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ABSTRACT
We propose estimation methods for change points in high-dimensional covariance structures with an
emphasis on challenging scenarios with missing values. We advocate three imputation like methods
and investigate their implications on common losses used for change-point detection. We also discuss
how model selection methods have to be adapted to the setting of incomplete data. The methods are
compared in a simulation study and applied to a time series from an environmental monitoring system.
An implementation of our proposals within the R-package hdcd is available via the online supplementary
materials.

ARTICLE HISTORY
Received July 2019
Revised October 2020

KEYWORDS
Covariance estimation;
Graphical Lasso;
High-dimensional models;
Incomplete data; Precision
matrix; Time-varying models

1. Introduction

The area of high-dimensional inverse covariance (or preci-
sion) matrix estimation has developed considerably over the
past years. This is partly due to the off-diagonal entries of the
precision matrix encoding unscaled partial correlations and in
the case of a multivariate normal distribution even conditional
independence between two variables given all the others. The
resulting graph, with variables as nodes and edges for nonzero
off-diagonal entries is called a conditional independence graph
or Gaussian graphical model (GGM), respectively (Lauritzen
1996).

In a lot of settings where the graphical structure of a set
of observations is of interest, the data are in the form of a
time series (or has another natural ordering, e.g., by space
or genome location) and the underlying distribution might
change over time. A lot of attention is given to the setting
where there are structural breaks, so called change points, in
between which the observations are identically distributed. Dis-
regarding this structure and estimating a GGM for all obser-
vations leads to a fit of mixtures that does not model the true
GGM well for any time point. In such cases to estimate the
graphical structure, prior good estimation of the change points
is key.

Real world datasets often suffer from missing values. In
the presence of change points and without prior knowledge
of them, usual imputation methods are not expected to per-
form well as they require observations from a homogeneous
distribution. However, some kind of imputation method is
necessary to apply any of the current methods to find change
points, between which the distribution can be assumed to be
homogeneous, leading to a chicken and egg kind of prob-
lem. In practice, we observe that the approach of naively
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imputing mean values columnwise (i.e., for each variable sep-
arately) on the whole dataset and then estimating change
points does not perform well. For example, if observations
are not missing completely at random, but according to some
structure (e.g., in some blockwise manner due to the simul-
taneous failure and repair of multiple sensors), this naive
approach tends to (falsely) detect change points correspond-
ing to the missingness pattern rather than the true changes
in the underlying signal (see Section 5 for more descrip-
tion and simulation results regarding this naive approach).
We will demonstrate that integrating imputation and change-
point detection in a unified framework can lead to substantial
gains.

1.1. Related Work

For homogeneous observations, Meinshausen and Bühlmann
(2006) proposed to use nodewise regression using the Lasso
(Tibshirani 1996) to recover the conditional independence
structure from data. Yuan and Lin (2007) introduced an esti-
mator for the precision matrix (and thus the GGM) via maxi-
mization of the L1-penalized Gaussian log-likelihood over the
set of positive definite matrices. The graphical Lasso (glasso)
algorithm of Friedman, Hastie, and Tibshirani (2008) with sub-
sequent improvements (Witten, Friedman, and Simon 2011;
Mazumder and Hastie 2012) gained popularity for comput-
ing such estimates such that the term glasso is now also
associated with the corresponding estimator. Computational
approaches for the estimator were also presented by Baner-
jee, El Ghaoui, and d’Aspremont (2008), theoretical proper-
ties of it were investigated by Yuan and Lin (2007), Roth-
man et al. (2008), Lam and Fan (2009), and Ravikumar et al.
(2011).
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For the nonhomogeneous case, Zhou, Lafferty, and Wasser-
man (2010) considered cases where the graph structure varies
smoothly and Kolar and Xing (2011) investigated under which
conditions the graph structure can be recovered consistently.
In a setting with abrupt structural breaks, Kolar and Xing
(2012a) proposed to estimate the locations of change points
with a total variation penalty for consecutive observations either
using nodewise regression or a penalized likelihood approach.
Gibberd and Nelson (2017) proposed the group-fused graphical
Lasso (with a Frobenius norm fusion penalty) and compared
it to L1-fused methods that they called independent-fused
graphical Lasso. Some statistical analysis of the group-fused
graphical Lasso was provided by Gibberd and Roy (2017). A
penalized likelihood approach was proposed by Angelosante
and Giannakis (2011), seeking the corresponding optimal par-
titioning via dynamic programming. While Kolar and Xing
(2012a) used an accelerated gradient descent method, Gibberd
and Nelson (2017) proposed an ADMM algorithm to calculate
the estimator, similarly to Hallac et al. (2017), who considered
larger classes of fusion type penalties. Other computational
approaches include an approximate majorize-minimize algo-
rithm (Bybee and Atchadé 2018) or a specific greedy search
(Hallac, Nystrup, and Boyd 2018). More thorough statistical
analysis of similar proposals was conducted by Roy, Atchadé,
and Michailidis (2017), Avanesov and Buzun (2018), Dette, Pan,
and Yang (2020), and Wang, Yu, and Rinaldo (2021).

In the presence of missing values, the maximization of the
L1-penalized log-likelihood (see Equation (6) later on) is no
longer a convex problem, even for homogeneous observations.
For this scenario of homogeneous observations with miss-
ing values, Städler and Bühlmann (2012) proposed to use an
expectation maximization algorithm coupled with the glasso to
obtain an estimate of the precision matrix. The single example
of the treatment of missing values in the context of change-
point detection we are aware was done by Xie, Huang, and
Willett (2013). They however considered an online (sequential)
setup and assumed that the observations lie close to a time-
varying low-dimensional submanifold within the observation
space. This assumption is appropriate in, for example, video
surveillance, but it is unrealistic in the setting of GGMs, even if
the underlying precision matrix is assumed to be sparse. In this
latter setting of GGMs, there is currently no available method for
change-point detection incorporating missing values. We aim to
fill this gap.

1.2. Possible Applications

Applications of change-point detection within graphical models
include the analysis of environmental measurements, biological
data and financial time series, which potentially encounter the
problem of missing values. One specific motivating example
for our proposals was the shallow groundwater monitoring
dataset, which we will discuss later on. To mention further
concrete examples, multivariate change-point detection meth-
ods (in GGMs) could also be useful for example in detecting
the signal of abrupt climate changes imprinted simultaneously
into multiple climate proxy records, for example, ice cores in
Antarctica or speleothems, all facing missing values (see, e.g.,
Atsawawaranunt et al. 2018).

So far, it is common practice to discard variables with too
much missingness and to perform simple imputations on the
rest (see, e.g., Matteson and James 2014). Also, sometimes uni-
variate methods are used to detect change points for each vari-
able separately (see, e.g., Shirvani 2015). These approaches are
suboptimal. Discarding noncomplete observations, especially
with high-dimensional data and inhomogeneity of the missing-
ness structure with respect to time, is impractical as it results in a
significant loss in information, possibly leaving only a handful of
observations. Discarding all variables with missing observations
can lead to keeping only a fraction of variables. Both approaches
might lead to no observations for an analysis in an extreme case.

1.3. Our Contribution

Our investigated setup is composed of three problems: change-
point detection, estimation of GGMs and the treatment of
missing values. While there are many possible applications,
there is currently no readily available method combining the
three and thus capable of estimating change points in (high-
dimensional) GGMs in the presence of missing values. We fill
this gap and provide practitioners with practically usable, and in
particular computationally tractable methods that work both in
the presence and in the absence of missing values. We provide an
implementation of these methods within the R-package hdcd,
see the supplementary materials.

We investigate different scenarios of missingness (both miss-
ing completely at random and with structures resembling real
world scenarios), discuss the resulting difficulties and propose
viable estimation approaches. Their performance is evaluated in
a simulation study and applied to data from an environmental
monitoring system.

2. Change-Point Detection Without Missing Values

Consider a sequence of independent Gaussian random variables
(Xi)

n
i=1 ∈ Rp with means μi and covariance matrices �i = �−1

i
such that the map i �→ (μi, �i) is piecewise constant. Let

α0 := {0, n} ∪ {i : (μi, �i) �= (μi+1, �i+1)}

be the set of segment boundaries. We label the elements of α0 by
their natural order starting with zero such that consecutive pairs
of elements in α0 define segments (α0

k−1, α0
k], k = 1, . . . , |α0|−1

within which the Xi are i.i.d. For 0 ≤ u < v ≤ n let X(u,v] denote
the matrix of the observations Xu+1, . . . , Xv, denote with μ̂(u,v]
their mean and let S(u,v] := (X(u,v] − μ̂(u,v])T(X(u,v] − μ̂(u,v])/
(v − u) be the corresponding covariance matrix.

For δ > 0 define An,δ to be the family of possible sets of
segment boundaries such that the minimal segment length is
not smaller than δn. Let Ln((u, v]) be some loss after fitting an
adequate model to X(u,v] that is normalized by n and scales with
the segment length v − u (see, e.g., Equation (4)). For a penalty
parameter γ > 0 for the number of segments, an estimator for
α0 is

α̂0 := argmin
α∈An,δ

|α|−1∑
j=1

(Ln((αj−1, αj]) + γ ). (1)
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This estimator can be computed using dynamic programming
with O(n2) evaluations of Ln, and considerably faster when
certain pruning steps are applicable (typically in scenarios with
many change points, see Killick, Fearnhead, and Eckley 2012).
In particular without pruning steps (e.g., in scenarios with a
handful of change points only), this is computationally infeasi-
ble if n is large, especially if the cost to evaluate Ln is significant.

Binary segmentation (BS, Vostrikova 1981) is a much faster
greedy algorithm to estimate α0. For this define the gains func-
tion of some segment (u, v] at some split point s to be

G(u,v]
n (s) := Ln((u, v]) − (Ln((u, s]) + Ln((s, v])) (2)

and define

α̂(u,v] := argmax
s∈{u+δn,...,v−δn}

G(u,v]
n (s). (3)

The search for a single change-point in (Xi)
n
i=1 by solving (1)

breaks down to finding α̂(0,n] and checking if G(0,n]
n (α̂(0,n]) > γ .

For the multiple change-point case BS finds an approximate
solution to (1) by recursively splitting segments using (3) until
the resulting segment length is smaller than 2δn such that a split
is no longer allowed or the corresponding gain is not bigger than
γ , the minimally required gain to split. BS typically requires
asymptotically O(n log(n)) evaluations of Ln. Due to its greedy
nature, BS is not optimal in terms of statistical estimation (as
opposed to computing the optimal partitioning from (1) using
dynamic programming). Wild binary segmentation (WBS, Fry-
zlewicz 2014) as well as the recently proposed seeded binary
segmentation (SeedBS) method of Kovács et al. (2020a) improve
on statistical detection by evaluating the gains function (2) for
various random (for WBS) or deterministically constructed (for
SeedBS) background intervals, each leading to a candidate split
point via (3). Out of the list of candidates the final set of change-
point estimates is subsequently derived. The improved detec-
tion is due to the fact that some of the generated background
intervals only contain a single change-point and in that case the
detection is easier. While WBS loses some of the computational
efficiency of plain BS (e.g., in scenarios with many change points
or very short spacing between some change points when one
needs to draw a large number of random intervals), the more
efficient deterministic interval construction of SeedBS requires
only O(n log(n)) evaluations of Ln independent of the number
of change points and thus SeedBS is similarly fast as plain BS.

Nonetheless, O(n log(n)) evaluations of Ln for BS can still
be prohibitive if the cost of evaluating Ln is large (e.g., for
high-dimensional model fits) and n is big. Instead of evaluating
G(u,v]

n (s) at every possible split in a full grid search to find
its maximum, one can find (up to very few exceptions with
special signal cancellation effects) one of its local maxima with
adaptively chosen log(n) evaluations using the optimistic search
strategies of Kovács et al. (2020b). The expected gain curve for
common losses (e.g., the squared error loss) is piecewise convex
between the true underlying segment boundaries, such that in
particular all local maxima correspond to change points. Hence,
splitting at a local maximum instead of the global maximum,
one does not induce a false discovery and the missed global
maximum can still be found in a later step. Doing BS with this
optimistic search is called optimistic binary segmentation (OBS,

Kovács et al. 2020b) and approximately requires O(|α0| log(n))

evaluations of Ln. Note that we only use the so-called naive
variant of optimistic search and thus the naive variant of OBS
in this article (e.g., simulation results). In practice, the observed
gain curve (resulting from a single draw) is a noisy version of the
expected one. As a consequence, the idealized piecewise convex
structure of the expected gain curve is distorted and only con-
served approximately (in terms of its rough shape). In very noisy
scenarios the optimistic search can get stuck in a noise induced
local maximum that is far away from one corresponding to a
change-point. Optimism is thus needed in noisy scenarios. In
contrast to optimistic search (used in OBS), the full grid search
(used in BS) finds the global maximum of the noisy observed
gain curve, which is typically closer to one of the true underlying
change points (provided of course that there is a sufficiently large
jump in the underlying signal). We will see later on how the
noisiness of the observed gain curve influences the applicability
of OBS compared to BS in scenarios with lots of missing data.

Since the writing of this article, Kovács et al. (2020b) pro-
posed two new variants, the advanced and combined optimistic
search. These have improved performance and stronger theo-
retical results for challenging scenarios with change points close
to the segment boundaries. Kovács et al. (2020b) also describe
optimistic seeded binary segmentation (OSeedBS), a combi-
nation of seeded binary segmentation and optimistic search.
OSeedBS is typically somewhat more costly than OBS, but as
advantages, OSeedBS would be easy to parallelize and also has
stronger statistical guarantees than BS (and thus also OBS).
These more recent search methods could be combined with
our later described methodology for detecting change points for
GGMs and to increase flexibility, we added some of them to our
R-package hdcd.

Leonardi and Bühlmann (2016) applied BS to a high-
dimensional linear regression change-point problem using the
negative log-likelihood for Gaussian errors (sum of squared
errors) resulting from a Lasso fit as a loss measure. They pro-
vided (under technical conditions) consistency results if the
penalization parameter λ for the Lasso is adjusted by the inverse
of the square root of the relative segment length, that is, by using√

n/(v − u)λ0 for some fixed λ0 for the segment (u, v].
To adapt this approach to the multivariate normal case, we

set

Ln(�; S(u,v]) := v − u
n

(
Tr(�TS(u,v]) − log(|�|)) . (4)

This way Ln(�; S(u,v]) is (up to a constant) the negative log-
likelihood of a Gaussian with precision matrix � given obser-
vations X(u,v] that is scaled with segment length. As Ln scales
with (v − u)/n, we set λ(u,v] := √

(v − u)/nλ0 and define the
estimator

�̂
glasso
(u,v] := argmin

Rp×p
��0
Ln(�; S(u,v]) + λ(u,v]‖�‖1

= argmin
Rp×p
��0

Tr(�TS(u,v]) − log(|�|)

+ √
n/(v − u)λ0‖�‖1.

(5)

Hence, �̂
glasso
(u,v] is the glasso estimator from Friedman, Hastie,

and Tibshirani (2008) for the precision matrix of observa-
tions X(u,v] with penalization parameter

√
n/(v − u)λ0. We
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thus replicate the scaling approach by Leonardi and Bühlmann
(2016), but use a different notation more suited to our GGM
setup. We prefer not to penalize the diagonal in ‖�‖1 and then
use the in sample loss

Ln((u, v]) := Ln(�̂
glasso
(u,v] ; S(u,v])

after fitting the glasso in Equation (2) as the loss when greedily
searching for optimal splits with BS or OBS.

We choose the graphical Lasso for the estimation of the
precision matrix since some sparsity assumption seems crucial
in high-dimensional scenarios. Note that Avanesov and Buzun
(2018) also relied on the graphical Lasso (or similar procedures
for sparse precision matrices) and Roy, Atchadé, and Michailidis
(2017) also had a sparsity assumption in their change-point
detection proposals. Additionally, the change-point detection
is expected to be more powerful and reasonable when plac-
ing the sparsity assumption on the precision matrix rather
than the covariance matrix, in particular when considering
sparse changes between conditional dependencies among a few
variables. For low-dimensional scenarios nonsparse (e.g., ridge
type) estimators could also be reasonable, but differences in
estimated change-point locations compared to our glasso based
approach are expected to be small.

Overall the algorithms have three tuning parameters: δ for
the minimal relative segment length, γ to control for the num-
ber of segments and λ0 for the sparsity of the precision matrices.
Note that the procedure is similar to the one proposed by
Angelosante and Giannakis (2011), but as a crucial difference
their penalty is not scaled according to the segment length with
λ(u,v], and they include the penalty term into the gains function,
which seems unnatural.

3. Adapting to Missing Data

For noncomplete data denote with xobs,i the observed part of the
ith observation and with �obs,i and μobs,i the submatrix of � and
the subvector of μ corresponding to the observed variables of xi.
Similarly denote with μmis,i the subvector of μ corresponding to
the variables of xi with missing values. Note that the observed
components can differ across observations xi. The normalized
negative Gaussian log-likelihood of observations from a seg-
ment (u, v] for a given mean μ and precision matrix � is

�(μ, �; (xi)
v
i=u+1) = 1

2n

v∑
i=u+1

(
(xobs,i − μobs,i)

T�obs,i(xobs,i − μobs,i)

− log(|2π�obs,i|)
)

, (6)

treating observations with missing values as if they arose from
a lower-dimensional Gaussian (by considering only the log-
likelihood corresponding to the observed parts, that is, subma-
trices of � and subvectors of μ). Set μ̂(u,v] to be the empirical
mean of the observed part of X(u,v] (discarding the missing
values). Note that μ̂(u,v] might have missing values itself if for
some variable there is no observed value in the segment (u, v].
To simplify notation in terms of the mean vector, by plugging
μ̂(u,v] into (6), let

�(�; (xi)
v
i=u+1) := �(μ̂(u,v], �; (xi)

v
i=u+1), (7)

still evaluating the log-likelihood according to the observed
parts. The L1-penalized maximum likelihood estimator for
observations X(u,v] is then

�̂(u,v] = argmin
Rp×p
��0

�(�; (xi)
v
i=u+1)+λ(u,v]

1
v − u

v∑
i=u+1

‖�obs,i‖1.

Contrary to (5), this problem is no longer convex and cannot be
solved efficiently with an update-based approach like the glasso.
The Miss-Glasso algorithm proposed by Städler and Bühlmann
(2012) combines the glasso and an expectation maximization
(EM) algorithm to estimate the precision matrix in the presence
of missing data. However, the algorithm needs complete obser-
vations for a good initialization, is computationally expensive
due to a new glasso fit for each EM iteration and might get
stuck in local optima. These features are especially critical in
our setting of high-dimensional change-point detection. High
computational cost is prohibitive since we do a lot of evaluations
of the loss function. More importantly even, for each split,
Miss-Glasso would be initialized slightly differently and in some
situations it could converge to a very different local optimum.
This would result in jumps in the gain curve from Equation (2)
for some neighboring splits s.

While an accurate estimate �̂(u,v] (as aimed e.g., by Miss-
Glasso) is necessary for a good fit, this is not needed for change-
point detection. It is sufficient to roughly approximate the piece-
wise convex shape of the (expected) gains function (2), as this
makes sure that pronounced local maxima lie in a neighborhood
of the true underlying change points. This key new idea helps
to avoid the heavy computations and local optima of the EM
algorithm when doing BS or OBS. In the following, we propose
estimators S̃(u,v] that approximate S(u,v] based on (xobs,i)

v
i=u+1.

We can then use S̃(u,v] in the glasso estimator (5) to obtain
�̃

glasso
(u,v] instead of �̂

glasso
(u,v] and use the resulting log-likelihood

�(�̃
glasso
(u,v] ; (xi)

v
i=u+1) as in Equation (7) with minor modifica-

tions (see Section 3.2) as a loss measure.

3.1. Missing Value Imputations

We propose three different estimators S̃(u,v] for data with miss-
ing values. These will lead to different results, computational
costs and applicabilities.

3.1.1. The Average Imputation Estimator
In a first attempt, we impute the missing values (xmis,i)

v
i=u+1

with the average value of the corresponding variables within the
interval (u, v]. Thus define centered variables

z(u,v]
obs,i := xobs,i − μ̂

(u,v]
obs,i and ẑ(u,v]

i := (ẑ(u,v]
obs,i , 0).

The latter notation indicates that the centered vector ẑ(u,v]
is padded with zeros at the appropriate positions of missing
entries. Then set

S̃av
(u,v] := 1

v − u
(ẑ(u,v]

u+1 , . . . , ẑ(u,v]
v )T(ẑ(u,v]

u+1 , . . . , ẑ(u,v]
v )

as the average imputation estimator of the in-segment covari-
ance matrix. This will underestimate the variance and covari-
ance of variables where values are missing. Nonetheless the
average method serves as a baseline.
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3.1.2. The Loh–Wainwright Bias Corrected Estimator
We try to counteract the shortcomings of the average imputation
method using the bias correction presented by Loh and Wain-
wright (2012). The authors showed that if the jth variable of an
observation in X(u,v] is discarded with probability ρj, setting

Mi,j :=
{ 1

(1−ρi)(1−ρj)
i �= j,

1
1−ρi

i = j,

the matrix S̃av
(u,v] ◦ M is an unbiased estimator of S(u,v]. Here,

◦ denotes the Hadamard (pointwise) product for matrices.
In practice, we have to estimate the ρi based on the pro-
portion of missing observations, leading to M̂. Note that the
resulting matrix S̃av

(u,v] ◦ M̂ is not necessary positive semidef-
inite which is required for the glasso algorithm (Friedman,
Hastie, and Tibshirani 2008) to converge. We thus compute
the closest positive semidefinite matrix to S̃av

(u,v] ◦ M̂ with
respect to the Frobenius norm using the Higham algorithm
(Higham 2002) and take this as our final Loh–Wainwright
(LW) bias corrected estimator S̃LW

(u,v]. Note that the Higham
algorithm has an asymptotic complexity of O(p3) similar to the
glasso and thus evaluating the gain using the LW estimator is
computationally more expensive than the average imputation
method.

Alternatively, one could plug in S̃av
(u,v] ◦ M̂ as the sample

covariance matrix into Equation (5), similar to what has been
suggested by Kolar and Xing (2012b) as an alternative to the
Miss-Glasso procedure of Städler and Bühlmann (2012) in
scenarios with homogeneous distributions with missing data.
While one can skip the calculation of the nearest positive
definite matrix this way, the problem is that not all algo-
rithms that have been developed to solve estimation prob-
lems from Equation (5) work with input matrices that are
not positive semidefinite. In particular, as mentioned previ-
ously, the glasso algorithm itself would not work either. As
we intend to rely on standard algorithms and corresponding
software that are fast (as several repeated fits are necessary
for change-point detection), we do not further pursue this
alternative.

3.1.3. Pairwise Covariance Estimation
A third estimate can be based on pairwise covariance estimates,
where the covariance between two variables is calculated from
observations where both corresponding variables are available.
Similar to the LW estimator, this gives a valid estimate of the
variances and covariances of variables, even if the missingness
structure in the data is not homogeneous. If there are less than
two complete observations for a pair of variables in a segment,
we set the covariance between these variables to be zero. Again,
as with the LW approach, this might yield a matrix that is not
positive semidefinite. We hence apply the Higham algorithm to
compute the closest positive semidefinite matrix and denote the
resulting estimator by S̃pair

(u,v].

3.2. Avoiding Jumps in the Gain Curve

For all of the three proposals above, the estimation of the
variance of a variable on a given segment requires at least two

observations with nonmissing values. To obtain a meaningful
estimate, more nonmissing observations are necessary. As a
consequence, with a lot of missing values or small segments, we
might only be able to estimate a submatrix of the full covariance
matrix. For such segments, the log-likelihood can then only be
computed for a submodel of the entire multivariate Gaussian
distribution. When evaluating the gains function (2) at some
split point s, it might thus happen that the log-likelihood of
the segment (u, v] is calculated based on a larger covariance
matrix (and thus a model with more parameters) than for (u, s]
or (s, v]. As the log-likelihoods of multivariate Gaussians of
different dimensions are not easily comparable, this is especially
problematic for split points s such that the estimated covariance
matrix for the neighboring split s + 1 has a different size. In
such scenarios, the gains curve often has jumps between s and
s + 1 (see Figure 2). To alleviate this, we propose to restrict
the log-likelihood of (u, v] to the dimensions available for (u, s]
and (s, v]. To make this more concrete, let us introduce some
notation.

Denote for a segment (u, v] and some k ≥ 2 with j(u,v](k)
the indices of the variables for which at least k values are
observed in the segment (u, v]. For any imputation method ∗ ∈
{av, LW, pair} let S̃∗,k

(u,v] := (S̃∗
(u,v])j(u,v](k),j(u,v](k) be the submatrix

of S̃∗
(u,v] where each variable has at least k observed values.

Finally denote with �̃
glasso
(u,v],k = �̃

glasso
(u,v] (S̃∗,k

(u,v]) the obtained glasso
fit for the submatrix. In our simulations, we set the minimal
number of required observations for keeping a variable to be
k = 5.

A naive estimator for the gains function is

G̃(u,v],k
n,naive(s) := �(�̃

glasso
(u,v],k, (xi,j(u,v](k))

v
i=u+1)

− �(�̃
glasso
(u,s],k, (xi,j(u,s](k))

s
i=u+1)

− �(�̃
glasso
(s,v],k, (xi,j(s,v](k))

v
i=s+1).

This naive estimator might be comparing log-likelihoods of
multivariate normal distributions of different dimensions at
some possible split points s if j(u,s](k) � j(u,v](k) or j(s,v](k) �

j(u,v](k). See Figure 1 for an illustrative example. Here, j(u,s](2) =
{1, 2, 3}, j(s,v](2) = {2, 3, 4}, and j(u,v](2) = {1, 2, 3, 4}. The log-
likelihood �(�̃

glasso
(u,v],2, (xi,j(u,v](2))

v
i=u+1) of the full segment would

be using the first variable of the (s + 1)st observation for eval-
uation, whereas the log-likelihood �(�̃

glasso
(s,v],2, (xi,j(s,v](2))

v
i=s+1) of

the segment on the right would not.

Figure 1. An illustrative example of a segment with 38 observations of dimension
4. Red blocks correspond to missing values and the black vertical line to a possible
split.
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Figure 2. A scenario of simulated blockwise missing data (bottom). Red parts
correspond to missing (i.e., deleted) values in the data matrix. The top shows the
recovered gains if the full data without missing values is used (black), as well as in
the case of missing values our proposed estimator using the LW method (blue), the
naive version (orange) exhibiting jumps, and the location of the true underlying
change-point (vertical dashed line).

To avoid this, we propose to use the slightly different
estimator

G̃(u,v],k
n (s) := �(�̃

glasso
(u,v],k, (xi,j(u,s](k))

s
i=u+1)

+ �(�̃
glasso
(u,v],k, (xi,j(s,v](k))

v
i=s+1)

− �(�̃
glasso
(u,s],k, (xi,j(u,s](k))

s
i=u+1)

− �(�̃
glasso
(s,v],k, (xi,j(s,v](k))

v
i=s+1).

Here, we only use the variables j(u,s](k) and j(s,v](k) in the
calculation for the loss of the full segment (u, v] when splitting
at s. Hence, slightly different losses are used for the full segment
depending on the split point. As we are not primarily interested
in a segments’ own loss, but rather a fair estimate of the gain,
this is a sensible approach.

This does not increase the computational cost significantly,
as for repeated evaluations of G̃(u,v],k

n we can keep the ini-
tial estimate �̃

glasso
(u,v] . Without this mechanism the gain curve

exhibits jumps at the boundaries of missing blocks, as illustrated
in Figure 2. This might prevent BS and OBS from correctly
estimating the change points. The severity of this problem
depends on the block size. When the missingness structure is
homogeneous in time, the block size is small such that this is
not a pronounced issue. However, in many applications one
faces blockwise missing data, where such jumps would be a
pronounced issue without our proposal.

4. Model Selection

A good choice of tuning parameters is essential for accurate esti-
mation results. The parameter λ0 controls the form of the gain
curve. When chosen too small, the glasso tends to overfit and
the resulting gain curve has an inverse U shape independently
of the underlying change points. When chosen too big, the
glasso underfits, resulting in an almost constant gain curve. Even
though we adjust the penalization depending on the segment
length (λ(u,v] = √

(v − u)/nλ0 as discussed in Section 2), one
global λ0 might not be able to approximate the shape (piecewise
convex structure) of the population version of the gain curve

simultaneously in all possible segments encountered during
BS or OBS. If the sparsity pattern of the underlying graphical
model in the segments differs strongly, selecting a new λ0 in
each splitting step of BS or OBS is advocated to obtain good
results. We defer the details on how to locally choose the tuning
parameter λ0 (which we recommend using in practice) to the
end of this section.

The parameters γ (the penalty for the number of segments)
and δ (the minimum relative segment size) on the other hand
control the depth of the tree structure generated by BS and thus
how many change points are found. A sufficiently large value of
δ is also necessary to achieve stability of fits in high-dimensional
scenarios. Often, overly small segments are uninterpretable and
thus uninteresting for practitioners, such that δ can be set to
some predetermined value (typically around 0.1). Thus, γ is the
key parameter to be chosen to avoid under- or oversegmenta-
tion. Leonardi and Bühlmann (2016) proposed to choose values
for λ0 and γ via 2-fold cross-validation, where the test data is
taken from an equispaced grid across the entire sample (in this
case every second observation). Since change points for γ can
be regained from BS trees grown with smaller γ ′ < γ , it is only
necessary to do one BS fit (with γ = 0) per fold and λ0.

This approach did not yield satisfactory results in our settings
even when only a small amount of values were missing. Often
the value chosen for γ would correspond to the correct segmen-
tation of the test data, but would underfit on the whole data.
This could be explained by the fact that while our covariance
estimation methods approximately preserve the structure of the
gain curve, they do not reliably preserve its magnitude and thus
γ might be incomparable between folds and different segments.

To eliminate the previously mentioned issues, we propose an
alternative method both as a stopping criterion for splits as well
as for choosing λ0 in practice. This approach performed empir-
ically much better than the one that was used by Leonardi and
Bühlmann (2016) and has the strong computational advantage
of only requiring one single BS or OBS fit. For each investigated
segment (u, v] we first apply 10-fold cross-validation, taking
the test data from an equispaced grid in (u, v] (every 10th
observation in this case) to obtain an optimal value λ̂0((u, v])
corresponding to the minimal attained cross-validated loss,
which we denote by l(u,v](λ̂0((u, v])). The loss that is minimized
is the negative log-likelihood of the test data given the mean and
the estimated precision matrix of the train data. We then use
λ̂0((u, v]) for the evaluation of the gain curve for that segment.
In the standard setting, one would then check if G(u,v]

n (α̂(u,v]) >

γ to decide whether to split further at the found point α̂(u,v] or
not. Instead, we compare the cross-validated minimal loss on the
full segment (u, v] to the sum of cross-validated minimal losses
of the subsegments (u, α̂(u,v]] and (α̂(u,v], v]. We keep the split if
there is a positive improvement, that is, if

l(u,v](λ̂0((u, v]))−l(u,α̂(u,v]](λ̂0((u, α̂(u,v]]))
− l(α̂(u,v] ,v](λ̂0((α̂(u,v], v])) > 0.

Hence, in the decision rule for keeping a candidate, γ is
essentially removed and the decision to keep or discard a seg-
ment is just based on cross-validated (out of sample) losses
(in particular, whether they indicate any improvement). Note
that our approach is not a proper cross-validation technique
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as the above described improvement at a candidate split α̂(u,v]
is evaluated on the same data as was used to find the split
point. Hence, this procedure might be optimistic regarding the
improvements and thus slightly biased toward finding too many
change points. This would not be a big problem in practice,
as finding too many change points is preferred to finding too
few. In Section 5, we investigate how our stopping criterion per-
forms on simulated data both with and without change points.
Contrary to expectations it does not tend to oversegment in
scenarios without change points.

5. Simulations

It seems to be hard to provide theoretical guarantees in the
setting of change-point detection in GGMs with missing values.
We think that the only semirealistic case to provide theory is
the one with values missing completely at random, which seems
to be far from realistic for most applications (see examples in
Section 6). Moreover, keeping our tuning parameter λ0 fixed
across all possible segments (u, v] would be one of our technical
assumptions, which however is clearly suboptimal for real and
simulated data (as discussed in Section 4). We thus focus on the
practical performance of our methods, which we demonstrate
with the following simulations.

5.1. Setup

We first discuss how we generated data, how we deleted values
and we introduce the performance measures used to evaluate
the results.

5.1.1. Generating Covariance Matrices
In our simulations, we consider two methods to draw precision
matrices for the segments. The first one is the random graph
model (Erdős and Rényi 1960), which was used to simulate
high-dimensional graphs (e.g., by Kolar et al. 2010). Here, the
graph is generated by connecting nodes randomly with some
probability q > 0, which we set to 5

p in the following to ensure
sufficient sparsity. We create the corresponding precision matrix
by assigning a constant value (taken here as 0.3) to the entries
corresponding to the chosen edges and then adding the absolute
value of the smallest eigenvalue of the resulting matrix plus some
increment (here 0.1) to the diagonal. This is necessary to ensure
positive definiteness of the constructed precision matrix.

We used chain networks as a second model (see, e.g.,
Fan, Feng, and Wu 2009, Example 4.1). Here, we set �ij :=
exp (−a|si − sj|), where a > 0 , s1 < · · · < sp and si −
si−1 ∼ Unif(0.5, 1) for i = 2, . . . , p. In the simulations,
we set a = 1/2 and additionally draw s1 ∼ Unif(0.5, 1).
The inverse of the resulting matrix is tridiagonal. To generate
precision matrices with differing sparsity patterns for different
segments, we draw some permutation π of 1, . . . , p and set �ij =
exp(−a|sπ(i) − sπ(j)|). This breaks the tridiagonal structure but
keeps the sparsity.

5.1.2. Types of Missingness
We consider two ways to delete values for the simulations. The
first one is missing completely at random (MCAR), where a

given percentage of values is discarded uniformly at random.
The second one is inspired by the missingness structure of
environmental monitoring data (see bottom of Figure 6). Here,
a failure of a sensor leads to missing values over several con-
secutive observations, while replacement of them at multiple
sampling locations might occur at the same time. Moreover, it is
common that simultaneously several sites are newly installed or
abandoned based on the available budget. This leads to blocks
of observations missing, ranging over multiple variables as well
as observations. To generate a similar blockwise missingness
structure, we repeatedly select k ∼ Poi( p

20 ) variables uniformly
at random and delete for all of them a segment of length
l ∼ Exp(n

8 ) with the midpoint chosen uniformly between 1
and n. We repeat this procedure until the preset percentage
of missing values is reached. An example with 30% missing
values for n = 200 and p = 100 is shown at the bottom of
Figure 2.

5.1.3. Performance Measures
We use the adjusted Rand index (Hubert and Arabie 1985),
a common measure to compare clusterings, to measure per-
formance regarding change-point detection in our simulation
study (see Table 1). Given two partitions of n observations,
the Rand index (Rand 1971) is the number of agreements
(pairs of observations that are either in the same subset for
both partitions or are in different subsets for both partitions)
divided by the total number of pairs

(n
2
)
. The adjusted Rand

index is the difference between the Rand index and its expec-
tation when choosing partitions randomly, normalized by the
difference between the maximum possible Rand index and its
expectation. The adjusted Rand index is thus bounded by one
and is expected to be zero when partitions are chosen randomly.
We illustrate the estimation uncertainty of found change points
corresponding to some adjusted Rand measures (taking true
and estimated segments as the two partitions) via histograms
in Figure 4.

An interesting point includes also the accuracy in recov-
ering the precision matrices (or the underlying graphical
models). The reasons why we only focus on the recov-
ery of change points and do not report performance mea-
sures related to graph recovery are the following. We tuned
our algorithm specifically for good detection of the change
points and not necessarily for good estimation of the pre-
cision matrices (see the discussion in Section 3), because
good recovery of the graph structure is impossible without
precisely knowing the change-point locations, partly due to
the precision matrix of the mixture distribution not being
sparse in many cases. Of course, once change points are
accurately localized, one can use the most favored impu-
tation method for homogeneous data (e.g., Miss-Glasso by
Städler and Bühlmann (2012), the proposals of Loh and Wain-
wright (2012) or Kolar and Xing (2012b), or even proce-
dures that are not focused specifically on precision matrices
such as the missForest of Stekhoven and Bühlmann (2011))
to subsequently estimate the precision matrices or the under-
lying graphical models. The quality of graph recovery then
mainly depends on the performance of the chosen imputation
method.
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Table 1. Adjusted Rand indices for scenarios with n = 500, p = 100, and three change points.

Percentage of missing values

Network Missingness Method 10% 20% 30% 40% 50%

CN MCAR LW BS 0.999 (0.003) 0.996 (0.006) 0.993 (0.010) 0.960 (0.060) 0.430 (0.314)
CN MCAR LW OBS 0.998 (0.004) 0.996 (0.006) 0.987 (0.025) 0.949 (0.068) 0.466 (0.301)
CN MCAR av BS 1.000 (0.001) 0.998 (0.004) 0.952 (0.072) 0.244 (0.256) 0.000 (0.000)
CN MCAR av OBS 0.999 (0.002) 0.998 (0.005) 0.957 (0.069) 0.226 (0.252) 0.000 (0.000)
CN MCAR pair BS 0.999 (0.003) 0.997 (0.006) 0.993 (0.010) 0.939 (0.118) 0.372 (0.297)
CN MCAR pair OBS 0.998 (0.004) 0.996 (0.006) 0.986 (0.026) 0.938 (0.074) 0.384 (0.290)
CN block LW BS 0.999 (0.004) 0.994 (0.012) 0.985 (0.020) 0.953 (0.051) 0.813 (0.208)
CN block LW OBS 0.998 (0.005) 0.991 (0.019) 0.977 (0.037) 0.923 (0.085) 0.727 (0.257)
CN block av BS 0.957 (0.086) 0.811 (0.214) 0.367 (0.340) 0.242 (0.267) 0.280 (0.245)
CN block av OBS 0.953 (0.123) 0.765 (0.243) 0.294 (0.326) 0.197 (0.268) 0.248 (0.253)
CN block pair BS 0.998 (0.006) 0.990 (0.017) 0.981 (0.025) 0.941 (0.069) 0.813 (0.170)
CN block pair OBS 0.997 (0.007) 0.990 (0.013) 0.958 (0.039) 0.923 (0.076) 0.732 (0.240)
RN MCAR LW BS 0.991 (0.012) 0.973 (0.051) 0.943 (0.083) 0.828 (0.116) 0.510 (0.228)
RN MCAR LW OBS 0.986 (0.025) 0.971 (0.046) 0.932 (0.090) 0.791 (0.146) 0.452 (0.270)
RN MCAR av BS 0.981 (0.041) 0.878 (0.102) 0.578 (0.221) 0.076 (0.184) 0.005 (0.050)
RN MCAR av OBS 0.983 (0.028) 0.858 (0.120) 0.499 (0.275) 0.063 (0.168) 0.011 (0.075)
RN MCAR pair BS 0.988 (0.014) 0.974 (0.050) 0.931 (0.086) 0.779 (0.141) 0.438 (0.253)
RN MCAR pair OBS 0.986 (0.025) 0.970 (0.050) 0.917 (0.094) 0.766 (0.156) 0.373 (0.266)
RN block LW BS 0.990 (0.021) 0.974 (0.038) 0.927 (0.103) 0.791 (0.208) 0.464 (0.328)
RN block LW OBS 0.979 (0.041) 0.949 (0.073) 0.904 (0.137) 0.741 (0.225) 0.386 (0.342)
RN block av BS 0.752 (0.210) 0.336 (0.311) 0.173 (0.250) 0.198 (0.238) 0.276 (0.226)
RN block av OBS 0.711 (0.243) 0.234 (0.287) 0.119 (0.207) 0.136 (0.224) 0.227 (0.244)
RN block pair BS 0.986 (0.027) 0.967 (0.049) 0.923 (0.100) 0.759 (0.221) 0.573 (0.313)
RN block pair OBS 0.980 (0.037) 0.949 (0.079) 0.863 (0.181) 0.700 (0.234) 0.483 (0.339)

5.1.4. Setup of the Main Simulation Study
We will illustrate the behavior of our methods on settings with
n = 500 observations of dimension p = 100 with three
change points with segments of sizes 70, 120, 120, and 190. We
randomly permute the order of the segments to avoid systematic
effects. Note that in the smallest segment the number of observa-
tions is smaller than the number of variables, resulting in a truly
high-dimensional setting when splitting. In each simulation, we
generate a precision matrix (either random or chain network)
for each segment and then draw observations independently
from the corresponding centered multivariate normal distri-
bution. The parameter δ is held fixed at 0.1 and we vary the
proportion of missing data in steps of 10% between 10% and
50%. Note that in this setup in expectation there is less than one
complete observation available per segment when deleting only
10% of the values completely at random. Therefore, discarding
incomplete observations is clearly not a viable option and some
kind of imputation method is necessary.

5.2. Results

We analyze the estimation performance (using the model selec-
tion approach of Section 4) for our three methods (average,
pairwise, and LW, see Section 3.1) both using BS and OBS.
We ran 100 simulations for each setting. The corresponding
mean values of adjusted Rand indices are displayed in Table 1
along with their standard deviations in parenthesis. To aid the
interpretability, we present the adjusted Rand indices of a selec-
tion of estimation results together with the true change points
in Table 2. Note that finding the correct number of change
points with an accuracy of around two observations each leads
to an adjusted Rand index of around 0.95. Finding all true
change points plus a false positive one leads to an adjusted
Rand index of around 0.8, similar to finding only two of the
three change points. Additionally, we show histograms of all the

Table 2. Examples for different adjusted Rand indices.

True change Found change Adjusted
points points Rand

120, 190, 310 120, 188, 310 0.992
70, 190, 310 66, 191, 310 0.980
120, 240, 430 118, 239, 423 0.949
190, 260, 380 93, 190, 260, 380 0.804
120, 240, 310 119, 243 0.757
120, 240, 310 297 0.506
70, 190, 380 380 0.363

change points found over 500 simulations in Figure 4, for which
we needed to consider a fixed true change points scenario to be
meaningful. Note that the y-axis is on a log-scale.

Before analyzing the obtained results, we first report the
performance of a naive approach (for some of the setups from
Table 1). For this, we impute mean values columnwise (i.e., for
each variable separately) on the whole dataset and then esti-
mate change points using the imputed data (with our proposed
methodology and implementation for the case when there are
no missing values). Note that in our simulations (i.e., the setups
of Table 1), there are no changes in the underlying mean values.
Hence, one could expect (at least in the scenario of values
missing completely at random) this naive approach to perform
similar to the average imputation method. For chain networks
with values missing completely at random, the naive approach
performs similar to our three proposed imputation methods
for up to 30% missing values. For 40–50% missing values, the
naive approach performs better than the average imputation
method, but clearly worse than the best performing pairwise
and LW methods (by roughly 0.15 in terms of adjusted Rand
index). For chain networks with blockwise missing values (and
OBS), the naive approach obtained 0.61, 0.49, 0.40, 0.38, and
0.34 for the adjusted Rand indices for the scenarios with 10%–
50% missing values, respectively. For low percentage of missing
values, this is clearly worse than all three of our imputation
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proposals (by roughly 0.4 in terms of adjusted Rand index) and
for high percentage of missing values it is roughly as good as
the average imputation method, and clearly worse than the best
performing pairwise and LW methods (by roughly 0.4 in terms
of adjusted Rand index). The bad performance of the naive
approaches can be explained as follows. When values are not
missing completely at random, but in some kind of blockwise
structure, the naive approach tends to (falsely) find change
points corresponding to the missingness structure rather than
true changes in the underlying signal. Similar issues with the
naive approach could happen when there are additionally also
shifts in the mean of the signal. Hence, integrating imputation
and change-point detection into a unified framework is essential
and leads to substantial gains, especially in very challenging
scenarios (with values not missing completely at random and/or
high percentage of missing values).

With regards to the main simulation results comparing our
three proposals, all three methods perform similarly if at most
30% of values for the chain network setup or 20% of values for
the random network setup are deleted completely at random.
For more challenging MCAR setups the average imputation
method fails to estimate the change points reliably, whereas the
LW and pairwise methods still perform reasonably well if up to
30%–40% of values are missing. The performance of all methods
tends to be worse if the values are deleted blockwise, as expected.
Here, the average imputation method clearly underperforms
compared to the other two methods even when only 10% of
the values are deleted. The pairwise and LW methods perform
very well for up to 30%–40% of missing values. The LW method
seems to perform somewhat better than the pairwise method.
The scenarios with 50% missing values are all very challenging
and the ranking of the methods may be slightly different com-
pared to the easier scenarios.

Figure 3 provides representative examples comparing the
gain curves recovered using our three methods. If 30% of the
values are deleted completely at random, the expected piecewise
convex shape is well conserved for all three methods. For 30%
blockwise deleted values the shape is somewhat distorted when
using the LW and pairwise methods but local optima still occur

Figure 3. Recovered gain curves in random network settings with 30% MCAR
(top left), 30% blockwise (bottom left), 50% MCAR (top right), and 50% blockwise
(bottom right) missing values using the average (red), pairwise (green), and LW
(blue) methods, compared to the case without missing values (black).

at two of the true change points. The structure (i.e., shape) is not
recoverable at all due to big jumps with the average imputation
method, explaining the low mean adjusted Rand index in this
scenario. A key insight is that with the LW and pairwise meth-
ods the piecewise convex structure is approximately conserved,
allowing for good estimation of at least one of the underlying
change points, as necessary for BS and OBS. Some very chal-
lenging scenarios with 50% missing values are shown in the right
panel of Figure 3. Here even in the MCAR scenario (top right),
the gain curves flatten out, making it difficult to accurately locate
the change points, while in the blockwise missing scenario (bot-
tom right) all three methods would fail. Note that the imputation
method (and in general also the fraction of missing values) has
an effect on the magnitude of the gain curve.

The simulation scenarios with random networks seem to be
harder for our methods to estimate change points compared
to chain networks. As expected, at the price of higher compu-
tational cost, BS slightly outperforms OBS, especially in hard
scenarios with a high fraction of missing values where we expect
the piecewise convex shape of the gain curve to be strongly
distorted. We also tested standard BS and OBS (as described in
Section 2) on scenarios where no values are missing, but the total
number of observations is scaled down by 10%–50% (Table 3).
Not surprisingly, we see that complete data are generally more
informative than the analogous data with missing values. Also
here, the random network scenarios are more challenging com-
pared to chain networks.

In the middle scenario of Figure 4 with 30% missing values,
we estimate a total of 1343 change points with 1079 within five
and 1190 within ten observations away from a true underlying
change-point. The analogous numbers for the settings with 40%
missingness are 1118, 754, and 882 and for 50% missingness are
724, 353, and 447. The decreasing performance is also reflected
in the average adjusted Rand indices. In total, there would be
3 × 500 = 1500 true underlying change points. This indicates
a general trend, where our algorithm seems to underfit, that is,
selecting too few change points, rather than selecting incorrect
ones. To investigate our model selection procedure presented in
Section 4, we did a complementary study in a setting of no true

Figure 4. Cumulative estimated change points from each 500 simulations with true
underlying change points at 120, 240, and 310 and random networks as the in
segment precision matrices. We deleted 10% (top) to 50% (bottom) of the values
blockwise and estimated the change points using OBS and the LW method. Also
displayed are the average adjusted Rand indices for each set of simulations.
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Table 3. Adjusted Rand indices for scenarios with p = 100, three change points and no missing values.

Number of observations

Network Method 450 400 350 300 250

CN BS 1.000 (0.001) 1.000 (0.001) 0.999 (0.002) 1.000 (0.002) 0.997 (0.009)
CN OBS 1.000 (0.002) 0.999 (0.003) 0.998 (0.006) 0.999 (0.004) 0.996 (0.016)
RN BS 0.990 (0.019) 0.990 (0.018) 0.980 (0.039) 0.947 (0.077) 0.875 (0.095)
RN OBS 0.987 (0.021) 0.987 (0.019) 0.969 (0.051) 0.931 (0.083) 0.833 (0.084)

underlying change points. Testing all scenarios of Table 1 with
100 simulations each resulted in a total of 24×5×100 = 12,000
simulations. In the setting where n = 500 and p = 100 and
without true underlying change points our estimators found a
total of 734 change points, 728 of which were found with the
average imputation method for data where values were deleted
blockwise, four with the pairwise method and two with the
LW method, both with blockwise deleted values. Our model
selection did not select any change points in any of the 6000
simulation with values deleted completely at random or any of
the 4800 simulations with the LW or pairwise estimator where
up to 30% of values were deleted blockwise. In an analogous
simulation study with n = 100 and p = 100 (setting δ = 0.2 to
obtain reasonable fits) again no change points were found in the
simulations with values missing completely at random. In total
615 change points were found in the 12,000 simulations. 109
were found with the average method, 285 were found with the
LW method, and 221 with the pairwise method. Only 3, 1, and
3, respectively, were found in scenarios with up to 30% missing
values.

Finally, we indicate the computational cost of the different
methods. Running on a single Intel Xenon 3.0 GHz processor
core, with our current R implementation each BS search includ-
ing model selection took around 130, 150, and 170 sec for the
average, LW and pairwise method for an average scenario of
Table 1. Change-point estimation with OBS took around 40 sec
for each of the three methods, thus enabling massive speed-ups.

6. Applications

In every real application care needs to be taken as the assump-
tion of underlying piecewise constant GGMs might not be fully
valid. In particular, the underlying model might also change
smoothly over time. Such deviations from the model assump-
tions are usually visible in the shape of the gain curves. Other
deviations from the model assumptions could be dependence
across observations for example. In this case, various prepro-
cessing steps (e.g., smoothing, differencing or various transfor-
mations) might be helpful to provide more reliable results.

We applied our methods on a real data example from a
shallow groundwater monitoring system with naturally occur-
ring missing values. The dataset contains n = 753 monthly
shallow groundwater level measurements at p = 136 sampling
locations between the Rivers Danube and Tisza within Hungary
(Figure 5) from January 1951 to September 2013. The original
measurements were seasonally adjusted for each sampling loca-
tion individually. This dataset has approximately 35% naturally
occurring missing values.

Due to the nature of the monitoring system there are a lot
of missing values with a blockwise missingness structure that is

Figure 5. Location map of the shallow groundwater monitoring area within
Hungary.

strongly inhomogeneous in time, see bottom right of Figure 6.
The reasons for missing observations in similar monitoring
systems could be the following. The failure of a sensor can lead
to missing values over several consecutive observations, while
replacement of them at multiple sampling locations might occur
at the same time. More importantly, it is common that several
sites are simultaneously newly installed or abandoned based on
the available budget or even due to changing standards toward
monitoring systems. These typically lead to blocks of missing
observations, ranging over multiple sites (variables) as well as
observations. In addition, individual randomly missing entries
can occur as well.

Out of the 136 sampling sites only 93 had nonmissing values
for more than n/2 ≈ 377 months, with some having values
missing for three quarters of the months. The reduced set of
93 sites only has approximately 16% missing values. We first
applied BS with our three proposed methods to this subset
(left of Figure 6). We used cross-validated λ0 for each segment
as described in Section 4 and a small δ = 0.025 for better
visualization of the gain curves at the boundaries. Note that
plotting the whole gain curves requires a full search, for which
BS (including the proposed model selection) took roughly 30
min. In many other scenarios (e.g., financial data) both the
number of observations as well as the number of variables can
be larger, quickly bringing the full grid search beyond what
is computationally feasible. In such cases the faster OBS still
remains a viable option.

While the order of the splits is different across the three
methods, the finally found change points lie very close to each
other. The three change points which all methods agree on
for both the full and reduced dataset with the highest cross-
validated improvements lie around November 1964, April 1983
and January 1996 (with up to only two observations difference).
Besides these three, several smaller ones are found. The major
change points have a clear hydrogeological interpretation. For
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Figure 6. Gain curves of the first three BS iterations with the average imputation (red), LW (blue), and pairwise (green) methods applied to the full groundwater data (right)
and to the subset only including sampling locations with less than 50% missing values (left). Splits found in each step are marked with a vertical line of the corresponding
color and the gain curves of the subsegments are shown in the plot below. The missingness structure of the datasets is displayed in the bottom row with red parts
corresponding to missing values.

example, around 1983, there was a drop in groundwater levels
unequally impacting areas within the monitoring system. This
presumably shows up jointly as a mean and covariance shift in
our analysis. Note that our log-likelihood based approach will
also detect shifts in mean.

Interestingly, applying BS to the very challenging full dataset
yields very similar results (right of Figure 6). This would not
have been possible without the techniques preventing jumps in
the gain curves discussed in Section 3.2 due to the big blocks
of missing values. Even with our technique, the gain curve
for the first split flattens out, showing the challenges in such
complicated scenarios. Also note the jumps in the gain curve
of the average imputation method around the boundaries of big
missing blocks, similar to Figure 3.

7. Conclusions

Our estimation methods enable practitioners to search for
change points in settings where this was impossible before. The
LW based imputation method presented in Section 3.1 has a
stable performance even in challenging high-dimensional sce-
narios with lots of missing values. Since its computational cost is
not significantly higher than the other methods considered, we
generally recommend its usage. The choice of BS or OBS should
be based on computational resources. BS results in slightly better
results and the possibility of better visualization by drawing the
full gain curves, however at a considerably higher computa-
tional cost than OBS. We emphasize that technical adjustments
regarding the evaluation of the gains introduced in Section 3.2
as well as the model selection procedure of Section 4 lie at the
core of our methodology, enabling good performances both on
simulated and real data with missing values.

Supplementary Materials

R-package hdcd: The R-package hdcd for high-dimensional change
point detection available at https://github.com/mlondschien/hdcd
implements our methods to find change points in GGMs with possibly

missing values. README files explain the usage via some examples
and describe how to reproduce the above mentioned simulation results
and figures. Additionally, the hdcd R-package also implements some
ongoing work on multivariate nonparametric change-point detection
(see Kovács, Londschien, and Bühlmann 2021a). We plan to update
the package to use a faster Graphical Lasso implementation and more
flexible Graphical Elastic Net (see Kovács et al. 2021b) and eventually
upload also to CRAN.
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