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Abstract
In this discussion, we compare the choice of seeded intervals and that of random 
intervals for change point segmentation from practical, statistical and computational 
perspectives. Furthermore, we investigate a novel estimator of the noise level, which 
improves many existing model selection procedures (including the steepest drop to 
low levels), particularly for challenging frequent change point scenarios with low 
signal-to-noise ratios.
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1  Starting remarks

We congratulate Piotr Fryzlewicz for his interesting and stimulating paper entitled 
“Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steep-
est-drop model selection” (see Fryzlewicz 2020) and we also thank the Editor of the 
Journal of the Korean Statistical Society for the invitation to write a discussion! We 
also take the opportunity to express that we have been very much inspired by Fryzle-
wicz’ previous work on change point detection. We mention in particular his path-
breaking work on wild binary segmentation (Fryzlewicz 2014) which has heavily 
shaped the thinking on change point detection as well as the narrowest over threshold 
method (Baranowski et al. 2019). Our remarks and comments should be seen in this 
light, owing credit to many pioneering ideas from Fryzlewicz. His current paper pro-
poses a new change point detection algorithm (WBS2) that might be thought of as a 
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hybrid between binary segmentation (BS, Vostrikova 1981) and wild binary segmen-
tation (WBS, Fryzlewicz 2014), as well as a novel model selection procedure (steepest 
drop to low levels, SDLL). While recently several algorithms have been proposed for 
change point detection, some of which are computationally very efficient, less atten-
tion is paid to model selection which in our point of view remains a difficult task. We 
thus welcome and appreciate new methods such as SDLL that contribute to model 
selection. In the following we would like to point to a number of alternatives and mod-
ifications that might lead to improved performance in terms of stability/reproducibil-
ity, estimation error, range of extendability and computational speed.

2  A summary of seeded binary segmentation (SeedBS, Kovács et al. 
2020a)

The computational cost for evaluating the CUSUM statistics in M random inter-
vals within WBS is of order O(MT), with the worst case M = O(T2) (for very short 
minimal segment length as e.g. in frequent change point scenarios or when aim-
ing to obtain the “complete solution path” defined by Fryzlewicz 2020). In Kovács 
et al. (2020a), we proposed a deterministic construction of “seeded” intervals that 
have a total length O(T log(T)) at most and thus allow fast evaluation of the test 
statistics in all scenarios (as opposed to the worst case O(T3) for the random inter-
vals in WBS). The idea is roughly to start with the full range of observations in 
the first layer and sequentially split the intervals from the previous layer into a left, 
right and an overlapping middle interval according to a chosen “decay” parameter 
(e.g. (1, T), (1, T/2), (T/4, 3T/4), (T/2, T), (1, T/4), (T/8, 3T/8), etc.) and stopping 
at the layer where the length of intervals drops to a pre-defined minimal length m. 
Seeded binary segmentation (SeedBS) with greedy selection resembles WBS, while 
SeedBS with the narrowest over threshold (NOT) selection is similar to the NOT 
method of Baranowski et  al. (2019), the difference in both cases is essentially to 
use seeded intervals instead of random ones. Seeded intervals consist of O(T) inter-
vals efficiently covering various scales, in particular guaranteeing good coverage of 
each single change point which in turn ensures good estimation performance (e.g. 
minimax optimality for the Gaussian change in mean setup for SeedBS with NOT 
selection for a suitable threshold). For further details on theory, performance in sim-
ulations, explanations on where the computational inefficiency of random intervals 
comes from and how seeded intervals overcome this, see Kovács et al. (2020a).

3  Adapting SeedBS to frequent change point scenarios

In WBS2 (with M̃ = 100 ) once the current search interval (s,  e) has less than 15 
observations, all intervals within (s,  e) are evaluated, facilitating estimation (and 
model selection) in frequent change point scenarios when the true segments are 
extremely short. A possible adaption to SeedBS in order to match this is to include 
all intervals below a certain length additionally to the regularly generated seeded 
intervals. In the experiments further below we added all intervals having less than 
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10 observations. Alternatively, when aiming to improve results in very challenging 
scenarios, then instead of the default decay parameter of 21∕2 , one could generate 
more seeded intervals by changing the decay to e.g. 21∕8 , resulting in an increase of 
computational time by a factor of approximately four. Another option for improving 
estimation is an adaptive version (i.e. ASeedBS) of SeedBS that we discuss further 
below.

4  Some advantages of SeedBS: a fast, stable/replicable and easy 
to generalize alternative

First of all, when the last layer with the smallest considered scale within seeded 
intervals includes all intervals of length m = 2 observations, one obtains a complete 
solution path. Hence, unlike for WBS, model selection in frequent change point sce-
narios is still possible with a fixed threshold. In Fig. 2 estimators number 9 and 10 
(“SeedBS_THR_1.0_...”) use the threshold 1.0 ⋅ 𝜎̂

√

2 log(T) with the JFNL estima-
tor (from Definition 1 further below) and the MAD based estimator as 𝜎̂ , respec-
tively. When paired with the JFNL estimator, this fixed thresholding performs nearly 
as good as the best competitors (e.g. SDLL) in the lower noise level 𝜎 = 0.3 . For 
𝜎 = 0.45 the best performing SDLL method performs better in general in estimat-
ing the number of change points than the fixed threshold (which is not surprising 
as the fixed threshold is not adapted to the data). However, as an advantage, the 
fixed threshold has smaller variance than the SDLL based model selection. Second, 
SeedBS can be combined with many model selection approaches, in particular also 
with the SDLL model selection. The advantage here is that the deterministic scheme 
utilized in the seeded intervals leads to reproducible results unlike WBS2+SDLL, 
where the estimated number of change points for various runs on the same data can 
show high variability/instability for high noise levels due to the randomness of the 
intervals. Aggregation over multiple WBS2 runs and taking the “median run” as 
proposed by Fryzlewicz (2020) might help to gain more stability, but does not fully 
eliminate the issue while increasing computational efforts. Third, a SeedBS-BS 
hybrid can be considered (similar to WBS2 being a hybrid between BS and WBS) 
by generating new seeded intervals specifically in between previously found change 
points and thus adapted to the information on the signal obtained in earlier iterations 
of the procedure. This adaptive seeded binary segmentation (ASeedBS) might per-
form slightly better than SeedBS in challenging scenarios (at the price of somewhat 
increased computational times as a new set of seeded intervals are evaluated each 
time a change point candidate is added). One advantage of ASeedBS compared to 
WBS2 is reproducibility due to the lack of randomness. Fourth, we would like to 
mention applicability in models beyond the Gaussian change in mean setup. WBS2 
has a greedy nature when selecting the next best split point. This might be limiting 
when trying to apply WBS2 e.g. in piecewise linear models, where the best single 
split point over an interval containing multiple change points may not correspond 
to any of the true change points (see Baranowski et al. 2019 and their proposal of 
the NOT selection instead of a greedy one to solve this issue). In SeedBS and also 
ASeedBS greedy selection is not essential and they could be easily combined with 
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other selection rules, e.g. the NOT selection. Note that evaluating the CUSUM sta-
tistic for M̃ = O(log T) random intervals has the same cost O(T log T) as evaluat-
ing all the O(T) seeded intervals. However, if the spacings between change points 
are short, it is likely that none of the M̃ = O(log T) random intervals contain only a 
single change point as opposed to seeded intervals, for which it is likely that some 
of the O(T) intervals will be suitable (i.e. contain a single change point). As an illus-
tration of wide applicability, in Kovács et  al. (2020a) we used SeedBS to detect 
changes in (high-dimensional) Gaussian graphical models using a graphical lasso 
based estimator as in Londschien et al. (2019). Last, but not least, as a method of 
O(T log(T)) worst case computational complexity, SeedBS is fast, in particular in 
our recent Fortran based implementation (planned to be made publicly available) 
that needed (using the default options) around 0.001 seconds for the extreme.
teeth signal of Fryzlewicz (2020) and thus about one to two orders of magni-
tude less than the available R implementation of WBS2. We currently work on the 
so-called optimistic search technique (Kovács et  al. 2020b) reducing the compu-
tational times for various methods. Applying this search for SeedBS results in the 
optimistic seeded binary segmentation (OSeedBS) method, which further reduces 
the computational complexity to O(T) in the Gaussian change in mean setup when 
using the NOT selection. From a practical perspective SeedBS and OSeedBS natu-
rally offer the possibility to parallelize the evaluation of the test statistic in various 
seeded intervals, which can be an advantage when applying it in more expensive 
high-dimensional setups such as the previously mentioned setup of Londschien et al. 
(2019). We tried SeedBS and ASeedBS together with the SDLL model selection on 
the extreme.teeth signal of Fryzlewicz (2020) and the estimation performance 
for the number of change points was similar to WBS2+SDLL. Much bigger differ-
ences seemed to result from a different choice of noise level estimator and thus we 
present some simulation results for that in the next paragraphs. Overall, in our point 
of view the main possible advantages of SeedBS compared to WBS and WBS2 are 
the reproducibility, easy extendability beyond the Gaussian change in mean case 
trough e.g. the NOT selection and, to some extent, the easier derivation of theoreti-
cal results.

5  An alternative estimator for the error variance

A commonly used approach for the estimation of noise levels in the Gaussian change 
in mean setup (with constant variance) is to use a robust scale estimator (e.g. median 
absolute deviation, MAD) of consecutive differences 

�

X2 − X1,… , X
T
− X

T−1

�

∕
√

2 
so that jumps in the mean of the signal can be treated as outliers. However, in fre-
quent change point scenarios, there can be many of these outliers, potentially lead-
ing to severe upwards bias. While Fryzlewicz (2020) wrote that accurate estimation 
of the noise variance “can be difficult to achieve in frequent change point mod-
els”, we would like to show that the task is not impossible if a different strategy 
is considered. Rather than treating jumps as outliers, we actively consider them in 
the following sense: when looking at consecutive differences (with lag one), each 
jump in the signal is counted once, however, when looking at lag two differences, 
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each jump is counted twice. For example, assuming there is a jump at the k-th 
observation, out of the four pairs (X

k−1 − X
k−2, X

k
− X

k−1, X
k+1 − X

k
, X

k+2 − X
k+1) 

only X
k
− X

k−1 includes the jump, but out of four lag two differences 
(X

k−1 − X
k−3, X

k
− X

k−2, X
k+1 − X

k−1, X
k+2 − X

k
) two of them, namely X

k
− X

k−2 and 
X

k+1 − X
k−1 include the jump (while the noise is of course contained additionally in 

both series). The assumption for this “counting” to work is to have minimal segment 
length of least 2 observations. Overall, the difference in the variance of the lag one 
and lag two series can be utilized to filter out the jumps as follows.

Definition 1 The jump filtered noise level (JFNL) estimator for the variance 𝜎2 is 
defined as

where v(Y1,… , Y
l
) =

∑l

i=1
(Y

i
− Ȳ)2∕l is the empirical variance of Y1,… , Y

l
.

Although difference based variance estimation methods have a long history in 
nonparametric regression (see e.g. Hall et al. 1990), we are not aware of JFNL hav-
ing been proposed elsewhere. The goal when using the empirical variance is to 
actively count each of the jumps (which is the core idea when comparing the two 
lags), whereas robust estimators would treat a part of the jumps as outliers, but pos-
sibly to a different extent in the lag one versus the lag two differences such that their 
comparison becomes difficult. If the true noise level 𝜎2 is very low compared to 
the jumps, the difference of the variance terms above can become negative. In such 
cases the maximum in the definition above kicks in and we threshold at zero in order 
to have a non-negative variance estimator. While well-defined, estimating zero as a 
noise level is not particularly useful when applying for model selection purposes. 
Note however that this typically occurs only in scenarios where change point detec-
tion and model selection is an easy task with many available methods, namely in 
scenarios with low noise levels compared to the sizes of the jumps. In general, lag k 
differences count jumps k times and thus, potentially even better estimators could be 
constructed similarly if it is reasonable to assume that each segment contains at least 
e.g. k = 3 or k = 4 observations. One could come up with other estimators as well 
and also try aggregating various estimators for the variance (e.g. via the median) 
to have an ensemble type estimator which may even outperform individual ones. A 
related, but slightly different avenue is to try to make the estimator robust. In Fig. 1 
we compare JFNL to the MAD estimator (of lag one differences) for various com-
monly used test signals. In the extreme.teeth signal 𝜎̂2

JFNL
 performs much bet-

ter than the MAD estimator and also on the other test signals it seems to perform 
somewhat better. When looking at scenarios with lower noise levels, a higher var-
iance of the JFNL estimator compared to MAD would be visible such that some 
other estimators could be better suited than JFNL. However, in the shown scenarios 

𝜎̂
2
JFNL

=max

�
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√

2
,… ,

X
T
− X

T−1
√

2

�

−v

�

X3 − X1
√

2
,… ,

X
T
− X

T−2
√

2

��

,

Author's personal copy



1086 Journal of the Korean Statistical Society (2020) 49:1081–1089

1 3

with comparably high noise (which are the difficult scenarios from a model selec-
tion perspective), JFNL seems to offer some advantages. The performance of JFNL 
for the “stairs10” signal can be further improved by taking ṽ(Y1,… , Y

l
) =

∑l

i=1
Y

2
i
∕l 

instead of v in Definition 1. As mentioned before, it could be promising to combine 
strengths of an ensemble of various estimators. There is definitely room for further 
improvements. It remains to be tested how well 𝜎̂2

JFNL
 performs in examples beyond 

the ones shown here as well as in real data where the independence and minimal 
segment length assumptions may not hold.

6  Utilizing the jump filtered noise level estimator �̂
2

JFNL

For methods/model selection procedures, that rely on an estimate of the noise level 
one can hope to obtain better results when using a better estimate of the noise 
level. We illustrate this for some approaches for which changing the default noise 
level estimate is easy to do within the corresponding R package/implementation. 
In Fig. 2 we consider the extreme.teeth signal with noise level 𝜎 = 0.3 (top) 
and 𝜎 = 0.45 (bottom). As expected, the JFNL based estimators in general result in 
more estimated change points than the MAD variants as JFNL does not overestimate 
the variance. Interestingly, for the lower noise level, FDRSeg (Li et al. 2016) and 
SeedBS (Kovács et al. 2020a) with a fixed threshold (with JFNL) perform similar 
to SDLL (with WBS2 or even in combination with SeedBS that we do not show 
to save space). For higher noise levels, all methods shown in red (JFNL) and black 
(MAD) tend to find fewer change points. The exception is SDLL with JFNL used for 
the threshold to determine the “low level” of the drop, which has median estimated 
number of change points still close to the true number. Hence, a bit surprisingly, it 
seems like JFNL also improves SDLL methodology in noisy scenarios. SeedBS with 
a fixed threshold finds fewer change points, but with a smaller variance than SDLL. 
As the noise level is quite high in this scenario, the question is also what one is aim-
ing for: a good estimate of the number of change points, potentially at the price of 
including more false positives, or selecting fewer change points and thus also fewer 
false positives? Note that we did not change the calibration/constants within SDLL 
when using the JFNL estimator instead of MAD, which might slightly influence the 
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Fig. 1  Boxplots of the JFNL and MAD estimators of the noise level 𝜎 in the extreme.teeth example 
of Fryzlewicz (2020) on the very left panel and five other examples from Fryzlewicz (2014) based on 
1000 simulations each. The true values of 𝜎 are indicated by the red horizontal lines respectively
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results. Also, besides the estimated number of change points, other performance 
measures might be helpful and necessary to understand the detailed behavior of 
individual methods. Lastly, the green parts of Fig. 2 show estimators from Du et al. 
(2016) implemented in the StepSignalMargiLike package (available from 
Samuel Kou’s homepage) with the therein proposed three priors (called NormA, 
NormB and NormC). With the implicit penalization, i.e. default options without us 
giving any estimate for the noise level, the NormA approach gave very good esti-
mates for the number of change points (with remarkably low variance) even for 
𝜎 = 0.45 and thus we considered it worthwhile mentioning. The NormB estimator 
returned way too few and the NormC way too many candidate change points. In 
practice, it is a question which prior to choose, moreover, the implementation does 
not scale well to long time series (around 8 seconds for a time series of length 105 
and 80 seconds for a time series that is three times longer).

7  BIC based model selection with � unknown or known?

We note that somewhat confusingly, BIC type criteria are used differently in differ-
ent publications and software for change point detection. Yao (1988) and Fryzlewicz 
(2014), for example, minimize T∕2 ⋅ log(MSE) + penalty (assumption of unknown 
variance), while dynamic programming approaches (e.g. PELT from Killick et al. 
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Fig. 2  Boxplots of the number of found change points (based on 100 simulations each) in the 
extreme.teeth example of Fryzlewicz (2020) with noise level 𝜎 = 0.3 (top) and 𝜎 = 0.45 (bottom) 
for various estimation approaches. Model selection approaches based on the JFNL estimator are in red, 
MAD based counterparts in black, while green refers to approaches from Du et al. (2016). The true num-
ber of change points is indicated by the dashed horizontal line at 199 and the vertical lines group the 
methods as a visual aid
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2012) typically minimize T ⋅ MSE + penalty , with MSE denoting the mean squared 
errors. In the latter approach the penalty term should include the noise level which 
in this case is assumed to be known. Yet, in practice often an estimate 𝜎̂ is used in 
the absence of exact knowledge on 𝜎 for which the JFNL estimator could be useful. 
However, such an approach ignores the uncertainty of the estimated noise level, an 
issue which is mentioned by Fearnhead and Rigaill (2020) among many other inter-
esting considerations for practice.

8  Conclusions

We pointed out similarities between SeedBS and WBS2, both being computation-
ally fast methods. The deterministic construction of intervals of SeedBS helps to 
make results reproducible compared to the randomness inherent in WBS2. Both 
approaches are generic and thus suitable for many change point detection problems. 
Our perhaps biased and slight preference for SeedBS also includes that it seems eas-
ier to combine seeded intervals with other model selection procedures, such as the 
NOT method, that are essential in certain change point detection problems beyond 
the Gaussian change in mean case. We also introduced the JFNL estimator for the 
noise level and showed in simulations that using JFNL could improve SDLL based 
model selection in rather noisy scenarios, as well as more traditional model selec-
tion approaches relying on a direct estimate of the noise level.
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