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Seminar for Statistics, ETH Zürich, Zürich, Switzerland
E-mail: buhlmann@stat.math.ethz.ch

Summary

We review some recent works on removing hidden confounding and causal regularisation
from a unified viewpoint. We describe how simple and user-friendly techniques improve stability,
replicability and distributional robustness in heterogeneous data. In this sense, we provide addi-
tional thoughts on the issue of concept drift, raised recently by Efron, when the data generating
distribution is changing.
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1 Introduction

Brad Efron, in his lecture at the occasion of receiving the International Prize in Statistics,
brought up some fascinating thoughts on ‘prediction, estimation and attribution’, with particular
attention to the new ‘wide data era’ that has entered statistics and data science more generally
(Efron, 2019, 2020). Looking back almost 20 years ago, there has been a huge development in
statistics since Leo Breiman's article ‘Statistical Modeling: The Two Cultures’ (Breiman, 2001).
Even more broadly, data science has become an emerging new field and profession. It deals with
information extraction from data, often in close proximity with other sciences. Its historical
roots are in statistics, and statistical ‘critical’ thinking plays an ever important role in inference
from data to models and prediction. There are many interesting facets of this broad topic, see,
for example, David Donoho's ‘50 years of Data Science’ (Donoho, 2017) or Bin Yu's ‘Veridical
Data Science’ (Yu & Kumbier, 2020).

Efron (2019, 2020) has formulated intriguing ideas on prediction, estimation and attribution.
We are presenting here a few additional considerations on the topic, as outlined in sections 1.1
and 1.2.

1.1 Stability of Predictions and Causal Thinking in Presence of Perturbations: Efron
and Cox in Response to Breiman (2001)

Breiman (2001) argued strongly in favor of prediction and the corresponding feature impor-
tance measures. However, prediction in reality is often more subtle than the usual textbook
definition where one assumes the same data generating mechanism for the training and the new
test set data.
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The illustration by Efron (2020) of concept drift where the data-generating distribution
changes between training and test set, or also his question ‘Were the test sets really a good test?’
(Efron, 2019), nicely emphasises that prediction can be ‘highly context-dependent and fragile’:
he illustrates with a certain data set that training on the first part of the observations and using
the last ones as the test set give a widely different answer for the error rate than the average of
taking many random divisions into training-data and test-data. Apparently, the last observations
in the data set seem to have a rather different data generating distribution than the first ones
from the training phase.

Similarly, Cox (2001) wrote in a response to Breiman's article wrote: ‘ : : :Key issues are
then the stability of the predictor as practical prediction proceeds, the need from time to time
for recalibration and so on. However, much prediction is not like this. Often the prediction is
under quite different conditions from the data; what is the likely progress of the incidence of
the epidemic of v-CJD in the United Kingdom, what would be the effect on annual incidence
of cancer in the United States of reducing by 10% the medical use of X-rays, etc.? That is,
it may be desired to predict the consequences of something only indirectly addressed by the
data available for analysis. As we move toward such more ambitious tasks, prediction, always
hazardous, without some understanding of underlying process and linking with other sources
of information, becomes more and more tentative. Formulation of the goals of analysis solely
in terms of direct prediction over the data set seems then increasingly unhelpful.’

Whereas Efron (2001) wrote in return to Breiman's article: ‘Estimation and testing are a
form of prediction: “In our sample of 20 patients drug A outperformed drug B; would this still
be true if we went on to test all possible patients?” : : : (Peter Gregory) undertook his study for
prediction purposes, but also to better understand the medical basis of hepatitis. Most statistical
surveys have the identification of causal factors as their ultimate goal.’

In this paper, we build on the fact that stability of prediction and causality are naturally
connected. As a result, new methods and algorithms emerge, which are easy to use and
fairly ‘automatic’. They will not replace careful statistical thinking, for example, in the way
Cox (2001) describes it above. But they often act, in quite a few scenarios, more intelligently
than plain vanilla ‘black box’ prediction algorithms: perhaps, such and many other new algo-
rithms close to some extent the gap between ‘the two cultures’ from Breiman (2001). This is
somewhat in line with Brad Efron's statements in his International Prize in Statistics lecture
(Efron, 2019), namely, ‘Two Trends: Making prediction algorithms better for scientific use’ and
‘Making traditional estimation/attribution methods better for large-scale (n; p) problems’.

1.2 External Validity, Distributional Replicability, Robustness and Connections
to Causality

One major problem with many modern algorithms and methods is their vulnerability to dis-
tributional changes in new data. Would we see a good amount of replication in a new study,
or in a new environment? Can we do accurate prediction and estimation in changing scenar-
ios? These questions tie in to some of the points raised by Efron (2020) and mentioned above,
namely, about concept drift (‘Were the test sets really a good test?’, Efron, 2019), or to the com-
ments by Cox (2001) that ‘direct prediction over the data set seems then increasingly unhelpful’.
They both refer to external validity and generalisation beyond the observed data. The latter is
well understood if the future external data have the same generating distribution as the observed
training data, but if not, external validity relates to distributional robustness (Sinha et al., 2017;
Gao et al., 2017; Meinshausen, 2018), transfer learning (Pratt, 1993; Pan & Yang, 2010) and
causality (Dawid & Didelez, 2010; Peters et al., 2016; Bareinboim & Pearl, 2016; Rojas-Carulla
et al., 2018; Rothenhäusler et al., 2018; Bühlmann, 2020; Dawid, 2020).
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Figure 1. The generic problem. The goal is inferring the regression parameter ˇ 0, describing the relation between (the
causal components of) X and Y. Additionally, there are hidden confounding variables H, and perturbations generated by
observed external (exogenous) variables A are present. The cases without and with A are discussed in Sections 2 and 3,
respectively. The directionality among different variables may be unknown. The variables X, H, and A can be multivariate
but for simplicity, Y is univariate. The graph corresponds to the structure of a structural equation model: the arrows are
bidirected, saying that the directions between some of the components can go either way and feedback loops are allowed as
well.

1.3 The Current Work

We review some of our more recent contributions on deconfounding, distributional robust-
ness and replicability, and causality (Rothenhäusler et al., 2018; Bühlmann, 2020; Ćevid
et al., 2018; Guo et al., 2020). A unified treatment might enable us to clarify the connections
more clearly. We aim for simplicity, demonstrating that at least some of the ideas and methods
are simple and easy to use, yet they seem to be effective in achieving some form of distribu-
tional robustness. The latter term is rather different from the more standard formulation and
procedures in robust statistics (Huber, 1964; Hampel et al., 1986), where outliers occur in the
training data and unlike test set distributional changes examined here.

The generic problem we are considering is loosely illustrated in Figure 1. We are interested
in inferring the unconfounded regression parameter ˇ0 and in stable prediction of Y from X.
We do not observe all the relevant variables and are thus confronted with hidden confounding.
This scenario is discussed in Section 2. Additionally, we may observe data under various pertur-
bations that are generated by external (exogenous) variables A, as discussed in Section 3. The
graph in Figure 1 corresponds to a structural equation model (Bollen, 1989; Pearl, 2009), intro-
duced in Equation (1) or (15) more formally. Of particular interest is the univariate response Yi

and its linear regression function of some of the components of a (1� p)-dimensional covariate
Xi, where i denotes the i-th observation:

Yi  Xiˇ
0 C g.Hi ; Ai /C "Y;i ;

where "Y, i is a noise or innovation term being independent of all the variables arising ‘earlier’
or ‘up-stream’ of Yi; the exogenous variables Ai are non-existent in our discussion in Section 2.
The symbol ‘ ’ is algebraically an equality sign. The variables corresponding to the support
of ˇ0 are the causal X-variables for Y, because they are the only components of Xi, which
directly enter the structural equation for Yi. Thus, ˇ0

j ¤ 0 if and only if the j-th component of
X corresponds to a causal X-variable. More precise definitions of the model versions are given
later.

1.3.1 A connection to causality

There is a fruitful link to causality. In a nutshell, one can represent the causal parameter ˇ0

(or also the function f 0) as the minimiser of a worst case risk such as

ˇ0 D argminˇ max
P2P

EP Œ.Yi �Xiˇ/
2�;
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for particular classes of distributions P for (X, Y). Such a class can be thought as contain-
ing various perturbations of the original data generating distribution, and hence, there is an
intrinsic connection between causality and distributional robustness (Dawid & Didelez, 2010;
Peters et al., 2016; Rojas-Carulla et al., 2018; Rothenhäusler et al., 2018; Bühlmann, 2020;
Dawid, 2020). In this paper, we will not elaborate much on the causal interpretation; however,
the operational procedures that have causal interpretability can be ‘simply’ used to increase
robustness and the degree of external validity.

1.3.2 Notation

We use the standard notation in regression or classification and denote by X and Y the
observed n� p design matrix of covariates and the n� 1 response vector of the data, respec-
tively; n is the sample size and p the dimensionality of the covariates. The i-th instance is
denoted by Xi and Yi, respectively, with Xi being a 1� p vector.

2 Deconfounding: In Presence of Dense Confounding

We consider the well-known problem of unobserved hidden confounding in a regression con-
text. This is a special case of Figure 1, where the directions are known and without perturbations
from external (exogenous) variables, see Figure 2.

There are several ways to explain it; we do so by using structural equation models (SEMs),
see, for example, Bollen (1989) or Pearl (2009). We observe a univariate response variable Yi,
a (p� 1)-dimensional covariate Xi and an unobserved (q� 1)-dimensional hidden confounding
variable Hi. In the linear case, the model is set up as follows:

Yi  Xiˇ
0 CHiı C "Y;i ;

Xi  Hi� C "X;i ;

"X;i ; "Y;i ;Hi jointly independent; (1)

where ˇ and ı are column vectors and � a q� p matrix. We typically make an i.i.d. assump-
tion across the indices i D 1; : : : ; n. The symbol ‘ ’ is algebraically an equals sign, and it
means in addition that the factorisation of the joint distribution of (all components of) Yi, Xi, Hi,
namely, p.y; x; h/ D p.yjx; h/p.xjh/p.h/ with conditional distributions (densities), is pre-
cisely described by the equations, for example, p.xjh/ D p"X .x � h�/. Figure 2 shows the
corresponding graphical structure of the model. Of particular interest is the equation for the
response variable Y; the goal is to infer the parameter ˇ0 from data. In the causality literature,
ˇ0 is called the causal parameter of Xi on Yi; but even without using the word causality, we can
view it as the ‘internal systems parameter’.

Figure 2. Structure of the linear model with unobserved confounding variables H as in Equation (1).
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The parameter ˇ0 is not the regression parameter of Y versus X. In fact, due to confounding
by the unobserved confounding variables Hi, we have

argminˇ E D ˇ
0 C b;

b D Cov.Xi /
�1Cov.Xi ;Hi /ı:

We can thus represent the model for the Y equation in Equation (1) as a standard linear model

Yi D Xi .ˇ
0 C b/C "i ; "i D .Hiı �Xib/C "Y Ii ; (2)

where "i is uncorrelated with Xi, due to the property of the L2 projection. A remarkable fact
is that the bias b becomes small in case of high-dimensionality and ‘dense’ confounding as
explained next.

A simple example of dense confounding.
Consider the case for Equation (1) where H is one-dimensional with Var.Hi / D 1 and

Cov."X Ii / D �2I : b D .�T � C �2I /�1�T ı, and for �2�jj� jj2 (in the context of dense
confounding, jj� jj2 �

p
p, see below), we obtain that

jjbjj2 � jıj=jj� jj2:

Hence, if, say, all components of � are of order one, that is, every component of Xi is affected
by Hi with size of order one, which is some kind of dense confounding, we have that jjbjj2 D
O
�
jıj=
p
p
�
. Therefore, this is a blessing of dimensionality when p is large.

One can see from the above example that the bias term of the population least squares prin-
ciple becomes small in the case of high-dimensionality and dense confounding. However, with
estimation based on a finite sample size, several issues become more delicate, and we propose
to modify penalised least squares methods, as discussed next.

2.1 Deconfounding with Spectral Transformations

For estimating ˇ0 in Equation (1), we use a simple preprocessing technique that has some
mathematical guarantees under an additional assumption of dense confounding.

2.1.1 Principal component adjustment

As a motivation, we consider first a commonly used approach to guard against hidden
confounding as in Equation (1). We extract the first few principal components of X, denoted
by W .1/; : : : W . Oq/, ideally with Oq equal to or slightly larger than q. The .n � Oq/ principal
components W D .W .1/; : : : ; W . Oq// serve as a proxy for the unobserved (n� q) H: the
approximation is reasonable if the orthogonal projection…W D W .W

TW /�1W T is similar to
…H D H.H

TH/�1HT , that is, if X has approximately a low rank structure. One then adjusts
for the principal components in W and builds partial residuals:

QX D .I �…W /X; QY D .I �…W /Y; (3)

and proceeds with (regularized) least squares regression of QY versus QX to estimate the param-
eter ˇ0 in Equation (1). We can interpret this procedure in terms of singular values of X.
Let

X D UDV T
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be the singular value decomposition of X. The singular values D D diag.d1; : : : ; dm/, with
m D min.n; p/ are ordered as d1� d2� : : : � dm. Consider a truncation of the singular values
to

QdPCA;i D 0.i D 1; : : : ; Oq/; QdPCA;i D di .i D Oq C 1; : : : ; m/: (4)

The PCA-adjusted matrix QX in Equation (3) can then be written as QX D U QDV T , where
QD D diag. Qd1; : : : ; Qdm/ (note that W .1/ : : : ; W . Oq/ are, when standardized to unit length, the

first Oq column vectors of U). Alternatively, we can represent QX and also QY in Equation (3) as a
linear spectral transformation of the original quantities:

QX D FX; QY D FY;

F D U diag. QdPCA;1=d1; : : : ; QdPCA;m=dm/U
T ; (5)

and of course, we then have that F D I �…W .

2.1.2 The Trim transform and relations to Lava

One can think of other data transformations than the one in Equation (3) or (5). In fact,
one may ask the question why the largest singular values in Equation (4) are shrunken to zero,
making them the smallest singular values in the transformed QX (Figure 3).

It might be advantageous to keep the ordering of singular values in the transformed design
matrix while still shrinking the large ones. Two particular choices are as follows. The Trim
transform (Ćevid et al., 2018) uses

QdTrim;i D min.di ; �/; i D 1; : : : ; m;

Figure 3. Singular values of spectral transformed QX . From top left to bottom right: no transformation with original X matrix,
Trim-transform, PCA adjustment with 10 principal components, Lava. The figure is essentially taken from Ćevid et al. (2018).
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where � is some threshold. A generic and often very good value is � D dbm=2c, the median
of the singular values (Figure 3). The transformed variables are then of exactly the same form
as in Equation (5), namely, premultiplying with the linear transformation F, involving now
QdTrim;i being different than in Equation (4). Once we have the transformed data QX and QY , one

can use ‘any’ reasonable technique for (high-dimensional) linear regression, say the Lasso
(Tibshirani, 1996)

Ǒ
TrimLasso D argminˇ

�
jj QY � QXˇjj22=nC �jjˇjj1

�
; (6)

where �> 0 is the regularisation parameter. The special case of ordinary least squares with
� D 0 is briefly mentioned in footnote 1. Other sparse estimators than the Lasso are possible as
well, such as forward (Efroymson, 1960) or stagewise selection (Efron et al., 2004), Elastic Net
(Zou & Hastie, 2005), regularisation with the SCAD (Fan & Li, 2001), MCP (Zhang, 2010) or
using guaranteed `0 (Bertsimas et al., 2016) optimisation. We will describe in Fact 1 that the
Lasso with the Trim transform ǑTrimLasso estimates the parameter ˇ0 in Equation (1), assuming
dense confounding. We note in particular, that the construction of the estimator is very simple
and easy to use, requiring no further specialised software.

Another choice of a spectral transformation as in Equation (5) is implicit in the Lava
(Chernozhukov et al., 2017) estimator with

QdLava;i D

s
n�2d

2
i

n�2 C d
2
i

;

where �2> 0 is a tuning parameter. It is argued in Ćevid et al. (2018) that the choice

�2 D d
2
bm=2c=n (7)

is similar to the Trim transform with � D dbm=2c, see also Figure 3. We just point out that
the Lava spectral transformation has an interesting representation in terms of estimating ˇ0 in
Equation (1). It holds algebraically that for

. Ǒ; Ob/Lava D argminˇ;b
�
jjY �X.ˇ C b/jj22=nC �1jjˇjj1 C �2jjbjj

2
2

�
;

we can represent, as in Equation (6),

Ǒ
Lava D argminˇ

�
jj QY � QXˇjj22=nC �jjˇjj1

�
;

where QX and QY are spectral transformed original quantities as in Equation (5) but with QdLava

above. In view of the representation in Equation (2) with a sparse plus dense parameter vector,
the Lava estimator ǑLava indeed estimates the sparse part ˇ0.

2.2 Guarantees for the Lasso After the Trim Transform

Once we have the Trim-transformed data QX and QY , we can use linear regression techniques
for estimating ˇ0 in Equation (1). We note that for least squares estimation with rank.X/ D
p < n, nothing will happen.1 But for higher dimensions and penalised methods, things change.

We consider the Lasso on the Trim-transformed data as in Equation (6) for some regular-
isation parameter �. Standard software can be used, for example, glmnet in R (Friedman
et al., 2010). The choice of the regularisation parameter is perhaps a bit more delicate, but we
propose the usual, for example, 10-fold cross-validation, see also below in Section 2.3. This
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simple combination of deconfounding with the Trim transform in conjunction with the Lasso
has interesting theoretical guarantees under the following main assumptions:

(A1) �max.Cov.Xi ;Hi // �
p
p: the largest singular value of the (p� q) covariance matrix

of (Xi, Hi) is of the order
p
p.

(A2) dbn=2c D OP
�p
p
�
: the median value of the singular value of X is of the order

p
p,

with high probability.
(A3) The compatibility constant of n�1 QXT QX is of the same order as the minimal eigenvalue

�min.†/ of † D Cov.Xi /.

Ćevid et al. (2018) give a detailed discussion when these assumptions hold, see also Guo
et al. (2020). In particular, (A1) is an assumption on dense confounding; for example, if
p/q!1 and the number of non-zero columns of � is of the order p (order p components of X
are affected by H), and each of the non-zero columns of � is sampled i.i.d. from a sub-Gaussian
vector, then (A1) holds with high probability. This is an extension and along the lines of our sim-
ple example above on dense confounding. Assumption (A2) holds with high probability if the
rows of X are realisations of i.i.d. random vectors (assuming sufficiently many finite moments).

Fact 1. (Ćevid et al., 2018) Consider the confounding model in Equation (1) with p� n and
maxj†jj D O.1/, where † D Cov.X/. Assume (A1)–(A3). Then, for some � �

p
log.p/=n

in Equation (6), the usual rate of convergence as in the unconfounded high-dimensional linear
model holds, namely,

jj ǑTrimLasso � ˇ
0jj1 D OP

�
�s0

�min.†/

p
log.p/=n

�
;

where s0 D jsupp.ˇ0/j is the number of non-zero components of ˇ0 and �2 D Var.HiıC"Y Ii /.
The asymptotics is to be understood as the usual one in high-dimensional statistics where

both p� n!1.
Other methods based on the Trim-transformed data, such as forward selection or regulari-

sation with sparsity inducing penalties other than the `1-norm, have not yet been theoretically
established to exhibit certain convergence rates. Fact 1 above serves as an indication that algo-
rithms and methods are expected to behave well when using them on Trim-transformed data.

2.3 Choosing the Regularisation Parameter

Choosing the regularisation parameter for Lasso or other algorithms with cross-validation is
conceptually somewhat different than in the standard setting with no confounding.

For the sake of illustration, consider the Lasso ǑTrimLasso.�/ on the Trim-transformed data as
in Equation (6). When using cross-validation, aiming for best prediction, the chosen � would
be typically too small because the best prediction would also try to capture the unwanted signal
component Xb in Equation (2). To partially correct for this issue, cross-validation should be run
on the deconfounded data QX; QY and ignoring the issue that the spectral transformation has used
the full data; that is, we simply spectral-transform the full data set first and then proceed as
usual. This strategy should make the additional signal QXb smaller and hence cross-validation
aiming for best prediction is expected to perform reasonably well.

As an alternative to cross-validation, one can use Stability Selection (Meinshausen &
Bühlmann, 2010) on the original data. This amounts to directly choosing an amount of regulari-
sation for selecting the relevant components of ˇ0, that is, for variable selection. It does not lead
to an estimate for the tuning parameter � in Equation (6). Instead, Stability Selection is linking
a different stability-based regularisation with the expected number of false positives, assuming
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an exchangeability condition for i.i.d. generated data. However, the methodology aiming for
stability is also useful for heterogeneous data where the underlying distribution has changed as
discussed in next.

2.4 Robustification Against Hidden Confounding and External Validity

Perhaps the main value of the deconfounded Lasso procedure, that is, Trim-transforming
the data and using Lasso, is the degree of robustification against hidden confounding. The
assumptions (A1)–(A3) in Section 2.2 might be partially unrealistic, but Ćevid et al. (2018)
report empirically that ‘there is not much to lose, but potentially a lot to be gained’. This can
be summarised as follows: (i) the procedure is extremely simple requiring in addition only
one singular value decomposition and (typically) three lines of code; (2) the method is very
effective in estimating the underlying unconfounded regression parameter ˇ0 in scenarios of
dense confounding and a sparse ˇ0; (3) in the case of no confounding, the deconfounded Lasso
is essentially as good as the plain Lasso; (4) in between the settings in (2) and (3), there is
improvement with the deconfounded Lasso over its plain version, yet it still does not entirely
remove the bias due to confounding. We refer also to Section 2.6.

The unconfounded parameter ˇ0 is the parameter where other sources of unmeasured vari-
ation have been removed. This is very relevant for improving replicability. Suppose that we
estimate the regression parameter on one (training) data set and would like to have it replicated
on another (test) data set. If the two data sets differ in their distribution, the regression parame-
ter is not replicable. However, the unconfounded parameter ˇ0 is replicable under the following
assumption:

the training data set W is generated from the model in.1/;

the test data set satisfies W Y 0i  X 0iˇ
0 CH 0i ı

0 C "0Y;i ;

X 0i  H 0i�
0 C "0X;i ;

"0X;i ; "
0
Y;i ;H

0
i jointly independent;

where the unconfounded parameter ˇ0 is the same, but the other parameters are allowed to
change; the notation with the superscript 0 denotes the quantities corresponding to the test data
set (but ˇ0 in the test data is the same as in Equation 1). We will illustrate such a replicability
phenomenon on real data below.

2.4.1 An Illustration on Data from the GTEx Consortium

The Genotype-Tissue Expression (GTEx) project is studying tissue-specific gene expres-
sion and regulation in human samples (https://gtexportal.org, Lonsdale et al. (2013)). Here, we
consider a small aspect of the publicly available data.

For the specific skeletal muscle tissue, we have 14 713 gene expression measurements for
n D 491 samples. In addition, there are 65 additional covariates that are believed to be good
proxies of confounding variables, including genotyping principal components and so-called
PEER factors. Thus, we have two data sets: the raw data with covariates X and response Y,
and another with X0 and Y0, where we linearly regress out the 65 proxies for hidden confound-
ing and X0, Y0 are the corresponding residuals. The response variable is the expression of one
(randomly chosen) gene while the covariates comprise all other expressions. If there is hidden
(linear) confounding and the proxy variables indeed capture the true underlying hidden con-
founding variables, that is, the linear span of the 65 proxy variables equals the linear span of
the unobserved hidden variables, the X0, Y0 data are unconfounded. This in turn would imply
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Figure 4. Stability of selected features in GTEx data. Jaccard distances for sets of selected variables on original and proxy
adjusted (for approximate deconfounding) data. Adjustment with 5 (left) and 65 (right) proxies for hidden confounding. x-
axis: number of top selected features (support size); y-axis: Jaccard distance between sets of top selected features (of fixed
support sizes) based on original and proxy adjusted data. Black: plain Lasso; blue: trim transform followed by Lasso; red:
Lava. The figure is essentially taken from Ćevid et al. (2018).

that the deconfounded Lasso as in Equation (6) would give similar results on (X, Y) and (X0, Y0),
while this would not be the case for the plain Lasso as it would be subject to some bias when
running it on the confounded data (X, Y). We aim here to illustrate that the deconfounded Lasso
is indeed more robust than the plain Lasso when estimation is done once on the original (X, Y)
and once on the approximately deconfounded data (X0, Y0).

The response variable is one randomly selected gene and the remaining p D 14712 gene
expressions are the covariates. We compute the regularisation paths of the Lasso with the Trim
transformed data and of the plain Lasso: this leads to sets of active variables with non-zero
coefficient estimates OS .r/TrimLasso.�/ � f1; : : : ; pg and OS .r/Lasso.�/ � f1; : : : ; pg, where r D 1; 2
denotes the original (X, Y) and the proxy adjusted data (X0, Y0), respectively. As a measure of
robustness or consensus, we compute the Jaccard distance between r D 1 and r D 2 for sets of
the same cardinality (by varying �). For comparison, we consider also the Lava estimator with
the tuning parameter as in Equation (7). Figure 4 reports the results when adjusting once with
5 and once with all 65 proxy confounding variables and when averaging over 500 randomly
chosen response variables. The problem is very high-dimensional and with a high noise level;
nevertheless, we clearly see that deconfounding with the Trim transform, and Lava likewise,
provide more robustness than the plain Lasso, across a large range of cardinalities of the active
sets. We note that the robustness or consensus decreases with more proxy adjustment; this is
mainly due to the fact that the data sets (X, Y) and (X0, Y0) become more different with more
adjustment. But the advantage remains when considering differences between the methods.

We mention here that Shah et al. (2020) provide vaguely related results on robustness for the
GTEx data for another Ridge-type procedure for undirected graphical models.

2.5 The Doubly Debiased Lasso

Assigning uncertainty is a core task in statistical inference. Substantial progress has been
made for low-dimensional parameters in high-dimensional models. The prime example is about
inference for single components of a high-dimensional regression parameter. The debiased or
desparsified Lasso has become a basic machinery for constructing hypothesis tests and confi-
dence intervals (Zhang & Zhang, 2014; van de Geer et al., 2014), see also Dezeure et al. (2015)
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for some review of the earlier work. An interesting property of the debiased or desparsified
Lasso is its efficiency, assuming sparsity conditions (van de Geer et al., 2014).

We briefly review here the approach of Guo et al. (2020) on the doubly debiased Lasso
to obtain hypothesis tests and confidence intervals for single regression coefficients ˇ0

j in
model (1) in presence of hidden confounding.

2.5.1 The standard debiased Lasso

The idea of debiasing the Lasso is based on partial regression. For ordinary least squares
estimation in the p< n regime, we obtain the estimator ǑOLSIj as follows:

do least squares regression of X . j /versusX .�j / and denote the residuals byZ. j /;
Ǒ
OLSIj D .Z

. j //T Y=jjZ. j /jj22 D .Z
. j //T Y=..Z. j //TX . j //; (8)

where X(� j ) is the (n� (p� 1)) matrix arising from deleting the j-th column of X. The first
regression in Equation (8) is ill-posed if p> n. The debiased Lasso then uses instead

a Lasso regression ofX . j /versusX .�j / and denote the residuals again byZ. j /: (9)

When using them in the second regression, we obtain

.Z. j //T Y

.Z. j //TX . j /
D ˇj C

X
k¤j

.Z. j //TX .k/ˇk

.Z. j //TX . j /
C

.Z. j //T "Y

.Z. j //TX . j /
;

where we assume an unconfounded model Y D Xˇ C "Y with E D 0. Unlike as for least
squares, (Z(j ))TX(k)¤ 0 for k¤ j, and hence, there is a bias term

B D
X
k¤j

.Z. j //TX .k/ˇk

.Z. j //TX . j /
:

An obvious estimator for the bias arises by plugging in a Lasso estimate of Y versus X, resulting
in

OB D
X
k¤j

.Z. j //TX .k/ ǑLassoIk

.Z. j //TX . j /
; (10)

and the debiased or desparsified Lasso is then defined as

Ǒ
debiasedLassoIj D

.Z. j //T Y

.Z. j //TX . j /
� OB:

In case of hidden confounding in model (1), both regressions in Equations (8) and (9) are
exposed to bias from hidden confounding and standard methodology does not work. Follow-
ing the ideas developed in Sections 2.1–2.2, we propose to Trim transform the data twice, once
before applying the Lasso in the X(j ) versus X(� j ) regression (9) and once before using the
Lasso in Y versus X for being plugged-in to the bias estimator in Equation (10). By doing so,
we remove bias thanks to spectral transformations, and hence, the words ‘doubly debiased’.
Of course, there are tuning parameters to be chosen, namely, for each of the Lasso regressions
appearing in Equations (9) and (10). This issue is analogous as for the standard debiased or
desparsified Lasso but perhaps one tick more difficult as indicated in Section 2.3. The details
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Figure 5. P values for two-sided test of the hypothesis H0;j W ˇ
0
j D 0 with two-sided alternative for GTEx data. Doubly

debiased Lasso (blue) and debiased Lasso (red) for the expression of a predetermined landmark gene (being the response
Y) versus all other gene expressions (being the covariates X). x-axis: index of covariates, ordered by decreasing significance
based on the Debiased Lasso.; y-axis: negative log P value. Black dotted line indicates the 5% significance level with the
value � log.0:05/. The figure is essentially taken from Guo et al. (2020).

are given in Guo et al. (2020), and the resulting estimator is called the doubly debiased Lasso
Ǒ
DDLasso.
The following result holds.

Fact 2 (Guo et al., 2020) Consider the confounding model in Equation (1) with maxj†jj D
O.1/, where † D Cov.X/. Under similar conditions as in (A1)–(A3) and assuming sparsity
for both the regressions of Y versus X and the one in Equation (9),

V
�1=2
j . ǑDDLassoIj � ˇ

0
j /) N.0; 1/ .P � n!1/;

Vj D n
�1Var."Y /gj .X/;

with a known specific function gj(X) of the design matrix X that is of order 1 as p� n!1. In
addition, if the trimming threshold is such that the fraction of the shrunken singular values con-
verges to zero (only the very large singular values are Trimmed to the corresponding quantile
value), the doubly debiased Lasso is as efficient as the ordinary least squares estimator in low
dimensional settings, that is,

Vj � n
�1Var."Y /.Cov.X//�1

jj :

2.5.2 An illustration on the GTEx data

We consider again the GTEx data mentioned in Section 2.4.1, but now with a somewhat
smaller dimensionality P D 12646 but an increased sample size of n D 706 (removing some
of the covariates with missing values due to larger sample size). There are approximately one
thousand landmark genes of particular importance and interest.
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Figure 5 illustrates the difference between the P values from the doubly Debiased Lasso
in comparison with the plain debiased Lasso that does not protect against potential hidden
confounding. The plot considers a particular landmark gene whose expression is the response
variable, and all other 12 645 gene expressions are covariates. The doubly debiased Lasso claims
less significance, which seems a plausible finding (and it is not primarily due to larger variance
that is not shown here).

We also illustrate increased robustness of the doubly debiased Lasso. As explained already in
Section 2.4.1, there are 65 additional proxy variables that are aimed to approximate unobserved
hidden confounding. Figure 6 shows P values for 10 response landmark genes (and the plots
comprise all P values from the 10 regressions). We can see from the left plot that the doubly
debiased Lasso is much more conservative for the potentially confounded original (X, Y) data.
The cloud of points is skewed upwards showing that the standard debiased Lasso declares many
more predictors as significant. On the other hand, in the right plot, the P values obtained by
the two methods are much more similar for the proxy-adjusted unconfounded (X0, Y0) data, and
the point cloud is now much less skewed upwards. The remaining deviation from the line yD x
might be due to the remaining confounding, not accounted for by regressing out the given
confounder proxies. Figure 6 describes the results.

2.6 When Dense Confounding Fails

When hidden confounding is substantial but fails to be dense in the sense that it affects many
of the components of X, the deconfounding Trim-transformation technique does not effec-
tively remove the entire bias, and the parameter ˇ0 is not identifiable from the data generating
distribution. In such situations, other assumptions are required, see also Section 3.

However, deconfounding leads to robustification, as mentioned in Section 2.4; the points
(1)–(4) there are relevant in general, also for inference with the doubly debiased Lasso. We
repeat here again that deconfounding can lead to substantial improvements and seems to never

Figure 6. Stability of P values in GTEx data. Comparing P values from original data and its proxy adjusted version for
approximate deconfounding. Two-sided tests of the hypothesisH0;j W ˇ

0
j D 0, for 10 landmark gene expression as responses

and all other expressions as covariates, obtained by doubly debiased Lasso (x-axis, - log P value) and standard debiased
Lasso (y-axis, - log P value). Original (X, Y) data (left) and adjusted (X

0

, Y
0

) with 65 proxies for hidden confounding (right).
Horizontal and vertical black dashed lines indicate the 5% significance level. The figure is taken from Guo et al. (2020).
[Colour figure can be viewed at wileyonlinelibrary.com]
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make things substantially worse than not taking any action against hidden confounding. The
price to be paid for deconfounding is typically a slightly larger variance of the estimator
resulting in a somewhat reduced efficiency for data without any confounding.

3 Anchor Regression: Towards Causality, Distributional Robustness
and Distributional Replicability

We consider now the general situation from Figure 1; it extends Figure 2 because the direc-
tions between the variables X, Y, and H are unknown. Furthermore, we abandon here the major
assumption of dense confounding from Section 2. Both are important relaxations in practice.
However, this comes with the price of requiring access to exogenous variables A as indicated
in Figure 1; as an example, we mention the case where the variables A represent mean shift
perturbations (Figure 1), where exogeneity (source node in the graph in Figure 1) is often a rea-
sonable assumption. This graphical exogeneity assumption is the reason for the name ‘anchor
regression’, and we will explain more below.

Instrumental variables regression is a popular proposal for a special case with perturba-
tions (Bowden & Turkington, 1990; Angrist et al., 1996; Stock & Trebbi, 2003; Imbens, 2014;
Imbens & Rubin, 2015). The SEM in Equation (1) is extended to

Yi  Xiˇ
0 CHiı C "Y;i ;

Xi  Ai� CHi� C "X;i ;

Ai ; Hi ; "Y;i ; "X;i jointly independent; (11)

where the random variables are i.i.d. across i D 1; : : : ; n. The main assumption here is that the
so-called instrumental variables Ai do not directly affect the hidden variable Hi nor the response
variable Yi. The well-known two-stage least squares (TSLS) estimator is then defined as the
least squares estimator on linearly transformed data:

QY D …AY; QX D …AX; …A D A.A
TA/�1AT ;

Ǒ
TSLS D argminˇjj QY � QXˇjj

2
2=n D argminˇjj…A.Y �Xˇ/jj

2
2=n D argminˇjjY �…AXˇ/jj

2
2=n; (12)

where the right-hand side is perhaps the most common representation.

3.1 Causal Regularisation and Anchor Regression

More generally than two-stage least squares estimation in Equation (12), we can look at its
regularised version, called anchor regression (Rothenhäusler et al., 2018):

Ǒ.�/
anchor D argminˇ

�
jj.I �…A/.Y �Xˇ/jj

2
2=nC � jj…A.Y �Xˇ/jj

2
2=n

�
; (13)

for some regularisation parameter 0	 � 	1. The name ‘anchor regression’ originates from the
fact that A does not necessarily need to fulfil the assumption of an instrument in IV regression:
A only needs to be an exogenous variable, that is, an ‘anchor’ for leading to meaningful results.
More details are given in Sections 3.2 and 3.3. With � D 0, we obtain adjustment with respect
to A, that is, partialling out the linear effect of A, � D 1 corresponds to ordinary least squares
and � D 1 is two-stage least squares. This regularisation has been proposed much earlier in
a different but equivalent form under the name of K-class estimators, mainly for reducing the
large (or infinite) variance of two-stage least squares for estimation of ˇ (Theil, 1958; Jakobsen
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& Peters, 2020). The computation of anchor regression is extremely easy and modular; one can
simply transform the data

QX D W�X; QY D W�Y;

W� D I �
�
1 �
p
�
�
…A;

and then use least squares estimation of QY versus QX . One can also consider sparsity-regularised
anchor regression with, for example, the `1-norm penalty:

Ǒ.�/
anchor D argminˇ

�
jj.I �…A/.Y �Xˇ/jj

2
2=nC � jj…A.Y �Xˇ/jj

2
2=nC �jjˇjj1

�
;

which can be solved by running standard Lasso of QY versus QX .
The anchor regression method is also called causal regularisation because it regularises least

squares towards the causal parameter (whereas the motivation for Equation (13) above has been
to regularise the TSLS estimator towards least squares to reduce variance). For �!1, we
approximate a causal solution under the assumptions of instrumental variables regression. More
generally, one can improve robustness and replicability when choosing � clearly larger than 1
as discussed in Sections 3.2 and 3.3.

We can also connect anchor regression to deconfounding from Section 2. When taking the
anchor variables A as the first Oq principal components of X, then � D 0 corresponds to PCA
adjustment as described in Equation (4); for � > 0 but small, such an anchor regression would
shrink the first Oq singular values of X, but it is not a spectral transform any longer of the form as
in Equation (5) with any transformed singular values Qdi . Also, when using A as the first principal
components of X, the exogeneity assumption as in Figure 1 is violated, a crucial condition for
what we discuss next.

3.2 Distributional Robustness of Anchor Regression

Rothenhäusler et al. (2018) take a very different view of Equation (13) than improving the
mean squared error of the two-stage least squares estimator (12) in IV regression, namely, that
anchor regression is sensible even when the main assumptions of IV regression fail. That is, if
we allow that A directly affects the hidden variables H or the response Y in Equation (11), which
implies that ˇ0 is not identifiable from the data, anchor regression is still estimating an inter-
esting parameter, as we discuss next. The main assumption is that A is an exogenous variable,
that is, a source node in the graphical representation of a SEM in Figure 1, as used in our main
working model (15). Consider the population version of anchor regression in Equation (13):

ˇ.�/ D argminˇ
�
EŒj.I � PA/.Yi �Xiˇ/j

2�C �EŒjPA.Yi �Xiˇ/j
2�
�
; (14)

where PA.
 / D E is the population version of …A under a linearity assumption as in
Equation (15) below, and the index i is arbitrary (because we assume that the data are i.i.d.
across samples). This population parameter ˇ(� ) is a regularised population parameter, where
the regularisation is not used to obtain better statistical finite sample properties. Instead, the
regularisation has a direct relation to distributional robustness.

To explain such a robustness, assume that the training data are i.i.d. realisations of the
following structural equation model: 

Xi
Yi
Hi

!T
D B

 
Xi
Yi
Hi

!T
C "i CMATi D .I � B/

�1."i CMATi /; (15)
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where (all the components of) Ai, "i are jointly independent and M is a coefficient matrix of
dimension (dim(Xi, Yi, Hi)� dim(Ai)). Note that I�B is always invertible if the model structure
corresponds to an acyclic directed graph.

We define the system under shift perturbations v by the same equations as in Equation (15)
but replacing the term MA from the contributions of the anchor variables by a deterministic or
stochastic perturbation vector v. That is, the system under shift perturbations satisfies:

 
Xv

Y v

H v

!T
D B

 
Xv

Y v

H v

!T
C "C v D .I � B/�1."C v/; (16)

with " having the same distribution as "i in Equation (15). The shift vector v is assumed to be
in the span of M, that is, v D Mı for some vector ı. Thus, the vector v shifts the variables
Xv, Yv, Hv in the same direction as Ai, according to the range (or span) of M but with possi-
bly different strengths. The variables Xv, Yv can be interpreted as the test data coming from a
different distribution than the training data from model (15).

An example with discrete anchors, encoding different environments. We often have the
following situation in mind. The data are heterogeneous from various subpopulations or envi-
ronments labeled by {1, : : : , `}. These are then encoded with `-dimensional anchor variables
Ai in the form of dummy variables. The heterogeneity of the data enters as distributional addi-
tive shifts (or perturbations) in terms of MATi . As an environment, it is often reasonable to
assume that Ai is exogenous, that is, a source node in the graph in Figure 1. The data generated
by Equation (16) is typically the test data where realisations of the anchor variable A are not
available.

We do not have to rely on discrete anchors as in the example above and all subsequent results
hold in general.

Fact 3. (Rothenhäusler et al., 2018) Consider random variables Xi, Yi as in Equation (15) and
Xv, Yv as in Equation (16). Then, for any b 2 R

p , it holds that

sup
v2C�

EŒ.Y v �Xvb/2� D EŒ..I � PA/.Yi �X
T
i b//

2�C �EŒ.PA.Yi �X
T
i b//

2�;

where

C� D fvI v D Mı for random or deterministicı; uncorrelated with "

and EŒııT � � �EŒAAT �g: (17)

Fact 3 establishes distributional robustness of the population version of anchor regression;
the parameter � has an exact correspondence to the class C� of shift perturbations. From a
practical view-point, Fact 3 tells us that we can construct an estimator on the training data
only, by employing causal regularisation, which protects on new test data that arise from shift
perturbations as in Equation (17).

Rothenhäusler et al. (2018) give finite sample versions of the result in Fact 3 and show empir-
ical examples how prediction can be improved thanks to distributional robustness; if the test
data are a perturbed version of the training data, formalised with Xvi ; Y

v
i for some perturbation

vector v, then the expected worst case squared error loss on the test data can be optimised by
anchor regression.
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3.2.1 Choosing � and specifying anchor variables

The choice of � in anchor regression or causal regularisation can be addressed from different
angles. If we want to insure ourselves against bad perturbations in span(M) of a certain size,
as defined in Equation (17) and aiming for worst case optimal prediction, then � corresponds
to the multiplication factor of the observed heterogeneity in the data. That is, for example,
� D 5 corresponds to perturbations

p
5 times as large as the ones we have observed in the data.

Alternatively, we can consider leave-one-environment-out cross-validation and choose � that
optimises the worst case performance among the left-out environments (being the test data).

Regarding the specification of anchor variables, as mentioned above, Ai should be exoge-
nous; we describe below an example with heterogeneity arising from different environments.
The general idea is to stabilise the estimator Ǒanchor over the values of Ai by taking a large value
of � that enforces that the residuals are nearly orthogonal to Ai; see also (Pfister et al., 2019c)
and a replicability result in Fact 4. This is the opposite action than using Ai as an additional
covariate that would correspond to � D 0. Exogeneity and � D 1 (two stage least squares
estimation) plays also a prominent role in IV regression for deconfounding the effects of hid-
den confounders Hi. Thus, the stabilising anchor regression estimator is ideally pursued with
exogenous anchor variables and large values of � .

3.3 Distributional Replicability and External Validity with Anchor Regression

Anchor regression also leads to an improved replicability on new data, say from a related
study. We argue here that the parameter

ˇ.!1/ D lim sup
�!1

ˇ.�/

can be replicated on new data from a different distribution than the training data. In view of
Fact 3, ˇ(!1) leads to distributional robustness for arbitrarily large perturbations v D Mı in
the span of M. If the assumptions from instrumental variables regression hold, then ˇ.!1/ D
ˇ0 which is the causal parameter, but that is not the case in general. The causal parameter has an
invariance property with respect to certain arbitrarily strong perturbations. Also ˇ(!1) leads
to an invariance of the residuals, namely,

Y v �Xvˇ.!1/

has the same distribution for all arbitrarily strong perturbationsvas in Equation (16): (18)

According to a general relation between causality and invariance, and due to the residual
invariance from Equation (18), we call ˇ(!1) the ‘diluted causal’ parameter.

We consider now the following setting. The first data set is generated from the model (15)
whose distribution induces the diluted causal parameter ˇ(!1) (being a function of the data
generating probability distribution). The second (test or validation) data set is generated from
a perturbed version as in model (16) whose distribution generates the diluted causal parameter
b
0(!1).
For our replicability result in Fact 4, we require the so-called projectability assumption:

I D fˇIEŒY �XˇjA� � C g ¤ ∅ for any constant C: (19)
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Figure 7. Replicability of diluted causal parameter ˇ (!1) on GTEx data. x-axis: number K of top ranked features; y-axis:
average overlap (number) among the top K features among

�
13
2

�
tissue pairs, and averaged over 200 randomly selected

response variables each being one of the available gene expressions. Anchor regression with � D 16 on both tissues in each
pair (solid black), Lasso on both tissues in each pair (dotted green), anchor regression with � D 16 on one tissue and Lasso
on the other tissue for each tissue pair (dashed red). The figure is taken from Rothenhäusler et al. (2018 figure 4).

This condition holds if and only if

rank.Cov.A;X// D rankŒCov.A;X/;Cov.A; Y /�;

where [Cov(A, X), Cov(A, Y)] denotes the extended matrix by concatenating the columns of
the two matrices. For example, if rank(Cov(A, X)) is full rank and dim(A)	 dim(X), the
projectability condition (19) holds.

Fact 4. (Rothenhäusler et al., 2018) Consider the diluted causal parameters ˇ(!1) from
model (15) and b

0(!1) from model (16). Assume the projectability condition (19) for the
model (15). Then, ˇ.!1/ D b0.!1/, that is, the diluted causal parameter is replicable on the
new perturbed data set.

3.3.1 An illustration on the GTEx data

We illustrate the distributional replicability for the diluted causal parameter ˇ(!1) on the
GTEx data mentioned already in Section 2.4.1 and 2.5.2.

Here, we consider 13 different tissues for which p D 12948 gene expression measurements
and 65 proxies of confounding are measured. The 13 different tissues correspond to 13 different
data sets consisting of response variables Y being one of the gene expressions, covariates X
comprising all other gene expressions and anchor variables A being the 65 proxy variables. The
sample size varies between 300 and 700 across the 13 tissues.

We consider anchor regression with � D 16 (being chosen as a large value, yet still improv-
ing the variance in comparison with choosing � D 1, that is, two-stage least squares) and
cross-validated choice of the tuning parameter � for an `1-norm penalty as an estimator for
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ˇ(!1), for each of the 13 tissues (data sets). The goal is to evaluate the degree of replicabil-
ity and external validity of the anchor regression estimator. Figure 7 illustrates the results. The
anchor regression estimate Obt;.�D16/ for one tissue t is compared with another one Obt 0;.�D16/

for another tissue t0. The overlap (number) among the top K variables (features), according to
the absolute value of the estimates, is counted and averaged over all

�
13
2

�
pairs of tissues (data

sets) and 200 random choices of a response as one of the available gene expressions. Figure 7
displays the results. There is some evidence for the GTEx data that indeed, anchor regression
for the diluted causal parameter ˇ(!1) has higher degree of replicability on new perturbed
data sets.

The interpretation of the diluted causal parameter ˇ(!1) is, however, different from the
usual least squares parameter and leads to invariance of residuals as described in Equation (18).

4 Discussion

4.1 Extensions

We have explained here the concepts for linear models only. Modifications for generalised
linear models or non-linear models are certainly of interest. In the context of non-linear anchor
regression, some methodological and algorithmic proposals have been illustrated empirically
in Bühlmann (2020). In general, for models with non-linear regression functions, we can
view the proposed methods as to perform deconfounding or distributionally robustifying the
linear component of a general regression function. In fact, from a transfer learning perspec-
tive, for replicability on new data, it seems hard to go beyond linear extrapolation for strong
perturbations arising in new data (Christiansen et al., 2020).

Robustification and stabilising over different environmental conditions or different data sets
from a ‘causal structural equation model’ point of view has been worked out also for inde-
pendent component analysis (Pfister et al., 2019b) or dynamical systems modeling (Pfister
et al., 2019a).

4.2 Summary

We have argued that deconfounding and causal regularisation (i.e. anchor regres-
sion) are powerful tools for improving replicability or distributional robustness; see
Sections 2.4, 2.5.1, 3.2 and 3.3. For linear systems, the operational procedures are extremely
simple and modular: it is just linearly pretransforming the data and then using any modern
regression technique on such transformed data. Such pretransformations are also crucial for the
important issue of ‘attribution’ (Efron, 2019, 2020): for high-dimensional densely confounded
linear models, the doubly debiased Lasso (Guo et al., 2020) leads to hypothesis tests and confi-
dence intervals for the unconfounded (causal) parameter and thus, as an important consequence,
to improved replicability even though the data are corrupted by latent perturbations or ‘(context)
drifts’ (Efron, 2020).
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