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for giving me many hints and remarks and for
careful reading of my thesis.
I also want to thank Thomas Huber and Nicolas
Stalder for many helpful discussions and remarks
on several points of my work.
Finally, I want to thank all those who supported
me during my PhD-time in whatever way.

iii





Contents

Summary vii

Zusammenfassung ix

Introduction 1
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 General Results 5
1.1 Galois Representations associated to Drinfeld modules . . . . . . . . 5
1.2 Action of inertia groups on torsion points . . . . . . . . . . . . . . . . 9
1.3 An interpolation result from class field theory . . . . . . . . . . . . . 14

2 Absolute Irreducibility of the Residual Representation 19
2.1 The case EndK̄(ϕ) = A and [K : F ] <∞ . . . . . . . . . . . . . . . . 20
2.2 The image of the group ring in the case [K : F ] <∞ . . . . . . . . . 27
2.3 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Adelic Openness in generic characteristic 31
3.1 Preparatory results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Surjectivity of the residual representation . . . . . . . . . . . . . . . . 36
3.3 The case [K : F ] <∞ . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Specialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 59

Curriculum Vitae 63

v





Summary

Let p be a prime number, and let q be a power of p. Let F be a finitely generated
field of transcendence degree 1 over the finite field Fq of q elements, and let K be a
finitely generated extension of Fq. Fix a place ∞ of F, and denote by A the ring of
all elements of F which are integral outside ∞.

In this thesis we study the images of Galois representations associated to Drinfeld
modules.

To present the two main results, let ϕ : A −→ K{τ} be a Drinfeld A-module
over K of rank r. For every prime p of A we have a continuous Galois representation

ρp : GK −→ AutAp

(
Tp(ϕ)

)

on the p-adic Tate module of ϕ where GK denotes the absolute Galois group of K.
By reduction modulo p we get the residual representation

ρp : GK −→ Autκp

(
ϕ[p](Ksep)

)

where κp denotes the residue field at p. The natural question is to ask how large the
image of this representation is. Our first main result shows that the image of ρp is
typically quite large.

Theorem. Let ϕ be a Drinfeld A-module over K. Assume that EndK(ϕ) = A. Then
the residual representation is absolutely irreducible for almost all primes p of A.

Next, if ϕ is of generic characteristic, we consider the adelic representation

ρad : GK −→ GLr(Af
F )

where Af
F denotes the ring of finite adeles of F. The natural question again is to

ask how large the image of this representation is. It has been conjectured that the
image of this representation is open under suitable hypotheses, i.e., it is essentially
as large as possible.

Our second main result proves this conjecture.
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Theorem. Let ϕ be a Drinfeld A-module over K of generic characteristic. Assume
that EndK̄(ϕ) = A. Then the image of the adelic representation is open.
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Zusammenfassung

Sei p eine Primzahl, und sei q eine Potenz von p. Sei F ein endlich erzeugter Körper
vom Transzendenzgrad 1 über dem endlichen Körper Fq mit q Elementen, und sei K
eine endlich erzeugte Erweiterung von Fq. Fixiere eine Stelle∞ von F, und bezeichne
mit A den Ring aller Elemente von F, welche ausserhalb ∞ ganz sind.

In dieser Arbeit studieren wir die Bilder von Galois Darstellungen, welche zu
Drinfeld Moduln gehören.

Um die beiden Hauptresultate zu präsentieren, sei ϕ : A −→ K{τ} ein Drinfeld
A-Modul über K vom Rang r. Für jedes Primideal p von A haben wir eine stetige
Galois Darstellung

ρp : GK −→ AutAp

(
Tp(ϕ)

)

auf dem p-adischen Tate Modul von ϕ, wobei GK die absolute Galois Gruppe von
K bezeichnet. Durch Reduktion modulo p erhalten wir die residuelle Darstellung

ρp : GK −→ Autκp

(
ϕ[p](Ksep)

)
,

wobei κp den Restklassenkörper bei p bezeichnet. Es drängt sich die Frage auf, wie
gross das Bild dieser Darstellung ist. Unser erstes Hauptresultat zeigt, dass das Bild
von ρp typischerweise ziemlich gross ist.

Theorem. Sei ϕ ein Drinfeld A-Modul über K. Nehme an, dass EndK(ϕ) = A
ist. Dann ist die residuelle Darstellung absolut irreduzibel für fast alle Primideale p

von A.

Dann betrachten wir für ϕ von generischer Charakteristik die adelische Dartsel-
lung

ρad : GK −→ GLr(Af
F ),

wobei Af
F den Ring der endlichen Adelen von F bezeichnet. Die natürliche Frage

ist wieder die nach der Grösse des Bildes der Darstellung. Es wurde vermutet, dass
das Bild dieser Darstellung unter geeigneten Bedingungen offen ist, i.e., es ist im
Wesentlichen so gross wie möglich.

Unser zweites Hauptresultat beweist dies.
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Theorem. Sei ϕ ein Drinfeld A-Modul über K von generischer Charakteristik.
Nehme an, dass EndK̄(ϕ) = A ist. Dann ist das Bild der adelischen Darstellung
offen.
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Introduction

Notation

The following notation will be used throughout the whole thesis.

For any commutative ring R and any natural number n, we denote by Mn(R) the
ring of n× n-matrices with entries in R.

For any field L, we denote by L̄ a fixed algebraic closure of L and by Lsep the
separable closure of L in L̄. By GL := Gal(Lsep/L) we denote the absolute Galois
group of L.

Let p be a prime number, and let q be a power of p. Let F be a finitely generated field
of transcendence degree 1 over the finite field Fq, and let K be a finitely generated
extension of Fq.
Fix a place∞ of F, and denote by A the ring of all elements of F which are integral
outside ∞.
If K has transcendence degree 1 over its prime field, we denote by P,Q, . . . , places
of K.
By p, q, . . . , we denote primes of A.
For any prime p of A, we denote the residue field at p by κp, and for any place P of
K, we denote the residue field at P by kP.

We assume that K is an A-field, i.e., it is endowed with a ring homomorphism

ι : A −→ K.

The kernel of ι is called the characteristic of K. The field K is said to have generic
characteristic if ι is injective, and special characteristic if p0 := ker(ι) is a nonzero
prime of A. We denote by

D : EndK(Ga) = K{τ} −→ K

the derivative at 0, i.e., if f =
∑n

i=0 aiτ
i ∈ K{τ}, the derivative of f is given by

Df = a0. By ϕ we will always denote a Drinfeld A-module over K of rank r. The
characteristic of K is also called the characteristic of ϕ.
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Outline of the thesis

In this thesis, we study the Galois representations associated to Drinfeld modules.
The aim is to describe their images qualitatively. If one regards Drinfeld modules
as function field analogues of elliptic curves, it is not surprising that our main
theorems hold. Serre proved the adelic openness for elliptic curves without complex
multiplication in [29]. We will proceed along his lines. Actually, elliptic curves can
best be compared with Drinfeld modules of rank 2. Since we want to prove our
results for Drinfeld modules of arbitrary rank, we can not exactly take the same
route as Serre did because some results he uses simply do not hold for higher rank.
The residual representation will play a major role throughout the text.
The thesis is divided into three chapters. The first chapter presents some background
material, the subsequent chapters each present one of the two main results.

Chapter 1. We assume that the reader is familiar with the basic notions of Drin-
feld modules. In Section 1.1 we collect several results on the Galois representations
ρp : GK −→ GLr(Ap) and ρp : GK −→ GLr(κp). One of the most important
ingredients from Chapter 1 is the openness of the image of the Galois representation
for a finite set of primes of A. This result due to Pink can be found in [20].

In Section 1.2 we analyze the action of inertia groups on torsion points. The
first result can be found in Pink and Traulsen [23] and states that the restriction of
ρp to the inertia group at any place not lying above p is unipotent. It then remains
to consider the action of the inertia group at a place P on the p-torsion module
ϕ[p] for P above p. To analyze it, we follow Serre [29]. We introduce the notion
of fundamental characters, which will play a very important role. Using these, the
action of inertia can be described. This is a major step for proving the absolute
irreducibility.

Section 1.3 contains a class field theoretical result. Again, we follow Serre’s
approach. We introduce certain algebraic groups, for which we state and prove a
result on interpolation of some characters.

Chapter 2. The second chapter contains the first main result of this thesis, the
absolute irreducibility of the residual representation.

Theorem. Let ϕ be a Drinfeld A-module over K. Assume that EndK(ϕ) = A. Then
the residual representation

ρp : GK −→ GLr(κp)

is absolutely irreducible for almost all primes p of A.

The proof of this result is divided into three sections. In Section 2.1 we prove it

2



in the case where the endomorphisms of ϕ over K̄ are scalar and where K is a finite
extension of F. Pink and Traulsen proved the analogous result for Drinfeld modules
of special characteristic in [23, Theorem 3.1]. Therefore we assume that ϕ has
generic characteristic. We will give an indirect proof, assuming that the residual
representation is not absolutely irreducible for infinitely many primes. First, we
consider the determinant of the residual representation and describe its ramification.
For this we can use the results from Chapter 1. Translating the situation into
class field theoretical terms allows us to compare our character to characters of
some algebraic groups. Using this we are able to construct an algebraic relation
contradicting one of Pink’s results.

In Section 2.2 we still assume that ϕ has generic characteristic, but we allow
the Drinfeld module to have arbitrary endomorphism ring. Of course, the residual
representation will no longer be absolutely irreducible. The best possible result is
to give a description of the image of the group ring under the Galois representation.
We will give this description without proving the details, since one can use exactly
the same argument as Pink and Traulsen did in [23].

In Section 2.3 we present the proof of the general case. We do this by proving the
general case of the result on the image of the group ring. The absolute irreducibility
then is an immediate consequence. The proof will be given by reduction to the case
where K is a finite extension F. This will be done using a similar argument as Pink
did in [20]

Chapter 3. The third chapter deals with the adelic openness in generic charac-
teristic. Section 3.1 gives some preparatory results on subgroups of matrix groups
and on algebraic groups which will be important in the subsequent sections.

In Section 3.2 we show that the residual representation is surjective for almost all
primes p of A. The major steps are as follows. First, by our result from Chapter 1,
we know that the image of the tame inertia group under the residual representation
is quite big. Using this together with the absolute irreducibility from Chapter 2, we
will show that all conjugates of the image of the tame inertia group generate GLr(κp).
Finally, by using a result from Section 3.1, we can show that the residual represen-
tation is surjective for almost all primes p of A.

Section 3.3 contains the proof of the adelic openness in generic characteristic for
the case that K is a finite extension of F. We deduce the result from the surjectivity
of the residual representation for almost all primes of A. The argument is very
similar to the one in Gardeyn [10]. By Pink’s result [20], we can discard a finite
set of primes of A. For the remaining primes, we first prove a result on subgroups
of GLr(κp). Together with a statement on the size of a certain ramification index,

we can then show that GLr(Ap), as a factor of GLr(Af
F ), is contained in the image
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of the adelic representation. This implies that the image of the adelic representation
is open.

In Section 3.4 we give a specialisation result whose proof is based on an argument
from Pink [18] and uses a result from Pink [20].

Finally, Section 3.5 contains the second main result of this thesis.

Theorem. Let ϕ be a Drinfeld A-module over K with generic characteristic.
Assume that EndK̄(ϕ) = A. Then the image of the adelic representation

ρad : GK −→ GLr(Af
F )

is open.

The proof is a reduction to the case of a finite extension using the specialisation
result from Section 3.4.

The adelic openness means that the image of the adelic representation is as big as
possible up to commensurability. This is the best result possible and gives a complete
answer to the qualitative question what the image of the Galois representation looks
like.

4



Chapter 1

General Results

In this chapter, we introduce some general results on Drinfeld modules which will
be used in the following chapters. We assume that the reader is familiar with the
basic notions of Drinfeld modules. These can be found for example in Drinfeld [6],
Deligne and Husemöller [5], Hayes [12] or Goss [11, Chapter 4].

In the first section, we list some important results concerning Galois representa-
tions on Tate modules. These are due to Pink [20], [21], Taguchi [32], [33], [35] and
Tamagawa [37].

In the second section, some results on the action of inertia groups on torsion
points of Drinfeld modules are stated. The first is due to Pink and Traulsen [23].
The second we develop here. Following Serre’s results from [29] for elliptic curves,
we introduce the notion of fundamental characters and prove some results for these.

In Section 1.3, two algebraic groups are constructed in the same way as Serre
did in [27] and [29]. Then we state a result which will allow us in the next chapter
to compare certain characters.

1.1 Galois Representations associated to Drinfeld

modules

Consider a Drinfeld A-module ϕ : A→ K{τ}, a 7→ ϕa over K of rank r and (any)
characteristic p0. For any ideal a of A, denote by

ϕ[a] :=
⋂
a∈a

Ker(ϕa : Ga,K −→ Ga,K),

which is an intersection of closed subschemes of Ga,K , and by

ϕ[a](Ksep) := {x ∈ Ksep | ∀a ∈ a : ϕa(x) = 0}
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the module of a-torsion of ϕ. If a does not divide the characteristic of ϕ, by Lang’s
theorem, this is a free A/a-module of rank r. For any prime p of A different from
the characteristic of ϕ, the p-adic Tate module

Tp(ϕ) := lim
←
ϕ[pn](Ksep)

of ϕ is a free Ap-module of rank r where Ap denotes the completion of A at p. We
denote by Vp(ϕ) := Tp(ϕ)⊗Ap Fp the rational Tate module of ϕ.

For all p 6= p0, there is a continuous Galois representation on the Tate module

ρp : GK −→ AutAp

(
Tp(ϕ)

) ∼= GLr(Ap).

By definition, the reduction modulo p is a continuous Galois representation on the
module of p-torsion

ρp : GK −→ Autκp

(
ϕ[p](Ksep)

) ∼= GLr(κp)

over the residue field κp := A/p. We call it the residual representation.
Our first stated result is the semisimplicity conjecture.

Theorem 1.1.1 (Semisimplicity conjecture). Let ϕ be a Drinfeld A-module over K
and p a prime of A different from the characteristic of ϕ. Then the Fp[GK ]-module
Vp(ϕ) is semisimple.

Proof. For the case where K is of transcendence degree 1 over Fq, see Taguchi
[32, Theorem 0.1] in special characteristic and Taguchi [33, Theorem 0.1] in generic
characteristic. For the general case, see Pink [20, Theorem 1.4].

The next result has been proven independently by Taguchi and Tamagawa.

Theorem 1.1.2 (Tate conjecture for Drinfeld modules). Let ϕ1 and ϕ2 be two
Drinfeld A-modules over K of the same characteristic. Then for all primes p of A
different from the characteristic of K, the natural map

HomK(ϕ1, ϕ2)⊗A Ap −→ HomAp[GK ]

(
Tp(ϕ1), Tp(ϕ2)

)

is an isomorphism.

Proof. See Taguchi [36] or Tamagawa [37].

Combining these two theorems, on gets another important result which parallels
one we are going to prove in the next chapter.

6



Theorem 1.1.3. Let ϕ be a Drinfeld A-module over K, and assume that
EndK(ϕ) = A. Then the representation

GK −→ AutAp

(
Vp(ϕ)

)

is absolutely irreducible for all primes p of A different from the characteristic of ϕ.

Proof. Combine Theorem 1.1.1 and Theorem 1.1.2.

We are now coming to a result which will be very useful later on. It is about the
size of the image of the Galois group under the representation on the Tate module.
Serre proved that for an elliptic curve without complex multiplication, the image of
the Galois group is as big as possible.

Pink studied the analogous problem for Drinfeld modules.

Theorem 1.1.4. Let ϕ be a Drinfeld A-module over K of generic characteristic
and assume that EndK̄(ϕ) = A. Then for any finite set Λ of primes of A the image
of the homomorphism

GK −→
∏

λ∈Λ
GLr(Fλ)

is open.

Proof. See Pink [20].

Theorem 1.1.5. Let ϕ be a Drinfeld A-module over K of special characteristic and
assume that EndK̄(ϕ) = A. Then the image of ρp is Zariski dense in GLr,Fp for all
primes p of A different from the characteristic of ϕ.

Proof. See Pink [21].

Theorem 1.1.6 (Isogeny conjecture for Drinfeld modules). Let ϕ be a Drinfeld
A-module over K. Assume that K is of transcendence degree 1. Then up to K-
isomorphism, there are only finitely many Drinfeld A-modules ϕ′ over K for which
there exists a K-isogeny ϕ→ ϕ′ of degree not divisible by p0.

Proof. See Taguchi [32] in special characteristic and Taguchi [35] in generic charac-
teristic.

In [23], Pink and Traulsen reformulated Theorem 1.1.6 into a result on Galois
invariant submodules.

Proposition 1.1.7. Let ϕ be a Drinfeld A-module over K. Assume that K is
of transcendence degree 1. Then for almost all primes p of A and all natural
numbers n > 0, every GK-invariant A/pn-submodule of ϕ[pn](Ksep) has the form
α
(
ϕ[pn](Ksep)

)
for some α ∈ EndK(ϕ).

7



Proof. See [23, Proposition 2.3].

Corollary 1.1.8. Let ϕ be a Drinfeld A-module over K. Assume that K is of trans-
cendence degree 1 and that EndK(ϕ) = A. Then the representation ρp is irreducible
for almost all primes p of A.

Proof. Set n = 1 in Proposition 1.1.7.

8



1.2 Action of inertia groups on torsion points

In this section we give three results which will be useful in the next chapter. The
first result gives us some information on the characteristic polynomial of certain
Frobenius elements. It is for Drinfeld modules of both generic and special charac-
teristic. Throughout the section we assume that K is of transcendence degree 1.

Proposition 1.2.1. Let ϕ be a Drinfeld A-module over K of arbitrary characteris-
tic, and let P be a place of K where ϕ has good reduction. Then for every prime p of
A different from the characteristic of ϕ and not lying below P, the representation ρp

is unramified at P, and the characteristic polynomial of ρp(FrobP) has coefficients
in A and is independent of p.

Proof. See Goss [11, Theorem 4.12.12 (2)].

For the remainder of this section, we assume that ϕ is of generic characteristic.
The next result has been proven by Pink and Traulsen in [23] for Drinfeld modules in
special characteristic. The proof also works in generic characteristic and is omitted
here.

Proposition 1.2.2. Let ϕ be a Drinfeld A-module over K of generic characteristic.
After replacing K by a suitable finite extension, for all primes p of A and all places
P of K not lying above p, the restriction of ρp to the inertia group at P is unipotent.

Proof. See Pink and Traulsen [23, Proposition 2.7].

Our next result will give us information on the action of the inertia group of a
place P of K on ϕ[p] if p lies below P. To achieve this goal, we need to introduce
fundamental characters. We then can prove a result very similar to one of Serre’s
in [29, §1].

Remark. On the next pages we will have to analyze the restriction of characters to
inertia groups of K. If P is a place of K we have to choose a place P̄ of K̄ above P

in order to talk about an inertia group. If we took another place above P then the
different inertia groups are conjugated. Since our characters have abelian image, it
does not matter which place above P we choose. We therefore fix one and write
IP and ItP for the inertia group and the tame inertia group of K at the place P,
respectively.

Fundamental characters. Fix a place P of K, a place P̄ of K̄, and denote
by vP be the according normalized valuation on the completion KP as well as its

9



extension to K̄P̄. Denote the respective residue fields by kP and kP̄. The field kP̄

is an algebraic closure of kP. Denote by Knr
P the maximal unramified extension of

KP inside K̄P̄, and by Kt
P the maximal tamely ramified extension of KP inside K̄P̄.

The tame inertia group ItP is Gal(Kt
P/K

nr
P ). Let π be a uniformizer at P. Let λ be

a finite extension of kP inside kP̄, and let πλ be any nonzero solution in Kt
P of the

equation X |λ| − πX = 0.

Definition. The fundamental character of λ is the homomorphism

ζλ : IP −→ λ∗, σ 7→ σ(πλ)/πλ mod π.

Remark. For any other uniformizer π′ and any nonzero solution π′λ of the equation
X |λ|−π′X = 0, the elements πλ and π′λ have the same valuation and therefore differ
by a unit u ∈ Kt

P. The value ζλ(σ) then changes by σ(u)/u, which is congruent to 1
modulo P because σ acts trivially on the residue field. Therefore ζλ is independent
of the choices of π and πλ. Moreover, it factors through the tame inertia group ItP
because πλ ∈ Kt

P.

The fundamental characters form a projective system with respect to the norm
maps, i.e., if λ′ is a finite extension of λ inside kP̄, then we have the following equality

ζλ = Nλ′/λ ◦ζλ′

where Nλ′/λ : λ′ → λ is the Norm map. Fundamental characters will be important
in analyzing the action of the inertia group at a place P of K on ϕ[p] for a prime p

of A lying below P.

Fix a place p of F, a place P of K above p, a place p̄ of F̄ above p and a place
P̄ of K̄ above P. Let qp denote the cardinality of κp, the residue field of F at the
place p. For any power m of p denote by km be the subfield of kP̄ with m elements.

Assume that ϕ has good reduction at P, and let hP be the height of the reduced
Drinfeld module. The connected-étale decomposition of ϕ[p] gives an exact sequence
of group schemes over SpecOKP

0 −→ ϕ[p]0 −→ ϕ[p] −→ ϕ[p]et −→ 0.

The set ϕ[p]0(Ksep) is an hP-dimensional κp vector space. The following result is an
analogue of Proposition 9 in Serre’s paper [29]. The analogue of Corollary 1.2.4 for
τ -sheaves has been proven by Gardeyn in [10]. Abbreviate qp

hP by n.

10



Proposition 1.2.3. Assume that the extension KP/Fp is unramified and that ϕ has
good reduction at P. Then the following properties hold.

(i) The inertia group IP acts trivially on ϕ[p]et(Ksep).

(ii) The action of the wild inertia group at P on ϕ[p]0(Ksep) is trivial.

(iii) The κp vector space structure of ϕ[p]0(Ksep) extends uniquely to a one dimen-
sional kn vector space structure such that the action of ItP on ϕ[p]0(Ksep) is
given by the fundamental character ζkn .

Proof. Assertion (i) follows immediately from the definition of an etale group scheme.
To prove (ii), define

α := 1/(n− 1),

uα := {x ∈ Ksep
P | vP(x) ≥ α},

u′α := {x ∈ Ksep
P | vP(x) > α}, and

Vα := uα/u
′
α.

Let πn be a nonzero solution of the equation Xn − πX = 0. The set Vα is a one
dimensional kP̄ vector space and isomorphic as GK-module to πnkP̄. By definition
of the fundamental character ζkn , the action of IP on Vα factors through ItP, and the
wild inertia group at P acts trivially.

We claim that for every non-zero element s ∈ ϕ[p]0(Ksep) we have
vP(s) = α. This can be done by considering an appropriate Newton polygon. For
this, let a ∈ A be a function with a zero of order one at p. Then (a) = pI for an
ideal I of A which is prime to p. Then we have

ϕ[a] = ϕ[p]⊕ ϕ[I].

Since ϕ[I] is étale, we get

ϕ[a]0 = ϕ[p]0

as group schemes over SpecOKP
. The polynomial ϕa is given by

ϕa =

r deg(p)∑
i=0

ϕa,iτ
i.

11



The Drinfeld module ϕ has good reduction at P. For the valuations of the coeffi-
cients, we thus get, with i0 := hP deg(p),

vP(ϕa,0) = vP

(
ι(a)

)
= 1,

vP(ϕa,i) ≥ 1 for 0 < i < i0,

vP(ϕa,i0) = 0,

vP(ϕa,i) ≥ 0 for i > i0.

The fact that ϕ[p]0(Ksep) is an hP-dimensional κp vector space and the above
observations imply that (1, 1) and (qp

hP , 0) are vertices of the Newton polygon
of ϕa(x) = 0. Therefore every non-zero element s ∈ ϕ[p]0(Ksep) satisfies

vP(s) = α,

whence s ∈ uα. Because ϕ[p]◦(Ksep) is a group under addition, the natural projection
uα ³ Vα thus induces an injective GK-equivariant homomorphism

ϕ[p]0(Ksep) ↪→ Vα.

Let V be its image. Since the above homomorphism is GK-equivariant, the wild iner-
tia group at P acts trivially on V, and the action of the tame inertia group at P and is
given by ζkn . Therefore V is invariant under multiplication by k∗n. From |V | = |kn|,
we deduce that V is a one dimensional kn vector space and ϕ[p]◦(Ksep) ∼= Vα as
κp[GK ]-modules. This implies (ii).

It remains to show that this vector space structure is an extension of the previous-
ly given κp vector space structure on ϕ[p]0(Ksep). For this, let b̄ ∈ κp, and let b be
an element of A whose residue class in κp is equal to b̄. Then the action of b̄ on
x ∈ ϕ[p]0(Ksep) is given by

ϕb(x).

The element b̄ induces the element ι(b) mod P ∈ kP and thus acts in a second way
on x through ι(b)x mod vP(.) > α. We have to show that these two actions coincide
on ϕ[p]0(Ksep). By definition of Vα this is equivalent to showing that

vP

(
ϕb(x)− ι(b)x

)
> α.

Since ϕ is a Drinfeld A-module over K, we have ϕb(x) = ι(b)x +
∑r deg(b)

i=1 bix
qi
.

Therefore we get

ϕb(x)− ι(b)x =

r deg(b)∑
i=1

bix
qi

.

12



Since ϕ has good reduction at P, we know that vP(bi) ≥ 0 for i = 1, . . . , r deg(b).
By definition of Vα we have vP(x) = α > 0. We thus get vP(bix

qi
) = vP(bi) +

qivP(x) > α, for i = 1, . . . , r deg(b), and therefore vP

(
ϕb(x)− ι(b)x

)
> α.

The κp vector space structure on ϕ[p]0(Ksep) therefore extends uniquely to a one
dimensional kn vector space structure, which shows that the action of ItP on V is
given by the fundamental character ζkn .

Consider ϕ[p]0(Ksep) ⊗kP
kP̄. This is an hP-dimensional kP̄ vector space. The

action of the tame inertia group ItP on it can be brought into diagonal form and is
therefore given by a set of hP characters

ψi : ItP −→ k∗̄P, i = 1, . . . , hP.

Define ΣhP
:= HomkP

(kn, kP̄).

Corollary 1.2.4. Assume that KP/Fp is unramified. Then the set of characters
{ψi}i is given by {σ ◦ ζkn}σ∈ΣhP

.

Proof. By Proposition 1.2.3, the representation of ItP over kP is given by ζkn . By the
representation theory of finite groups, the representation ζkn ⊗kP

kP̄ is given by

⊕
σ∈ΣhP

σ ◦ ζkn ,

as desired.
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1.3 An interpolation result from class field theory

In this section, we introduce two algebraic groups in the same way as Serre did in
[27, Chapter II] and [29, §3]. Then we analyze their character groups and indicate
how to construct a system of p-adic representations out of a character of S.

Remark. Serre’s construction is somewhat more general. He uses the notion of
modulus of support or, equivalently, conductors. Our construction will only give
us strictly compatible systems with trivial conductor. This is sufficient for the
application in the next chapter.

Define

U :=
∏

P-∞
O∗P ×

∏

∞′|∞
K∗∞′ ⊂ A∗K ,

and

C := A∗K/K∗U.

Then C is a finite abelian group and sits in the exact sequence

1 −→ K∗/(K∗ ∩ U) −→ A∗K/U −→ C −→ 1.

Consider the Weil restriction ResK
F (Gm,K) of the multiplicative group over K to F.

By definition, its points over a F -algebra B are given by

ResK
F (Gm,K)(B) := (B ⊗F K)∗.

LetK∗ ∩ U be the Zariski closure ofK∗∩U in ResK
F (Gm,K) and consider the quotient

T := ResK
F (Gm,K)/K∗ ∩ U.

Let S be the push-out of T and A∗K/U over K∗/(K∗ ∩ U). This is an algebraic
group with the universal property that, for any algebraic group S′ over F together
with homomorphisms T→ S′ and A∗K/U → S′(F ) such that the following diagram

K∗/(K∗ ∩ U)

²²

// A∗K/U

²²

T(F ) // S′(F )

commutes, there exists a unique homomorphism S → S′ through which the maps
T → S′ and A∗K/U → S′(F ) factor. A more explicit construction of the algebraic
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group S can be found in Serre [27, Chapter II]. The definitions of T and S give us a
commutative diagram

1 // K∗/(K∗ ∩ U)

²²

// A∗K/U

γ′
²²

// C

id

²²

// 1

1 // T(F ) // S(F ) // C // 1.

Denote by γ : A∗K → S(F ) the compositie of γ′ with A∗K → A∗K/U. Let p be any
prime of A, and fix a place p̄ of F̄ above p. Define

U p :=
∏

Q-{p, ∞}
O∗Q ×

∏

∞′|∞
K∗∞′ ⊂ A∗K ,

Kp :=
∏

P|p
KP,

and
Op :=

∏

P|p
OP.

The composite of γ with S(F )→ S(Fp) is the continuous homomorphism

γp : A∗K −→ S(Fp).

We know that
ResK

F (Gm,K)(Fp) = (Fp ⊗F K)∗ = K∗p .

We thus can consider ResK
F (Gm,K)(Fp) as a direct factor of A∗K . Taking the projection

onto this factor we get a continuous homomorphism

δp : A∗K → K∗p = ResK
F (Gm,K)(Fp)→ T(Fp)→ S(Fp).

It follows from the commutativity of the above diagram that γp|K∗ = δp|K∗ .
Therefore the continuous homomorphism

γpδ
−1
p : A∗K −→ S(Fp)

is trivial onK∗. Since both γp and δp are trivial on U p, the continuous homomorphism
γpδ
−1
p factors through a continuous homomorphism

εp : A∗K/K∗U p −→ S(Fp),

where K∗U p is the closure of K∗U p in A∗K .
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Characters of T and S. Define Σ := HomF (K, F̄ ). Every σ ∈ Σ extends to a
homomorphism F̄ ⊗F K → F̄ and thus gives a character [σ] : ResK

F (Gm,K)→ Gm,F̄

of ResK
F (Gm,K). These [σ] form a Z-basis of the character group X(ResK

F (Gm,K)).
Since T = ResK

F (Gm,K)/K∗ ∩ U, the character group of T is given by

X(T) =

{∏
σ∈Σ

σnσ

∣∣∣∣∣
∏
σ

σ(x)nσ = 1 for all x ∈ K∗ ∩ U
}
.

For the character groups of C, T, and S we have the exact sequence

1 −→ X(C) −→ X(S) −→ X(T) −→ 1

where X(C) is the finite group Hom(C, F̄ ∗). Any character µ of T can be extended
to a character θ of S in |C| ways.

Let a character θ of the algebraic group S be given. It induces a continuous
homomorphism S(Fp)→ F̄ ∗̄p . Its composite with εp is a continuous homomorphism

θp̄ : A∗K/K∗U p −→ F̄ ∗p̄ .

Since A∗K/K∗U p is compact, the image of θp̄ lies in O∗̄
Fp̄
. Therefore we can reduce it

mod p̄ and get
θ̄p̄ : A∗K/K∗U p −→ κ∗p̄.

The Artin reciprocity map of global class field theory induces a continuous iso-
morphism

ω : A∗K/K∗U p −→ Gal(Kab,p/K)

where Kab,p is the maximal abelian extension of K which splits completely at primes
∞′ above ∞ and is unramified at places not lying above p. If we compose the
homomorphisms θp̄ and θ̄p̄ with the inverse of ω we obtain continuous representations

θp̄ : Gal(Kab,p/K) −→ F̄ ∗p̄ ,

and
θ̄p̄ : Gal(Kab,p/K) −→ κ∗p̄.

By Serre [27, Chapter II], the θp̄ form a system of strictly compatible p-adic repre-
sentations.

Interpolation of characters. We will now see how to construct a character of
S out of a certain system of p-adic characters.
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For this, let S be an infinite set of primes of A. For any p ∈ S, fix a place p̄ of F̄
above p and consider a continuous homomorphism

ηp̄ : Gal(Kab,p/K) −→ κ∗p̄.

Every σ ∈ Σ extends uniquely to a homomorphism

σp : K∗p −→ F̄ ∗p̄ ,

and this homomorphism is equal to 1 on all factors K∗P of K∗p except the one for
which P = σ−1(p̄).

Proposition 1.3.1. Assume that there exist integers n(σ, p)σ∈Σ,p∈S whose absolute
values are bounded and such that for all p ∈ S and all x ∈ O∗p we have

ηp̄(x) =

(∏
σ∈Σ

σ
n(σ,p)
p (x−1) mod p̄

)
.

Then there exist θ ∈ X(S) and an infinite subset S ′ of S such that for all p ∈ S ′ we
have

θ̄p̄ = ηp̄.

Proof. Since the values of the n(σ, p) are bounded and Σ is finite, there exists an
infinite subset S ′′ of S such that for all p ∈ S ′′ the value n(σ, p) is independent of p.
Denote this value by nσ. Define α :=

∏
σ∈Σ σ

nσ
p . This is a character of ResK

F (Gm,K).
Take any x ∈ K∗ ∩ U. We know that ηp̄(x) = 1 and, by assumption, that

ηp̄(x) ≡ α(x−1) mod p̄. Therefore we have α(x) ≡ 1 mod p̄ for all p ∈ S ′′. Since
S ′′ is infinite, we get the equality α(x) = 1. This implies that α ∈ X(T).

Abbreviate n := |C|. Extend α to a character θ′ ∈ X(S). Then for any p ∈ S ′′,
the character

βp̄ := ηp̄θ̄′
−1
p̄ : A∗K/K∗U p −→ κ∗p̄

factors through C. Therefore it takes values in the group of n-th roots of unity µp̄,n

of κp̄. Let µn be the group of n-th roots of unity of F̄ . Then, for any prime p ∈ S ′′,
the reduction map µn −→ µp̄,n is an isomorphism. Therefore we can consider βp̄ as
homomorphism into µn and thus as an element of X(C). The character group X(C)
of C is finite. So there exist β ∈ X(C) and an infinite subset S ′ of S ′′ such that for
all p ∈ S ′ we have βp̄ = β. Define θ as the product of θ′ and the image of β in X(S).
For all p ∈ S ′ we then have θ̄p̄ = ηp̄.
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Chapter 2

Absolute Irreducibility of the
Residual Representation

In this chapter we prove the absolute irreducibility of the residual representation.
We are doing this in three steps, each of them being a section.

In Section 2.1 we assume that ϕ is of generic characteristic, that the extension
K/F is finite and that the endomorphism ring of ϕ over K̄ is A. We give an indirect
proof. If the residual representation ρp is irreducible, but not absolutely irreducible,
it can be considered as a representation of some smaller dimension over an exten-
sion of the residue field κp at p. Its determinant over that extension is an abelian
character χp. We can extend it to a character χp̄ with values in κp̄. We then consider
the restriction of this character to the inertia group of any place of K lying above p.
Using Proposition 1.2.3 we can show that this restriction is equal to a certain fun-
damental character. Next, we translate our setting into a class field theoretical one
using the result from Section 1.3. Having done this, we consider characteristic poly-
nomials of Frobenius elements and show that a certain resultant vanishes mod p

for any prime p of A where the residual representation is not absolutely irreducible.
If this happens for infinitely many primes p of A, the congruence relations give an
equality which yields an algebraic relation for ρp(GK). By Theorem 1.1.4 we know
that this image is Zariski dense in GLr,Fp which allows us to construct the desired
contradiction.

Section 2.2 deals with the case of a larger endomorphism ring. We can no longer
expect the residual representation to be absolutely irreducible. Instead, we describe
the image of the group ring Ap[GK ] in the endomorphism ring of the Tate module
for almost all primes p of A. The section will be quite short since the results are the
same as in the paper by Pink and Traulsen [23, Section 4]. All arguments also work
in generic characteristic.
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Finally, in Section 2.3, we prove the general case, i.e., we do not make any
assumptions on the characteristic of ϕ, and the field K is finitely generated over Fq.
We prove this by reduction to the case of transcendence degree 1 which is already
proven in Section 2.2. The argument is very similar to the one in Pink [20, Theorem
1.4].

2.1 The case EndK̄(ϕ) = A and [K : F ] <∞
The aim of this section is to prove the following result.

Theorem 2.1.1. Let ϕ be a Drinfeld A-module over K of generic characteristic.
Assume that EndK̄(ϕ) = A and that K is a finite extension of F. Then the residual
representation

ρp : GK −→ GLr(κp)

is absolutely irreducible for almost all primes p of A.

Remarks. 1. The analogous result for Drinfeld A-modules of special characteristic
was proven by Pink and Traulsen in [23, Theorem 3.1].

2. We need the assumption EndK̄(ϕ) = A because we use Theorem 1.1.4 at the
end of this section.

By Corollary 1.1.8 we know that ρp is irreducible for almost all primes p of A.
By the Lemma of Schur, for these primes the ring Endκp(ρp) is a finite dimensional
division algebra over κp. Since κp is finite, every finite dimensional division algebra
over κp is a commutative field. The ring Endκp(ρp) is thus a finite field extension
of the residue field κp of some degree sp. Denote this field extension by λp. Since
r = dimκp(ρp) = dimλp(ρp)[λp : κp] = dimλp(ρp)sp, the integer sp must divide the
rank r of ϕ. Setting tp := r/sp we see that the residual representation ρp factors
through GLtp(λp) ⊂ GLr(κp).

To prove Theorem 2.1.1 we have to show that sp = 1 for almost all p. If not,
some value of sp > 1 must occur infinitely often. To give an indirect proof, we make
the following assumption.

Assumption 2.1.2. There exist integers s > 1 and t with st = r and an infinite
set S of primes of A such that for all p ∈ S the residual representation ρp factors
through GLt(λp) where λp is a field extension of κp of degree s.

For p ∈ S we can consider ρp as a homomorphism GK −→ GLt(λp). If we
compose ρp with the determinant

detλp : GLt(λp) −→ λ∗p,
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we get a character
χp := detλp ◦ρp : GK −→ λ∗p.

Remarks. 1. Since S is infinite, we can remove finitely many primes, and S is still
infinite. We remove those primes of S where ϕ has bad reduction and those which
are ramified in K. Then
• ϕ has good reduction at all places of K lying above places in S, and
• all p ∈ S are unramified in K.

2. It is enough to prove Theorem 2.1.1 for an open subgroup of GK . This allows
us to replace K by a finite extension. We replace K by a finite extension such that
the restriction of ρp to any inertia group of a place not lying above p is unipotent,
which is possible by Proposition 1.2.2. Next, enlarge K such that the lattices at the
places above ∞ become K-rational. Again, only a finite extension is needed. Then
the following two properties hold:
• for all p ∈ S and for all places P of K not lying above p we have χp|IP = 1, and
• for all places ∞′ of K lying above ∞ we have χp|D∞′ = 1.

3. By replacing K by a finite extension as above, we only have to deal with
characters whose prime to p conductor is 1 and which totally decompose above ∞.

Let p be any prime in S. Fix a place p̄ of F̄ above p. The residue field κp̄ at p̄ is

an algebraic closure of κp. Denote by κ
[s]
p the extension of κp of degree s inside κp̄.

Choose an embedding βp : λp ↪→ κp̄. Composing χp with βp gives a character

χp̄ := βp ◦ χp : GK −→ κ∗p̄.

Define Σ := HomF (K, F̄ ). Let P be any place of K above p. Then the set ΣP :=
{σ ∈ Σ | P = σ−1(p̄)} is non-empty. Any σ ∈ ΣP induces an embedding kP ↪→ κp̄.
Let kqp

s be the field with qs
p elements inside kP.

Lemma 2.1.3. Let p be any prime in S and P a place of K above p. Then the
following properties hold.

(i) We have s | [kP : κp], and so any σ ∈ ΣP induces an embedding σ̄ : kqs
p
↪→ κp̄.

(ii) There exists an element σ ∈ ΣP such that

χp̄|IP = σ̄ ◦ ζkqs
p
.

Proof. Let P be any place of K above p. The Drinfeld module ϕ has good reduction
at P. We thus have an exact sequence of κp vector spaces

0 −→ ϕ[p]0(Ksep) −→ ϕ[p](Ksep) −→ ϕ[p]et(Ksep) −→ 0.
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Let hP denote the height of the reduced Drinfeld module and abbreviate qp := |κp|
and n := q

hP
p . By Proposition 1.2.3, the group IP acts tri-vially on ϕ[p]et(Ksep)

and, because of the above remarks, it has no coinvariants on ϕ[p]0(Ksep). Thus
the group of IP-coinvariants of ϕ[p](Ksep) is ϕ[p]et(Ksep). Since the representation
factors through GLt(λp), it follows that the above exact sequence is a sequence of
λp vector spaces. Thus s must divide hP.

Moreover, the determinant over λp of the representation ρp|IP is equal to the
determinant of the subrepresentation on ϕ[p]0(Ksep). By Proposition 1.2.3 (ii) we
know that the κp vector space structure of ϕ[p]0(Ksep) extends to a one dimensional
kn vector space structure such that the action of IP on it is given by the fundamental
character ζkn : IP → k∗n. The action of λp induces an embedding λp ↪→ kn and
therefore an identification λp

∼= kqs
p

over κp. Via this identification, the determinant
over λp of an element x ∈ k∗n is the norm Nkn/λp(x) ∈ λ∗p. It thus follows that
detλp ◦ρp|IP is the fundamental character ζkqs

p
: IP → λ∗p.

Therefore ζkqs
p

extends to an abelian character of GK . The fundamental character

is equivariant under conjugation by GKP
. Since it is also surjective, we get that GKP

acts trivially on λ∗p. Therefore λp is contained in the residue field kP, and so s divides
[kP/κp], proving (i).,

To prove (ii), note that the embedding βp induces an isomorphism

βp,s : λp
∼= κ

[s]
p .

Every σ ∈ ΣP induces a σ̄ and therefore an isomorphism

σ̄s : kqp
s ∼= κ

[s]
p .

Take the σ ∈ ΣP such that the following diagram commutes

ItP
χp

// λ∗p
βp,s

// κ
[s]∗
p

ItP
ζkqps

// kqp
s

σ̄s // κ
[s]∗
p .

For this σ we get χp̄|IP = σ̄ ◦ ζkqps .

Translation into a class field theoretical setting. To get more information
on the ramification of the character χp̄ we use some elements of class field theory.
We will get a new character and some information on the ramification of it. We use
the same notation as in Section 1.3.

22



Since the characters χp and χp̄ are abelian, unramified at places not lying above
p, and trivial if restricted to the decomposition group at any place ∞′ of K lying
above ∞, they factor through Gal(Kab,p/K). Therefore we can compose them with
the Artin reciprocity map

ω : A∗K/K∗U p −→ Gal(Kab,p/K)

and get new characters

ψp := χp ◦ ω : A∗K/K∗U p −→ λ∗p,

and

ψp̄ := χp̄ ◦ ω : A∗K/K∗U p −→ κ∗p̄.

Lemma 2.1.4. For any p ∈ S there exist n(σ, p) ∈ {0, 1} such that for any x ∈ O∗p

ψp̄(x) =

(∏
σ∈Σ

σ
n(σ,p)
p (x−1) mod p̄

)
.

Proof. Let p be any prime in S and P a place of K lying above p. Then for any
σ ∈ ΣP as in Lemma 2.1.3 (ii), we get

χp̄|IP = σ̄ ◦ ζkqs
p

= σ̄ ◦ NkP/kqs
p
◦ζkP

.

Since the norm is the product of all Galois conjugates, and P is unramified over p,
the latter is equal to ∏

σ′∈Σ′P

σ̄′ ◦ ζkP

where Σ′P := {σ′ ∈ ΣP : σ′|kqs
p

= σ|kqs
p
}.

If we compose the fundamental character ζkP
with the inverse of the local norm

residue symbol, ωP : K∗P → GKP
, we get

ζkP
◦ ωP : O∗P −→ k∗P, x 7→ x−1 mod P.

Therefore the above equality is equivalent to

ψp̄(x) ≡
∏

σ′∈Σ′P

σ′(x−1) mod p̄
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for all x ∈ O∗P. Set n(σ′, p) := 1 whenever σ′ ∈ Σ′P for some P above p, and 0
otherwise. Because of O∗p =

∏
P|pO∗P, we then have for all x = (xP) ∈ O∗p

ψp̄(x) ≡
∏

P|p

∏

σ′∈Σ′P

σ′(x−1
P ) mod p̄

=
∏
σ∈Σ

σp(x
−1)n(σ,p).

Comparison of characters. We can now use Lemma 2.1.4 to construct a char-
acter of S such that the induced p-adic representation reduced mod p̄ will coincide
with ψp̄.

Lemma 2.1.5. There exist θ ∈ X(S) and an infinite subset S ′ of S such that for all
p ∈ S ′ we have

θ̄p̄ = ψp̄.

Proof. By Lemma 2.1.4 we know that for all p ∈ S there exist n(σ, p) ∈ {0, 1} such
that

ψp̄(x) =

(∏
σ∈Σ

σ
n(σ,p)
p (x−1) mod p̄

)
for all x ∈ O∗p.

The exponents are bounded by 1. This implies that the characters ψp̄ for p ∈ S
satisfy the assumptions of Proposition 1.3.1. Therefore there exist θ ∈ X(S) and an
infinite subset S ′ of S such that for all p ∈ S ′ we have θ̄p̄ = ψp̄.

If we compose the homomorphisms θp̄ and θ̄p̄ with the Artin reciprocity map
ω : A∗K/K∗U p −→ Gal(Kab,p/K) we can consider them as continuous representations

θp̄ : Gal(Kab,p/K) −→ F̄ ∗p̄ ,

and

θ̄p̄ : Gal(Kab,p/K) −→ κ∗p̄.

Replace S by S ′. For all p ∈ S we then get by Lemma 2.1.5 the equality

θ̄p̄ = χp̄.
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Construction of an algebraic relation. Let n be an integer, and let
f(T ) :=

∏n
i=1(T − αi) =

∑n
i=0 βiT

i be any monic polynomial of degree n. For
any integer m ≤ n define

f (m)(T ) :=
∏

I

(
T −

∏
i∈I

αi

)

where the outer product ranges over all subsets I of {1, . . . , n} of cardinality m.
The coefficients of f (m)(T ) are symmetric polynomials in the αi and are therefore
polynomials in β1, . . . , βn with coefficients in Z. The above construction can thus
be applied to any monic polynomial with coefficients in any commutative ring. If f
is the characteristic polynomial of a linear map M, then f (m) is the characteristic
polynomial of

∧mM. We have f (m)(α) = 0 if and only if f has m zeros with
product α.

Fix a place Q of K where ϕ has good reduction. Let p be any prime of A not
lying below Q. Denote by fQ the characteristic polynomial of ρp(FrobQ). By 1.2.1
it has coefficients in A and is independent of p.
Denote by f̄Q,p the characteristic polynomial of ρp(FrobQ) ∈ GLr(κp), and by ḡQ,p

the characteristic polynomial of ρp(FrobQ) ∈ GLt(λp). We have

f̄Q,p ≡ fQ mod p,

and
f̄Q,p = Nλp/κp ḡQ,p.

The fact that the θp̄ form a system of strictly compatible p-adic representations
means that uQ := θp̄(FrobQ) lies in F̄ ∗ and is independent of p. It is integral outside
∞ and the places lying below Q.

Lemma 2.1.6. For all places Q of K where ϕ has good reduction we have

f
(t)
Q (uQ) = 0.

Proof. Fix a place Q of K where ϕ has good reduction. Let p ∈ S be a prime not
lying below Q. By Lemma 2.1.5 we have

χp̄(FrobQ) = θ̄p̄(FrobQ).

This implies that the product of the t zeros of ḡQ,p is equal to θ̄p̄(FrobQ), which shows

that f̄
(t)
Q,p

(
θ̄p̄(FrobQ)

)
= 0. Since f̄

(t)
Q,p ≡ f

(t)
Q mod p and θ̄p̄(FrobQ) ≡ uQ mod p, we

get f
(t)
Q (uQ) ≡ 0 mod p. This happens for infinitely many p ∈ S. Therefore we

get f
(t)
Q (uQ) = 0.
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Conclusion. We can now prove Theorem 2.1.1 using the above results.

Proof of Theorem 2.1.1. Fix a prime p of A. Consider the representation

ρp × θp̄ : GK −→ GLr,F̄p̄
×GL1,F̄p̄

and denote by Γp its image. Consider the morphism

ν : GLr×GL1 → A1, (g, h) 7→ det(Λtg − h1(r
t)

).

By Lemma 2.1.6 we know that ν
(
ρp(FrobQ), θp̄(FrobQ)

)
= 0 for all places Q of K

with Q - p,Q -∞, and where ϕ has good reduction. Since these FrobQ form a dense
subset, we get

ν|Γp = 0.

Let Γder
p be the commutator subgroup of Γp. Then we have

Γder
p ⊂ SLr,Fp ×1.

By [23, Lemma 3.7] we know that the commutator morphism

[ , ] : GLr×GLr → SLr

is dominant. Together with Theorem 1.1.4 we see that the projection of Γder
p to the

first factor lies Zariski dense in SLr,Fp . Note that in order to use Theorem 1.1.4, we
need EndK̄(ϕ) = A. This was assumed at the beginning of this section. Since ν is
an algebraic morphism, it follows that ν vanishes on SLr,Fp ×1.

But we have

ν(




α
. . .

α
α−r+1


 , 1) = (αt − 1)(

r−1
t )(αt−r − 1)(

r−1
t−1).

We assumed that s > 1, which implies t < r. Therefore the restriction of ν to
SLr,Fp ×1 is non-constant. This is a contradiction, and so Assumption 2.1.2 is false,
as desired.
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2.2 The image of the group ring in the case

[K : F ] <∞
In this section, we assume that ϕ is a Drinfeld A-module over K of generic char-
acteristic and arbitrary endomorphism ring E := EndK(ϕ). Let Bp be the image of
the natural homomorphism

Ap[GK ] −→ EndAp

(
Tp(ϕ)

)
.

For all primes p of A the natural homomorphism

Ep := E ⊗A Ap −→ EndAp

(
Tp(ϕ)

)

is injective by Pink and Traulsen [23, Proposition 4.1], and by Theorem 1.1.2 its
image is equal to the commutant of Bp. Denote by c the rank of E as A-module,
and define d := r/c. Since ϕ has generic characteristic, the ring E is commutative,
and the number d is an integer. Define Ep := E ⊗A Ap.

We can now state the result on the image of the group ring. It is analogous to
Theorem B in Pink and Traulsen [23]. The only difference in our case is that the
endomorphism ring E is always commutative since ϕ has generic characteristic.

Theorem 2.2.1. For almost all primes p of A we have Bp
∼= Md(Ep).

Proof. Since E is commutative, its center is E as well. All arguments of the proof
by Pink and Traulsen also work in generic characteristic with the center Z of E
replaced by E. The only missing part is the absolute irreducibility of the residual
representation in the case where EndK̄(ϕ) = A which has been proven in the previous
section.
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2.3 The general case

In this section we prove the absolute irreducibility of the residual representation
for a Drinfeld module of arbitrary characteristic over a general finitely generated
field K over Fq. We will first generalise Theorem 2.2.1. For this, denote the center
of E = EndK(ϕ) by Z. Define c := [Z : A], e2 := [E : Z], and d := r/ce. The
number d is an integer. Define Zp := Z ⊗A Ap. If ϕ has generic characteristic,
then E = Z and e = 1. As in the previous section, let Bp denote the image of
Ap[GK ] −→ EndAp

(
Tp(ϕ)

)
, and define Ep := E ⊗A Ap.

Theorem 2.3.1. Let ϕ be a Drinfeld A-module over K. Then for almost all primes
p of A we have Ep

∼= Me(Zp) and Bp
∼= Md(Zp).

We will prove Theorem 2.3.1 by reducing it to the case of transcendence degree 1.
We use a similar argument as Pink did in [20]. Let X be a model of K of finite type
over Spec(Fp) such that ϕ defines a family of Drinfeld A-modules of rank r over X
and such that EndK(ϕ) acts on the whole family of Drinfeld A-modules over X. For
any point x ∈ X, we then get a Drinfeld A-module ϕx of rank r over the residue field
kx at x. Its characteristic is the image λx of x under the morphism X −→ Spec(A).

Let x̄ be a geometric point of X over x such that kx̄ = ksep
x . The morphisms

Spec(K) ↪→ X ←↩ x induce homomorphisms of the étale fundamental groups

GK ³ πet
1 (X, x̄)← πet

1 (x, x̄) = Gkx .

For any prime p 6= λx of A, the specialisation map induces an isomorphism

Vp(ϕ) −→ Vp(ϕx).

This isomorphism is equivariant under the above étale fundamental groups. More-
over, since EndK(ϕ) acts faithfully on the Tate module Vp(ϕx), we obtain a natural
embedding EndK(ϕ) ↪→ Endkx(ϕx). Let p0 denote the characteristic of ϕ.

Proposition 2.3.2. Assume that K/Fp has transcendence degree at least 1. Then
there exists a point x ∈ X such that the following properties hold.

(i) kx has transcendence degree 1 over Fp.

(ii) x lies over p0.

(iii) EndK(ϕ) has finite index in Endkx(ϕx).
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Proof. Let p be any prime of A different from p0. Denote by Γp the image of GK

under the representation ρp : GK → GLr(Ap). By Pink [20, Lemma 1.5], there exists
an open normal subgroup Γ1 ⊂ Γp such that for any subgroup ∆ ⊂ Γp with ∆Γ1 = Γp

we have Fp∆ = FpΓp as subalgebras of Mr(Fp). Let K ′ be the corresponding finite
Galois extension of K, and let X ′ be the normalization of X in K ′. Denote by π the
morphism X ′ → X.

By Pink [20, Lemma 1.6], there exists a point x ∈ X satisfying (i) and (ii), and
such that π−1(x) ⊂ X ′ is irreducible. Denote by ∆p the image of Gkx in the repre-
sentation on Vp(ϕx). Since p 6= λx, we have Vp(ϕx) ∼= Vp(ϕ), turning ∆p into a sub-
group of Γp. From the irreducibility of π−1(x) we get Gal(kπ−1(x)/kx) ∼= Gal(K ′/K),
and so ∆pΓ1 = Γp, and therefore Fp∆p = FpΓp by the above explanation. There-
fore the images of the two natural homomorphisms Fp[Gkx ] −→ EndFp

(
Vp(ϕx)

) ∼=
EndFp

(
Vp(ϕ)

)
and Fp[GK ] −→ EndFp

(
Vp(ϕ)

)
coincide and thus also their commu-

tants, which by Theorem 1.1.2 means that EndK(ϕ)⊗A Fp = Endkx(ϕx)⊗A Fp. The
structure theorem for finitely generated modules over Dedekind rings implies that
EndK(ϕ) has finite index in Endkx(ϕx).

Proof of Theorem 2.3.1. Let x be a point of X as in Proposition 2.3.2. Denote the
center of E ′ := Endkx(ϕx) by Z ′. By Proposition 2.3.2 we know that E has finite
index in E ′. Therefore we have Ep

∼= E ′p and Z ′p ∼= Zp for almost all primes p of A,
and the invariants c, d, and e are the same for both tuples E, Z and E ′, Z ′. Let x̄
be a geometric point of X over x such that kx̄ = ksep

x .
Let B′p denote the image of the natural homomorphism

Ap[Gkx ] −→ EndAp

(
Tp(ϕx)

)
.

Since ϕx is a Drinfeld A-module over a finitely generated field of transcendence
degree 1 over Fp, Theorem 2.2.1 in generic characteristic and Theorem B of [23] in
special characteristic imply that

B′p ∼= Md(Z
′
p) and E ′p ∼= Me(Z

′
p)

for almost all primes p of A. Since Ep
∼= E ′p and Zp

∼= Z ′p for almost all p, we get

Ep
∼= Me(Zp)

for almost all primes p of A.
We have Tp(ϕx) ∼= Tp(ϕ) for all primes p of A different from λx, and this iso-

morphism is equivariant under the above étale fundamental groups. Thus the image
of

Ap[π
et
1 (X, x̄)] −→ EndAp

(
Tp(ϕ)

)
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is equal to Md(Zp) for almost all primes p of A. Since the action of GK on Tp(ϕ)
factors through πet

1 (X, x̄), we have

Bp
∼= Md(Zp)

for almost all primes p of A.

We can now prove the general case of the absolute irreducibility of the residual
representation for a Drinfeld module with arbitrary characteristic over a finitely
generated field K.

Theorem 2.3.3 (Absolute irreducibility of the residual representation). Let ϕ be a
Drinfeld A-module over K. Assume that EndK(ϕ) = A. Then the residual represen-
tation

ρp : GK −→ GLr(κp)

is absolutely irreducible for almost all primes p of A.

Proof. By definition, we get ρp from ρp by reduction mod p̄. According to Bourbaki
[2, §13, Proposition 5], it is therefore enough if we prove that the natural homomor-
phism

Ap[GK ] −→ EndAp

(
Tp(ϕ)

)

is surjective for almost all primes p of A. This follows from Theorem 2.3.1 by
setting E = A.
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Chapter 3

Adelic Openness in generic
characteristic

In this chapter, we prove that the image of the adelic representation associated to
ϕ is open if ϕ is of generic characteristic.

In Section 3.1 we prove some general results for matrix groups and algebraic
groups. These will be important in the subsequent sections.

In Section 3.2 we show that the residual representation is surjective for almost
all primes of A if EndK̄(ϕ) = A and ϕ is of generic characteristic and K is a
finite extension of F . There we will need the absolute irreducibility of the residual
representation from Chapter 2 and the results on the image of the inertia group from
Chapter 1. Since the image of the tame inertia group is a torus and the residual
representation is absolutely irreducible, the image of the residual representation is
already quite large.

We show in Section 3.3 that the image of the adelic representation is open if K
is a finite extension of F. We will show that this follows from the surjectivity of the
residual representation for almost all primes of A. The argument is very similar to
the one in Gardeyn [10, Chapter 3].

In Section 3.4 we prove a specialisation result. The proof is based on an argument
from Pink [18] and uses a result from Pink [20].

Finally, in Section 3.5, we prove the adelic openness in generic characteristic in
the general case, i.e., where K is a finitely generated extension of F. This will be
done by reduction to the case of a finite extension of F. For doing this, we will use
the specialisation result from Section 3.4.

Throughout this Chapter we assume that ϕ is a Drinfeld A-module over K with
generic characteristic. As usual, we denote the rank of ϕ by r.
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3.1 Preparatory results

In this section we prove some results on matrix groups and on algebraic groups. The
first is on additive subgroups of the matrix group Mn(k).

Proposition 3.1.1. Let n be any natural number, let k be a field with |k| ≥ 4,
and let H be an additive subgroup of Mn(k). Assume that H is invariant under
conjugation by GLn(k). Then either H is contained in the set of scalar matrices or
H contains the set of matrices with trace 0.

Proof. Let T = Gn
m denote the full diagonal torus. Its character group is given

by X(T ) = Zn. Let ei, i = 1, . . . , n, be the standard basis of Zn. The torus T acts
on gln by conjugation, and thus we consider gln as representation of T. Its weights
are given by ei− ej, i 6= j, with multiplicity 1 and 0 with multiplicity n. The weight
space W0 of weight 0 is the group of diagonal matrices. The weight space Wi,j of
weight ei − ej is the group of matrices with only zero entries except, possibly, for
the position (i, j). We thus can decompose Mn(k) as

Mn(k) = W0 ⊕i,j Wi,j.

Since |k| ≥ 4, we have |k∗| ≥ 3. Thus any two distinct weights of the form ei− ej

remain distinct on restriction to T (k). Therefore we can decompose H as

H = (H ∩W0)⊕
⊕
i,j

(H ∩Wi,j) .

Each Wi,j is a k-vector space of dimension 1, and T (k) acts on it through a surjective
homomorphism T (k) ³ k∗. Therefore H ∩ Wi,j is either 0 or equal to Wi,j. The
permutation group Sn is a subgroup of GLn(k) and permutes the weights ei − ej

transitively. Since H is invariant under conjugation by GLn(k), we find that either
all H ∩Wi,j = 0 or all H ∩Wi,j = Wi,j. In other words either H is contained in the
set of diagonal matrices or H contains all Wi,j, which is the set of matrices with 0
on the diagonal.

If H is contained in the set of diagonal matrices, we take an element h of H.
Denote its diagonal entries by h1, . . . , hn. Let i 6= j. Denote by u ∈ GLn(k) the
matrix with entry 1 on the diagonal and in the (i, j)-entry and 0 elsewhere. Then
the matrix uhu−1 has entry hi − hj at the position (i, j). But this entry has to be 0
because uhu−1 ∈ H. We then get that hi = hj. This can be done for any pair (i, j),
which shows that H is contained in the set of scalar matrices.

If H contains the set of matrices with 0 on the diagonal, we consider the trace
form. It is given by 〈A,B〉 := tr(AB). Denote by H⊥ the orthogonal complement
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of H with respect to the trace form. The inclusion for orthogonal complements
is reversed. Therefore H⊥ is contained in the orthogonal complement of the set
of matrices with 0 on the diagonal. This orthogonal complement is the group of
diagonal matrices. By the above observation and the assumptions of the Proposition,
we get that H⊥ is contained in the set of scalar matrices. Therefore H contains
the orthogonal complement of the scalar matrices, which are the matrices with
trace 0.

The next two results are on subgroups of GLn(k).

Proposition 3.1.2. Let n be any natural number, let k a finite field, and let H be
a normal subgroup of GLn(k) containing a non scalar matrix. Assume that (n, |k|)
is different from (2, 2) and (2, 3). Then we have

SLn(k) ⊂ H.

Proof. For any non-scalar element h ∈ GLn(k), there exists an element g ∈ GLn(k)
such that the commutator ghg−1h−1 is again non-scalar. Thus H contains a non-
scalar element of SLn(k). In particular, we have n ≥ 2, and H does not lie in
the center Z

(
SLn(k)

)
of SLn(k). By Huppert [14], the group SLn(k)/Z

(
SLn(k)

)
is

simple, except for the cases where (n, |k|) = (2, 2) or (n, |k|) = (2, 3). By assumption,
we are not in any of these two cases. Therefore we get that HZ

(
SLn(k)

)
= SLn(k).

Since SLn(k) is perfect by Bass, Milnor and Serre [1, Corollary 4.3] or Rose [26], we
get that SLn(k) ⊂ H.

The next result is on subgroups of SLn(k).

Proposition 3.1.3. Let n be any natural number, let c a constant, let k a finite
field, and let H be a subgroup of SLn(k) of index c. Assume that (n, |k|) is different
from (2, 2) and (2, 3) and that c!n < | SLn(k)|. Then

H = SLn(k).

Proof. Denote SLn(k) by G. The subgroup NG(H) of G has index at most c in G.
Consider the group

N :=
⋂
g∈G

gHg−1 =
⋂

x∈G/NG(H)

xHx−1.

The group H acts on X := {gH| g ∈ G} through multiplication on the left. This
corresponds to a homomorphism from G to the symmetric group SX on X which, by
assumption, is isomorphic to a subgroup of the symmetric group Sc on c elements.
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The kernel of this homomorphism is N. Therefore N has index at most c! in G. Only
those scalar matrices with n-th roots of unity as diagonal entries lie in G. Therefore
there are at most n scalar matrices in G. Since c!n < | SLn(k)|, the group N thus
contains a non scalar element. Moreover, it is normal in GLn(k). By Proposition
3.1.2, we therefore get N = G and thus H = G.

The next two results are on fibers of morphisms.

Proposition 3.1.4. Let X be an irreducible algebraic variety over a field L, let G be
an irreducible algebraic group over L, and let f : X −→ G be a dominant morphism.
Define fn : Xn −→ G by (x1, . . . , xn) 7→ f(x1) · . . . · f(xn), and denote by d and
e the dimensions of G and X, respectively. Then for n ≥ d the fibers of fn have
dimension at most ne− d.

Proof. Since f is dominant, there exists an open dense subset U of X such that
all fibers of f |U have dimension e − d. We first consider the restriction of fn to
X i−1 × U ×Xn−i for any 1 ≤ i ≤ n. We can write this restriction as the composite
of morphisms

X i−1 × U ×Xn−i α−→ X i−1 ×G×Xn−i β−→ X i−1 ×G×Xn−i γ−→ G

where

α(x1, . . . , xn) = (x1, . . . , xi−1, f(xi), xi+1, . . . , xn),

β(x1, . . . , xi−1, g, xi+1, . . . , xn) =

(x1, . . . , xi−1, f(x1) . . . f(xi−1)gf(xi+1) . . . f(xn), xi+1, . . . , xn),

γ(x1, . . . , xi−1, g, xi+1, . . . , xn) = g.

Here α has fiber dimension e − d, the morphism β is an isomorphism, and γ has
fiber dimension (n − 1)e. Thus all fibers of fn|Xi×U×Xn−i−1 have dimension at
most e − d + (n − 1)e = ne − d. Varying i, we get that all fibers of fn|Xn\(X\U)n

have dimension at most ne− d.
On the other hand, all fibers of fn|(X\U)n have dimension at most

dim
(
(X \ U)n

) ≤ n(e− 1). Since n ≥ d, this is at most ne− d.
We have

Xn = (X \ U)n q
n−1⋃
i=0

(X i × U ×Xn−i−1).

Therefore all fibers of fn have dimension at most ne− d.
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Proposition 3.1.5. Let X and Y be affine schemes of finite type over SpecZ, and
let f : X −→ Y be a morphism of finite type. Then there exists a constant c,
depending only on X, Y and f, such that for any finite field k and any y ∈ Y

|f−1(y)(k)| ≤ c|k|dim(f−1(y)).

Proof. We induct on dim(Y ). SinceX and Y both have only finitely many irreducible
components, we can assume that both X and Y are irreducible.

For points y /∈ f(X) of Y, there is nothing to prove. Therefore we can replace Y
by the Zariski closure of f(X) in Y, and assume that the morphism f is dominant.

If dim(Y ) = 0, we have Y = {η} and f−1(η) = X. Since X is affine we can use
Noether normalisation to get a finite morphism X −→ An, where n is the dimension
of X. Let d0 be its degree. Then we have |f−1(η)(k)| ≤ d0|k|n. Thus the proposition
is true for dim(Y ) = 0 with constant d0.

Assume that the proposition is true for dim(Y ) < e with constant c′. Assume
dim(Y ) = e, and let η be the generic point of Y. By Noether normalisation there

exists a finite morphism f−1(η) −→ Adim(f−1(η))
η of degree, say, d. This finite

morphism extends to an open neighbourhood V of η in Y . We thus get a quasifinite

morphism f−1(V ) −→ Adim(f−1(η))
V of degree at most d where dim(f−1(η)) is the

constant fiber dimension of f |f−1(V ). For all y ∈ V, we thus get

|f−1(y)(k)| ≤ n|k|dim(f−1(η)).

Therefore the proposition is true for all y ∈ V with constant d. Let Y ′ be the
complement of V. It is closed and therefore we have dim(Y ′) < e. By assumption
the proposition is true for all y ∈ Y ′ with constant c′. Define c := max{c′, d}. Then
the proposition is true for all y ∈ Y with constant c.
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3.2 Surjectivity of the residual representation

Throughout this section, we assume that K is a finite extension of F. We prove the
following result.

Proposition 3.2.1. Let ϕ be a Drinfeld A-module over K of generic characteristic.
Assume that EndK̄(ϕ) = A and that K is a finite extension of F. Then the residual
representation

ρp : GK −→ GLr(κp)

is surjective for almost all primes p of A.

Remark. Later in this section we have to show that a certain representation is
unramified. For doing this, we need that ϕ has semistable reduction. Therefore we
already now replace K by a finite extension such that ϕ has semistable reduction
everywhere. Next, we replace K by a finite extension such that the decomposition
group at a place of bad reduction acts trivially on the lattice at that place. Finally,
we replace K by a finite extension such that the lattices at places above ∞ become
K-rational.

By Theorem 2.3.3 the residual representation is absolutely irreducible for almost
all primes of A. We have to show that the residual representation is surjective for
almost all primes of A. We can therefore restrict ourselves to primes p of A
• where the residual representation is absolutely irreducible,
• which lie below places where ϕ has good reduction, and
• for which we have |κp| ≥ 4.

Consider such a prime p of A, a place P of K above p, a place p̄ of F̄ above p

and a place P̄ of K̄ above P. Denote by Γp the image of the residual representation

ρp : GK −→ GLr(κp).

Denote by qp the cardinality of κp. By assumption ϕ has good reduction at P. Denote

by hP the height of the reduced Drinfeld module. Define n := q
hP
p , and denote by

kn the subfield of kP̄ with n elements. For the inertia group IP at P we have an
exact sequence

1 −→ IpP −→ IP −→ ItP −→ 1

where IpP and ItP denote the wild inertia group and tame inertia group, respectively.

Fix a section ItP −→ IP . By Proposition 1.2.3 we know that the image under ρp of
the inertia group at P is up to conjugation given by

(
k∗n ∗
0 1

)
⊂ Γp,

36



and the image of ItP thus is (
k∗n 0
0 1

)
⊂ Γp.

Since qp ≥ 4, its centraliser in GLr,κp looks like

(
TP 0
0 GL(r−hP),κp

)

for a torus TP over κp with TP(κp) = k∗n. The torus TP is the Weil restriction
Reskn

κp
Gm,kn and thus of dimension hP.

Let Hp be the algebraic subgroup of GLr,κp generated by Γp and TP for all P | p.
Since Γp acts absolutely irreducibly on κr

p, so does Hp. Let H̃p be the algebraic group

generated by {γTPγ
−1 | P | p and γ ∈ Γp}. Then H̃p is contained in the identity

component H◦p of Hp. In fact, since Hp = ΓpH̃p, the quotient Hp/ H̃p
∼= Γp/(Γp∩H̃p)

is finite, and thus H◦p = H̃p.

Lemma 3.2.2. There exist a natural number sp, elements γ1, . . . , γsp ∈ Γp, and an
H◦p,κp̄

-irreducible vector space W ⊂ κp̄
r such that

κr
p̄ = γ1W ⊕ . . .⊕ γspW.

Proof. Abbreviate V := κr
p̄. Let W be a nontrivial H◦p,κp̄

-invariant subspace of V
of minimal dimension. Since H◦p,κp̄

is normalised by Γp, the vector space γW is
also H◦p,κp̄

-invariant for all γ ∈ Γp. The vector space
∑

γ∈Γp
γW is Γp-invariant and

therefore, by the irreducibility of V , equal to V. Since each γW is irreducible over
H◦p,κp̄

, we can choose γ1, . . . , γsp ∈ Γp such that

γ1W ⊕ . . .⊕ γspW = V.

We fix a decomposition of κr
p̄ as in Lemma 3.2.2. Then the subgroup of GLr,κp̄

which acts on each summand separately is isomorphic to GL
sp

tp,κp̄
where tp denotes

the dimension of W. The subgroup of GLr,κp̄
which maps each summand to some,

possibly other, summand, is then isomorphic to GL
sp

tp,κp̄
oSsp .

Lemma 3.2.3. We have

Hp,κp̄
⊂ GL

sp

tp,κp̄
oSsp .
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Proof. Define Wi := γiW for i = 1, . . . , sP. We then have

κr
p̄ =

sp⊕
i=1

Wi, and H◦p,κp̄
⊂ GL

sp

tp,κp̄
.

There exists a basis of κr
p̄ with respect to which

TP,κp̄
=




∗
. . .

∗
1

. . .

1




∼= GhP
m,κp̄

where the upper left block consists of diagonal hP × hP-matrices. Define

µ1 : Gm,κp̄
−→ TP,κp̄

, t 7→




t
1

. . .

1


 .

This is a cocharacter of TP,κp̄
which on the given representation has weight 1 with

multiplicity 1 and weight 0 with multiplicity r − 1. Without loss of generality we
can assume that µ1 has its nontrivial weight on W1 and weight zero on all other
Wi. Since TP,κp̄

⊂ H◦p,κp̄
, it follows that, as an H◦p,κp̄

-representation, the space W1

is not isomorphic to Wi for any i 6= 1. By conjugation, we get that any two of the
Wi are non-isomorphic H◦p,κp̄

-representations. This shows that the decomposition

κr
p̄ =

⊕sp

i=1Wi is the isotypical decomposition underH◦p,κp̄
. Therefore it is normalised

by Hp,κp̄
and we have

Hp,κp̄
⊂ GL

sp

tp,κp̄
oSsp .

Define αp as the composition of the following homomorphisms

GK −→ Hp,κp̄
⊂ GL

sp

tp,κp̄
oSsp ³ Ssp .

Lemma 3.2.4. The homomorphism αp is unramified at all places of K lying above p.
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Proof. Fix a place P of K lying above p. By assumption, the Drinfeld module ϕ
has good reduction at P. Therefore the image under the residual representation of
the inertia group IP at P looks like

(
k∗n ρp(I

p
P)

0 1

)
= TP(κp)n

(
1 ρp(I

p
P)

0 1

)
.

Therefore the image under αp of the tame inertia group at P is trivial. The restric-
tion of αp to the wild inertia group at P thus factors through the coinvariants of

ρp(I
p
P) under the image of the tame inertia group. Since |kn| = q

hP
p ≥ qp ≥ 4, these

coinvariants are trivial, as can be seen from the above semidirect product. There-
fore the image under αp of IpP is trivial, and the homomorphism αp is unramified
at P.

Lemma 3.2.5. For almost all primes p of A, the homomorphism αp is unramified
at all places of K where ϕ has bad reduction.

Proof. Fix a place Q of K where ϕ has bad reduction. At the beginning of this
section we replaced K by a finite extension such that ϕ has semistable reduction
everywhere. Let (ψ,ΛQ) be the Tate uniformisation of ϕ at Q. Then, ψ is a Drinfeld
A-module over KQ of some rank r′ < r, and ΛQ is, via ψ, an A-lattice in Ksep

Q of
rank r − r′.

For any prime p of A with p - Q we have an exact sequence

0 −→ ψ[p](Ksep) −→ ϕ[p](Ksep) −→ ΛQ/pΛQ −→ 0.

The inertia group IQ acts trivially on the first and the third term by hypothesis
on K. Therefore its image under ρp lies in

(
1 ∗
0 1

)
∼= Hom

(
ΛQ/pΛQ, ψ[p](Ksep)

)
.

The group αp(IQ) is normalised by αp(FrobQ). Since the order of αp(FrobQ)
divides sp!, and hence also r!, the homomorphism IQ ³ αp(IQ) factors through

IQ // //

))SSSSSSSSSSSSSSSSS αp(IQ)

Hom
(
ΛQ/pΛQ, ψ[p](Ksep)

)
Frobr!

Q
.

55 55jjjjjjjjjjjjjjjjj

The action of Frobr!
Q on ΛQ/pΛQ is trivial. Therefore we have

Hom
(
ΛQ/pΛQ, ψ[p](Ksep)

)
Frobr!

Q
= 0
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if and only if ψ[p](Ksep)Frobr!
Q

= 0.

Denote by fQ the characteristic polynomial of Frobr!
Q on the Tate module of ψ

at p. It is independent of p, and its coefficients lie in A. By purity, every eigenvalue
of FrobQ has valuation < 0 at ∞. Thus 1 is not an eigenvalue of Frobr!

Q, and
so fQ(1) ∈ A\{0}. If p - fQ(1), then no eigenvalue is congruent to 1 modulo a prime
lying above p, and so

Hom
(
ΛQ/pΛQ, ψ[p](Ksep)

)
Frobr!

Q
= 0.

We thus get Hom
(
ΛQ/pΛQ, ψ[p](Ksep)

)
Frobr!

Q
= 0 for almost all primes p of A. There-

fore, for these primes, the image under αp of IQ is trivial. There are only finitely
many places Q of K where ϕ has bad reduction. Therefore, there are only finitely
many possibilities for the characteristic polynomial of the r!-th power of Frobenius at
these places. Thus, for almost all primes p of A, the homomorphism αp is unramified
at all places of K where ϕ has bad reduction.

Corollary 3.2.6. For almost all primes p of A, the homomorphism αp is unramified
everywhere and totally split at places ∞′ above ∞.
Proof. At the beginning of this section, we replaced K by a finite extension such
that the action of the decomposition group at any place lying above ∞ is trivial.
In particular, it is unramified at all places lying above ∞. The action of the inertia
group at all places not lying above ∞ and where ϕ has good reduction is trivial.
Therefore, for all primes p of A, the homomorphism αp is unramified at these places.
Moreover, by Lemma 3.2.4, it is unramified at all places lying above p. By Lemma
3.2.5, for almost all primes p of A, it is unramified at all places where ϕ has bad
reduction. For these primes, the homomorphism αp is unramified everywhere.

Lemma 3.2.7. For almost all primes p of A, we have sp = 1.

Proof. Let p a prime of A such that αp is unramified everywhere, and let K(p) the
field fixed by the kernel of the homomorphism αp. By Corollary 3.2.6 it is unramified
over K. Moreover, its degree [K(p) : K] ≤ sp! ≤ r! is bounded independently of p.
By Goss [11, Theorem 8.23.5], a function field analogue of the Hermite-Minkowski
Theorem about unramified extensions, there are only finitely many possibilities
for K(p). Therefore their compositum K ′ is a finite extension of K. The homo-
morphism

αp : GK′ −→ Ssp

is trivial for almost all primes p of A.
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Let p be any such prime of A. If sp > 1, then the residual representation ρp for
the Drinfeld module ϕ considered as Drinfeld A-module over K ′ is not absolutely
irreducible since the commutant of its image is too big. By Theorem 2.3.3 this can
only happen for finitely many primes. Therefore we get sp = 1 for almost all primes
p of A where αp is unramified everywhere, which, by Corollary 3.2.6, are almost all
primes p of A.

Proposition 3.2.8. For almost all primes p of A, we have

H◦p,κp
= Hp,κp = GLr,κp .

Proof. Lemma 3.2.7 implies that H◦p,κp̄
acts irreducibly on κp̄

r. Moreover, as has
been explained in the proof of Lemma 3.2.3, it has a cocharacter with weight 1 with
multiplicity 1 and weight 0 with multiplicity r − 1. By Pink [20, Proposition A.3]
we get

H◦p,κp̄
= GLr,κp̄

,

and thus
H◦p,κp

= GLr,κp

because H◦p,κp
is an algebraic subgroup of GLr,κp . Since H◦p,κp

⊂ Hp,κp ⊂ GLr,κp ,
both inclusions are equalities.

The following result will be needed in the subsequent one to assert that a certain
constant is independent of p.

Lemma 3.2.9. There exists a scheme Z of finite type over Spec(Z) and a closed
subscheme T ⊂ GLr×Z over Z, such that for almost all primes p of A, any place
P | p of K, and any element γ ∈ Γp, there exists a point z ∈ Z(κp) such that
Tz = γTPγ

−1.

Proof. Define

Z := GLr×(Ar)r−1, and

T := {(t, g, v1, . . . , vr−1)| tg = gt and ∀i : tvi = vi} ⊂ GLr×Z.
Then Z is a scheme of finite type over Spec(Z), and T is a closed subscheme of
GLr×Z. Let p be a prime of A which is unramified in K and such that | κp |≥ 4
and such that ϕ has good reduction at all places of K lying above p. Take any P | p
and γ ∈ Γp. Let t be a generator of TP(κp) = k∗n, and let w1, . . . , wr−1 ∈ κr

p be
generators of the space of invariants of TP. Then

CentGLr,κp
(t) =

(
TP 0
0 ∗

)
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and

StabGLr,κp
(w1) ∩ . . . ∩ StabGLr,κp

(wr−1) =

(
TP 0
∗ 1

)
,

and their intersection is TP. Conjugating by γ we deduce that the fiber Tz of T
above z = (γtγ−1, γw1, . . . , γwr−1) is γTPγ

−1.

Lemma 3.2.10. There exists a constant c depending only on r such that for almost
all primes p of A

[GLr(κp) : Γp] ≤ c.

Proof. Let any prime p as in Proposition 3.2.8. Then GLr,κp is generated by the
connected algebraic subgroups γTPγ

−1 for all P | p and γ ∈ Γp. By Humphreys [13,
Proposition 7.5] it follows that the morphism

fp : Xp :=
m×

i=1

γiTPi
γ−1

i −→ GLr,κp , (t1, . . . , tm) 7→ t1 · · · tm

is dominant for a suitable choice ofm and Pi | p and γi ∈ Γp. Since dim(GLr,κp) = r2,
we can obtain this with m = r2. In particular, we can assume that m is independent
of p.

By Proposition 3.1.4 the fibers of

Xr2

p −→ GLr,κp , (x1, . . . , xr2) 7→ fp(x1) · · · fp(xr2)

have dimension at most dim(Xr2

p )− dim(GLr,κp). We replace Xp by Xr2

p and m by
mr2, which is still independent of p. Then with ep := dim(Xp) all fibers of fp have
dimension at most ep − r2.

Let Z and T ⊂ GLr×Z be as in Lemma 3.2.9. Then for every 1 ≤ i ≤ m we
can choose a point zi ∈ Z(κp) such that Tzi

= γiTPi
γ−1

i . Denote the two projections
by ε : T → GLr and π : T → Z and consider the morphism

f : T m −→ GLr×Zm, (t1, . . . , tm) 7→ (
ε(t1) · . . . · ε(tm), π(t1), . . . , π(tm)

)
.

The construction implies that f induces the morphism fp in the fiber above the point
(z1, . . . , zm) ∈ Zm(κp). Denote the cardinality of κp by qp. Since f is independent
of p, by Proposition 3.1.5 there exists a constant c1 independent of p such that for
all g ∈ GLr(κp) we have

|f−1
p (g)(κp)| ≤ c1q

dim(f−1
p (g))

p ≤ c1q
ep−r2

p .
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On the other hand, we have |TPi
(κp)| = q

hPi
p − 1, and hence

|Xp(κp)| =
m∏

i=1

(q
hPi
p − 1) ≥

m∏
i=1

1
2
q

hPi
p

= 2−mq
P

hPi
p = 2−mq

ep
p .

Since fp

(
Xp(κp)

) ⊂ Γp, we get

|Γp| ≥ |fp

(
Xp(κp)

)| ≥ |Xp(κp)|
c1q

ep−r2

p

≥ 2−mq
ep
p

c1q
ep−r2

p

=
qr2

p

2mc1
.

It follows that

[GLr(κp) : Γp] =

∏r−1
i=0 (qr

p − qi
p)

|Γp| ≤ 2mc1

∏r−1
i=0 (qr

p − qi
p)

qr2

p

≤ 2mc1.

Thus the lemma holds with c := 2mc1.

Lemma 3.2.11. For almost all primes p of A we have

Γp = GLr(κp).

Proof. By Lemma 3.2.10 there exists a constant c such that [GLr(κp) : Γp] ≤ c for
almost all primes p of A. It is therefore enough if we consider only these primes. We
have

[SLr(κp) : Γp ∩ SLr(κp)] ≤ c

for these primes. The constant c is independent of p and we have | SLr(κp)| > c!r
for almost all of these primes. By Proposition 3.1.3 we get Γp ∩ SLr(κp) = SLr(κp)
for almost all primes p of A.

Since TP(κp) ⊂ Γp and det : TP(κp) ∼= k∗n −→ κ∗p is the norm map, which
is surjective, the determinant map det : Γp −→ κ∗p is surjective. We thus get
Γp = GLr(κp) for almost all primes p of A.

Lemma 3.2.11 proves Proposition 3.2.1.
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3.3 The case [K : F ] <∞
Throughout this section we assume that K is a finite extension of F. Let Af

F be the
ring of finite adeles of F. Consider the adelic representation

ρad : GK −→
∏

p6=∞
GLr(Ap) ⊂ GLr(Af

F ).

Denote its image by Γ. The aim of this section is to prove the following result.

Theorem 3.3.1. Let ϕ be a Drinfeld A-module over K with generic characteristic.
Assume that EndK̄(ϕ) = A and that K is a finite extension of F. Then the image
of the adelic representation

ρad : GK −→ GLr(Af
F )

is open.

We show that Theorem 3.3.1 follows from Proposition 3.2.1, the surjectivity of
the residual representation for almost all primes of A. Using Proposition 3.1.1, we
will first prove a result on subgroups of GLr(Ap). For this, we need to consider the
congruence filtration defined below. We then have to consider all factors in order
to get a description of the adelic image. We prove that for almost primes p of A,
the factor corresponding to GLr(Ap) is contained in Γ. We again use the images of
inertia groups.

Congruence filtration of GLr(Ap). Fix a place p of A, and let π be a uni-
formizer at p. Define

G0
p := GLr(Ap)×

∏

q6=p

{1} ⊂ GLr(Af
F ), and

Gi
p := 1 + πi Mr(Ap).

The i-th subquotient of the congruence filtration is given by

G
[i]
p := Gi

p/G
i+1
p .

Note that we have an isomorphism

v0 : GLr(κp) −→ G
[0]
p ,

and for any i ≥ 1 an isomorphism

vi : Mr(κp) −→ G
[i]
p , y 7→ 1 + πiy mod Gi+1

p .
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For any subgroup H of GLr(Ap), we define

H i := H ∩Gi
p, and

H [i] := H i/H i+1.

Proposition 3.3.2. Let H be a closed subgroup of GLr(Ap). Assume that |κp| ≥ 4,
det(H) = GL1(Ap), H [0] = GLr(κp), and that H [1] contains a non scalar matrix.
Then we have

H = GLr(Ap).

Proof. For i ≥ 1, the conjugation actions

GLr(κp)×Mr(κp) −→ Mr(κp), (g, h) 7→ g−1hg, and

G
[0]
p ×G[i]

p −→ G
[i]
p , (g, g′) 7→ g−1g′g

fit into the commutative diagram

GLr(κp)×Mr(κp)

v0×vi∼=
²²

// Mr(κp)

vi∼=
²²

G
[0]
p ×G[i]

p
// G

[i]
p .

Via vi we can identifyH [i] with a subgroup of Mr(κp). Since the conjugation action of
H on H [i] factors through H [0] = GLr(κp), the group H [i] is closed under conjugation
by GLr(κp).

By assumption we know that H [1] contains a non scalar matrix. By Proposition
3.1.1 we therefore get that H [1] contains the matrices with trace 0. Consider the
following commutative diagram with exact rows

0 // H1/H2

det
²²

// H/H2

²²

// GLr(κp)

det
²²

// 0

0 // (1 + πAp/π
2)∗ // (Ap/p

2)∗ // κ∗p // 0.

The right vertical map is surjective with kernel equal to SLr(κp). By assumption,
the middle vertical map is surjective as well. By the snake lemma, we thus get a
surjective homomorphism from SLr(κp) onto the cokernel of the left vertical map.
This cokernel is abelian. On the other hand, since |κp| ≥ 4, the group SLr(κp) is
perfect, and thus has no nontrivial such quotient. This implies that the determinant
of H1/H2 is surjective. In other words the composite trace map

H [1] ↪→ Mr(κp) −→tr κp
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is surjective. We thus get
H [1] = Mr(κp) = G

[1]
p .

Since det(H) = GL1(Ap), in order to prove the proposition, it is enough to show
that the commutator subgroup H ′ of H is SLr(Ap). Therefore it suffices to show
that H ′[i] = SLr(Ap)

[i] = slr(κp) for all i ≥ 0.
For i = 0 this follows from H ′[0] = (H [0])′ = GLr(κp)

′ = slr(κp). For i = 1,
consider the commutator map

H ×H1 −→ H1,

(g, h) 7→ ghg−1h−1.

Under v0 and v1, it induces the map

H [0] ×H [1] −→ H ′[1],

(g, h) 7→ ghg−1 − h.
Since H [0] = GLr(κp) and H [1] = Mr(κp), we get

H ′[1] = slr(κp).

Assume now that H ′[i] = slr(κp) for some i ≥ 1. The maps

Mr(κp)×Mr(κp) −→ Mr(κp), (h, h′) 7→ [h, h′] := hh′ − h′h, and

G
[1]
p ×G[i]

p −→ G
[i+1]
p , (g, g′) 7→ gg′g−1g′−1

fit into the commutative diagram

Mr(κp)×Mr(κp)

v1×vi

²²

// Mr(κp)

vi+1

²²

G
[1]
p ×G[i]

p
// G

[i+1]
p .

By Pink [19, Proposition 1.2], the group generated by [Mr(κp), slr(κp)] is all of
slr(κp). We thus get H ′[i+1] = slr(κp).

Let Λ be the set of primes p of A which satisfy any of the conditions below:
• p lies below a place of K where ϕ has bad reduction,
• |κp| < 4,
• p is ramified in K,
• ρp is not surjective,
• det(Γ) does not contain GL1(Ap)×

∏
p′ 6=p{1}.
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The first three of these subsets are finite. By Proposition 3.2.1, the fourth one
is finite. By Goss [11, Theorem 7.7.1] or Hayes [12], the last one is finite as well.
Therefore Λ is a finite set.

Proposition 3.3.3. For all p /∈ Λ and all places P of K lying above p, the ramifi-
cation index of the extension KP

(
ϕ[p2](Ksep)

)
/KP

(
ϕ[p](Ksep)

)
is at least |κp|hP .

Proof. Denote by vP the normalized valuation of KP and by qp the cardinality
of κp. Take any element s ∈ ϕ[p](Ksep) with vP(s) > 0. Let a ∈ A be a function
with a zero of order 1 at p. We have shown in the proof of Proposition 1.2.3 that

vP(s) = α := 1/(q
hP
p − 1) and that

ϕ[a]◦ = ϕ[p]◦

as group schemes over SpecOKP
. The polynomial ϕa is given by

ϕa =

r deg(p)∑
i=0

ϕa,iτ
i.

For the valuations of the coefficients, we get, with i0 := hP deg(p),

vP(ϕa,0) = 1,

vP(ϕa,i) ≥ 1 for 0 < i < i0,

vP(ϕa,i0) = 0, and

vP(ϕa,i) ≥ 0 for i > i0.

This implies that (0, α) and (q
hP
p , 0) are vertices of the Newton polygon of the

polynomial ϕa(x)− s. We thus can fix a zero s′ of this polynomial with valuation

vP(s′) = α/q
hP
p > 0.

Since

ϕ[a2]◦ = ϕ[ap]◦ = ϕ[p2]◦,

we get s′ ∈ ϕ[p2](Ksep)\ϕ[p](Ksep).Moreover, the ramification index ofKP(s, s′)/KP(s)

is q
hP
p .
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Abbreviate

L := Knr
P ,

L1 := L
(
ϕ[p](Ksep)

)
,

L2 := L
(
ϕ[p2](Ksep)

)
,

L◦1 := L
(
ϕ[p]◦(Ksep)

)
,

L◦2 := L
(
ϕ[p2]◦(Ksep)

)
,

L̃1 := L(s), and

L̃2 := L(s′).

The following picture illustrates the relative positions of these fields to each other

L2

L◦2

ssss

L̃2

tttt
L1

L◦1

tttt

L̃1

tttt

L.

The extension L◦1/L is Galois. Via the action of A via ϕ, the element s′ generates
L◦1, and we get

L̃1 = L◦1.

Therefore the extension L̃1/L is Galois as well. For any conjugate σ(s′) of s′ we
have

ϕa

(
σ(s′)− s′) = σ

(
ϕa(s

′)
)− ϕa(s

′) = 0,

and hence σ(s′)− s′ ∈ ϕ[p]◦(Ksep). We thus get σ(s′)− s′ ∈ L̃1 = L◦1. Therefore the

extension L̃2/L
◦
1 is Galois. Since [L̃2 : L̃1] = q

hP
p and L̃2/L̃1 is totally ramified, in

order to prove the proposition, it is enough to show that the extensions L◦2/L
◦
1 and

L1/L
◦
1 are linearly disjoint, which is asserted by the following Lemma.

Lemma 3.3.4. The extensions L◦2/L
◦
1 and L1/L

◦
1 are linearly disjoint.

Proof. Consider the bilinear map

Gal(L◦2/L
◦
1)× ϕ[p2]◦(Ksep)/ϕ[p]◦(Ksep) −→ ϕ[p]◦(Ksep),

(σ, t) 7→ (σ − 1)t.
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It induces an injective group homomorphism

Gal(L◦2/L
◦
1) ↪→ HomA

(
ϕ[p2]◦(Ksep)/ϕ[p]◦(Ksep), ϕ[p]◦(Ksep)

)
.

Similarly, we have an injective group homomorphism

Gal(L1/L
◦
1) ↪→ HomA

(
ϕ[p](Ksep)/ϕ[p]◦(Ksep), ϕ[p]◦(Ksep)

)
.

These two homomorphisms are equivariant under Gal(L2/L), which acts through
the tame inertia group ItP . The linear disjointness of the field extensions will follow
as soon as we know that the two groups of homomorphisms have no nontrivial
isomorphic subquotients as ItP-representations.

We give an explicit description of the action of ItP on the two groups of ho-

momorphisms. Denote by kn the extension of κp of degree q
hP
p inside a fixed al-

gebraic closure. The fundamental character ζkn maps ItP surjectively to k∗n. Both
ϕ[p]◦(Ksep) and ϕ[p2]◦(Ksep)/ϕ[p]◦(Ksep) are kn vector spaces of dimension 1, and
the group ItP acts on them through ζkn and scalar multiplication by k∗n. The quotient
ϕ[p](Ksep)/ϕ[p]◦(Ksep) is equal to ϕ[p]et(Ksep), and thus ItP acts trivially on it.
Therefore we get the following identifications of ItP-representations

HomA

(
ϕ[p2]◦(Ksep)/ϕ[p]◦(Ksep), ϕ[p]◦(Ksep)

) ∼= kn ⊗κp k
∨
n , and

HomA

(
ϕ[p](Ksep)/ϕ[p]◦(Ksep), ϕ[p]◦(Ksep)

) ∼=
r−hP⊕
i=1

kn,

where k∨n denotes the dual of kn. Therefore we must show that kn ⊗κp k
∨
n and kn

have no nontrivial isomorphic subquotients as representations of k∗n over Fp, where
p denotes the characteristic of κp.

Denote by q the cardinality of κp. On kn, the action of t ∈ k∗n is given by multi-
plication by t. Thus the representation kn ⊗Fp k̄n over k̄n consists of the irreducible
characters

k∗n −→ k̄∗n, t 7→ tp
m

for all m ∈ Z. We can identify kn ⊗κp k
∨
n as k∗n-representation with ⊕hP

i=1kn, where

the action of t ∈ k∗n on the i-th summand is given by multiplication by t1−qi
. Thus

the representation kn ⊗κp k
∨
n ⊗Fp k̄n over k̄n consists of the irreducible characters

k∗n −→ k̄∗n, t 7→ t(1−qi)pj

for all j ∈ Z.
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We must show that no two such characters of the respective kinds are equal.
They are equal if and only if

t(1−qi)pj

= tp
m

, for all t ∈ k∗n.

This is equivalent to

(1− qi)pj − pm ≡ 0 mod qhP − 1.

Since p is invertible modulo qhP − 1, the congruence relation is equivalent to

qi − 1 ≡ −pm−j mod qhP − 1.

Since q − 1 divides both qi − 1 and qhP − 1, it also divides their greatest common
divisor. But q− 1 = |κp| − 1 > 1 by the choice of Λ, and q− 1 is relatively prime to
p, which implies that the congruence relation cannot hold.

Lemma 3.3.5. For all p /∈ Λ we have

GLr(Ap)×
∏

p′ 6=p

{1} ⊂ Γ.

Proof. Fix a prime p /∈ Λ. Identify Gp := GLr(Ap) with GLr(Ap) ×
∏

p′ 6=p{1}, and
define

Hp := Γ ∩Gp.

We have to show that
Hp = Gp.

If r = 1, we have GL1(Ap)×
∏

p′ 6=p{1} ⊂ Γ for all p /∈ Λ by the choice of Λ, and
the result follows.

For r ≥ 2, we need to verify the assumptions of Proposition 3.3.2. The choice
of Λ implies |κp| ≥ 4. The Tate module of the maximal exterior power of ϕ is
isomorphic to the Tate module of a Drinfeld module of rank 1. This implies that
det(Hp) = GL1(Ap).

Next, we need to show that H
[0]
p = GLr(κp). Let P be a place of K lying above p.

The image of the inertia group at P under the adelic representation is trivial in any
factor except the one at p. Hence it lies in Hp. By the choice of Λ, the Drinfeld
module ϕ has good reduction at P. Let hP be the height of the reduced Drinfeld
module. The connected-étale decomposition of ϕ[p] gives an exact sequence

0 −→ ϕ[p]0 −→ ϕ[p] −→ ϕ[p]et −→ 0.
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The set ϕ[p]0(Ksep) is an hP-dimensional κp vector space. The inertia group
at P acts trivially on ϕ[p]et(Ksep). By Proposition 1.2.3 we know that the wild
inertia group at P acts trivially on ϕ[p]0(Ksep) and that the action of ItP is given
by the fundamental character. Thus, if hP < r, any diagonal matrix h′ ∈ GLhP

(κp)
different from the identity matrix gives a non scalar element

h =

(
h′ ∗
0 1

)
∈ H [0]

p .

If hP = r, any h ∈ k∗qr
p
\ κ∗p is a non scalar element of H

[0]
p .

On the other hand, the group Γ acts through conjugation on Hp. The projection
of Γ on the factor GLr(κp) is surjective by Proposition 3.2.1, which implies that the

group H
[0]
p is closed under conjugation by GLr(κp). Since it contains the non scalar

element h, we get SLr(κp) ⊂ H
[0]
p by Proposition 3.1.2. From det

(
ρp(I

t
P

)
) = κp

∗,

we get det(H
[0]
p ) = κp

∗, which implies H
[0]
p = GLr(κp) = G

[0]
p .

In order to apply Proposition 3.3.2, it remains to show that H
[1]
p contains a non

scalar matrix. We will find such a matrix in the subgroup
(
ρp(IP)

)[1] ⊂ H
[1]
p ⊂ Mr(κp).

By Proposition 3.3.3, it has at least |κp|hP elements. If hP > 1, it thus contains
a non scalar matrix. If hP = 1 < r then, for an appropriate basis, the subgroup
consists of block matrices of the form( ∗ ∗

0 0

)
,

where the upper left entry lies in κ∗p. All these matrices are non scalar.

Thus, H
[1]
p contains a non scalar matrix in any case. Now we can apply Propo-

sition 3.3.2 and get Hp = Gp.

We can now prove the adelic openness in generic characteristic for the case where
K is a finite extension of F.

Proof of Theorem 3.3.1. Lemma 3.3.5 implies that
∏

p/∈Λ
GLr(Ap) ⊂ Γ.

Therefore Γ is the inverse image of its image under the projection
∏

p

GLr(Ap) −→
∏
p∈Λ

GLr(Ap).
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By Theorem 1.1.4, the image of

GK −→
∏
p∈Λ

GLr(Fp)

is open. Therefore we get that Γ is open in
∏

p GLr(Ap).
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3.4 Specialisation

In this section, we prove the following result which will be used in the next section.
We use the same notation as in Section 2.3.

Proposition 3.4.1. Let ϕ be a Drinfeld A-module over K of generic characteristic.
Assume that EndK̄(ϕ) = A. Then there exists a point x ∈ X such that kx is a finite
extension of F and

Endk̄x
(ϕx) = A.

To prove Proposition 3.4.1, we first need to prove some other results. Fix a prime
p of A. Define

Cn := {γ ∈ GLr(Ap)| γ ≡ 1 mod pn} , and

C1
n := Cn ∩ SLr(Ap).

For any two natural numbers n and l with n ≥ l, we have the following natural
group isomorphism

logn,l : Cn/Cn+l −→ glr(p
n/pn+l),

1 + pnM mod pn+l 7→ pnM mod pn+l.

As explained in Pink [18], this can be considered as a logarithm truncated after
the first order term. In the same way, the inverse isomorphism is an exponential
map truncated after the first order term. We call it expn,l .

Lemma 3.4.2. For any natural numbers n, n′ ≥ l ≥ 1, the following properties hold.

(i) The commutator Cn×Cn −→ Cn, (a, b) 7→ aba−1b−1 induces a bimultiplicative
map

{ , }− : Cn/Cn+l × Cn′/Cn′+l −→ Cn+n′/Cn+n′+l,

(ā, b̄) 7→ aba−1b−1.

(ii) The Lie bracket glr(p
nAp)× glr(p

nAp) −→ glr(p
nAp) induces a bilinear map

[ , ]− : glr(p
nAp)/glr(p

n/pn+l)× glr(p
n′/pn′+l) −→ glr(p

n+n′/pn+n′+l),

(ū, v̄) 7→ uv − vu.

(iii) We have
logn+n′,l

({ā, b̄}−) = [logn,l(ā), logn′,l(b̄)]
−.
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Proof. Let a = 1 + u ∈ Cn, and let b = 1 + v ∈ Cn′ . Then, their inverses are given
by the geometric series

a−1 = 1− u+ u2 −+..., and

b−1 = 1− v + v2 −+....

We have
aba−1 = aa−1 + ava−1 = (1 + v) + (uv − vu) + T,

where T is an expression of degree at least 2 in u and degree at least 1 in v. We thus
have T ∈ p2n+n′Ap ⊂ pn+n′+lAp. We get

aba−1b−1 = (1 + v)(1 + v)−1 + (uv − vu)(1 + v)−1 + T (1 + v)−1

= 1 + (uv − vu) + T ′ + T (1 + v)−1,

where T ′ is an expression of degree at least 2 in v and degree at least 1 in u. We
then get

aba−1b−1 ≡ 1 + (uv − vu) mod pn+n′+l.

Assertion (i) follows.
Assertion (ii) is obvious. Assertion (iii) follows by the above computation, since

we have
aba−1b−1 ≡ 1 + (uv − vu) = 1 + [u, v] mod pn+n′+l.

Next consider a closed subgroup ∆ of GLr(Ap). Define

∆n := ∆ ∩ Cn, and

∆1
n := ∆ ∩ C1

n.

Lemma 3.4.3. Let n, n′, and l be natural numbers with n ≥ l, n′ ≥ l. Assume that
∆n/∆n+l = Cn/Cn+l and that C1

n′/C
1
n′+l ⊂ ∆n′/∆n′+l. Then we have

∆1
n+n′/∆

1
n+n′+l = C1

n+n′/C
1
n+n′+l.

Proof. By Lemma 3.4.2, we have the following commutative diagram

Cn/Cn+l × C1
n′/C

1
n′+l

²²

{ , }−
// C1

n+n′/C
1
n+n′+l

²²

glr(p
n/pn+l)× slr(p

n′/pn′+l) // slr(p
n+n′/pn+n′+l),
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where the lower horizontal arrow is given by [ , ]−. As explained above, the vertical
arrows are isomorphisms.

By Pink [19, Proposition 1.2], we have

[glr, slr] = slr,

which means that the subgroup of slr generated by [glr, slr] is equal to slr. Therefore
we get that the group generated by

expn+n′+l

(
[logn+l Cn/Cn+l, logn′+l C

1
n′/C

1
n′+l]

)

is equal to C1
n+n′/C

1
n+n′+l.

By assumption, we have that ∆n/∆n+l = Cn/Cn+l and that C1
n′/C

1
n′+l

⊂ ∆n′/∆n′+l. Since ∆m is a group for any natural number m and thus closed under
the multiplicative commutator map, we get ∆1

n+n′/∆
1
n+n′+l = C1

n+n′/C
1
n+n′+l.

Proposition 3.4.4. Assume that there exists a natural number n0 > 0 such that
∆n0/∆2n0 = Cn0/C2n0 . Then we have

C1
n0
⊂ ∆n0 .

Proof. We have to show that C1
n0

= ∆1
n0
. Since ∆ is a closed subgroup of GLr(Ap),

it is enough to show that ∆in0/∆(i+1)n0 = Cin0/C(i+1)n0 for every i ≥ 1, because we
then can pass to the limit.

We do induction on i. By assumption we have ∆n0/∆2n0 = Cn0/C2n0 , and thus
∆1

n0
/∆1

2n0
= C1

n0
/C1

2n0
, proving the desired equality in the case i = 1. Assume that

the equality holds for all i ≤ i0. By Lemma 3.4.3 it then also holds for i = i0 + 1,
which proves the induction step.

Proof of Proposition 3.4.1. If K is of transcendence degree 1 over Fq, there is
nothing to prove.

Assume that the transcendence degree of K over Fq is at least 2. Denote by
Γ the image of GK in the representation on the Tate module of ϕ at p. Since Γ
is an open subgroup of GLr(Ap) by Theorem 1.1.4, there exists a natural number
n0 > 0 such that Cn0 ⊂ Γ. Let K ′ be the finite Galois extension of K such that
Gal(K ′/K) = Γ/C2n0 , and let X ′ be the normalization of X in K ′. Denote by π the
morphism X ′ → X.

By Pink [20, Lemma 1.6], there exists a point x ∈ X such that kx is a finite
extension of F and π−1(x) ⊂ X ′ is irreducible. Denote by ∆ the image of Gkx in the
representation on the Tate module of ϕx at p. This is a closed subgroup of GLr(Ap).
Since ϕx does not have characteristic p, the specialisation map identifies the Tate
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modules of ϕ and ϕx, turning ∆ into a subgroup of Γ. Since π−1(x) is irreducible, we
get Gal(kπ−1(x)/kx) ∼= Gal(K ′/K), and so ∆C2n0 = Γ, and therefore ∆n0C2n0 = Cn0 .
Therefore we have

∆n0/∆2n0 = Cn0/C2n0 .

Proposition 3.4.4 implies
C1

n0
⊂ ∆n0 .

This shows that ∆ contains an open subgroup of SLr(Ap). By Goss [11, Theorem
7.7.1], the image of ∆ under the determinant is open in GL1(Ap). This then implies
that ∆ is an open subgroup of GLr(Ap).

All endomorphisms of the Drinfeld module ϕx are defined over some finite sep-
arable extension k′x of kx. This extension corresponds to an open subgroup of ∆p,
which by the above is again open in GLr(Ap). By the Tate conjecture, it follows
that Endk̄x

(ϕx) = Endk′x(ϕx) = A.
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3.5 The general case

We now prove the adelic openness in generic characteristic in the general case, i.e.,
where K is a finitely generated extension of F.

Theorem 3.5.1 (Adelic openness in generic characteristic). Let ϕ be a Drinfeld
A-module over K of generic characteristic. Assume that EndK̄(ϕ) = A. Then the
image of the adelic representation

ρad : GK −→ GLr(Af
F )

is open.

We will prove Theorem 3.5.1 by reducing it to the case of a finite extension of F.

Proof. If K is of transcendence degree 1 over Fq, the result follows from Theorem
3.3.1.

Assume that the transcendence degree of K over Fq is at least 2. Let x be a
point of X as in Proposition 3.4.1. We can apply Theorem 3.3.1 to the Drinfeld
module ϕx to get that the image of the adelic representation associated to ϕx is
open in GLr(Af

F ). Since the Tate modules of ϕ and ϕx are isomorphic, this image
is a subgroup of the image of the adelic representation associated to ϕ. Thus the
latter is open in GLr(Af

F ) as well.

If the endomorphism ring of ϕ is bigger than A, we can no longer expect the
image of the adelic representation to be open in GLr(Af

F ). Since the endomorphism
ring of ϕ acts on the Tate module and commutes with the p-adic representation, the
image of GK lies in the centraliser CentGLr(Ap)

(
EndK(ϕ)

)
. We get that the image

of the adelic representation is open in the product of the centralisers.

Theorem 3.5.2. Let ϕ be a Drinfeld A-module over K of generic characteristic.
Assume that EndK̄(ϕ) = EndK(ϕ). Then the image of the homomorphism

ρad : GK −→
∏

p

CentGLr(Ap)

(
EndK(ϕ)

)

is open.

Proof. The result can be deduced from Theorem 3.5.1. The argument is exactly the
same as in Pink [20].
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thesis Über das Reduktionsverhalten von Punkten auf
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