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Pursuing causality from data is a fundamental problem in scientific dis-
covery, treatment intervention, and transfer learning. This paper introduces
a novel algorithmic method for addressing nonparametric invariance and
causality learning in regression models across multiple environments, where
the joint distribution of response variables and covariates varies, but the
conditional expectations of outcome given an unknown set of quasi-causal
variables are invariant. The challenge of finding such an unknown set of
quasi-causal or invariant variables is compounded by the presence of en-
dogenous variables that have heterogeneous effects across different environ-
ments. The proposed Focused Adversarial Invariant Regularization (FAIR)
framework utilizes an innovative minimax optimization approach that drives
regression models toward prediction-invariant solutions through adversarial
testing. Leveraging the representation power of neural networks, FAIR neu-
ral networks (FAIR-NN) are introduced for causality pursuit. It is shown that
FAIR-NN can find the invariant variables and quasi-causal variables under
a minimal identification condition and that the resulting procedure is adap-
tive to low-dimensional composition structures in a nonasymptotic analysis.
Under a structural causal model, variables identified by FAIR-NN represent
pragmatic causality and provably align with exact causal mechanisms under
conditions of sufficient heterogeneity. Computationally, FAIR-NN employs
a novel Gumbel approximation with decreased temperature and a stochastic
gradient descent ascent algorithm. The procedures are demonstrated using
simulated and real-data examples.

1. Introduction. A fundamental problem in statistics and machine learning is to use col-
lected data to predict the response variable Y based on explanatory covariates X € R¢. The
objective often centers on estimating the regression function mo(x) = E[Y|X = x], which
minimizes the population L, risk R(m) = [ |y — m(x) |2 o(dx, dy), starting from the pio-
neering work of least squares by Legendre (1805) and Gauss (1809). The problem of achiev-
ing sample-efficient estimation of mq has been extensively studied, and there are many meth-
ods that attempt to exploit a low-dimensional structure such as sparsity, low-rankness, or addi-
tivity, and develop corresponding optimal methods tailored to this assumed structure (Hastie,
Tibshirani and Friedman (2009), Wainwright (2019), Fan et al. (2020)). However, these meth-
ods may suffer from model misspecification due to their reliance on imposed structures. As
an alternative, algorithmic methods (Breiman (2001)) like neural networks can be adaptive to
the low-dimensional structure efficiently (Schmidt-Hieber (2020), Fan and Gu (2024)) with
no supervision of function structure. This nature endows them with universal applicability
across various tasks and data.
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Despite many celebrated efforts for the efficient estimation of mg or its variants like quan-
tile functions, the ultimate goal of statistical learning is to predict on unseen data, eluci-
date the causal relationships among variables, and guide decision-making in real-world sce-
narios. We instinctively regard mg as such a target function for achieving decent predic-
tion and causal attribution. However, this can be flawed: m( can produce unstable predic-
tions on unseen data, and we risk false scientific conclusions in numerous cases. Consider
a simple thought experiment where we aim to classify an object in a picture as either a
cow (Y = 1) or a camel (Y = 0) using two provided features X (body shape) and X»
(background color). In the data we collected from g, the cows usually appear on green
grass, while camels often stay on yellow sand. Consequently, the conditional expectation
mo(x1, x2) =E,,[Y|X1 = x1, X2 = x2] would be heavily dependent on x>. Such a model is
problematic both for attribution and prediction in an unseen environment. Its application
in a setting with a different background, such as zoos, would lead to unreliable predic-
tions. Furthermore, attributing the determination of an object to the background surround-
ing it also contradicts our understanding of causality. In the above case, we may prefer
m,(x) = E[Y| X = x1] for prediction and attribution as we know the causal mechanisms.

We refer to the above problem as the “curse of endogeneity”, namely, the conditional ex-
pectation of the residual for the “potential” interested (causal) m, is not zero given all the
explanatory variables, that is, E[Y — m,(X)|X] # 0. Such a problem will lead to a mis-
alignment between mq and m,, that is, mg(X) — m,(X) # 0. Hence, traditional regression
techniques for estimating mgo will result in an unsatisfactory solution.

Causal inference methods offer remarkable remedies to the curse of endogeneity. Based
on the potential outcome (Rubin (1974)) or structural causal model (SCM) (Pearl (2009)),
efficient estimation via various regression techniques (Chernozhukov et al. (2018), Athey,
Tibshirani and Wager (2019)) is possible. However, all these methods rely on relatively strong
assumptions that are often untestable from data. This, in turn, leads to a high risk of severe
misspecification of models and assumptions.

This paper proposes an algorithmic remedy for the “curse of endogeneity” taking advan-
tage of data from multiple sources and a high-level invariance principle. Motivated by causal
discovery under the SCM framework (Peters, Biihlmann and Meinshausen (2016)), the invari-
ance principle argues that causal relations remain constant across different environments from
multiple sources. Leveraging this invariance principle, we propose an algorithmic framework
that estimates the most predictive association, which we refer to as data-driven causality, that
is invariant across diverse environments. Methodologically and in contrast to previous work,
our framework is nonparametric and assumption-lean, making it scalable and robust to model
misspecification. From a statistical viewpoint, our estimator requires a minimal number of
environments and achieves optimal sample complexity. Furthermore, our approach identifies
the causal structure in the setting of an SCM under minimal assumptions of heterogeneity
across different environments.

1.1. The canonical model under study. Consider the following multi-environment re-
gression problem. Let £ be the set of environments. For each environment e € £, n i.i.d. data
(X, v )yr_, are drawn from ;) —the joint distribution of (X(©, Y ©) satisfying

(1.1) Y© = m*(Xéi)) +&©@  with E[¢© |X§i)] =0.

Here S*, the unknown true important variable set, and m* : RISl — R, the target regression
function, are both invariant across different environments; but the joint distributions (¢
can vary. We aim to learn the set of important variables S* and estimate the invariant regres-
sion function m* using data {{(X l.(e), Yl-(e))};?:1 }lees from |E] heterogeneous environments. The
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same 7 in the formulation is just for expository simplicity; the extension to varying n® is
straightforward. We refer to the above problem as nonparametric invariance pursuit.

Now we temporarily refrain from causal discussions and frame it as a pure statistical es-
timation problem. We will use a running example in Section 1.3 right after introducing our
method to provide a causal interpretation of S* and then offer in Section 3 a rigorous and
comprehensive interpretation of what S* is in the SCM with interventions on X. It is also no-
table to mention that model (1.1) only requires invariance in the first moment instead of full

distributional invariance, that is, £© ~ F, and independent of X gi) , as typically required for
causal discovery (Peters, Biihlmann and Meinshausen (2016)). It is more realistic and allows
for between-environment heteroscedastic errors.

It is important to note that the standard nonparametric regression generally diverges from
our target m”*, that is, E[Y©@|Xx© =x] # m*(xs+). This mismatch is due to E[e@|Xx(©)] #0.
Such a “curse of endogeneity” problem is the main challenge we need to address. Including
even one of the endogenously spurious variables, for example, X» background color in the
above example, in the regression function will create an inconsistent estimation of m*. Thus,
it is essential to design an algorithm to eliminate all endogenously spurious variables.

1.2. Our algorithmic remedy: FAIR estimation. This paper proposes a unified estimation
framework—the Focused Adversarial Invariance Regularized (FAIR) estimator. It regularizes
the user-specified risk loss £(y, v) by a novel regularizer. Specifically, the FAIR estimator is
the solution of the following minimax optimization program

min max E ole(Y, g(X
geg f(ff)efsg ecE w )[ ( g( ))]
Veel&

R(g)

+y Y Eo[{Y — s} FOX) - {F9X)/2].

ec&

(1.2)

I {f Decs)

Here £(-, -) is a loss whose population solution leads to the conditional expectation, y > 0
is the regularization hyper-parameter to be determined, (G, F) are the function classes to
be specified by the user satisfying G € F. The first part is the risk minimization, and the
second component is the test of exogeneity of the variables S, = supp(g) used by the regres-
sion function g, where Fs, = {f € F: f(x) = h(xs,) for some & : RISl — R} is the testing
function class for the prediction functions in G that only “focuses” on the variables S, that
g used. Two useful classes of functions are linear and square-integrable classes for (G, F),
which correspond respectively to linear models and nonparametric regression models; see
Section 4.1 for additional details. Note that the second component is nonnegative after max-
imization by comparing with f© =0 so that the penalty is nonnegative. For the empirical
counterpart, we solve a similar minimax optimization program that substitutes E  «[-] with
the corresponding sample means.

To see why such a FAIR penalty works, let us consider the nonparametric regression setting
in which F = {f : Eu(e)[fz(ng)] < oo}. By conditioning on X, , for f@e FS,

E,o[{Y =8O} QX)) =E,0[{E,0Y]Xs,]1—gX)} X))

Then, the supremum in (1.2) can be explicitly found and the objective now becomes

. . - 1 2
(13)  minR(g) +y-J"(g) with J(g) = 5 3 B0[[g (0 — B0 [¥1Xs, 1)

ecf

Therefore, g(X) = m*(Xg+) is a minimax solution.
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X1 <+ fi(e1) ) X 4= fi(ea) X1 <+ fi(e1)
Y +— fa(X1,e4) Y« fa(X1,e4) Y + fa(X1,e4)

e Xo + f2(Y,e2) Xo + fa(Y,e2) X £ (Y,e2)
‘ X3 + f3(Y, Xo,¢e3)

2
X f;i (¥, Xz,e3) X3 < f3(Y, X2,€3)

FIG. 1. The running example when d =3 and |E| = 3. The arrow from node x to y indicates that x affects y di-
rectly. The data-generating process of (X1, ..., X3, Y) in each environment is described by the set of assignments
in each panel, and ¢, . . ., g4 are independent noises. Compared with the first environment e = 1, the assignment
for X3 perturbs in e =2 and the assignment for X, perturbs in e = 3, which are marked by red.

To motivate (1.2), let us first consider the additional constraint E ¢ [ f ©(x Sg)z] =1 so
that the first part of the second component in (1.2) is basically the maximal correlation be-
tween the residual {Y — g(Xs,)} and testing functions f ©x s,)- Hence, the criterion (1.2)
is to find a set of variables X, as exogenous (weakly correlated) with the residuals as pos-
sible for all testing functions in Fg,. By the Lagrange multiplier method, the constrained
maximization problem can be written as

jmax E,o[{Y — X))} f€X) —A{fO )]
(S Sg

Choosing the multiplier A = 1/2 gives rise to the objective function (1.2).

FAIR penalty screens out all the endogenously spurious variables when y is sufficiently
large. This is easily seen when the penalty in (1.2) is not zero, such a g is dominated
by g = m* for large y. After deleting endogenously spurious variables, we can apply
the commonly-used statistical variable selection methods (Hastie, Tibshirani and Friedman
(2009), Wainwright (2019), Fan et al. (2020)) to further eliminate exogenously spurious or
weak causal variables such as the time and temperature at which the photos were taken.

1.3. A running example and the roadmap. Here we use an example to demonstrate the
philosophy of our method, namely, to describe the target regression function of our method
when data from different environments are observed. Leveraging this example, we also illus-
trate the key idea of the main theoretical results and offer an overview of this paper.

Let us use the running example with d = 3 in Figure 1 to illustrate the causal interpretation
of $* which our FAIR estimation pursues. The data-generating processes of (X, Y) in the
environments are described by the SCMs shown in Figure 1: for example, the data-generating
process of the first environment is described by the four assignments in the left panel, where
{fi }‘]‘.=1 are arbitrary nonparametric functions and ¢1, ..., &4 are some independent noises.
Here, the presentation of the assignments and the cause-effect relationship is for illustration,
our algorithm is blind to this knowledge.

When only data from the first environment is observed, the standard least squares will
use all the variables to predict Y if {f;,¢ j}‘}zl are “nondegenerate”. This is because be-
sides X (direct cause of Y), both X> and X3 can help predict the noise &4, excluding
some “degenerate” cases that rarely happen; for example, when f>(y, &2) = h(y) + &2 and
f3(y,x2,83) =h(y) — x2 + €3 = —&2 + €3, only X; and X» contribute to prediction; see a
formal definition of the “nondegenerate” cases in Section 3. The FAIR estimation will pursue
the same S* = {1, 2, 3} as the invariance constraint trivially holds when |£| = 1.

Things will be different when data from the second environment e = 2 becomes accessi-
ble. Here, the change of assignment of X3 (Figure 1 middle panel), or the intervention on
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X3, will make the conditional moment invariance no longer hold for any variable set contain-
ing X3 under nondegenerate cases if such an intervention is also “nondegenerate”. There-
fore, the FAIR method will pursue the maximum invariant set S* = {1, 2}. We use the name
“maximum invariant set” because it is the most predictive set that preserves the conditional
moment invariance constraint. The set $* = {1, 2} includes both the direct cause of ¥ (X;)
and the effect of ¥ (X37), and this is the best we can get from the currently available data. In
this case, all the sets {1, 2}, {1}, {2}, @ preserve the invariant structure. The rule we follow is
to pick one from the four candidates based on the following question: given available data
from £ = {1, 2}, what is the best prediction model from a pragmatic perspective? A model
including X3 is not robust—because we have observed the perturbations of association (i.e.,
the “noninvariance”) when X3 is included in the prediction model, the adversarial effect of
X3 can make the prediction very bad in an unknown future environment. Here, making pre-
dictions on {X, X»} may be the best choice. This is because if we hold the belief that in
the future, the interventions are made within X3, then the association between X g« = X1 2)
and Y will be maintained and is the most predictive one among all the maintaining associ-
ations. Therefore, the maximum invariant set FAIR estimation pursues can be interpreted as
either contemporary direct causes (the candidate direct causes that haven’t been falsified) or
pragmatic direct causes (for pragmatic considerations in future predictions).

Finally, when we observe additional data from environment ¢ = 3 (Figure 1 right panel),
the maximum invariant set S* will match the exact direct causes X under this model. As a
comparison, when £ = {1, 2, 3} are observed, the standard least squares, group distributional
robust optimization procedure (Meinshausen and Bithlmann (2015), Duchi and Namkoong
(2021), Sagawa et al. (2020), Agarwal and Zhang (2022)), and IRM (Arjovsky et al. (2019))
will produce prediction models using all the variables; and the previous hypothesis-test based
procedure from nonlinear ICP (Heinze-Deml, Peters and Meinshausen (2018)) will result in
the null prediction because & is also a set maintaining invariant structure.

We also remark that it is possible to recover the direct causes X nontrivially when only
one environment is observed. But it is at the cost of imposing additional structural assump-
tions, for example, assuming f3 is linear (Fan and Liao (2014)). This can be implemented in
our framework by restricting G within a linear class and choosing a nonparametric F.

Roadmap. The theoretical claims in the paper will extend the above intuitions to arbitrary
multivariate cases in a rigorous manner. Section 2 and Section 3 focus on the method and
theoretical results for the nonparametric invariance pursuit (1.1). Section 2 considers the pure
estimation problem nonparametric invariance pursuit itself. Theorem 2.1 shows that under
the existence of the maximum invariant set (which is testable), realizing the prediction and
testing function class G and F by neural networks can allow us to estimate the regression
function m* induced by the maximum invariant set efficiently in several aspects. Section 3
offers a causal interpretation of the maximum invariant set under extra structural assumptions
in SCMs: Theorem 3.1 shows that there always exists a maximum invariant set under nonde-
generate cases, it can be represented as pragmatic direct causes in general (Proposition 3.3)
and will match the direct causes under sufficient interventions (Proposition 3.2).

The above nonparametric invariance pursuit, as a special instance, helps to illustrate the
main idea and philosophy of our general invariance pursuit problem and FAIR estimation
framework, which will be formally presented in Section 4. In the main text, we provide a
sketch of the abstract unified result, from which all the nonasymptotic results are derived as
corollaries, along with other applications in Section 4.3. This includes the case that is iden-
tifiable using only one environment. We provide a computationally efficient implementation
using variants of gradient descent and Gumbel approximation, followed by its application to
the simulation and real data analysis in Section 5. A robust prediction of water birds and land
birds, similar to the thought experiment, is deferred to Appendix C.3 (Gu et al. (2025)).
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1.4. New contributions. We propose a unified, algorithmic, and sample-efficient method-
ological framework that can discover the invariant regression function, that is, to solve a
generalized version of the problem in Section 1.1. The method is simple, universal, fully al-
gorithmic, and sample-efficient: It is just one optimization objective (1.2) complemented by
one extra hyper-parameter y; it accommodates many losses and can be seamlessly integrated
by various machine learning algorithms; it does not require any prior structural knowledge,
and it is almost as statistically efficient as standard regression under various cases.

As a special instance in our framework, the FAIR neural network (FAIR-NN) estimator is
proposed for which G and F are neural networks to unveil m* in (1.1). It is the first theoreti-
cally guaranteed estimator that can efficiently recover m* under a single general and minimal
identification condition associated with the heterogeneity of the environments. Its sample ef-
ficiency can be understood in several notable aspects: it requires the minimal identification
condition, leading to fewer required environments; it exhibits the same L, error rate as if di-
rectly regressing ¥ on known X g+, regardless of the complexity of spurious associations; and
it adapts to the unknown low-dimension structure of the invariant association m* in a same
manner as Kohler and Langer (2021).

We also establish the first general causal interpretation of the S* in the canonical model
(1.1) under SCM with interventions on X setting. Specifically, we demonstrate that under
arbitrary nondegenerate interventions, there always exists a set—explicitly characterized by
the cause-effect relationships and the intervened variables and referred to as “pragmatic direct
causes”—that satisfies the aforementioned general identification condition. As a corollary, we
establish the general sufficient and necessary condition under which the direct causes of ¥ can
be recovered, while previous recovery results (Peters, Biihlmann and Meinshausen (2016))
only consider special cases. Moreover, even when the interventions are insufficient to identify
direct causes, such an $* also has implications in robust transfer learning. These results are,
to the best of our knowledge, the first in the literature and are of independent interest.

While the complicated combinatorial constraint and minimax optimization are introduced
in (1.2), we show that a variant of gradient descent—gradient descent-ascent with Gumbel
approximation (Jang, Gu and Poole (2017), Maddison, Mnih and Teh (2017)) to handle the
combinatorial-nature “focused” constraint f € Fg,—continues to apply to our specifically
designed algorithm and neural network estimators with no curse-of-dimension in implemen-
tation. Numerical results in Section 5 support this.

Though our framework is designed for algorithmic learning, it is versatile in that the user
can also incorporate their strong prior structural knowledge, such as linearity or additivity
of m*, into the FAIR estimation. This can be realized by restricting the function class G
within this known structure and designating F as a more expansive class. We demonstrate
that harnessing such strong structural knowledge can relax the condition for identification. It
is worth pointing out that identification is viable even when |£| = 1 corresponding to observa-
tional data; see examples in Appendix B.6. At the methodology level, our method bridges the
invariance principle (Peters, Biihlmann and Meinshausen (2016)) and asymmetry principle
(Janzing, Chaves and Scholkopf (2016)) for observational data into a unified framework.

1.5. Related works and comparisons. Starting from the pioneering work of Peters,
Biihlmann and Meinshausen (2016), there is considerable literature proposing methods to
estimate m* in (1.1), predominantly when m* is linear. These methods broadly fall into two
categories: hypothesis test-based methods and optimization-based methods. For the hypoth-
esis test-based methods (Peters, Biihlmann and Meinshausen (2016), Heinze-Deml, Peters
and Meinshausen (2018), Pfister, Biilhlmann and Peters (2019)), the Type-I error is controlled
for an estimator S with P(S € §*) > 1 — . Nonetheless, these procedures may result in
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missing important variables or conservative solutions like S = @ due to the inherent worst-
case construction in the algorithm. Additionally, the introduction of hypothesis tests also hin-
ders their seamless integration by machine learning algorithms, limiting their scalability. On
the other hand, some optimization-based methods (Ghassami et al. (2017), Rothenhé&usler,
Biihlmann and Meinshausen (2019), Rothenhiusler et al. (2021)) focus on linear m* and
tackle the problem under additional structures such as linear SCMs with additive interven-
tions (Rothenhiusler, Biihlmann and Meinshausen (2019)). This limitation curtails its appli-
cability to a broader nonparametric setting. Some optimization-based methods (Pfister et al.
(2021), Yin, Wang and Blei (2024)) designed for linear models are heuristic and lack finite
sample guarantees. In summary, there is still a crucial gap towards efficiently estimating m*
without additional assumptions on the underlying model. Although Fan et al. (2024) recently
bridged this gap for linear m* through an optimization-based method, it is still unclear under
the general nonparametric setting. This paper is the first to attain sample-efficient estimation
for the general model with nonasymptotic guarantees in terms of both |£| and n. Additionally,
it is the first to provide a general sufficient and near-necessary conditions for interventions
that enable the exact recovery of direct causes within the SCM framework.

Arjovsky et al. (2019) considers a general task, which aims to search for a data repre-
sentation such that the optimal solution given that representation is optimal across diverse
environments. They propose an optimization-based approach called invariant risk minimiza-
tion (IRM), with many subsequent variants proposed later. However, their method comes with
no statistical guarantees and requires at least d environments even for the linear model, and
the improvement over standard empirical risk minimization is not clear (Rosenfeld, Raviku-
mar and Risteski (2021), Kamath et al. (2021)). Our paper is the first to offer a compre-
hensive theoretical analysis of general invariance learning when the representation class is
{(x1,...,xq3) = (a1x1,...,a4xq) : ai, ...,aq € {0, 1}} and to show that sample efficient es-
timation is in general viable even when |£| = 2. The main reason why this is attainable is
due to the exact invariance pursued by our FAIR penalty and its “focused” nature, see the
discussion in Appendix A.2.

Under the SCM framework, there is considerable literature on causal discovery using
observational data (Spirtes, Glymour and Scheines (2000), Richardson (1996), Chickering
(2002), Hyttinen et al. (2013), Hyttinen, Eberhardt and Jirvisalo (2014)). However, most of
them only attain identification up to Markov equivalent class (Geiger and Pearl (1990)). To
overcome the issue, existing methods can be roughly divided into two categories—one based
on the invariance principle and the other based on the asymmetry principle. The invariance-
based approaches (Peters, Biihlmann and Meinshausen (2016)) use samples from multiple ex-
periments where some unknown intervention may apply to the variables other than Y. It lever-
ages the idea that the cause-effect mechanism will remain constant while the reverse effect-
cause association may vary. On the other hand, the asymmetry-based approaches (Shimizu
et al. (2006), Hoyer et al. (2008), Zhang and Hyvirinen (2009), Janzing et al. (2012), Pe-
ters et al. (2014)) only observe one sample of observational data and use the idea that the
cause-effect mechanism admits a simple prior known structure, whereas its inverse does not,
example includes the additive noise structure (Hoyer et al. (2008)). These two principles for
causal discovery seem to have been orthogonal before. Our estimation framework is the first
to offer a unified methodological perspective on these two principles with theoretical guaran-
tees. It demonstrates the ability to simultaneously leverage both principles for identification
and estimation.

Adversarial estimation is introduced in Goodfellow et al. (2014) for generative model-
ing. Its application in the statistics spans distribution estimation (Liang (2021)), instrumental
variable regression (Dikkala et al. (2020)), estimating the (implicit) influence function (Cher-
nozhukov et al. (2020), Hirshberg and Wager (2021)), and so on. We adopted adversarial
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estimation from two novel aspects. Firstly, it allows us to use a simple objective function that
homogenizes different tasks and prediction models for estimation. Moreover, such a minimax
optimization objective and the Gumbel trick in the implementation jointly relax the combi-
natorial nature in (1.3) and make a variant of gradient descent continue to work numerically.

1.6. Notations. We use upper case (X, Y, Z) to represent random variables/vectors and
denote their instances as (x, y, z). Define [n] = {1, ..., n}. For a vector x = (x1, ..., xq)! €
RY, we let ||x]2 = (z;?zle.)l/z. For given index set S = {ji, ..., jis} € [d] with j; <

- < jis|» we denote [x]g = (xj,, ""xj|S|)T € RIS and abbreviate it as xg if there is no
ambiguity. We let a Vb = max{a, b} and a Ab = min{a, b}. We use a(n) < b(n), b(n) 2 a(n),
or a(n) = O(b(n)) if there exists some constant C > 0 such that a(n) < Cb(n) for any n > 3.
Denote a(n) < b(n) if a(n) < b(n) and a(n) 2 b(n). In the theorem statement and proof, we
will use C to represent the universal constants that may vary from line to line and will use
C,Ci,...t0 represent the constants that may depend on the other defined constants.

In the context of the multi-environment setup, for each e € &, let e© = Lz(u)(f)) =
(f : [ fRudx) < oo}, and denote | fllae = {f f2(x)u (dx)}'/2. Given n obser-
vations {(Xl-(e), Yi(e))}?:1 C R? x R drawn i.i.d. from u(®, we define E[ f(X©,Y©)] =
[ £, )@ (dx, dy) and BE[f(X©, v =15 r(x v') for any f e ©©. We
assume E[|Y©|2] < co. Let i = ﬁ Y ecs w'®, and ® = L,(f1,) equipped with the norm
|- ll2 = {/ f2(x)jix(dx)}'/%. Tt is easy to verify that © = ), .

Let S C [d] be any index set. Given a function class H C {/ : R — R}, we define Hg be
the class of functions in 7 that only depend on variables xg, that is, Hs = {h € H, h(x) =
u(xg) for some u : RISI > R p@-g.5s.¥e € £}. We sometimes also write /(xs) instead of
h(x) for h € Hg since h only depends on xg. For any h € H, we use S;, C [d] to represent
the index set of the variables /& depends on. We let {H}X = {(h1, ..., hy) : hi € H Vi € [k]}.
For any (X, Y)’s joint distribution v, we use v, to denote the marginal distribution of X, and
Vyx,s to denote the marginal distribution of X.

Neural Networks. We use neural networks as a scalable nonparametric technique: we adopt
the fully connected deep neural network with ReL.U activation o (-) = max{0, -}, and call it
deep ReLU network for short. Let L, N be any positive integer, a deep ReLU network with
depth L width N admits the form of

(1.4) gx)=Tpy100,0TL 00 10---0Thr 001 0Ti(x).

Here Tj(z) = Wiz + by : R4 — R%+1 is a linear map with weight matrix W; € Ré>xdi-1 apd
bias vector b; € RY, where (do,dy....dr,dp+1) =(d,N,...,N, 1), and o7 ‘R4 — R
applies the ReLLU activation o (-) to each entry of a dj-dimensional vector. Here, the equal
width is for presentation simplicity.

DEFINITION 1.1 (Deep ReLU network class). Define the family of deep ReLU net-
works taking d-dimensional vector as input with depth L, width N, truncated by B as
Hon(d,L,N,B) ={g(x) = Tcp(g(x)) : g(x) in (1.4)}, where Tcp : R — R is the trunca-
tion operator defined as Tcp(z) = min{|z|, B} - sign(z).

2. FAIR least squares estimator using neural networks. In this section, we show that
one can use the FAIR-NN least squares estimator, a realization of the FAIR estimator by
setting £(y, v) = %(y — v)? and specifying both (G, F) as neural networks, to attain sample-
efficient estimation in nonparametric invariance pursuit.

The main messages of this section are twofold. From a theoretical perspective, it shows
that sample-efficient estimation (in both n and |£|) in the general nonparametric invariance
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pursuit problem is viable under a minimal identification condition related to the heterogeneity
of the environments. From a methodological perspective, it demonstrates one key feature of
our proposed framework: one can seamlessly integrate black-box machine learning models
(e.g., neural networks) into it and fully exploit these models’ sample efficiency and capability
in being adaptive to low-dimensional structures.

2.1. Setup. Recall that w'® is the joint distribution of (X, Y) in environment e. Let
m@3(x) :=E[Y©|X ge) = xg] be the conditional expectation of Y given Xg in environ-
ment e. Recall that vy g is the marginal distribution of Xg for (X, Y) ~ v. It is easy to see
that ,u)(f)s is absolutely continuous with respect to [ty s = [lé—l Y oecs ,u(e)]x, s for any S C [d]

hence ,oge), the Radon—Nikodym derivative of ,uff)s with respect to [i s, is well defined. We

define mS (x) = ¥, ,oée) (xs)m©3)(x), which can be interpreted as the population-level
least squares that regress ¥ on X using all the data in £.

CONDITION 2.1 (Model and Regularity Conditions). There exists some positive con-
stants (Co, Smin) Such that the following conditions hold.

(a) Data Generating Process: We collect data from |E| € N environments with |E| < n©0.

ii.d.
~

1@
(b) Invariance Structure: There exists some set S* and m* - RISl = R such that m©S™ (x)
=m*(xs+) forany e € £.
(¢) Sub-Gaussian Response: For any e € £ and t > 0, P[lY(e)| >t] < Coe_’z/(ZCO).
(d) Boundedness: X € [—Cy, Col? f-a.s. and |m©S | o < Coforany S C[d]ande € &.
(e) Nondegenerate Covariate: VS C [d] with $* \ § # &, infco, |m — m*ll% > Smin > 0.

For each environment e € £, we observe {(X fe), Yi(e))}?: |

Condition 2.1(a)—(b) is just a restatement of (1.1) together with i.i.d. data within each envi-
ronment; data across different environments may be dependent. (c)—(d) are standard in non-
parametric regression. (e) rules out some degenerate cases, for example, m*(x;) = xl2 with
S*={1}and X, = Xf', or m*(x1, x2) = f(x1) with $* = {1, 2}, and is imposed for technical
convenience. This condition is not necessary for deriving the L, error rate, but it is neces-
sary for the variable selection. The target (invariant) regression function in nonparametric
invariance pursuit is m*.

2.2. Proposed FAIR-NN least squares estimator. Given the data {{(X i(e), Yi(e))}?zl}eeg
from heterogeneous environments, we consider using the following FAIR-NN least squares
estimator to learn m* in (1.1). Specifically, the FAIR-NN least squares estimator is the solu-
tion to the subsequent minimax optimization objective

. . 1 ~
2.1 g cargmin sup oo > {Yi(e) - g(Xfe))}2 +yd(g. 9),
8€G  fEelFs, )] €17 pefreim

where the first part of the objective Gy (g, %) is the pooled least squares loss preventing
the estimator from collapsing to conservative solutions, y is the hyper-parameter to be de-
termined, and J(g, f¢) is the empirical counterpart of the focused adversarial invariance
regularizer defined as

2D e sH=m 3 [0 e On) - O]

€] -n ek ien]
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The minimax program (2.1) is the empirical version of (1.2) via setting £(y, v) = %(y — )%
Here we specify the predictor function class G and testing function class F as

(2.3) G§=Hun(d,L,N,B) and F=Hnn(d,L+2,2N,2B)

for neural network architecture hyper-parameters N, L and truncation parameter B = Cy.
Here B can be larger than Cq but should satisfy B = O (1). One can also adopt a larger width,
depth, and truncation parameter for F. Our choice of (N, L, B) for F here is for technical
purposes, that is, any m(¢3) — g for g € G can be well approximated by some f € F.

2.3. Nonasymptotic result for FAIR-NN.

CONDITION 2.2 (Identification for Nonparametric Invariance Pursuit). For any S C [d]
such that p({m* # mSYS))) > 0, there exists some e, e’ € € such that min{u®, €’}
(Im @ #m S} > 0.

REMARK 2.1 (Minimal Heterogeneity Condition for Identification). The above identi-
fication condition necessitates that whenever a bias emerges when regressing ¥ on Xgus*
using least squares, there should be noticeable shifts in the conditional expectation (¢S
across environments. In other words, $* is the maximum set preserving the invariant associa-
tions. This condition is minimal. If it is violated, it would imply that 35 C [d] with S\S$* £
such that

Ve € £, E[Y(e)le{)] = g(X%e)) un©-a.s. for some g : RIS - R,

in which both set $* and S embody the invariant conditional expectation structure, thus more
environments are needed in this case to pinpoint S*. Such a minimal identification condition
underscores that our proposed FAIR-NN estimator is “sample efficient” regarding the number
of environments |£| required; see the discussions in Section 3. Notably, such an identifica-
tion condition relaxes those employed in approaches using intersections like ICP (Peters,
Biihlmann and Meinshausen (2016)). These approaches require the shifts of conditional dis-
tributions for all the S with mS) % m* for identifying S*.

The following theorem provides an oracle-type inequality for the FAIR-NN least squares
estimator in a structure-agnostic manner. It shows that under Condition 2.2, one can expect
consistent estimation and further establish nonasymptotic upper bounds on the L error be-
tween the estimator (2.1) and the invariant regression function m*. In addition, the theorem
quantifies the amount of penalty needed, namely 7y, which is of constant order and is related
to the signal-to-noise ratio of the problem.

THEOREM 2.1 (Oracle-type Inequality for FAIR-NN Least Squares Estimator). ~Assume
Conditions 2.1 and 2.2 hold. Then yyy = SUP 4] (5)>0 (0 (S) /dun (S)) < 00, where

1 - ($)12
XS A,
ee€

2

24)  bu(S) = |m* —mSSV|] and  duw(S) =

Consider the estimator that solves (2.1) using y > 8yyy and function classes (2.3) with L, N
satisfying NL <n and N > 4. Then, there exists some constant C depending on (d, Co) such
that for any n > 3,

g —m*|l2 . . NLlog’?n
25 = rgleaghgéfs* |lm* —hl,,+ —m T Lo, 1>s) * (78, 1)
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occurs with probability at least 1 — Cn= 19 Here dnn,1 = MaXeeg, scld] infreg [meS) —

32 ~ . - .
hl2.e M and s = _1[1 A Smin A {y infg. G (8)>0 dan(S)}/(1 4+ y), where spin is

deﬁned in Condition 2.1(e). Moreover, under the above event, if Syn,1 < S, then the variable
selection property holds, for S=35;,

(2.6) S*CS and Vec€é, m(e’g) =m".

REMARK 2.2 (Interpretation of byy(S) and dun(S)). We refer to byy(S) as bias mean
since it exactly characterizes the bias of the least squares estimator in the presence of en-
dogenously spurious variables like the background color in the thought experiment. In partic-
ular, letting gr,sr(s) be the least squares estimator that regresses Y on X using all the data,
namely, the FAIR-NN estimator with y = 0, Proposition B.1 implies

e~ 2
||gLSE(S) - m*||2

—1|=o0p(1) if $*C S and byx(S) > 0.

b (S)
We refer to dyy(S) as the bias variance because it measures the variations of bias across
environments. Specifically, when S* C S, the bias in environment e is (m©S) — m*), and

(S ) can be v1ewed as the variance of the bias concerning the uniform distribution on £
since dyy(S) = |g| Yeee I(m @S —m*) — ) — m*)||3 . We have dyy(S*) = 0 by the
invariance structure in Condition 2.1(b).

REMARK 2.3 (Identification). Theorem 2.1 combines the identification result, which
characterizes when it is possible to consistently estimate m*, and the finite-sample estimation
error result, which characterizes how accurately we can estimate m*. The main identification
message disentangled from the above theorem is that if the minimal heterogeneity condition
Condition 2.2 holds, then one can consistently estimate m* provided y is larger than some
threshold 84y that is independent of n.

Here 8,1 can be interpreted as the sum of the worst-case approximation error of neural
networks to all the conditional moments {m© S)}eeg scrq] and the stochastic error. One can
expect oyy,1 = o(1) if NL log!3n = o(\/n) and all the conditional moments are Lipschitz
functions. Moreover, s can be explained as the minimum of the signal of true important
variables in S$* and the signal of heterogeneity. Given s is of constant order and dyy,1 = o(1),
the error bound (2.5) shows that as dyy,1 <'s, that is, if n is large enough, the L, error is
composed of the approximation error of neural networks to m* and the stochastic error. In
this case, all endogenously spurious variables can be surely screened (Fan and Lv (2008)),
that is, (2.6), and m* can be estimated as well as if the invariant set of variables S* is known.
At the same time, given our results are nonasymptotic, for a given (not large enough) n, we
may not be able to eliminate all endogenously spurious variables as in (2.6). The error rate in
this case will be (y + 1)éxy,1 as in (2.5) given that our method may select wrong variables.
The error bounds and dyy,1 Will be presented explicitly as (2.7) in Corollary 2.2 when we
impose assumptions on the function class.

2.4. Adapting to the low-dimensional structures algorithmically. In this section, we
present the convergence rate of the FAIR-NN when m* lies within the hierarchical com-
position model (Bauer and Kohler (2019)). This is the function class that neural networks can
efficiently estimate (Schmidt-Hieber (2020), Kohler and Langer (2021), Fan and Gu (2024))
with little guidance regarding the forms of functions. We show that FAIR-NN can obtain the
same result as standard regression blind to both the knowledge of S* and function structure.
This example demonstrates our framework’s ability to fully leverage the sample efficiency
of the adopted machine learning model while also providing a concrete instance that realizes
several quantities defined in the structure-agnostic setting of Theorem 2.1.
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DEFINITION 2.1 ((B, C)-smooth Function). Let 8 =r + s for some nonnegative in-
teger r >0 and 0 <s <1, and C > 0. A d-variate function f is (8, C)-smooth if
for every nonnegative sequence o € N’ such that Z?Zla j = r, the partial derivative
0% f = (Ea)f)/(ax‘f‘l ---xs") exists and satisfies [0 f(x) — 0% f(2)] < Cllx — z||5. We use
Hus(d, B, C) to denote the set of all the d-variate (8, C)-smooth functions.

DEFINITION 2.2 (Hierarchical Composition Model Hycw(d, I, O, C)). We define func-
tion class of hierarchical composition model Hycm(d, [, O, C) (Kohler and Langer (2021))
with[,d e NT, C e RT, and O, a subset of [1,00) x N1, in a recursive way as follows. Let
Huem(d, 0,0, C) ={h(x) =xj, j €[d]}, and foreach [ > 1,

Huem(d, 1,0, C) ={h:RY = R:h(x) = g(fi(x), ..., fi(x)), where
g € Hus(t, B, C) with (B,1) € O and f; € Hucu(d, ! — 1,0, C)}.

Following Kohler and Langer (2021), we assume all the compositions are at least Lips-
chitz functions to simplify the presentation. The minimax optimal L, estimation risk over
Hd,l,0,Cp) is n=*/C"+D where a* = mingg neo(B/1) is the smallest dimensionality-
adjusted degree of smoothness (Fan and Gu (2024)) that represents the hardest component in
the composition. For example, if m*(x) = f1(x1) + f2(f3(x2, x3), fa(x4, x5)) + f5(x1, x3, X5)
and all functions have a bounded second derivative, then the hardest component is the last
one, and the dimensionality-adjusted degree of smoothness is o™ =2/3.

CONDITION 2.3 (Function Complexity). The following holds:

(@) m®S € Hucu(|S|, 1, O, Cy) for any e € € and S < [d] with ag = inf(g 1yco (B/1).

(b) m* € Hucm(1S™],1, O, Cp) with o = infg e+ (B/1).

(¢c)max{Cy,d,I, Cy, sup(ﬂJ)eO(,B Vi), sup(ﬂJ)eO*(,B Vit)} < Cy for some constant C1 > 1.
(d) The neural network architecture hyper-parameters diverge: (logn)/(N A L) =o(1).

COROLLARY 2.2 (Convergence Rate for FAIR-NN). Under the setting of Theorem 2.1,
assume further that Condition 2.3 holds. Then, for any n > 3, with probability at least 1 —
Cn='%9 the following holds

NL

o —m* « NL
g 2 <(NL)y™ +—n+1{n<n0}y[(NL>2“0+—},

2.7 ~ 1 e Ax
( ) C10g1.5V40{* (7’[) f \/7’_1

5NN4,1

where ng depends on (C1, ¥, Smin, inf St ($)>0 dw(S)), and C is a constant dependent only
on C1. Under the optimal choice of network architecture hyper-parameters N, L satisfying

—1 * * *
LN = n20 %0 the RH.S. of (2.7)is n=%/C¢+D 4 1y, yyn=e0/C+D

From Corollary 2.2, we can get (up to logarithmic factors) minimax convergence rate
n—o/ (2"*“), which is independent of both « and y, when n is larger than some constant ng.
Utilizing neural networks in predictor and discriminator function classes allows the estimator
to adapt to the invariant regression function m* efficiently from two crucial perspectives.
First, similar to using neural networks in nonparametric regression (Schmidt-Hieber (2020)),
adopting neural networks in G endows the estimator with the capability of being adaptive
to the low-dimensional hierarchical structure algorithmically. Secondly, the choice of model
parameter (N, L) and the convergence rate depend only on m*. The (spurious) conditional
expectations m©S) can be much more complex than m*. Notably, this complexity will not
affect the convergence rate. This can be credited to the scalability of neural networks used as
discriminators, that is, their adaptivity capability in the regularization part of FAIR.
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REMARK 2.4 (Error Guarantees for All n). The error bound (2.7) is applicable for any
n > 3, even when it selects the wrong variables. This is the benefit brought by our proposed
regularized least squares, which cannot be easily attained by alternative two-state procedures,
such as first running a variable selection procedure similar to ICP and then refitting the model.
Furthermore, the error bound will not inflate if the invariant signal s, and the heterogeneity
signal Infgc(1:a.00(5)>0 dyn(S) is small. Though the error bound scales linearly with y, the

estimator is not vulnerable to “weak spurious” variables, e.g., x; with sup,¢ [|m (& S™VUD
m*||2.. <€, provided all the ratio of the bias byy(S) to heterogeneity dyy(S) is controlled.

REMARK 2.5 (Choice of the Hyper-parameter ). Though we have to choose a hyper-
parameter y larger than a certain threshold to attain such a rate, the convergence rate is
independent of y. This implies that when the sample size n is large, we do not need to tune
the hyper-parameter y for optimal performance. Instead, we can choose some conservative
(large) y such that the lower bound y > 8y,7 is guaranteed.

3. Nonparametric invariance pursuit under SCMs. The results in Section 2 are for the
problem nonparametric invariance pursuit itself. In a population-level view, if there exists a
“maximum invariant set” S* satisfying

m@S") = 7" (invariant) and
(3.1) N N
VS c[d], m“S =m® = mS9S) =nS?) (maximum)

simultaneously, then both S$* and the induced m* can be estimated well as if standard regres-
sion by the FAIR-NN estimator. It is natural to ask
Does such a maximum invariant set S* exist? What’s the semantic meaning of it?
We offer a general answer to the question under the SCM with arbitrary interventions (on
X) setting. The short answer is: Yes, it can be interpreted as the “pragmatic direct causes”.

3.1. Structural causal model with interventions on covariates. We first introduce the con-
cept of the structural causal model (Pearl, Glymour and Jewell (2016)). See Figure 2 for ex-
amples of SCM. It says that each variable in the directed graph is a function of its parents (if
any) and an independent innovation or noise.

DEFINITION 3.1 (Structural Causal Model). A structural causal model M = (S, v) on p
variables Zi, ..., Z, can be described using p assignment functions {f1, ..., f,} =S:

Zj < fi(Zoaij). Uj), j=1.....p,

where pa(j) € {1,..., p} is the set of parents, or the direct causes, of the variable Z;,
and the joint distribution v(du) = ]_[;7:1 vj(du;) over p independent exogenous variables
(Ur,...,Up). For a given model M, there is an associated directed graph G(M) = (V, E)
that describes the causal relationships among variables, where V = [p] is the set of nodes,
E is the edge set such that (i, j) € E if and only if i € pa(j). G(M) is acyclic if there is no
sequence (vy, ..., vg) with k£ > 2 such that v{ = vt and (v;, vi41) € E forany i € [k — 1].

As in Peters, Biihlmann and Meinshausen (2016), we consider the following data-
generating process in |£| environments. For each e € £, the process governing p =d + 1
random variables Z© = (Z(e), e ZL(I,:)_I) = (X(e), cee, Xc(f), Y©) is derived from an SCM
M©(S8© ), whose induced graph G (M ©) is acyclic, and assignments as

(e) (e) (—(e) s
42 X< f; (Zpa(j),UJ-), j=1,....d
Y(e) <~ fd+l(XI()ea)(d+l)7 Ud+l)~
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Here the distribution of exogenous variables (Uy, ..., Uz11), the cause-effect relationship
graph G, and the structural assignment f; are invariant across e € £, while the structural
assignments for X may vary among e € £. We use superscript (e¢) to highlight this hetero-
geneity. This heterogeneity may arise from performing arbitrary interventions on the vari-
ables X. We use Zp,(;) to emphasize that Y can be the direct cause of some variables in the
covariate vector. See an example in Figure 2(a). Here we restrict to the case without hidden
confounders; see the statement under the presence of hidden confounders in Appendix A.6.
To present the result, we consider an augmented SCM that incorporates the environment
label e as a variable E. We consider the case where £ = {0, ..., |E| — 1}. We let O be the
observational environment, and the rest are the interventional environments where some un-
known, arbitrary interventions are applied to the variables in some given set / C [d] defined
as [ :={j:3e €l st fj(e) *f j(o)}. The interventions can be arbitrary: it can be a “hard”
do-intervention via setting X ; to be v;, or a soft intervention that slightly perturbs the associ-
ation, for example, replacing X ; < 2X; +U; by X; <= 1.5X; + U ;. The shared cause-effect

relationships in all the environments are encoded by G, or {pa(j )}‘j:i.

The following SCM M = (S, 7) on d + 2 variables Z = (Z1, ..., Zq, Za+1, Zd42) =
(X1,..., X4, Y, E) encodes all the information of |£| models {M©(S©, v)}eee in (3.2).
Denote v, ~ Uniform(€). Here, V(duy, ..., dug+2) =v(duy, ..., dugr1)vp(dugsr), and the
assignments S={ f~1 s fd+2} are defined as

E <« fa12(Uis2) = Ugsa,

~ 0 .
Fi(Zoatn- Up) = £ (Zpajy. Up) Vi eldI\ 1,
~ E .
FiZoaps E- U i= f7 (Zoa5, Up) Vi€l

Y ﬁ+1(Xpa(d + 1), Ugt1) := far1(Xpa@+1)s Ua+1),

where [ is the set of all intervention variables in £. It should be noted that throughout this
section, the direct cause map pa : [d + 1] — [d 4 1] matches the causal relationship G instead
of G =G(M). See a graphical illustration of the construction in Figure 2(b).

We summarize the above construction as a condition.

3.3) Xj <

CONDITION 3.1 (SCM with Interventions on X). Suppose MO MUEED gre de-
fined by (3.2), and G is acyclic. Let M be the model constructed as (3.3) by {M @), e with
I being given set of variables intervened.

3.2. Maximum invariant set as the pragmatic direct causes. We characterize what S*
would satisfy (3.1) given a fixed intervention set /, and how large I should be to recover the
Y’s direct causes under arbitrary types of interventions. Define ch(k) := {j : k € pa(j)} as
the set of children of variable k and at (k) as the set of all the ancestors of the variable Zj,
defined recursively as at (k) = pa(k) U jepa(k) at(j) in the topological order of G. The
following condition rules out some degenerate cases.

CoNDITION 3.2 (Nondegenerate Interventions). The following holds for M: (a) VS C
[d] containing Y’s descendants, if E I 35Y|Xs, then there exists some e, e’ € € such that
(@ A u@Y{m©S £ m@ V) > 0; (b) M is faithful, that is, ¥V Disjoint A, B, C C [d +2],
if Zy 1L Zg|Zc, then Zy 115 Zg|Zc. Here Zy 1L Zg|Zc means the node set A and
B are d-separated by C in the graph G; see Definition 2.4.1 in Pearl, Glymour and Jewell
(2016) for a formal definition of d-separation.
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& Sx in (34)

0+ 0,{1,2,3,5,6,7,8,9}
0+ 1,{1,2,3,5,6,7,8,9}
0+ 2,
0+ 3,
0+ 4,{1,2,3}

J

(a) (b) (©)

FI1G. 2. (a) is an illustration of the two-environment model, the SCMs in the two environments share the same
associated graph: M ©) is an observational environment, and MV is an intervention environment where some
unknown intervention is applied to (X4, X¢g, X7), where MO and MD are defined as (3.2). (b) visualizes G, the
associated graph of M constructed based on M O m MY and (3.3), which is another plot of the environments
in (a). (¢) An illustration of Theorem 3.1 by showing how S, therein will change as we see more and more
environments: the arrow from E to X ; with color e means X j is intervened in e € {1,2,3,4}. For example,

0 <> 3 means with interventions in environments 1, 2, and 3, the invariant variable set is . Although
X7 and is reverse causal and hence related to Y, we do not know this based only on the given environments.

The condition (b), faithfulness on the graph G constraining that the graph G truly de-
picts all the conditional independence relationships, is widely used in the causal discovery
literature. Condition (a) is further imposed since we only leverage the information of condi-
tional expectations instead of conditional distributions. We impose Condition 3.2 such that
the dependence on E in the conditional expectation of Y given Xg with any S C [d] can be
represented by the graph G itself. The imposed Condition 3.2 rules out the possibility of some
degenerate cases; see the justifications for Condition 3.2 and some degenerate examples in
Appendix A.4. It should be noted that our general results in Theorem 3.1 and Proposition 3.2
apply to arbitrary forms of interventions under Condition 3.2, which is a mild condition as the
violation of faithfulness in Condition 3.2 occurs with probability zero under some suitable
measure on the model (Spirtes, Glymour and Scheines (2000)).

THEOREM 3.1 (Existence of Maximum Invariant Set). Under Condition 3.1, for

(3.4) Se=pa(d+1)UAMU (] (pa(j)\{d+1})
JEAW)

with A(I) ={j: jechd+1),j ¢ I, at(j)Nch(d+ 1) NI =0}, we have m®3) =
mS*) .= m,. Suppose further Condition 3.2 holds, then Condition 2.2 holds with (S*, m*) =
(S‘k’ m*)-

Theorem 3.1 exactly characterizes what S* is in our nonparametric invariance pursuit un-
der the SCM with interventions on X—it doesn’t require intervention to be “sufficient”.
Firstly, such a S* is well-defined in that there exists one maximum set S, satisfying the
invariant condition (1.1) and heterogeneity condition Condition 2.2 simultaneously. Second,
in the SCM setting, such a $* = S, can be represented in a simple way in (3.4), which lies in
between the Markov blanket of the variable Y and the set of Y’s direct causes. Note that A(7)
can be interpreted as the “unaffected” children of Y from the interventions /. As shown in the
definition of A([), the “unaffected” children include the children of Y unaffected by both di-
rect interventions in [ (itself is not included in /) and indirect interventions (it does not have
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an ancestor that is both Y’s child and suffer from intervention). Theorem 3.1 states explicitly
that the pursued set of invariant variables S* is the union of parents of Y, unaffected children
of Y, and parents of these unaffected children. The size of that set S* will keep decreasing
when [ enlarges. It will finally match the direct causes of ¥ when I includes “root children
set” I* as stated in Proposition 3.2 below; see an illustration in Figure 2(c).

PROPOSITION 3.2 (Direct Cause Recovery). (Sufficiency) Under Condition 3.1, define
I*={j:jechd+1),at(j)Nch(d+ 1) = @}. If Condition 3.2 holds and 1 D I*, then
Condition 2.2 holds with §* =pa(d + 1).

(Necessity) Moreover, if mS™) £ m* for any S with ch(d + 1) N S # @, that is, Y does
not have degenerate children, then Condition 2.2 holds only if I O I*.

We refer to 1* as the minimal intervention set because it is the exact minimal set of vari-
ables that should be intervened on for exact direct cause recovery in general, nondegenerate
cases. The set /™ is determined by the cause-effect relationship graph G. In particular, 7* is
{6, 7} for the example in Figure 2. Notably, Xg does not require intervention, as X7, one of
its ancestors, is included in I*.

Unfortunately, S, 2 pa(d + 1) when I* € I in general. This is due to a lack of evidence in
environments to falsify that some variables in S* are not direct causes. Nevertheless, $* = S,
in this setup can still be interpreted as the “contemporary direct causes” or “pragmatic direct
causes” of Y based on the observed environments. We refer to it as “pragmatic direct causes”
from the perspective of future prediction. The direct causes of Y have implications in robust
transfer learning because the conditional moment of Y given direct causes is the most predic-
tive one among all the transferable associations under the worst case where all the covariates
are arbitrarily strongly intervened. The “pragmatic direct causes” can be understood simi-
larly if future interventions are made within the intervened variables X;. Particularly, if the
future interventions are made within the set 7, then S* can be regarded as the direct causes
from a pragmatic perspective since the conditional expectation of ¥ given X g+ will remain
invariant in a new environment ¢. Moreover, it depicts the most predictive one among all the
associations in the observational environment e = 0 that remains in the environment ¢.

PROPOSITION 3.3 (Robust Transfer Learning). Under Condition 3.1, for a new environ-
ment t with SCM M = (SO v} satisfying [ = f{” for any j € [d + 1]\ I, that is,
only Xy is intervened, we have E[Y(’)ngi)] =E[Y© |X§?)] with S, in (3.4). If Condition 3.2
holds and M® satisfies a condition akin to Condition 3.2 (see Appendix A.5), then S, is the

maximum set whose conditional expectation is transferable in that for any S C [d] such that
E[Y (X g1 #E[YO1X{1, one has E[Y O | X1 # E[Y @ X1,

4. A unified framework. The proposed FAIR-NN least squares is a special instance
of our generic FAIR estimation framework, which homogenizes different risk losses and
prediction models. Moreover, our framework also allows the user to incorporate additional
structural knowledge into estimation such that identification is sometimes viable when |£| =
1. The invariance pursuit problem, the estimation method, and the nonasymptotic results will
be presented in a unified manner in this section.

4.1. General invariance pursuit from heterogeneous environments. In this section, we
formalize the problem of invariance pursuit using data from multiple environments, which
admits the canonical nonparametric invariance pursuit in Section 1.1 as a special case.

Let Y € R be the response variable and X € R? be the explanatory variable. We con-
sider the general setting in which we have collected data from multiple environments
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& ={ei, ..., e}, where & is the set of a finite number of environments. In each environment
e € £, we observe n 1.i.d. observations {(X l-(e), Yi(e))} | that follow from some distribution

w'®. Let Og, ® y C O be the class of prediction and testing functions, respectively. Our goal
is to estimate the invariant regression function g* € ®, satisfying the invariance structure

n
1

(4.1) Vee&, E[(Y© —g" (X)) f(X$)]=0 VfelOfls,

where S* is the unknown set of true important variables. We refer to the above problem as
invariance pursuit or causal pursuit exchangeably, as no evidence against causality with the
available experiments.

The problem of estimating g* in (4.1) is a generalized version of the canonical nonpara-
metric invariance pursuit with g* = m* in (1.1) and Oy = ®, = ©. It depicts a general
form and unifies several problems of interest in predecessors. For example, when ®, and
© ¢ are all linear function classes, it reduces to the linear invariance pursuit problem, that
is, estimating g*(x) = (B*) 'x = (ﬂg*)TxS* with g* € R? satisfying supp(8*) = S* in the
multi-environment linear regression (Fan et al. (2024)) with linear invariance structure

4.2) E[(Y® — (B5) X)X ] =0 Vee£. jes

Another example is the augmented linear invariance pursuit where O is linear and
Or={fx)= Z?:l Bo,jxj + B1,j¢(x;)} with some transform function ¢ : R — R. This
can further generalize this to multiple transformed testing functions such as ¢ (x;) = xJZ- and
¢2(x;) = |x ;| but we keep one here for simplicity. The augmented linear invariance structure

that realizes (4.1) in this case is, foralle € £, j € §*,
(4.3) E[(r@ — (83%) XS X T =E[(r@ — (%) X))o (x)] = 0.

It coincides with the problem considered by Fan and Liao (2014) when |£] = 1 and our
method reduces to the FGMM method therein. The augmented linear invariance pursuit

leverages further a part of the structural knowledge that E[Y (©)| X gi)] = (,3§*)TX gi), which

is much weaker than the assumption E[Y(©)|X (] = (ﬁg*)TX (Si) in the sparse linear regres-
sion. Identification is possible in this case even when |£| = 1. This is important for most
biological medical studies, where data are usually collected in similar settings. In this case,
the FAIR penalty eliminates endogenously spurious variables, making traditional variable
selection methods applicable.

REMARK 4.1. We point out here that there are two kinds of spurious variables. One is en-
dogenously spurious variables such as X» = background color, and the other is exogenously
spurious variables such as X3 = the time the photo was taken or the types of camera used.
The former is harmful, and the latter is nearly harmless in statistical prediction, transfer learn-
ing, and even statistical attribution or causality, thinking of X3 as a weak causal variable. The
introduction of our FAIR method is to surely screen (Fan and Lv (2008)) the endogenously
spurious variables while keeping all the important variables as in (2.6). Exogenously spurious
variables can be reduced by using commonly used variable selection methods such as Lasso,
SCAD, and best subsets. See Appendix A.7 for how to attain variable selection consistency.

Similar to the discussion in Section 1.1, the main challenge here is the curse of endogene-
ity. To address this issue, we will harness the insight that the distributions of (X, Y) across
diverse environments capture the invariance structure (4.1). The key idea is to exploit both
the heterogeneity among different environments and the above invariance structure (4.1) to
pinpoint the invariant regression function g*.
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Algorithm 1 FAIR Estimation

Input: Data {D(e) Yece with ple) = {(Xi(e) , Yi(e))}?zl from |€| environments. Determine risk loss £(-, -).
Choose predictor function class G.

Choose testing function class F = 9G, unless with prior knowledge that the target function ¢ Of \ 00g.
Choose invariance hyper-parameter .

Solve the minimax program in (4.5).

AR

It should be noted that both g* and S* are determined by (®,, ® ) and £ through the struc-
ture (4.1). It is required that 90, = {g — g’ : g, 8’ € Oy} C Oy. In the case of Oy = 30O,
one uses only heterogeneity among different environments, or the “invariance principle”, to
identify the invariant regression function g*, as in (4.2). Heterogeneous environments are es-
sential in this case. By choosing substantially large ® r 2 00y, one further injects the strong
structural assumption that the invariant regression function lies in the class ©, rather than
O \ Og as in (4.3). In this case, one leverages both heterogeneity among environments, that
is, the “invariance principle”, and the mentioned prior structure knowledge, that is, the “asym-
metry principle”, to jointly identify g*. Only one environment may be enough for identifying
g* when the intersection of both principles gives sufficient conditions.

4.2. General FAIR estimation framework. Let £ :R x R — R be a user-determined risk
loss such that

3l(y, v) 3%L(y,v)

S ==Y ) and

which is slightly more general than the quasi-likelihood in the generalized linear model
(Nelder and Wedderburn (1972)). The constraints in (4.4) ensure that the conditional ex-
pectation aligns with the unique global minima and can be satisfied by various risk losses.
Two leading examples are the least square loss £(y, v) = %(y — v)? with Y (v) =1 for re-
gression, and the cross-entropy loss £(y, v) = —log(1 — v) — ylog{v/(1 — v)} with ¢ (v) =
1/{v(1 — v)} for classification.

Given all the data {{(X; @ Y(e))} 1}eeg from heterogeneous environments together with
(®g, © r) that may encode part of the prior information when ®, # ©, our proposed focused
adversarial invariance regularized estimator (FAIR estimator) is the solution to the subsequent
minimax optimization objective

4.5) g €argmin  sup R(g) + yj(g, fg),
8€G  fEe(Fsy Il ——
=:Q,(g.1%)

4.4)

09

where Q C Og and F C Oy are function classes that approximates ®, and O ¢, respectively.
Here R(g) is the pooled sample mean of the user-specified loss across all the environments:

@6 R@=o DR ex)]= Y e g(x).

€] ‘et [ It

y is the hyper-parameter to be determined, and J(g, %) is defined the same as (2.2). We
summarize the framework proposed in Algorithm 1.

The difference compared with the standard empirical risk minimizer is outlined in red:
the choice of testing function can be the default 7 = 9§ in the absence of additional priors.
Though one additional hyper-parameter y is introduced, our theorem and empirical studies
show it has no effect when n is large. So we recommend picking a large enough y like y = 36
for the causal discovery task and can use either one additional validation set or leave-one-out
cross-validation to optimize the prediction error; see the idea of data-driven determination of
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y in Appendix D.7 of Fan et al. (2024). Our Section 5.1 proposes an efficient implementation
of Step 5 if running least squares on G can be solved by gradient descent, which is quite mild.
From a high-level perspective, our proposed FAIR estimator searches for the most predic-
tive variable set S that preserves some invariance structure imposed by the specification of
(®g, ® ). The framework presented has several limitations: (1) the loss £ has restrictions
in that the conditional expectation must uniquely minimize it; (2) the environment label is
discrete; and (3) the discussion still lies within the variable selection level invariance rather
than general representation level invariance. We will discuss in Appendix A.3 that our entire
framework can be easily extended to the cases where (1) and (2) fail to hold. We add some
discussions on the rationale, comparison with IRM, and extension on (3) in Appendix A.2.

4.3. Sketch of the generic result and its applications. The nonasymptotic results in Sec-
tion 2 can be extended to the general FAIR estimation framework, formally stated in Theorem
B.1, which unifies the identification condition and L estimation errors for specific (Og, ® )
or (G, F) under the least squares loss £(y, v) = %(y — v)2. We sketch the main idea here and
defer the complete result and applications to Appendix B.

Suppose [®,]s and [O f]g are closed subspaces of Og for any S C [d] so that one can
define ) (x) = argmin, (o 1, g — M2 and £ (x) = argmin (g 1 I1f —m©D .
Then the invariant structure and the invariant regression function in (4.1) can be simplified as

4.7) FO5(x) =% (x) i=g*(x).

Similar to the nonparametric bias mean and bias variance in Remark 2.2, we can define the
generalized bias mean and bias variance with respect to (®,, ®f) as b(S) = |gSYUsT) —
g*ll% and d(S) = % Y ece 1g® — f(e,S)”%’e_ The general identification condition akin to

Condition 2.2 is
(4.8) VSCId], b(S)>0 = d(S)>0.

It requires that whenever incorporating more variables in S leads to better prediction perfor-
mance, the_set S W_ill not satisfy the invariance structure (4.1_). Condition 2.2 instantiates (4.8)
by letting d(S) = dyn(S) and b(S) = by (S) with (byx(S), dyw(S)) defined in (2.4).

THEOREM 4.1 (Main Result for FAIR Least Squares Estimator, Informal). Under (4.7),
(4.8), and some regularity conditions in regression, one can consistently estimate g* by
choosing y > 8supg.p(5)=0lb(S)/d(S)}. In this case, the FAIR estimator g in (4.5) with

L(y,v) = %(y —v)? satisfies, for any n >3, w.h.p.,

g —g*ll2 .
(4'9) Cl— <dstoc + 8approx + V((Sstoc + Sapprox)l{astoc—i-(sapproxzﬁ}

Here §stoc is the stochastic error characterized by the local Rademacher complexity of F, 0G

and n, 5;pprox measures certain approximation error of (G, F) w.r.t. g*, and Sapprox mea-

sures the worst case approximation error of (G, F) w.r.t. all the { f©5)}. The constant s > 0
is the signal strength related to ming.g g)-d(S) and ming.s«\ s infee(o,)s 118 — &*ll2, and
C| is a universal constant independent of the two quantities.

The complete and rigorous statement is deferred to Theorem B.1 in Appendix B.1, with
more loss function £ in Theorem B.2. These generic results can characterize several advan-
tages in our FAIR framework’s sample efficiency. Firstly, the error (4.9) is structure-agnostic
in that it is represented by the sum of approximation error and stochastic error, indicating
that (1) our framework can fully exploit the capability of (G, F) in learning low-dimensional
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TABLE 1
Applications of Theorem 4.1. Recall that ® is the set of all L, (fix) functions. For the function classes in columns
Og,0f,G and F, “Linear” is { f (x) = Z?:l Bjxj}, “Linear w/ ¢ is { f (x) = Z?:l Bjxjtoa;pxjl,
“NN” is deep ReLU network class, “Additive” is the additive functions { f (x) = Z?:] fj(x;)} and “Additive
NN” is a structured neural network approximating additive functions. The column “Priors” indicates what prior
structure knowledge is injected by the choice of (Og, © r). For the second row, it is “nearly linear” given it only
requires that the residual is uncorrelated with all the ¢ (x ;) with j € S*; the prior for the third row is exactly
linear provided © ¢ = ©. The column “|E| = 1 Ident” indicates whether identification for S* in (1.1) is possible
with only one environment

O Of g F Priors |E] =1 Ident Result

Linear Linear Linear Linear None Impossible Thm B.5
Linear Linear w/ ¢ Linear Linear w/ ¢ Nearly Linear Possible Thm B.6
Linear C] Linear NN Linear Possible Thm B.7
Additive C] Additive NN NN Additive Impossible Thm B.4
® C] NN NN None Impossible Thm 2.1

structures, and (2) it has almost no additional cost in sample efficiency compared with stan-
dard regression. Moreover, the error rate applies to any n, implying the estimation error is
guaranteed even when it selects the wrong variable, especially when the signal s is weak.
Finally, though a large enough regularization hyper-parameter y is needed to guarantee con-
sistent estimation, the error will be free of ¥ when n is large enough. We also apply our
unified result to various specifications of (G, F), including the nonasymptotic results in iden-
tification and convergence rate; see a summary in Table 1.

5. Experiments.

5.1. An end-to-end implementation. We realize the minimax optimization using gradient
descent ascent, a similar approach adopted in GAN (Goodfellow et al. (2014)) training. The
main challenge here is how to do “focused regularization” that enforces f(¢) € F. s, - Here we
consider a re-parameterization trick that disentangles the function g and the variable S, it
selects. To start with, we can write g(x) = g(a © x) = g(x14ay, ..., xqag) with a € {0, 1}d
indicating presence/absence of variables. Then we can write the objective (4.5) as

(5.1 (g,a) € argmin sip R(g@0 ) +yig@o ), FEa o)
g€G,ac{0,1}4 fE€c({F}I€l

A naive implementation is to first enumerate all the possible a € {0, 1}¢ and then do gradient
descent ascent for given a, which is computationally inefficient. To avoid this, we first rewrite
the optimization as a “continuous” optimization:

(2, W) e argmin  sup Epuy[R(g(Bw)©-)) + yI(g(Bw) ), fE(Bw)®-))],
g€G.weRd FE(FE

where the jth component of B(w) € {0, 1}¢ follows an independent Bernoulli with prob-
ability of success sig(w;) = exp(w;)/(1 4+ exp(w;)). This is easily seen by taking w =
logit(a) = log(%). Note that Bj(w;) = 1{logit(U;) < w;} is discontinuous in w; where
U; ~ uniform[0,1], but can be approximated as

1
1+ e(logit(Uj)—wj))/r

(5.2) Bj(wj)~ =V, (Uj,w;) ast— 07,



2250 GU, FANG, BUHLMANN AND FAN

for which its gradient can be taken. Let A, (U, w) = (V; (U1, wy), ..., V:(Uqg, wg)) " e R4
with {U j}?:l being i.i.d. uniform random variables. One can thus approximate (5.1) by

(5.3) (0, W) € argmin sup Ey rl:(Az(U, w), 0, {¢(6)}e€g)]7
9ecRVs weRd Veel,p© eRNf

with L(A, 6, {pV)ece)] = R(g(A © 10)) + yI(g(A © ), fE(A O -1 ($“)eee)). where
parametrizations of g € G and f¢ € F are used. Since logit(U;) Ly i1 — Ujo with
{Uj1,U j,2}§: | being i.i.d. Gumbel(0,1) random variables, the approximation (5.2) is also
referred to as the Gumbel approximation.

One can use similar implementation tricks widely used in stochastic gradient descent with
Gumbel approximation that gradually anneals the Gumbel approximation hyperparameter t;
see the pseudo-code in Appendix C.1. We include the simulation for linear models and appli-
cations of causal discovery in the main text and defer the simulation for FAIR-NN estimator
to Appendix C.2 and robust prediction of water/land birds to Appendix C.3.

5.2. Simulations for FAIR-linear estimator. In this section, we present the simulation
result for the FAIR-Linear estimator implemented by the Gumbel approximation trick and
gradient descent ascent algorithm.

Data Generating Process. We consider the case where |£| = 2 and the data (X(©, Y(©)
in each environment e € {0, 1} are generated from two SCMs sharing the same causal re-
lationship between variables. For each trial, we first generate the parent-children relation-
ship among the variables. We enumerate all the i € [d + 1]. For each i € [d + 1], we ran-

domly pick at most 4 parents for the variable Z; from {Z1, ..., Z;_1}, this step ensures that
the induced graph is a DAG. We use fixed d = 70, and let the variable Z3¢ be Y and the
rest variables constitute the covariate X, that is, we let (Z1, ..., Z3s, Z36, Z37, ..., Z7]) =

(X1,...,X3s5,7Y, X36, ..., X70). We also enforce that Y has at least 5 parents and at least 5
children by adding parents and children when needed. The structural assignment for each
variable Z; is defined as

(e) (e) p(e)(—~(e) (e)
Zj" < > Ciufin(Z7)+Cjej
kepa(j)

where (e1, ..., &71) are independent standard normal distributed. For j # 36, f j(ek) are sam-

. . . . _ (e)
pled randomly from the candidate functions {cos(x), sin(x), sin(zwx),x, 1/(1 +e7*)}, C jf’k

are sampled from Uniform[—1.5, 1.5] with |CJ(-2-| > 0.5. For j =36 and k < j, we have

f3(g)k (x) =x and Cég) (=C %) « for linearity and invariance. The above data-generating pro-
cess can be regarded as one observation environment ¢ = 0 and an interventional environ-
ment e = 1 where the random and simultaneous interventions are applied to all the vari-
ables other than the variable Y, while the assignment from Y’s parent to Y remains and fur-
nishes the target regression function m*(x) = > _rcpa(36) Cég)’ Xk 1n pursuit. In this case, we

let $* =pa(36) and B* with support set S* be such that ,8]*. = ng),k = Cégk for any k € S*.

We also let the noise variance be different for the two environments, that is, C gg) 367 C éé) 36

Now, the model only has conditional expectation invariance rather than the full conditional
distribution invariance. Figure 3(a) visualizes the induced graph in one trial. The complex
cause-effect relationships in high-dimensional variables make it very challenging to estimate
B*.

Implementation. For the FAIR-Linear estimator, we realize G and F by linear function
classes, that is, G = {g(x) = B, x : Bg € R} and F = {f(x) = ﬁ}x : Bf € R?), and run
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FIG. 3. The visualization of (a) the SCM and (b) the sig(w) during training in one trial for the FAIR-Linear
estimator. We use different colors to represent the different relationships with Y: blue = parent, red = child,
= offspring, = other.

gradient descent ascent using Adam optimizer with a learning rate of le-3, batch size 64
for 50k iterations. In each iteration, one gradient descent update of the parameters of the
predictor B, and Gumbel logits parameters w is followed by the three gradient ascent updates
of the discriminators’ parameters (3 Sfl), ﬁ;z)). We adopt a fixed hyper-parameter y = 36 and
report the performance of the following estimators using the median of the estimation error

||,§— ﬂ*||% over 50 replications and varying n € {200, 500, 1000, 2000, 5000}.

(1) Pool-LS: it simply runs least squares on the full covariate X using all the data.

(2) FAIR-GB: Our FAIR-Linear estimator with Gumbel trick that outputs B, © sig(w).

(}) FAIR-RF: it selects the variables x; with sig(w;) > 0.9 of the fitted model in (2), that
is, § = {j :sig(w;) > 0.9}, and refits least squares again on X5 using all the data.

(4) Oracle: it runs least squares on X s+ using all the data.

(5) Semi-Oracle: it runs least squares on X e using all the data, where G is the set of all
the descendants of Y. It is unbiased yet has a larger variance compared with the Oracle one.

Figure 3(b) visualizes how the Gumbel gate values for different covariates sig(w) evolve
during training in one trial. We can see that sig(w;) for j € $* quickly increases and domi-
nates the values for other variables like children/offspring of Y.

Results. The results are shown in Figure 4(a). We can see that the square of the ¢, es-
timation error ||E — ,8*||% for the pooled least squares estimator (<) does not decrease and
remains to be very large (& 1.5) as n increases, indicating that it converges to a biased so-
lution. At the same time, the estimation error for FAIR-GB (¢) decays as n grows (= 0.01
when n = 1k) and lies in between that for least squares on Xgc (Semi-Oracle V) and least
squares on X g (Oracle A). This is expected to happen since the FAIR-Linear estimator is not
designed to screen out all the exogenously spurious variables: They can be further regularized
using the commonly used variable selection techniques; see Remark 4.1. We also observe that
the training dynamics of adversarial estimation are highly nonstable: though it can converge
to an estimate around 8* when n is very large, it fails to converge to 8* at a comparable rate
compared to the standard least squares. The FAIR-RF (+) estimator then completes the last
step towards attaining better accuracy in this regard: we can see that its performances are very
close to that of the Oracle estimator when # is very large (n = 5000).

We also compare our FAIR-Linear estimator with the cousin estimator EILLS () in Fan
et al. (2024) and other invariance learning estimators (dotted lines), including invariant causal
prediction (Peters, Bithlmann and Meinshausen (2016)) (ICPYV), invariant risk minimization
(Arjovsky et al. (2019)) (IRM 1), anchor regression (Rothenhiusler et al. (2021)) (Anchore)
in a similar but smaller dimension setting with d = 15, under which ICP and EILLS can be
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FI1G. 4. The simulation results for linear models with (a) d =70 and (b) d = 15. Both figures depict how the me-
dian estimation errors (based on 50 replications, shown in log scale) for different estimators (marked with different
shapes and colors) change when n varies in (a) {200, 500, 1000, 2000, 5000} and (b) {100, 200, 500, 800, 1000},
respectively.

computed within affordable time. For the FAIR-Linear estimator, we report the performance
of the FAIR-RF (4) and the one with brute force search (FAIR-BFH). The results are shown
in Figure 4(b): we can see that the FAIR family estimators (- B¢ with solid lines) are the only
ones attaining consistent estimation among all the invariant learning methods; see a detailed
discussion of the data generating process and results in Appendix C.4.1.

5.3. Application I: Discovery in real physical systems. We apply our method to perform
causal discovery in the light tunnel datasets from Gamella, Peters and Biihlmann (2025). The
data are collected from a real physical device under different manipulation settings. The tun-
nel device contains a controllable light source at one end and two linear polarizers mounted
on rotating frames. Several sensors are deployed in various positions to measure the light
intensity. The causal relationships between the variables of interest are known such that we
can get access to the ground-truth cause-effect relationship; see Figure 2(d) and Figure 3(a)
therein for the device diagram and the cause-effect graphs, respectively. It is worth noticing
that the data are collected from a real-world device where the associations between the mea-
surements follow from real-world physical laws. This realistic nature and the knowledge of
ground-truth cause-effect knowledge make it an excellent testbed for causal discovery algo-
rithms.

Following the notations, we use the variables (R, G, B, 61, 6>, Vg, ‘72, \71, 73, 72, 71, 5).
Here (R, G, B) is the intensity of the light source at three different wavelengths, C
is the drawn electric current, (61, 6,) represent the angles of the polarizer frame, and
(V3, Vo, Vi, I3, I, T}) are the measurement of light-intensity sensors in various positions.

We plan to learn algorithmically the direct cause for ¥ = I3, the infrared measurement of
the light-intensity sensor after the polarizers, among a subset of manipulable variables and
measurement variables (X1, ..., X11) = (R, G, B, 61, 0;, V3, Vg, V1, 12, 11 C) under the fol-
lowing two-environment experlmental setting: e = 0 is the observational environment, e = 1
is the interventional environment where the variables {Vj};=1 and {7j}3=1 are weakly in-
tervened on. This leads to the following “equivalent” ground-truth cause-effect relationship
among those variables and the effect of “environment intervention” in Figure 5(a). In this
case, the variables (R, G, B, 61, 6») are the direct causes, that is, $* = {1, 2, 3,4, 5}, \73 are
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FI1G. 5. Discovery in Real Physical Systems: (a) the unified cause-effect relationship and interventions similar to
Figure 2(b). (b) the average out-of-sample R? for different estimators using the spider chart. the axis annotated
by placeholder variable Z corresponds to the test environment where Z is strongly intervened on. We can see the
performance of Oracle-NN and FAIR-NN-RF is almost identical. (c) the average (based on 100 replications) of the
worst-case (across 5 environments) of OOS R? for different methods as a function of n. (d) the variable selection
rate over 100 trials for different methods (top panel) and the variable selection rate for FAIR-NN for various
n (bottom panel). We use different colors to represent different relationships with Y: blue =parent, red=child,
orange =neither ancestor nor descendant. (e) the distribution of worst-case OOS R? (y-axis) for Gumbel-trick
optimized FAIR-NN (Gumbel), the follow-up refitted estimator (Refit), and Pooled LS (Pooled) when FAIR-NN
selects the wrong variables: the subplots from top to bottom consider the cases of (i) failure in selection consistency
(ii) false positive that it falsely selects the child Xg = \73 (iii) false negative that it does not select the entire ground-
truth (X1, ..., Xs5)=(R, G, B,01,6,).

the spurious variables that will lead to biased estimation. The remaining variables are exoge-
nous but have marginal predictive power, that is, Var[Y|X ;] > 0 for j > 7.

We will use the following dataset in the experiment: the environment dataset Dy with size
|Dg| = 10, the weakly interventional environment dataset D, with |D;| = 3000, and five
strongly interventional environment dataset D; z with Z € {V1 V1 V3, T P 12} and |D2 7zl =
1000. In each trial, different methods use the same random subsample D {DO, Dl} with
Dk C Dy and |Dk| =n = 1000 to fit the model. How the fitted model f quantitatively de-

pends on exogenously/endogenously spurious variable Z is evaluated using the OOS R? in
corresponding D, 7z defined as

2 2 xnep, A (X) = 2o 2 (x,vyeboudy ¥
00S8.7Z = = with Y = .
’ Y (x.v)epy Y — Y} 2n
See the detailed data collection and experimental configuration in Appendix C.5.
The first four rows in Figure 5(d) report the variable selection result for several methods
over 100 trials. The nonlinear ICP (Heinze-Deml, Peters and Meinshausen (2018)) method
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does not select any variables because of its conservative nature and stronger heterogeneity
condition to recover the direct cause. We can see that FAIR-NN can successfully recover the
direct cause (R, G, B, 01, 6>) in this case. It exploits neural networks’ capability in efficiently
detecting the nonlinear associations (the Malus’s law, 73 o cos2(0; — 6,) for fixed (R, G, B)),
while the linear counterpart FAIR-Linear fails to select the variables (61, 67). It is worth
pointing out that such a causality recovery cannot be attained by the traditional predictive
power and simplicity tradeoff: the variable selection method based on random forest variable
importance measures (ForestVarSel) in Heinze-Deml, Peters and Meinshausen (2018) cannot
detect (G, B, 01, 6>) and falsely select (I, I>). The last three rows in Figure 5(d) illustrate
how the variable selection rate for the FAIR-NN estimator changes when n grows.

Figure 5(b) offers a quantitative illustration by showing the out—of—EamApltL(ONOS)NR2 of
different estimators under environments with strong interventions on (I, I», Vi, V2, V3), re-
spectively. The estimator denoted as Oracle-M with M € {Linear, NN} referred to the method
that runs regress ¥ on X g~ using model M. In the spider chart, the red shade represents the
out-of-sample R? under different interventions for the Oracle-NN estimator that regresses ¥
on its direct causes. We can see that its performances behave uniformly under various inter-
ventions: all the OOS R? are approximately equal to 0.91. This is slightly better than that for
the linear model (Oracle-Linear) by 0.04. This illustrates the capability of neural networks
introduced to detect weak, nonlinear causal signals from heterogeneous environments. The
PoolLS-NN estimator regressing ¥ on X using neural network and all the data fully exploits
the strong spurious association between V3 and Y = I3, its heavy reliance on V3 let it predict
better (than the causal model Oracle-NN) when \73 is not intervened. However, its OOS R2
significantly decreases by 0.2 when Vs is strongly intervened hence the spurious association
changes. On the contrary, the OOS R? for FAIR-NN after refitting (FAIR-NN-RF) behaves
almost identically to that for Oracle-NN. This quantitative result illustrates its capability to
correct nontrivial and strong biases without supervision and its efficiency in detecting non-
linear and weak signals.

Figure 5(c) shows how the worst-case OOS R? among the five, strong intervention envi-
ronments changes for different estimators when n grows. The performance of the Gumbel-
trick optimized FAIR-NN estimator without refitting (FAIR-NN-GB) lies between Oracle-
NN and Oracle-Linear and significantly outperforms that of the PoolLS-NN estimator. This
suggests that the gradient descent optimized algorithm has already found predictions nearly
independent of the spurious variable, and the success of variable selection in Figure 5(d) is
not because of truncating weak but nonnegligible spurious signals. Moreover, as shown in
Figure 5(e), its performance significantly outperforms the least squares estimator using either
the full covariate or the selected covariates when n = 200 and it selects the wrong variables.
This further supports the theoretical claims and the advantages of adopting penalized least
squares.
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SUPPLEMENTARY MATERIAL

Supplement to “Causality pursuit from heterogeneous environments via neural ad-
versarial invariance learning” (DOI: 10.1214/25-A0S2541SUPPA; .pdf). This supplemen-
tary material collects further theoretical results, discussions, experimental results, and all the
technical proofs.

“FAIR-code.zip” (DOI: 10.1214/25-A0S2541SUPPB; .zip). It contains code and instruc-
tions to reproduce all the numerical results. We also offer a unified implementation such that
the practitioner can easily customize FAIR estimators by specifying function classes. See also
in https://github.com/wmyw96/FAIR.
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