, when assuming a

"beta-min condition” : misn 1801 > so+/log(p)/n
JE€SS

~> é > So

in addition: |S| < min(n, p)

hence: huge dimensionality reduction if p > n
for this we require

» compatibility condition on the (fixed) design X
» beta-min condition

» Gaussian errors (can be relaxed)



Variable selection

under more restrictive irrepresentable condition or
neighborhood stability condition on the design X
and assuming beta-min condition min;c s |5/Q\ > \/Splog(p)/n:

P[S = So] — 1 (n = )

the irrepresentable condition is sufficient and essentially
necessary for consistent variable selection

these conditions are often not fulfilled in practice
~» variable screening is realistic; variable selection is not very
realistic



Variable selection

under more restrictive irrepresentable condition or
neighborhood stability condition on the design X

and assuming beta-min condition min;c s |5/Q\ > \/Splog(p)/n:

P[S = So] — 1 (n = )

the irrepresentable condition is sufficient and essentially
necessary for consistent variable selection

these conditions are often not fulfilled in practice

~» variable screening is realistic; variable selection is not very
realistic

better “translation”:

LASSO = Least Absolute Shrinkage and Screening Operator



version of Table 2.2 in the book:

property | design condition | size of non-zero coeff.

slow prediction conv. rate no requirement no requirement

fast prediction conv. rate compatibility no requirement

estimation error bound ||5 — 2°||4 compatibility no requirement

variable screening compatibility beta-min condition
or restricted eigenvalue | weaker beta-min cond.

variable selection neighborhood stability beta-min condition
< irrepresentable cond.




Adaptive Lasso

is a good way to address the bias problems of the Lasso
for orthonormal design

threshold functions

™ 1 — Adaptive Lasso
- - - Hard-thresholding
&4 Soft-thresholding
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two-stage procedure:
» initial estimator B, €.9., the Lasso
» re-weighted /1-penalty

|5l

Badapt( ) = argmlnﬁ HY X/B”z/n_|_ )\Z |/8 ’
init,j

adaptive Lasso works well in practice (more sparse than Lasso)
and has better theoretical properties than Lasso for variable
screening (and selection)

alternatives: thresholding the Lasso; Relaxed Lasso



Computational algorithm for Lasso

can use a very generic coordinate descent algorithm

motivation of the algorithm:

consider the objective function and the corresponding
Karush-Kuhn-Tucker (KKT) conditions by taking the
sub-differential:

0
87(HY — XBI5/n+ A Bllv)
= G/(f) + e,
G(B) = —2X" (Y — XB)/n,
€ = Sign(,Bj) if ﬁj 75 0, € € [_171] if /Bf =0



this implies (by setting the sub-differential to zero) the
KKT-conditions (Lemma 2.1):

Gi(

i(5) = —sign(B) if B; # 0,
Gj

3)
(B)| < \if B; = 0.
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. Let % € RP be an initial parameter vector. Set m = 0.
repeat
Increase mby one: m <+ m+ 1.
Denote by SI™ the index cycling through the coordinates
{1,...,p}:
Stm = SIm=11 4 1 mod p. Abbreviate by j = SI" the value
of Slml,
it 1Gi(8" ™ < A+ set g™ =0,
["?—1])
+ )
where B[_'}’_” is the parameter vector where the jth

component is set to zero and ,BL”]_” is the parameter

vector which equals 5™l except for the jth component
where it is equal to j3; (i.e. the argument we minimize
over).

until numerical convergence

otherwise: 6}"’] = argming Q\(8



for the squared error loss: the up-date in Step 4 is explicit

active set strategy can speed up the algorithm for sparse
cases: mainly work on the non-zero coordinates and up-date all
coordinates e.g. every 20th times



Generalized linear models (GLMs)

univariate response Y, covariate X € X C RP

GLM: Yi,..., Ynindependent

p
gEYiXi =x]) = p+>_ Bx¥)
j=1
=f(x)=f, 5(x)

g(+) real-valued, known link function; p an intercept term

Lasso: defined as ¢1-norm penalized negative log-likelihood
(v is not penalized)

Example: logistic (penalized) regression
Y €{0,1}, g(7) = log(x/(1 —)) (7 € (0,1))



