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Abstract

To develop a Galois theory for purely inseparable extensions we use higher
derivations and the notion of modular fields. Let L be a finite purely inseparable
modular field extension of K, and let M be an intermediate field such that L
is also modular over M . If M0 is the field of constants of all higher derivations
on M over K, we prove that every higher derivation on M over K extends to
L if and only if L = M ⊗M0 J for some field J .
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1 Introduction

From Galois theory we know that the intermediate fields of a finite separable and
normal field extension F of a field E are in bijection with the subgroups of the group
of automorphisms of F over E. But there is no such correspondence for purely insep-
arable field extensions, because Aut(F/E) is trivial. In fact, there is still no theory
giving a Galois correspondance for arbitrary purely inseparable field extensions.
Throughout this paper, we consider a finite purely inseparable field extension L of
K, where K is a field of characteristic p > 0. We denote by N the set of all integers
greater than or equal to 0. We say that L has exponent e ∈ N over K if for every
element a ∈ L, ape

is in K and e is the smallest integer such that this property holds.
A derivation D on L is an additive map of L into L such that D(ab) = D(a)b+aD(b).
The field of constants of a derivation D is the set of all a ∈ L such that D(a) = 0. It
can be shown that this subset of L is really a subfield. The field of constants of a set of
derivations on L is the intersection of the fields of constants of each derivation. Since
Lp is in the field of constants of any derivation, we see that L has at most exponent
one over the field of constants of any set of derivations. It is known that DerK(L),
the space of derivations on L trivial on K, has field of constants K(Lp) and moreover
that any intermediate field of L/K(Lp) is the field of constants of a subspace. In the
case where DerK(L) is finite dimensional over K, Jacobson [1] has determined when a
subspace of DerK(L) is equal to the space of all derivations over its field of constants.
When the exponent is greater then one it is not sufficient to consider only derivations.
We have to use the notion of higher derivations (Def. 4.4), which is due to Hasse and
Schmidt [2], if we want to develop a Galois Theory for higher exponents. Concepts
like linear disjointness (Def. 3.6) and modularity (Def. 4.3) will be needed to state
our first main result, Theorem 4.11, which is due to Sweedler [3]. It states that L is
modular over K if and only if K is the field of constants of a set of higher derivations
of L. It also states that L is modular over K if and only if it is the tensor product
of simple extensions of K. So modular extensions are the inseparable equivalent to
Galois extensions in the separable case.
In chapter two we recall the definition of inseparable fields and give a theorem showing
us how purely inseparable polynomials look like. Chapter three gives a short intro-
duction of tensor products of field extensions. The concept of linear disjointness will
be formulated and later on frequently used. In section five we will consider H t

K(L),
the set of all rank t higher derivations of L over K. We show that this set is a group
with a certain composition. Chapter six is based on a paper of James K. Deveney
[4]. Here we show that the only intermediate fields of L over K, which are invariant
under all higher derivations in H t

K(L), are of the form K(Lpr
) for some r ∈ N. We

also prove that if M is the field of constants of a group of higher derivations of L over
K and M0 is the field of constants of all higher derivations of L over K, then every
higher derivation of M over K extends to L if and only if L = M ⊗M0 J for some
field J .
I want to thank Professor Richard Pink and his PhD student Mohammad Hadi Heday-
atzadeh for their great support while writing this thesis. It has been a grat experience
to work with them.
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2 Inseparability

Let K be a field of characteristic p > 0.

Definition 2.1. A polynomial f(X) ∈ K[X] is called purely inseparable if it has
exactly one root in an algebraic closure K̄.

Lemma 2.2. For each purely inseparable polynomial f(X) ∈ K[X] there exist m ∈
N \ {0} and a0 ∈ K∗ such that f(X) = a0 · (fα(X))m, where fα is the minimal
polynomial over K of the root α ∈ K̄.

Proof. We proceed by induction on the degree of f(X): Let k = deg(f). For k = 1
the assertion is obvious. Let deg(f) = k+ 1 and assume that the assertion is true for
all n ≤ k. We know that fα(X) divides f(X) in K[X], that is f(X) = g(X) · fα(X)
with deg(g) ≤ k. But since f(X) is purely inseparable, g(X) must also be purely
inseparable and g(α) = 0. So by the induction hypothesis, g(X) = a0 · (fα(X))m0 for
some m0 ∈ N, a0 ∈ K∗. Thus f(X) = a0 · (fα(X))m0+1.

Lemma 2.3. Let h(X) ∈ K[X] be a monic, irreducible and purely inseparable poly-
nomial. Then there exist n ∈ N and c ∈ K such that h(X) = Xpn − c.

Proof. Let r ∈ N be maximal, such that h(X) = g(Xpr
) for some g(X) ∈ K[X]. We

first show that g(X) is separable by using the fact that g(X) is not separable if and
only if g′(X) = 0. So let

g(X) =
∑

0≤i≤m

ci ·X i

then
g′(X) =

∑
1≤i≤m

ci · i ·X i−1.

We see that g′(X) = 0 if and only if p | i or ci = 0 for i = 1, . . . ,m. Now assume that
g(X) is not separable, that is g′(X) = 0. Then for the coefficients ci 6= 0 we have
p | i, and so g(X) must be of the form f(Xp) for some f(X) ∈ K[X]. This implies
h(X) = g(Xpr

) = f(Xpr+1
) which is in contradiction with the maximality of r. So

g(X) must be separable. Consequently we have

g(X) =
∏

1≤i≤m

(X − ai)

where ai ∈ K̄ and ai 6= aj for i 6= j. Hence

h(X) =
∏

1≤i≤m

(Xpr − ai).

But since h(X) is purely inseparable, m must be equal to 1 and it follows that
h(X) = Xpr − a.
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Polynomials of the formXpn−c are purely inseparable, sinceXpn−c = Xpn−αpn
=

(X − α)pn
for an α ∈ K̄. Using Lemma 2.2 and Lemma 2.3 we obtain the following

Theorem:

Theorem 2.4. A monic polynomial f(X) ∈ K[X] is purely inseparable if and only
if there exist n ∈ N,m ∈ N and c ∈ K such that f(X) = (Xpn − c)m.

Definition 2.5. Let L be an algebraic field extension of K. An element α ∈ K is
called purely inseparable over K if its minimal polynomial over K is purely insep-
arable. We call the extension L purely inseparable over K if each α ∈ L is purely
inseparable over K.

By Theorem 2.4 this is the case if and only if the minimal polynomial is of the
form Xpn − c for some c ∈ K.

Lemma 2.6. L/K is purely inseparable if and only if for each x ∈ L there exists
n ∈ N sucht that xpn ∈ K.

Proof. ”⇒” : This follows immediately from the definition of purely inseparable and
Lemma 2.3.
”⇐” : Assume that for each x ∈ L there exists n ∈ N such that xpn ∈ K. Let a ∈ L
and n ∈ N such that c := apn ∈ K. Then a is the root of the purely inseparable
polynomial Xpn − c ∈ K[X]. But then the minimal polynomial of a has also only one
root in K̄ and a is purely inseparable over K.

Definition 2.7. Let L/K be a purely inseparable field extension. If there exists e ∈ N,
such that αpe ∈ K for all α ∈ L, then the smallest such e is called the exponent of
L/K. The exponent (over K) of an element x ∈ L is the smallest integer ex ∈ N
such that xpex ∈ K.

Example 2.8. Fp(t)/Fp(t
p) is a purely inseparable field extension, where t is tran-

scendental over Fp.

Proof. Let x ∈ Fp(t), then

x =

∑
0≤i≤p−1

ai · ti∑
0≤j≤p−1

bj · tj

where ai, bj ∈ Fp. Then

xp =

∑
0≤i≤p−1

ai · tp
i

∑
0≤j≤p−1

bj · tp
j
∈ Fp(t

p).

So by Lemma 2.6, Fp(t) is purely inseparable over Fp(t
p).
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3 Tensor products of field extensions

In this section L, M and T are vector spaces over the field K.

Definition 3.1. A map φ : L ×M −→ T is called K-bilinear if φ(x, ·) : M → T is
K-linear ∀x ∈ L and φ(·, y) : L→ T is K-linear ∀ y ∈M .

Definition 3.2. Let τ : L×M −→ E be a K-bilinear map with the following universal
property: For each K-bilinear map φ : L ×M −→ E into an arbitrary K −module
E there exists a unique K-linear map φ∗ : T → E with φ = φ∗ ◦ τ .
Then the pair (T, τ) is called a tensor product of L and M over K. We sometimes
say that T is the tensor product of L and M (with abuse of language).We also write
L⊗K M for the tensor product T , when it exists, and x⊗ y for the image of the pair
(x, y).

For the existence of the tensor product and further properties I refer for example
to Bosch [5].

Remark 3.3. From the construction of the tensor product it follows that every

z ∈ L⊗K M can be written as a finite sum of tensors: z =
∑

1≤i≤n

xi ⊗ yi.

Remark 3.4. Let M/K be a field extension and V a K-module. Then V ⊗K M is
a M -module. If {vi; i ∈ I} is a basis of V (resp. linearly independent) over K then
{vi ⊗ 1; i ∈ I} is a basis of V ⊗K M (resp. linearly independent) over M .

Remark 3.5. Let L and M be field extensions of K. Then L⊗K M is a K-Algebra
with multiplication x⊗ y · x′ ⊗ y′ = xx′ ⊗ yy′.

Definition 3.6. Now let L/K,M/K be finite field extensions which are contained in
a field C. We say that the field extension L/K is linearly disjoint to the extension
M/K if each set S ⊆ L, linearly independent over K, is also linearly independent
over M .

Lemma 3.7. Let L be a commutative K-Algebra, and dimK(L) < ∞. Then L is a
field if and only if L is an integral domain.

Proof. ”⇒” : Obvious.
”⇐” : It suffices to show that every x ∈ L has an inverse. For any x ∈ L we define
the map φx : L→ L by sending L 3 y to x ·y. Obviously, φx is K-linear. Now if x 6= 0
it follows that φx is injective, since L has no zero divisors. But φx is also surjective,
since L is a finite dimensional vector space over K. So there exists an l ∈ L such that
x · l = 1.

Prop. 3.8. Let L/K, M/K be finite field extensions. Then dimK(L ⊗K M) =
dimKL · dimKM . In particular, if L and M are finite dimensional over K then
L⊗K M is also finite over K.
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Proof. Let {li; i ∈ I} and {mj; j ∈ J} be respectively bases of L and M over K. Then
the set {li ⊗mj; (i, j) ∈ I × J} is a basis of L⊗K M over K.

Lemma 3.9. Let L/K, M/K be finite field extensions contained in a field C, and let
φ : L⊗KM → C be the M-linear map sending x⊗y to x ·y. The following statements
are equivalent:

i. L is linearly disjoint over K to M
ii. φ is injective
iii. L⊗K M is an integral domain

Proof. i.⇒ ii. : Let {li; i ∈ I} be a basis of L over K. Then by Remark 3.4
{li ⊗ 1; i ∈ I} is a basis of L⊗K M over M . Let x ∈ kerφ and write

x =
∑
i∈I

li ⊗mi .

Then
0 = φ(x) =

∑
j∈J

lj ·mj

and since we assumed that L is linearly disjoint over K to M , mj = 0 for j ∈ J , that
is x = 0.
ii.⇒ i. : We use the fact that φ is injective if and only if linearly independent subsets
are mapped to linearly independent subsets. So take any subset S ⊂ L, linearly
independent over K. By Remark 3.4 the set {s⊗ 1; s ∈ S} is linearly independent
over M , so the set {φ(s⊗ 1) = s; s ∈ S} = S is linearly independent over M .
ii.⇒ iii. : Assume φ is injective. Then we can consider L⊗K M as a K-subalgebra
of C, so there can’t exist zero divisors in L⊗K M , since C is a field.
iii.⇒ ii. : Assume L⊗K M is an integral domain. By Remark 3.5, L⊗K M is a K-
Algebra. By Lemma 3.8 it follows that dim (L⊗K M) <∞, so we can apply Lemma
3.7, so L ⊗K M is a field. Since ker φ is an ideal in L ⊗K M and L ⊗K M is a field
and φ 6= 0, ker φ must be the zero ideal, so φ is injective.

Theorem 3.10. Let L and M be finite field extensions of K, both contained in a
field C. Then L is linearly disjoint over K to M if and only if L⊗K M is a field.

Proof. ” ⇒ ” : If L is linearly disjoint to M we see by Lemma 3.9 that L ⊗K M is
free of zero divisors. Using Lemma 3.8, we see that we can apply Lemma 3.7, thus
L⊗K M is a field.
” ⇐ ” : If L⊗K M is a field, then L⊗K M is free of zero divisors and by Lemma 3.8
L is linearly disjoint over K to M .

We see from by Theorem 3.10 that linear disjointness is a symmetric property:

Corollary 3.11. L is linearly disjoint over K to M if and only if M is linearly
disjoint over K to L.
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Using Theorem 3.10 we can extend Definition 3.6 to arbitrary field extensions,
which may or may not lie in a common overfield.

Definition 3.12. For arbitrary finite field extensions L/K and M/K we say that L
and M are linearly disjoint if and only if the tensor product L⊗K M is a field.

Here is an example, where L⊗K M is not a field:

Example 3.13. Let K ⊆ E ⊆ L be field extensions of K, with E = K( pn√
x) and

x ∈ K \Kp. Then there exists a K-algebra isomorphism L⊗K E ∼= L [T ] /(T pn
).

Proof. Since E = K( pn√
x) ∼= K [X] /(Xpn − x), we have L⊗K E ∼= L[X]/(Xpn − x).

But L[X]/(Xpn−x) ∼= L[T ]/(T pn
) since pn√

x ∈ L and the map sending X to T + pn√
x

is an isomorphism.

4 Modular field extensions and p-independence

In this section, we assume that L is a finite and purely inseparable extension of the
field K, of characteristic p > 0.

Definition 4.1. Consider a purely inseparable extension L of K. We say that an
element x ∈ L is relatively p-dependent over K on the subset S of L if x ∈ K(Lp)(S).
Accordingly, we call a subset S ⊂ L relatively p-independent if s /∈ K(Lp)(S \ {s})
for every s ∈ S. A relatively p-independent (over K) subset B ⊂ L such that
L = K(Lp)(B), is called a relative p-basis of L over K. If L is of exponent one over
K then we call B a p-base of L over K.

One can check in the book of Jacobson [6] that there always exists a p-basis for a
purely inseparable extension L over K.

Remark 4.2. Let B = {b1, ..., bn} be a relative p-basis of L over K. Then bpi ∈
K(Lp) but bi /∈ K(Lp)(b1, ..., bi−1) for 1 ≤ i ≤ n. That is [K(Lp)(b1, ..., bi) :
K(Lp)(b1, ..., bi−1)] = p and so [K(Lp)(b1, ..., bn) : K(Lp)] = pn. We see that the
set

{
bk1
1 · bk2

2 · · · bkn
n ; 0 ≤ ki ≤ p− 1

}
forms a basis of L over K(Lp).

Definition 4.3. L is said to be modular over K if and only if K and Lpi
are linearly

disjoint over K ∩ Lpi
for i = 1, 2, ... .

Definition 4.4. A rank t higher derivation of a commutatve ring R with 1 is a se-
quence d(t) := {d0, d1, ..., dt} of additive maps from R to R such that

(1) dm(a · b) =
∑

0≤i≤m

di(a) · dm−i(b)

7



for all a, b ∈ R, 0 ≤ m ≤ t, where d0 = I is the identity map. A higher derivation
of infinite rank is an infinite sequence d = {d0, d1, d2, ...} of additive maps of R to R
such that (1) holds for all m ∈ N.
The ring of constants of d(t) is the set {a ∈ F ; dm(a) = 0 for all 1 ≤ m ≤ t} and the
ring of constants of a set of higher derivations of R is the intersection of the ring of
constants of each one.
For a subring S ⊆ R we say that d(t) is a rank t higher derivation over S, if for all
m ∈ N and a ∈ S, dm(a) = 0. We denote by H t

S(R) the set of all rank t higher
derivations of R over S, where 0 ≤ t ≤ ∞.

Lemma 4.5. Let I be a set of rank t higher derivations on R. Then the subset S :=
{a ∈ R;∀d ∈ I, ∀m ∈ N : dm(a) = 0} is a subring with 1, called the ring of constants
of I. If R is a field then S is a subfield.

Proof. One can easily check the first statement. For the second statement we have
only to show that x ∈ S implies x−1 ∈ S. Let d ∈ I. Since 1 ∈ S we have

0 = dm(1) = dm(x · x−1) =
∑

0≤i≤m

di(x) · dm−i(x
−1) = dm(x−1), since x ∈ S and so

di(x) = 0 for 1 ≤ i ≤ m.

Lemma 4.6. Let E = K[X] be the polynomial algebra in one variable over the field
K. Since {1, X,X2, ...} is a basis of E over K, we can define K-linear mappings Di

of K[X] to K[X] by setting Di(X
m) =

(
m
i

)
Xm−i, where m = 0, 1, 2, ...and

(
m
i

)
= 0

if i > m. Then D = {D0, D1, D2, ...} is a higher derivation on E of infinite rank.
Furthermore, K is the field of constants of D.

Proof. It is enough to check (1) for the product XnXm for all 0 ≤ n,m. By definition
we have Dj(X

m+n) =
(

m+n
j

)
Xm+n−j and Di(X

m) · Dj−i(X
n) =

(
m
i

)(
n

j−i

)
Xm+n−j.

Since ∑
0≤i≤j

(
m

i

)(
n

j − i

)
=

(
m+ n

j

)
,

we have ∑
0≤i≤j

Di(X
m) ·Dj−i(X

n) = Dj(X
n+m).

This shows that D = {D0 = I,D1, D2, ...} is a higher derivation of infinite rank. Since
for every non constant f(X) ∈ K[X] we have degD1(f(X)) = deg(f(X)) − 1 it is
clear from the definition, that K is the field of constants.

Corollary 4.7. Let D = {D0, D1, D2, ...} be the higher derivation constructed in
Lemma 4.6. If f(X) ∈ K[X] is of the form f(X) = Xpn − a then Di(f(X)) = 0 for
every 1 ≤ i ≤ pn − 1.

Proof. Since
(

pn

i

)
= 0 for every 1 ≤ i ≤ pn − 1, we have Di(X

pn − a) = Di(X
pn

) =(
pn

i

)
Xpn−i = 0.
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Lemma 4.8. Let L = K(x) and n ∈ N be the exponent of x over K. There exists
a rank pn − 1 higher derivation D(pn−1) of L such that K is the field of constants of
D(pn−1).

Proof. Let Xpn−a be the minimal polynomial of x over K. Let D = {D0, D1, D2, ...}
be the higher derivation of the polynomial algebra K[X], as defined in Lemma 4.6.
Now since D is a higher derivation, every subset {D0, D1, D2, ..., Dm}, m ∈ N is a
higher derivation of rank m. Let D(pn−1) =

{
I,D1, D2, ..., D

pn−1
}

Then by Corollary
4.7 we have Dj(X

pn − a) = 0 for every 1 ≤ j ≤ pn − 1. By property (1) in Definition
4.4 we have for every f(x) ∈ K[X] and 0 ≤ j ≤ pn − 1 :

Dj((X
pn − a) · f(X)) =

∑
0≤i≤j

Di(X
pn − a) ·Dj−i(f(X)) = (Xpn − a) ·Dj(f(X)).

That is, the ideal I generated by the minimal polynomial Xpn − a of x is mapped
into itself by every Dj. Consequently, every Dj induces an additive mapping D̃j

of K[X]/I to K[X]/I. One can check easily that D̃j satisfy (1) of Definition 4.4.
Since K[X]/I ∼= K(x) = L we have now a higher derivation D(pn−1) of L such that
Di(x

m) =
(

m
i

)
xm−i for every 0 ≤ i,m ≤ pn − 1. By definition, K is the field of

constants.

Lemma 4.9. Assume that L/K has exponent n, and let D(t) be a higher derivation
of rank t of L. Then:
i. Dm(Lpi

) ⊆ Lpi
for all 0 ≤ m ≤ t and 1 ≤ i ≤ n

ii. If x ∈ L is in the field of constants of D(t), then Dm(x · y) = x ·Dm(y) for every
y ∈ L, 0 ≤ m ≤ t.

Proof. i. : Note that a rank t higher derivation induces a ring homomorphism

φ : L → L[X]/(X t+1) sending y 7→
∑

0≤m≤t

Dm(y) · X̄m. Since the characteristic of L

is p > 0 and φ is a ring homomorphism we have φ(yp) = φ(y)p ∈ Lp[Xp] for every
y ∈ L. Then we have∑

1≤m≤t

Dm(yp) · X̄m = φ(yp) = φ(y)p = (
∑

1≤m≤t

Dm(y) · X̄m)p

=
∑

1≤m≤t

Dm(y)p · X̄mp =
∑

1≤m≤[t/p]

Dm(y)p · X̄mp.

Because of this equality we have for 1 ≤ m ≤ t, Dm(yp) = 0 if p - m and Dm(yp) =
Dm/p(y)

p if p | m. Hence for every 0 ≤ m ≤ t we have Dm(Lpn
) ⊆ Lpn

.

ii.) : We have Dm(x · y) =
∑

0≤i≤m

Di(x) ·Dm−i(x) = x ·Dm(y), since Di(x) = 0 for all

i > 0.

Lemma 4.10. Let e ∈ N be the exponent of L over K and S = {s1, ..., sn} be a

p-basis of Kp−(e−i+1) ∩L over Kp−(e−i) ∩L for 1 ≤ i ≤ e. Then Sp is p-independent in
Kp−(e−i) ∩ L over Kp−(e−i−1) ∩ L.
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Proof. Suppose that Sp is not p independent in Kp−(e−i) ∩ L over Kp−(e−i−1) ∩ L.
Then there exists s ∈ S such that sp ∈ (Kp−(e−i−1) ∩ L)((Kp−(e−i) ∩ L)p)(Sp \ {sp}) =

(Kp−(e−i−1) ∩L)(Sp \ {sp}). Without loss of generality we can assume that s = s1. So

sp =
∑

0≤k2,...,kn≤p−1

ak2···kn · (s
p
2)

k2 · · · (sp
n)kn

where ak2···kn ∈ Kp−(e−i−1) ∩ L. We have (a−p + b−p)p = (a+ b) for all a, b ∈ L and so
we have a−p + b−p = (a+ b)−p. Using this property we have that

s = (sp)−p =
∑

0≤k2,...,kn≤p−1

(ak2···kn)−p · (s2)
k2 · · · (sn)kn ∈ (Kp−(e−i) ∩ L)(S \ {s})

which is a contradiction to the p-independence of S.

Theorem 4.11. Let L/K be a purely inseparable and finite field extension. The
following are equivalent:
i. L is a tensor product of simple extensions of K
ii. K is the field of constants of a set of higher derivations on L
iii. L is modular over K.

Proof. i.⇒ ii. : Assume that L is a tensor product of simple extensions of K. Since
L over K is a finite extension, L must be a finite tensor product of simple extensions
L1, ..., Lr where r ∈ N, Li = K(xi). That is, L is of the form L = K(x1, ..., xr), ei

denotes the exponent of xi for 1 ≤ i ≤ r. If we define Ki = K(x1, ..., xi−1, xi+1, ..., xr),
we have L = Ki(xi) and K1∩K2∩ ...∩Kr = K. So if we construct for each i a higher
derivation of L with field of constants Ki as we did in Lemma 7, then we get a set of
higher derivations of L with field of constants K.

ii.⇒ iii. : Suppose that there exists i ∈ N such that Lpi
and K are not linearly

disjoint over Lpi ∩K. Then there exists a non-trivial relation 0 = l1 ·a1 + ...+ ls ·as of
minimal length s, with s ≥ 1, where {ak ∈ K; 1 ≤ k ≤ s} is linearly independent over
Lpi∩K and lk ∈ Lpi

. Since the length of the relation is minimal, the set {lk; 1 ≤ k ≤ s}
must be linearly independent over Lpi ∩ K, in particular lk 6= 0 for 1 ≤ k ≤ s. We
have also s > 1 since if s = 1 then we would have a relation 0 = l1 · a1 with l1 and
a1 6= 0 which is impossible since L is a field. Dividing the relation by l1, we can as-
sume that l1 = 1. So we have 0 = a1 + l2 ·a2 + ...+ ls ·as and since {lk ∈ K; 1 ≤ k ≤ s}
is linearly independent over Lpi ∩ K we have that l2 /∈ Lpi ∩ K. In particular, l2
is not in K, the field of constants of our set of higher derivations. So there exists
m > 0 and Dm ∈ D(t) such that Dm(l2) 6= 0. Applying Dm to the relation and using
Lemma 4.9, ii) we obtain a non-trivial relation 0 = Dm(l2) · a2 + ... + Dm(ls) · as,
where Dm(lk) ∈ Lpi

, k = 1, ..., t by Lemma 4.9, i). But this relation is shorter than
the one at the beginning and so we get a contradiction to the minimality of s.

iii.⇒ i. : Let e be the exponent of L over K. Notice that we have the following
tower of field extensions: K ⊆ Kp−1 ∩ L ⊆ Kp−2 ∩ L ⊆ ... ⊆ Kp−e ∩ L = L. Let S1
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be a p-basis for L = Kp−e ∩ L over Kp−(e−1) ∩ L. From Lemma 4.10 we see that Sp
1 is

p-independent in Kp−(e−1) ∩L over Kp−(e−2) ∩L. Let S2 be a completion of Sp
1 to a p-

basis of Kp−(e−1)∩L over Kp−(e−2)∩L (that is, the disjoint union Sp
1qS2 is a p-basis for

Kp−(e−1)∩L overKp−(e−2)∩L). Continue in this manner, such that Si is a completion to

a p-Basis ofKp−(e−(i−1))∩L overKp−(e−i)∩L of Sp(i−1)

1 ∪Sp(i−2)

2 ∪...∪Sp
i−1. The procedure

terminates when we arrive at Sp(e−1)

1 ∪Sp(e−2)

2 ∪ ...∪Se, which is a p-basis of Kp−1 ∩L
over K∩L = K. Notice that by construction, the set Sp(i−1)

1 ∪Sp(i−2)

2 ∪ ...∪Sp
i−1∪Si is

a p-basis for Kp−(e−(i−1))∩L over Kp−(e−i)∩L. Consider the p-basis S1 of L = Kp−e∩L
over Kp−(e−1) ∩ L: by Remark 4.2 we have that the set{ ∏

x1∈S1

x
kx1
1 ; 0 ≤ kx1 < p

}

is a basis for L = Kp−e ∩L over Kp−(e−1) ∩L. Since Sp
1 ∪S2 is a p-basis for Kp−(e−1) ∩L

over Kp−(e−2) ∩ L we have, again by Remark 4.2, that the set{ ∏
x1∈S1

(xp
1)

kx1 ·
∏

x2∈S2

x
kx2
2 ; 0 ≤ kx1 , kx2 < p

}

is a basis for Kp−(e−1) ∩ L over Kp−(e−2) ∩ L. Remembering that, if {a1, ..., an} is a

basis for L = Kp−e∩L over Kp−(e−1)∩L and {b1, ..., bm} is a basis for Kp−(e−1)∩L over

Kp−(e−2) ∩ L then the set {ai · bj; 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis for L = Kp−e ∩ L
over Kp−(e−2) ∩ L we get: since{ ∏

x1∈S1

x
kx1
1 ; 0 ≤ kx1 < p

}

is a basis for L = Kp−e ∩ L over Kp−(e−1) ∩ L and{ ∏
x1∈S1

(xp
1)

kx1 ·
∏

x2∈S2

x
kx2
2 ; 0 ≤ kx1 < p, 0 ≤ kx2 < p

}

is a basis for Kp−(e−1) ∩ L over Kp−(e−2) ∩ L we have that{ ∏
x1∈S1

x
kx1
1 ·

∏
x2∈S2

x
kx2
2 ; 0 ≤ kx1 < p2, 0 ≤ kx2 < p

}

is a basis for L = Kp−e ∩L over Kp−(e−2) ∩L. Continueing in this manner we see that{ ∏
x1∈S1

x
kx1
1 ·

∏
x2∈S2

x
kx2
2 · · ·

∏
xe∈Se

x
kxe
2 ; 0 ≤ kx1 < pe, 0 ≤ kx2 < pe−1, ..., 0 ≤ kxe < p

}

is a basis for L = Kp−e ∩L over K∩L = K. Note that since xi ∈ Si ⊂ Kp−(e−(i−1)) ∩L
and Si is p-independent to Si−1, we have that exi

:= pe−(i−1) is the exponent of xi

11



over K. Define B := S1 ∪ ... ∪ Se and note that this is a disjoint union. We get a
K-Algebra-homomorphism

φ :
⊗
x∈B

K(x) → L

by sending ⊗
x∈B

xkx 7→
∏
x∈B

xkx

where 0 ≤ kx < ex and ex = pe−(i−1) is the exponent of x ∈ Si. Now since{⊗
x∈B

xkx ; 0 ≤ kx < ex

}

is a basis for
⊗
x∈B

K(x) over K and, as we have seen,

{∏
x∈B

xkx·; 0 ≤ kx < ex

}

is a basis for L = Kp−e ∩L over K, we see that φ is a K-Algebra-isomprphism. So L
is a tensor product of simple extensions of K.

Example 4.12. Not every finite, purely inseparable extension is modular: Let k =
Z/pZ and K = k(Xp, Y p, Zp2

) where X, Y, Z are indeterminates. Now, set L =
K(Z,XZ + Y ) and we see that L is a purely inseparable extension of K of exponent
2. We claim that L is not modular. By Theorem 4.11 it suffices to show that K is
not the field of constants of any set of higher derivations of L. Assume that there
exists a higher derivation D(t) of L with field of constants K. The element Zp is
not in K and so it is not in the field of constants. Thus for some 1 ≤ m ≤ t we
have Dm(Zp) 6= 0. But as mentioned in Lemma 4.9, i) we have that Dm(Zp) is zero
if p - m and Dm/p(Z)p otherwise. So we are in the second case. Now notice that,
Xp ·Dm/p(Z)p = Xp ·Dm(Zp) = Dm(Xp ·Zp) = Dm(Xp ·Zp +Y p) = Dm/p(X ·Z+Y )p

where we have used Lemma 4.9. This implies Xp = (Dm/p(XZ+Y )·Dm/p(Z)−1)p and
X = (Dm/p(XZ + Y ) ·Dm/p(Z)−1) which contradicts the fact that X /∈ L. Thus Zp

is in the field of constants of all higher derivations of L over K and L is not modular
over K.

Lemma 4.13. Let L and E be fields such that L/L ∩ E is finite and E/L ∩ E is
algebraic. There exists a unique field extension F/L such that:
i. F and E are linearly disjoint over F ∩ E.
ii. F is the smallest field extesnion of L satisfying property i).
iii. F = L(S) for a finite subset S of E.

Proof. Let B = {xi; i ∈ I} be a finite basis of L/L ∩ E, and let C = {xj; j ∈ J} be
a maximal subset of B which is linearly independent over E in L(E). Then C is a
basis for L(E) over E. Let D = B \ C. Then for each x ∈ D we have

(∗) x =
∑
j∈J

ax,jxj

12



for uniquely determined ax,j ∈ E. Set S = {ax,j;x ∈ D, j ∈ J} and F = L(S). Note
that S is a finite set since D and J are finite. Since C is a basis of L(E)/E we can
extend C to a basis C ′ := C ∪ {yk ∈ L(E); k ∈ K} (where K is a finite index set) of
L(E) over F ∩ E. Let A ⊆ F be a subset, linearly independent over F ∩ E. Assume
we have a relation e1 · a1 + ...+ en · an = 0, with ei ∈ E and ai ∈ A. Since ei ∈ L(E)
we have

ei =
∑
j∈J

wijxj +
∑
k∈K

w′
ikyk

where wij and w′
ik are in F ∩E for all j ∈ J, k ∈ K and 1 ≤ i ≤ n. Consequently, we

have∑
1≤i≤n

(
∑
j∈J

wijxj +
∑
k∈K

w′
ikyk) · ai =

∑
j∈J

(
∑

1≤i≤n

aiwij)xj +
∑
k∈K

(
∑

1≤i≤n

aiw
′
ik)yk = 0

and since {xj; j ∈ J} ∪ {yk; k ∈ K} is a basis of L(E)/F ∩ E, we have that∑
1≤i≤n

aiwij = 0

and ∑
1≤i≤n

aiw
′
ik = 0

for all j ∈ J and k ∈ K. Since A is linearly independent over F ∩ E we have that
wij = 0 and w′

ik = 0 for all j ∈ J, k ∈ K and 1 ≤ i ≤ n. Thus ei = 0 for 1 ≤ i ≤ n
and we see that F and E are linearly disjoint over F ∩ E.
Now suppose M is a field such that M and E are linearly disjoint over M ∩ E and
L ⊆ M . Then C = {xj; j ∈ J} ∈ M and since C is linearly independent over E it is
also linearly independent over M ∩ E. For each x ∈ D we have the identity (∗), for
unique {ax,j; j ∈ J, x ∈ D}. By the linear disjointness of M and E over M ∩E these
relations also hold over M ∩ E. Hence {ax,j; j ∈ J, x ∈ D} ⊆ M ∩ E ⊆ M . Thus
M ⊇ L(S) = F .

Lemma 4.14. Let E ⊆ K, and E ⊆ F ⊆ L be four fields having the following pop-
erties:
(1) L and F are finite over F ∩K,
(2) L = F (K ∩ L),
(3) F and K are linearly disjoint over F ∩K.

Then L and K are linearly disjoint over L ∩K.

Proof. Let {x1, ..., xn} ⊆ K be linearly independent over L ∩K. From (2) it follows
that F and K∩L are linearly disjoint over K∩F . By Theorem 3.10, F ⊗F∩K (K∩L)
is a field and one can see that F (K ∩L) ∼= F ⊗F∩K (K ∩L). Let {fi; i ∈ I} be a basis
of F over K ∩F . Since F (K ∩L) ∼= F ⊗F∩K (K ∩L) we see that {fi; i ∈ I} is a basis
of F (K ∩ L) over K ∩ L. Assume ∑

1≤k≤n

akxk = 0
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for some ak ∈ L. Then ak =
∑
i∈I

ckifi where cki ∈ K ∩ L, hence

0 =
∑

1≤k≤n

∑
i∈I

ckifixk =
∑
i∈I

fi(
∑

1≤k≤n

ckixk)

Consequently,
∑

1≤k≤n

ckixk = 0 and since {x1, ..., xn} ⊆ K are linearly independent

over L ∩K we have that cki = 0 for all 1 ≤ k ≤ n and i ∈ I. Hence ak = 0 for all k
and {x1, ..., xn} is linearly independent over L.

Theorem 4.15. Let L/K be a finite and purely inseparable field extension of exponent
e. There exists a unique field extension F of L having the following properties:
i. F/K is the smallest modular field extenion of K.
ii. F/K is purely inseparable of exponent e.
iii. F/K is finite.

Proof. We construct, by descending induction, fields Fm, m ≤ e, having the following
properties:

(1) F ps

m and K are linearly disjoint for s = m,m+ 1, ... ,
(2) Fm is the unique minimal extension of L having property (1),
(3) Fm/K is purely inseparable,
(4) Fm/K has exponent e,
(5) [Fm : K] <∞.

We start our descending induction at m = e and set Fe = L. Since F ps

e ⊆ K for
s = e, e + 1, ... we see that property (1) is fulfilled. Obviously L is the minimal ex-
tension of itsself having property (1), and the properties (3) and (4) are satisfied by
assumption. Since we assumed [L : K] <∞ property (5) is also satisfied.
Suppose now that we have constructed Fm ⊇ L for a m ≤ e, such that Fm satisfies
(1)− (5).
We have to check if we can use Lemma 4.13 on the fields F pm−1

m and K: since Fm/K
is finite by (5), clearly F pm−1

m /Kpm−1
is finite. Since Kpm−1 ⊆ K ∩ F pm−1

m we see that
F pm−1

m /K ∩ F pm−1

m is finite. We have also that K/K ∩ F pm−1

m is algebraic, since every
element α ∈ K is a root of a polynomial Xpm−1 − αpm−1 ∈ (K ∩ F pm−1

m )(X). So we
can use Lemma 4.13 .
By Lemma 4.13 there exists a unique minimal field M ⊇ F pm−1

m such that M and K

are linearly disjoint over their intersection. Let Fm−1 = Mp−(m−1)
. We show now the

conditions (1)− (5) for Fm−1.

(1) : Since F pm−1

m−1 = M , we see that F pm−1

m−1 and K are linearly disjoint over their
intersection. So we have to show condition (1) only for s ≥ m. By Lemma 4.13,
M = F pm−1

m (S) for a finite subset S ofK. Thus for s ≥ m, we have F ps

m−1 = Mps−m+1
=

F ps

m (Sps−m+1
). Clearly Sps−m+1 ⊆ F ps

m−1, and since S ⊆ K we have Sps−m+1 ⊂ F ps

m−1∩K,

14



that is F ps

m−1 = F ps

m (F ps

m−1 ∩K). By induction hypothesis, F ps

m and K are linearly dis-

joint over their intersection for s ≥ m. Hence, using Lemma 4.14, we see that F ps

m−1

and K are linearly disjoint over their intersection for s ≥ m− 1. Thus Fm−1 satisfies
condition (1).
(3) and (4) : We have seen that F ps

m−1 = F ps

m (F ps

m−1 ∩K) for s ≥ m and since e ≥ m

(by assumtion), we have F pe

m−1 = F pe

m (F pe

m−1 ∩K) ⊆ K(F pe

m−1 ∩K) = K. It follows by
using Lemma 2.6, that Fm−1 satisfies (3). As we have seen, the exponent of Fm−1 is
greater than or equal to e and since Fm ⊆ Fm−1 the exponent is equal to e, hence we
have (4).
(5) : By induction hypothesis, [Fm : K] < ∞. Since S is a finite subset of K and

Fm−1 = Mp−(m−1)
= (F pm−1

m (S))p−(m−1)
= Fm(Sp−(m−1)

) we see that Fm−1 is a finite
extension of K.
(2) : Suppose E is an extension of L satisfying condition (1). Then Fm ⊆ E, since
by induction hypothesis, Fm is the minimal field extension satisfying condition (1).
Hence F pm−1

m ⊆ Epm−1
and by assumption Epm−1

is linearly disjoint from K. By
Lemma 4.13, M ⊆ Epm−1

. Thus Fm−1 ⊆ E.

The induction ends when the field F1 is constructed, which is the desired field.

5 The group of higher derivations

Thoroughout this section, L will be a finite purely inseparable modular extension of
K.

Lemma 5.1. Let φ : L[T ]/(T t+1) −→ L[T ]/(T t+1) be a ring homomorphism, satisfy-
ing
i. φ(T ) = T ,
ii. φ ≡ id mod (T )
Then φ is an automorphism of L[T ]/(T t+1).

Proof. Let φ be such an homomorphism. Then φ is injective: Let f =
∑

0≤i≤t

fiT
i be

in L[T ]/(T t+1) such that φ(f) = 0. Let

φ(f0) = f0 +
∑

1≤i≤t

biT
i

for some bi ∈ L. Then

φ(f) = f0 +
∑

1≤i≤t

(bi + φ(fi))T
i = 0,

thus f0 = 0 and since φ is a homomorphism, bi = 0 for all r ≥ 1. Let

φ(f1) = f1 +
∑

2≤i≤t

b
′

iT
i
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for some b
′
i ∈ L. Then

φ(f) =
∑

1≤i≤t

φ(fi)T
i = f1T + terms of higher order = 0,

thus we have f1 = 0. Continuing in this manner one can see that fi = 0 for all
0 ≤ i ≤ t, hence φ is injective.
We show by descending induction that φ is surjective. Let f ∈ L[T ]/(T t+1) such that
the first s coefficients f0, ..., fs−1 of f are equal to zero for some s ≤ t. Then there
exist g ∈ L[T ]/(T t+1) such that φ(g) = f :
s = m : set g = fmT

m and obtain

φ(fmT
m) = φ(fm)Tm = (fm +

∑
1≤i≤t

ciT
i)Tm = fmT

m = f

where all equalities are modulo (Tm+1).
s→ s− 1 : Assume that for every f ∈ L[T ]/(T t+1) with f0 = f1 = ... = fs−1 = 0
there exists a g ∈ L[T ]/(T t+1) such that φ(g) = f . Let h ∈ L[T ]/(T t+1) be a
polynomial with h0 = ... = hs−2 = 0. Define g1 = hs−1T

s−1 and f̃ = h − φ(g1).
Then f̃ has coefficients f̃0 = ... = f̃s−1 = 0 and by the induction hypothesis
there exists a g̃ ∈ L[T ]/(T t+1) such that φ(g̃) = f̃ . Defining g := g1 + g̃ we see
φ(g) = φ(g1) + φ(g̃) = φ(g1) + f̃ = φ(g1) + h− φ(g1) = h.
The induction is finished when s = 0 which states that for an arbitrary f ∈ L[T ]/(T t+1)
there exists a g ∈ L[T ]/(T t+1) such that φ(g) = f .

Theorem 5.2. The set H t(L) of all rank t higher derivations of L is a group with

respect to the composition d ◦ e = f where fk(a) =
∑

i+j=k

dj(ei(a)).

Proof. By Lemma 5.1, the set of all ring homomorphisms φ : L[T ]/(T t+1) → L[T ]/(T t+1)
satisfying (1) and (2) of Lemma 5.1 is equal to the set of all automorphisms satisfying
(1) and (2). Let G denote the set of all automorphisms L[T ]/(T t+1) satisfying (1)
and (2). One can easily check that G is a group. We now show that H t(L) is in
bijection with G, hence G induces a group structure on H t(L): Let ψ : G −→ H t(L)
be the map sending α ∈ G to dα where dα

i (x) = i-th coefficient of α(x). First we
have to check that dα is a higher derivation of L over K for every α ∈ G. Now since
α ≡ id mod (T ) we see that dα

0 is the identity on L. Now let x, y ∈ L, 1 ≤ m ≤ t and
α ∈ G. Let

α(x) =
∑

0≤i≤t

xiT
i, α(y) =

∑
0≤j≤t

yjT
j

and
α(xy) =

∑
0≤k≤t

zkT
k

for some xi, yj, zk ∈ L. Since α is a homomorphism we obtain∑
0≤k≤t

zkT
k = (

∑
0≤i≤t

xiT
i) · (

∑
0≤j≤t

yjT
j) =

∑
0≤k≤t

(
∑

i+j=k

xiyj)T
k.
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From this equality we see that dα
m(xy) =

∑
i+j=m

dα
i (x)dα

j (y)T i, hence dα ∈ H t(L).

Now we show that ψ is surjective: Let d ∈ H t(L). Define a ring endomorphism α of

L[T ]/(T t+1) by setting α(x) =
∑

0≤i≤t

di(x)T
i and α(T ) = T . Then by Lemma 5.1, α

is in G and we have ψ(α) = dα = d. Thus ψ is surjective. Let α, β ∈ G such that
dα = dβ. Since α(T ) = T = β(T ) it suffices to show that α(x) = β(x) for every x ∈ L.
But dα = dβ if and only if for every x ∈ L and all 0 ≤ i ≤ t the i-th coefficient of
α(x) is equal to the i-th coefficient of β(x). Hence α(x) = β(x). Thus ψ is injective
and so ψ is a bijection.
Now we examin the group structure which is induced by G onH t(L). Let d, e ∈ H t(L)
and define a composition on H t(L) as follows: set α = ψ−1(d) ∈ G and β = ψ−1(e) ∈
G. Then d ◦ e := ψ(α ◦ β) = dα◦β. Note that for x ∈ L we have

α ◦ β(x) = α(
∑

0≤i≤t

biT
i) =

∑
0≤i≤t

α(bi)T
i

=
∑

0≤i≤t

(
∑

0≤j≤t

aijT
j)T i =

∑
0≤k≤t

(
∑

i+j=k

aij)T
k

for some aij, bj ∈ L. Hence (d ◦ e)k(x) = k-th coefficient of α ◦ β(x) =
∑

i+j=k

aij.

Further we have aij = (j-th coefficient of α(bi)) = dα
j (bi) and bi = (i-th coefficient of

β(x)) = dβ
i (x). Hence (d ◦ e)k(x) =

∑
i+j=k

dα
j d

β
i (x) =

∑
i+j=k

djei(x). This is exactly the

composition claimed in the theorem.

Definition 5.3. A higher derivation d ∈ H∞
K (L) of L is called iterative of index q,

or simply iterative, if
(

i
j

)
dq·i = dq·jdq·(i−j) for all j ≤ i, and dm = 0 if q - m. A rank t

higher derivation (t <∞) is iterative if it is the first t+1 maps of an infinite iterative
higher derivation.

Remark 5.4. Let α ∈ Aut (L[T ]/(T t+1)) be the corresponding automorphism of some
d ∈ H t

K, d being iterative of index q. Let β be the corresponding automorphism for
e = a · d, where a ∈ L. Using the definitions, one can check that the i-th coefficient
of β(x), for some x ∈ L, is equal to zero if q - i and equal to ak ·αqk if i = q ·k, where
k ∈ N and αqk is the qk-th coefficient of α(x).

Lemma 5.5. If d ∈ H∞
K (L) is iterative of index q, and a is in L, we define ad := e

where eq·i = aidq·i, and ej = 0 if q - j. Then ad is in H∞
K (L).

Proof. Let x, y ∈ L. We have to show

(∗) em(xy) =
∑

0≤j≤m

ej(x)em−j(y)

for all m ∈ N0. If q - m then, by definition, em(xy) = 0 and the right hand side of (∗)
is also equal to zero since q cant devide both, j and m − j for j ≥ 0 and em(y) = 0
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since q - m. So let m = q · i for some i ∈ N. Then we have

em(xy) = aidm(xy) = ai
∑

0≤j≤m

dj(x)dm−j(y) =
∑

0≤j≤i

dqj(x)dm−qj(y)

=
∑

0≤j≤i

(ajdqj(x))(a
i−jdq(i−j)(y)) =

∑
0≤j≤i

eqj(x)em−qj(y)

=
∑

0≤j≤i

ej(x)em−j(y) = em(xy).

Remark 5.6. Let d(t) ∈ H t(L) and α the corresponding automorphism. Then the
field of constants is equal to the set {x;α(x) = x}. As a consequence, the set H t

K(L)
of all rank t higher derivations of L over K is a subgroup of H t(L), hence it is also
a group.

6 Invariant subfields and extensions of higher deriva-

tions

In this section the goal is to state the main theorem of this work. To do that, we
have to formulate several lemmas. So for the next lemma, note that a derivation (in
the usual sense) is a rank 1 higher derivation.

Lemma 6.1. Let ρ1, ..., ρn be a set of commuting derivations of L having the follow-
ing properties:
i. The set

{
ρk1

1 · · · ρkn
n ; 0 ≤ k1, ..., kn ≤ p− 1

}
is linearly independent over L,

ii. ρp
l = 0 for all 1 ≤ l ≤ n.

Then [L : K0] = pn, where K0 is the field of constants of ρ1, ..., ρn.

Proof. ”[L : K0] ≥ pn” : Suppose to the contrary that [L : K0] = m < pn. We show
that we are led to a contradiction. Let ω1, ..., ωm be a basis of L over K0. In the
linear equations ∑

0≤ki≤p−1

ρk1
1 · · · ρkn

n (ω1) · xk1,...,kn = 0

∑
0≤ki≤p−1

ρk1
1 · · · ρkn

n (ω2) · xk1,...,kn = 0

...∑
0≤ki≤p−1

ρk1
1 · · · ρkn

n (ωm) · xk1,...,kn = 0
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there are more unknowns (= pn) than equations (= m < pn) so that there exists a
non-trivial solution which, we denote by {xk1,...,kn ; 1 ≤ ki ≤ p− 1}. For any α ∈ L
we can find a1, ..., am ∈ K0 such that α = a1ω1 + ... + amωm. We multiply the first
equation by a1, the second by a2, and so on. Using that ai ∈ K0 we obtain∑

0≤ki≤p−1

ρk1
1 · · · ρkn

n (a1ω1) · xk1,...,kn = 0

∑
0≤ki≤p−1

ρk1
1 · · · ρkn

n (a2ω2) · xk1,...,kn = 0

...∑
0≤ki≤p−1

ρk1
1 · · · ρkn

n (amωm) · xk1,...,kn = 0

Adding these last equations and using the additivity of derivations we obtain

0 =
∑

0≤ki≤p−1

ρk1
1 · · · ρkn

n (a1ω1 + ...+ amωm) · xk1,...,kn

=
∑

0≤ki≤p−1

ρk1
1 · · · ρkn

n (α) · xk1,...,kn .

Since α ∈ L was arbitrary we get a contradiction to property (1) of our set of deriva-
tions.
”[L : K0] = pn” : Suppose that [L : K0] > pn. Then there exist pn + 1 elements
{αi; 1 ≤ i ≤ pn + 1} which are linearly independent over K0. In the linear equations∑

1≤i≤pn+1

xi · ρ0
1 · · · ρ0

n(αi) = 0

...∑
1≤i≤pn+1

xi · ρk1
1 · · · ρkn

n (αi) = 0

...∑
1≤i≤pn+1

xi · ρp−1
1 · · · ρp−1

n (αi) = 0

(where 0 ≤ ki ≤ p − 1) there are more unknowns (= pn + 1) than equations (= pn).
So there exists a non-trivial solution. Note that the solution can not lie in K0,
otherwise the first equation would be a dependence relation of the αi’s. Among all
these solutions we choose one which has the least number of elements different from
0. We may suppose this solution to be β1, ..., βr, 0, ..., 0 where the first r terms are
different from 0. Moreover, r 6= 1 because β1α1 = 0 implies β1 = 0 so β1, 0, ..., 0
would be a trivial solution. Also, we may suppose βr = 1 since if we multiply the
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given solution by β−1
r we obtain a new solution in which the r-th term is 1. Thus we

have
(∗)

∑
1≤i≤r−1

βiρ
k1
1 · · · ρkn

n (αi) + ρk1
1 · · · ρkn

n (αr) = 0

for all 0 ≤ k1, ..., kn ≤ p− 1. Since β1, ..., βr−1 cannot all belong to K0, one of these,
say β1, is in L but not inK0. So there is a derivation ρl such that ρl(β1) 6= 0. Applying
ρl to (∗) and using ther rule ρl(ab) = ρl(a)b+ aρl(b) we obtain

(∗∗)
∑

1≤i≤r−1

ρl(βi)ρ
k1
1 · · · ρ

kl
l · ρ

kn
n (αi) +

∑
1≤i≤r−1

βiρ
k1
1 · · · ρ

kl+1
l · · · ρkn

n (αi)+

ρk1
1 · · · ρ

kl+1
l · · · ρkn

n (αi) = 0

for all 0 ≤ k1, ..., kl, ..., kn ≤ p− 1. If we substract (∗∗) from (∗) we obtain∑
1≤i≤r−1

ρl(βi)ρ
k1
1 · · · ρ

kl
l · · · ρ

kn
n (αi) = 0

for all 0 ≤ ki ≤ p − 1, i 6= l and 0 ≤ kl < p − 1. For kl = p − 1 and all 0 ≤ ki ≤
p− 1, i 6= l we obtain in (∗∗)∑

1≤i≤r−1

ρl(βi)ρ
k1
1 · · · ρ

kl
l · · · ρ

kn
n (αi) = 0

since by property (2) of our derivations ρp
l = 0. But this is a non-trivial solution to

the system having fewer than r elements different from 0, contrary to the choice of
r.

Definition 6.2. A subset M = {m1, ...,mr} of L is called a subbase of L over K if
L is the tensor product (over K) of the simple extensions K(m1), ..., K(mr).

Since L is assumed to be modular over K, it is, by Theorem 4.11, a tensor product
of simple extensions of K. So let

L = K(x1,1)⊗ ...⊗K(x1,j1)⊗ ...⊗K(xn,1)⊗ ...⊗K(xn,jn)

where xi,e is of exponent i over K.
Let

AL :=
{
di,ei ; 1 ≤ i ≤ n, 1 ≤ ei ≤ ji

}
be the set of rank t higher derivations of L defined by

di,ei

[t/pi]+1
(xr,s) = δ((i,ei),(r,s)),

where [t/pi] is the greatest integer less than or equal to t/pi. We set

di,ei
α (xr,s) = 0, 1 ≤ i, r ≤ n, 1 ≤ ei ≤ ji, 1 ≤ s ≤ jr, α 6= [t/pi] + 1.

One can see that A is a set of commuting derivations, hence

d
i1,ei1
α di2,e2

β = di2,e2

β d
i1,ei1
α

for all 0 ≤ α, β ≤ t and 1 ≤ i1, i2 ≤ n, 1 ≤ ei1 ≤ ji1 , 1 ≤ ei2 ≤ ji2 .

20



Definition 6.3. The set

{xi,ei
; 1 ≤ i ≤ n, 1 ≤ ei ≤ ji}

is called a dual base for AL.

Lemma 6.4. Let d be a rank t higher derivation of L over K. Then the first non-zero
map (of positive index) of d is a derivation of L over K.

Proof. Let dr, r > 0 be the first non-zero map of d. For x, y ∈ L we have

dr(xy) =
∑

0≤s≤r

ds(x)dr−s(y) = xdr(y) + dr(x)y

since d1 = d2 = ... = dr−1 = 0.

Let di,e
zi,e

denote the first non-zero map of di,e of positive subscript zi,e and r be in
N. Consider the maps

dr+1,1
zr+1,1pr , ..., d

r+1,jr+1

zr+1,jr+1
pr , ..., d

n,1
zn,1pr , ..., d

n,jn
zn,jnpr .

By Lemma 4.9 we have that

di,ei
α (K(Lpr

)) ⊆ K(Lpr

)

for every α ≥ 0, thus di,ei|K(Lpr ) is a higher derivation of K(Lpr
). Since di,ei

zi,ei
is the

first non-zero map of di,ei there exist x ∈ L such that di,ei
zi,ei

(x) 6= 0. We have

di,ei
zi,ei

pr(xpr

) = (di,ei
zi,ei

(x))pr

where we have used Lemma 4.9. Thus di,ei
zi,ei

pr |K(Lpr ) is the first non-zero map of

di,ei|K(Lpr ) where r + 1 ≤ i ≤ n, 1 ≤ e ≤ ji. By Lemma 6.4, we see that{
di,ei

zi,ei
pr |K(Lpr ); r + 1 ≤ i ≤ n, 1 ≤ e ≤ ji

}
is a set of derivations of K(Lpr

) over K.
Now we want to check if the set of derivations{

di,ei
zi,ei

pr |K(Lpr ); r + 1 ≤ i ≤ n, 1 ≤ ei ≤ ji

}
fulfills the conditions i. and ii. of Lemma 6.1.

Remark 6.5. Every higher derivation di,e ∈ AL is iterative of index zi,e.

Lemma 6.6. Assume there exist
{
akr+1,1,...,kn,jn

∈ K(Lpr
); 0 ≤ ki,j ≤ p− 1

}
such that∑

0≤ki,j≤p−1

akr+1,1,...,kn,jn
· (dr+1,1

zr+1,1pr |K(Lpr ))
kr+1,1 · · · (dn,jn

zn,jnpr |K(Lpr
))

kn,jn (x) = 0

for all x ∈ K(Lpr
).Then akr+1,1,...,kn,jn

= 0 for all 0 ≤ ki,j ≤ p− 1.
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Proof. For indices 0 ≤ lr+1,1, ..., ln,jn ≤ p− 1 define

xlr+1,1,...,ln,jn
= (xpr

r+1,1)
lr+1,1 · · · (xpr

n,jn
)ln,jn .

Replacing x by xlr+1,1,...,ln,jn
we obtain

0 =
∑

0≤ki,j≤p−1

akr+1,1,...,kn,jn
· (dr+1,1

zr+1,1pr |K(Lpr ))
kr+1,1 · · · (dn,jn

zn,jnpr |K(Lpr ))
kn,jn (xlr+1,1,...,ln,jn

)

= alr+1,1,...,ln,jn
· (dr+1,1

zr+1,1pr |K(Lpr ))
lr+1,1((xpr

r+1,1)
lr+1,1) · · · (dn,jn

zn,jnpr |K(Lpr ))
ln,jn ((xpr

n,jn
)ln,jn )

= alr+1,1,...,ln,jn
· lr+1,1!d

r+1,1
zr+1,1pr |K(Lpr )((x

pr

r+1,1)) · · · ln,jn !dzn,jnpr |K(Lpr )((x
pr

n,jn
))

= alr+1,1,...,ln,jn
· lr+1,1! · · · ln,jn !

Since 0 ≤ lr+1,1, ..., ln,jn ≤ p−1 we have lr+1,1! · · · ln,jn ! 6= 0 and since K(Lpr
) is a field

it follows that alr+1,1,...,ln,jn
= 0. Thus varying the indices lr+1,1, ..., ln,jn if follows that

akr+1,1,...,kn,jn
= 0 for all 0 ≤ ki,j ≤ p− 1.

Lemma 6.7. We have (dr+k,e
zr+k,epr |K(Lpr ))

p = 0 for all 1 ≤ k ≤ n− r and 1 ≤ e ≤ jr+k.

Proof. Note that K(Lpr
) = K(xpr

r+1,1, ..., x
pr

r+1,jr+1
, ..., xpr

n,jn
). hence it suffices to show

that (dr+k,e
zr+k,epr |K(Lpr ))

p(xpr

r+l,s) = 0 for all r + 1 ≤ k ≤ n, 1 ≤ e ≤ jr+k and r + 1 ≤ l ≤
n, 1 ≤ s ≤ jr+l. But this is clear since (dr+k,e

zr+k,epr |K(Lpr ))(x
pr

r+l,s) = δ(r+k,e),(r+l,s).

Remark 6.8. By Lemma 6.4 and 6.6, and Lemma 6.7 we can apply Lemma 6.1, thus
[K(Lpr

) : K0] = pjr+1+...+jn where K0 is the field of constants of
dr+1,1

zr+1,1pr |K(Lpr ), ..., d
n,jn
zr+1,1pr |K(Lpr ).

Lemma 6.9. The set

B :=
{
dr+1,1

zr+1,1pr |K(Lpr ), ..., d
n,jn
zn,jnpr |K(Lpr )

}
of derivations of K(Lpr

) has field of constants K(Lpr+1
).

Proof. Let K0 be the field of constants of B.

K(Lpr+1
) ⊆ K0 : As in Lemma 6.4 it suffices to show (dr+k,e

zr+k,epr+1|K(Lpr+1
))(x

pr+1

r+l,s) = 0

for all r+2 ≤ k ≤ n, 1 ≤ e ≤ jr+k and r+2 ≤ l ≤ n, 1 ≤ s ≤ jr+l. So let 2 ≤ k, l ≤ n.
Then:

dr+k,e
zr+k,epr |K(Lpr )(x

pr+1

r+l,s) = dr+k,e
zr+k,e

(xp
r+s,l)

pr

= (pxpr−1
r+k,ed

r+k,e
zr+k,e

(xr+l,s))
pr

= 0

where for the second equality we have used that dr+k,e
zr+k,e

is a derivation on L.

K0 = K(Lpr+1
) : Note that [K(Lpr

) : K(Lpr+1
)] = [K(xpr

r+1,1, ..., x
pr

r+1,jr+1
, ..., xpr

n,jn
) :

K(xpr+1

r+2,1, ..., x
pr+1

r+2,jr+2
, ..., xpr+1

n,jn
)] = pjr+1+...+jn since xpr

r+k,e is of exponent one over

K(Lpr+1
) for 1 ≤ k ≤ n, 1 ≤ e ≤ jr+k. By Remark 6.8, [K(Lpr

) : K0] = pjr+1+...+jn ,
thus using that K(Lpr+1

) ⊆ K0 we obtain K0 = K(Lpr+1
).
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Definition 6.10. We say that a subfield M ⊆ L is invariant under H t
K(L) if for every

higher derivation d ∈ H t
K the corresponding automorphism α ∈ Aut (L[T ]/(T t+1))

satisfies α(M) ⊆M .

Theorem 6.11. Let L be a finite purely inseparable extension of K of exponent n.
Let M be a subfield of L containing K. Then M is invariant under H t

K(L) if and
only if M = K(Lpr

) for some nonnegative r.

Proof. Assume M = K(Lpr
), and let d = (di) ∈ H t

K(L). If x ∈M , then

x =
∑

1≤i≤s

aib
pr

i , dj(x) =
∑

1≤i≤s

aidj(b
pr

i )

for some ai, bj ∈ L. If pr - j, then (using Lemma 4.9) dj(x) = 0 ∈M . If pr | j then

dj(x) =
∑

1≤i≤t

ai(dj/pr(bi))
pr ∈ K(Lpr

) = M.

Since dj was arbitrary, M is invariant under H t
K(L).

Conversely, assume M is invariant under H t
K(L). We can assume M ⊆ K(Lpr

)
and M * K(Lpr+1

), otherwise M = K(Lpn
) = K and we are finished. Let x ∈

M \K(Lpr+1
), and let A be the set of higher derivations which we constructed before.

By Lemma 6.7, there exists di,j ∈ A such that di,j
zi,jpr(x) 6= 0. Recall that by Remark

6.5, di,j is iterative of index zi,j. Hence by Lemma 5.5, for any a ∈ L, adi,j has zi,jp
r

map apr
di,j

zi,jpr . Since M is invariant under H t
K(L), for any a ∈ L, apr

di,j
zi,jpr(x) ∈ M .

Thus Lpr ⊆M and thus M = K(Lpr
).

For the next theorem we need the following lemmas:

Lemma 6.12. Let L/M be purely inseparable of exponent e and B a subset of L.
Then B is a minimal generating set of L/M if and only if L = M(B) and B is a
relative p-base of L over M .

Proof. If B is a minimal generating set of L/M , then obviously L = M(B) and thus
L = M(Lp, B). If B is not p-independent in L/M , then there exists b ∈ B such that
b ∈ M(Lp, B \ {b}). Thus b is both purely inseparable and separable algebraic over
M(B \ {b}), hence b ∈ M(B \ {b}). This contradicts the fact that B is a minimal
generating set over M . Conversely if L = M(B) and B is a p-base of L/M then B is a
minimal generating set of L over M(Lp), hence a minmal generating set over M .

Lemma 6.13. Let L/M be a purely inseparable field extension of exponent e over
M . Let {B1, ..., Be} be a subbase of L over M . Then Bi is a subbase of L over
M ′ := M(B1, ..., Bi−1, Bi+1, ..., Be) for every 1 ≤ i ≤ e.

Proof. Since
∏

1≤j≤e

pj|Bj | = [L : M ] = [L : M ′][M ′ : M ], [L : M ′] ≤ pi|Bi| and

[M ′ : M ] ≤
∏

1≤j1≤i−1

pj1|Bj1
|

∏
i+1≤j2≤e

pj1|Bj2
| we see that [L : M ′] = pi|Bi|. The canon-

ical homomorphism from
⊗

M ′
bi∈Bi

M ′(bi) to M ′(Bi) = L is clearly surjective. Since
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dimM ′(
⊗

M ′
bi∈Bi

M ′(bi))) = pi|Bi| and [L : M ′] = pi|Bi| we see that L =
⊗

M ′
bi∈Bi

M ′(bi).

Lemma 6.14. Let L/M ′ be a finite purely inseparable field extension of exponent e
over M ′ such that [L : M ′] = pe·r and B = {b1, ..., br} a subbase of L over M ′. Then
for every relative p-base A = {a1, ..., as} of L over M ′ we have:

(1) s = r,
(2) L ∼= M ′(a1)⊗M ′ ...⊗M ′ M ′(ar),

Proof. Notice that since B is a subbase of L over M ′ it is also a minimal generating
set of L over M ′ and M ′(B) = L. Hence, by Lemma 6.12, B is also a p-basis of
L over M ′. From the theory of p-bases we know that different p-bases of the same
field extension must have the same cardinality, hence s = r. Since [L : M ′] = pe·r

we have [M ′(bi) : M ′] = pe for every 1 ≤ i ≤ r. Using the p-basis exchange theorem
we can exchange a1 with b1 such that {a1, b2, ..., br} is a p-basis for L over M ′. Since
[L : M ′] = pe·r and [M ′(bj) : M ′] = pe for every 2 ≤ j ≤ r we have that [M ′(a1) :
M ′] = pe. Thus exchanging aj with bj for 2 ≤ j ≤ r we see that [M ′(aj) : M ′] = pe for
all 1 ≤ j ≤ r. Clearly, the canonical homomorphism from M ′(a1)⊗M ′ ...⊗M ′ M ′(ar)
to M ′(A) is surjective, hence by considering the dimension over M ′ we can see that
M ′(A) = M ′(a1) ⊗M ′ ... ⊗M ′ M ′(ar). Since [L : M ′] = pe·r we see that L = M ′(A),
thus property (2) follows.

Remark 6.15. Note that by property (1) and (2) of Lemma 6.14 every a ∈ A is of
exponent e over M ′.

Theorem 6.16. Let K ⊆M ⊆ L be fields and assume that L is modular over M of
exponent e. The following conditions are equivalent:
(1) There exists an intermediate field K ⊆ J ⊆ L such that L = M ⊗K J and J is
modular over K.
(2) There exists a subbase B = B1 ∪ ... ∪ Be of L over M such that Bpi

i ⊆ (Lpi ∩
K)((M(Bi+1, ..., Be))

pi
) for all 1 ≤ i ≤ e.

Proof. ”(1) ⇒ (2)” : Since L = M ⊗K J , every subbase of J over K is also a subbase
of L over M . Since J over K is modular, J has a subbase {A1, ..., Ae} over K. Clearly,
{A1, ..., Ae} satisfies (2).

”(2) ⇒ (1)” : Let {B1, ..., Be} be a subbase of L over M as given in (2). For
every 1 ≤ i ≤ e− 1 let Mi = M(Bi+1, ..., Be) and for i = e we set Me = M .

Claim 1 : Lpi
= (Lpi ∩K)(Mpi

i ) for i = 1, ..., e.

Proof. We prove this by induction. For i = 1 we have by (2) that Bp
1 ⊆ (Lp ∩

K)(M(Bp
2 , ..., B

p
e )). Since Lp = (M(B1, ..., Be))

p = Mp(Bp
1 , ..., B

p
e ) we see by re-

placing Bp
1 by (Lp ∩ K)(M(Bp

2 , ..., B
p
e ))

p that Lp ⊆ (Lp ∩ K)(Mp(Bp
2 , ..., B

p
e )). It
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is clear that Lp ⊇ (Lp ∩ K)(Mp(Bp
2 , ..., B

p
e )), hence Lp = (Lp ∩ K)(Mp

1 ). Now

assume that for some i ≥ 1 we have the equality Lpi
= (Lpi ∩ K)(Mpi

i ). Then

Lpi+1
= (Lpi+1 ∩ Kp)(Mpi+1

(Bpi+1

i+1 , ..., B
pi+1

e )). By (2) we have Bpi+1

i+1 ⊆ (Lpi+1 ∩
K)(Mpi+1

(Bpi+1

i+2 , ..., B
pi+1

e )). Since Bpi+1

i+1 ⊆ (Lpi+1 ∩ K)(Mpi+1
(Bpi+1

i+2 , ..., B
pi+1

e )) we

see that Lpi+1 ⊆ (Lpi+1 ∩K)(Mpi+1
(Bpi+1

i+2 , ..., B
pi+1

e )) = (Lpi+1 ∩K)(Mpi+1

i+1 ). It is again

clear that Lpi+1 ⊇ (Lpi+1 ∩K)(Mpi+1

i+1 ), hence Lpi+1
= (Lpi+1 ∩K)(Mpi+1

i+1 ).

Claim 2 : For every 1 ≤ i ≤ e there exist A0, ..., Ai−1 ⊆ L such that :

(1) L ∼= K(A1)⊗ ...⊗K(Ai−1)⊗M(Bi, ...., Be),
(2) {A1, ...Ai−1, Bi, ..., Be} is a subbase of L over M ,
(3) al ∈ Al has exponent l over K for all 1 ≤ l ≤ i.

Proof. For i = 1 we have by assumtion that {B1, ..., Be} is a subbase of L over
M , hence L = M(B1, ...., Be). So suppose that L ∼= K(A1) ⊗ ... ⊗ K(Ai−1) ⊗
M(Bi, ...., Be) and {A1, ..., Ai−1, Bi, ..., Be} is a subbase of L over M satisfying Apl

l ⊆
K for 1 ≤ l ≤ i− 1. Let M ′ := M(A1, ..., Ai−1, Bi+1, ..., Be). By induction hypothesis
{A1, ...Ai−1, Bi, ..., Be} is a subbase of L over M . So using Lemma 6.13 we see that
Bi is a subbasis of L over M ′. Notice that by Claim 1 we have L = M ′(L ∩Kp−i

).
Hence there exists a subset Ai ⊆ L ∩ Kp−i

which is a p-basis of L over M ′. Using
Lemma 6.14 with B = Bi and A = Ai, we see that Ai is a subbase of L over M ′. By
Corollary 6.15 every a ∈ Ai has exponent i over M ′. We obtain

(∗) K(A1)⊗K ...⊗K K(Ai−1)⊗K M(Bi+1, ..., Be)⊗K

⊗
K

a∈Ai

K(a)

= M ′ ⊗K

⊗
K

a∈Ai

K(a)

since K(A1)⊗K ...⊗K K(Ai−1)⊗K M(Bi+1, ..., Be) is a field. Note that by property
(2) of Lemma 6.14 we have

⊗
M ′

a∈Ai

M ′(a) = L. Using Corollary 6.15 we see that

dimM ′(L) = pi·|Ai|. Clearly, the canonical homomorphism from M ′ ⊗K

⊗
K

a∈Ai

K(a)

to
⊗

M ′
a∈Ai

M ′(a) is surjective. Since Api

i ⊆ K we have [K(a) : K] ≤ pi for all a ∈ Ai

and hence dimM ′(M ′ ⊗K

⊗
K

a∈Ai

K(a)) ≤ pi·|Ai|. By the surjection mentioned before

it follows that dimM ′(M ′ ⊗K

⊗
K

a∈Ai

K(a)) = pi·|Ai|. This implies that (∗) is eqaual

to L and that [K(a) : K] = pi for every a ∈ Ai. Thus property (3) of Claim 2
follows. Consider now the surjective canonical homomorphism from

⊗
K

a∈Ai

K(a) to

K(Ai). Since dimK(
⊗

K
a∈Ai

K(a)) = pi|Ai| = dimK(K(Ai)) we see that K(Ai) =⊗
K

a∈Ai

K(a). Hence, by replaceing
⊗

K
a∈Ai

K(a) by K(Ai) in (∗), we obtain property

(1) of Claim 2. So it remains to show property (2) of Claim 2: Clearly, it suffices
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to show that
⊗

M
ai∈Ai

M(ai) =
⊗

M
bi∈Bi

M(bi). Now let a ∈ Ai and b ∈ Bi. Notice

that [M ′(a) : M ] = [M ′(a) : M ′][M ′ : M ] = [M ′(b) : M ′][M ′ : M ] where we have
used (2) of Lemma 6.14 in the second equality. So we obtain [M ′(b) : M(b)][M(b) :
M ] = [M ′(b) : M ] = [M ′(a) : M ] = [M ′(a) : M(a)][M(a) : M ] and using that
[M ′(b) : M(b)] = [M ′ : M ] = [M ′(a) : M(a)] we see that [M(b) : M ] = [M(a) : M ].
Hence

⊗
M

ai∈Ai

M(ai) =
⊗

M
bi∈Bi

M(bi).

By Claim 2 we have L ∼= K(A1)⊗ ...⊗K(Ae)⊗M , and {A1, ..., Ae} is a subbase of
L over M . By construction we have K(Ai) =

⊗
K

ai∈Ai

K(ai) for all 1 ≤ i ≤ e. Taking

J = K(A1, ..., Ae) we see that

J =
⊗
K

1≤i≤e

K(Ai) =
⊗
K

1≤i≤e

⊗
K

ai∈Ai

K(ai),

hence by Theorem 4.11 J is modular over K.

Lemma 6.17. Let M be a subfield of L containing K. Assume that M is modular
over K and that every rank t higher derivation on M over K can be extended to L.
Let x ∈ L such that xpi ∈ K(Mpi

) for some i ∈ N0. Then xpi ∈ (Lpi ∩K)(Mpi
).

Proof. If xpi ∈ K, the result is obvious. Hence assume xpi ∈ K(Mpr
) \K(Mpr+1

) for
some r ≥ i. Let T := {xi,ei

; 1 ≤ i ≤ e, 1 ≤ ei ≤ ji} be a subbase of M over K, and

let T be a dual base of AL. Since
{
xpr

r+1,1, ..., x
pr

n,jn

}
is a subbase of K(Lpr

) over K we

can write
(∗) xpi

=
∑

1≤s≤m

as(x
pr

r+1,1)
ts,r+1,1 · · · (xpr

n,jn
)ts,n,jn

where as ∈ K, 0 ≤ ts,j,ej
< pj−r. Since xpi ∈ K(Mpr

) \K(Mpr+1
), at least one ts,j,ej

is not divisible by p.
To show xpi ∈ (Lpi ∩ K)(Mpi

) it suffices to show that each as ∈ Lpi
, since we have

assumed that r ≥ i. The proof is by induction on m. If m = 1, then we see a1 ∈ Lpi
,

since we obtain in (∗) that a1 = xpi
((xpr

r+1,1)
t1,r+1,1 · · · (xpr

n,jn
)t1,n,jn )−1 ∈ Lpi

. Assume

the result for m − 1. By induction it suffices to show as ∈ Lpi
for some 1 ≤ s ≤ m.

Since every higher derivation on M over K can be extended to a higher derivation
on L, and Lpi

is invariant under all higher derivations on M by Lemma 4.9, any map
in any higher derivation on M over K must map xpi

into Lpi
. We will show that

some as is in Lpi
by induction on the total exponent of (∗), i.e.

∑
ts,α,β. If the total

exponent is 1, then m = 1 and the result follows. Since xpi ∈ K(Mpr
)\K(Mpr+1

), by
Lemma 6.9, some dl,el

zl,el
pr(xpi

) 6= 0. Applying dl,el
zl,el

pr to (∗) yields a nonzero element of

Lpi
of lower total exponent with nonzero coefficients of the form was, w ∈ Z/pZ. If

dl,el
zl,el

pr(xpi
) /∈ K, then by induction some was, hence some as, is in Lpi

and the result

follows. If dl,el
zl,el

pr(xpi
) ∈ K, then since

(xr+1,1)
ts,r+1,1 · · · (xn,jn)ts,n,jn , 0 ≤ ts,j,ej

< pj−r
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is a vector space basis for K(Mpr
) over K, we have dl,el

zl,el
pr(xpi

) = as for some s. Thus

once again some as is in Lpi
and the result follows.

Lemma 6.18. Let M be a modular extension of K and A a standard set of generators
for H t

K(M) with dual base {xi,ei
; 1 ≤ i ≤ n, 1 ≤ ei ≤ ji}. The set of maps

S =
{
di,ei

zi,ei
pci ; 1 ≤ i ≤ n, 1 ≤ ei ≤ ji, 0 ≤ ci < min(i, r)

}
has field of constants K(Mpr

).

Proof. We do this by induction on r. Let

Sl :=
{
di,ei

zi,ei
pci ; 1 ≤ i ≤ n, 1 ≤ ei ≤ ji, 0 ≤ ci < min(i, l)

}
. If r = 1, then

S1 =
{
d1,1

z1,1p0 , ..., d
1,j1
z1,j1

p0

}
and by Lemma 6.9, S1 has field of constantsK(Mp). Assume

the result for a r ≥ 1. Let D be the set of maps in Sr+1 which are not in Sr. That is

D =
{
di,ei

zi,ei
pi ; r ≤ i ≤ n, 1 ≤ ei ≤ ji

}
. If we restrict the maps in D to K(Mpr

) then

we see, by Lemma 6.9, that the restricted maps have field of constant K(Mpr+1
).

Hence K(Mpr+1
) is contained in the field of constants of D, which we denote by T0.

Let Fr+1 denote the field of constant of Sr+1. Note that since Sr+1 = Sr ∪ D, the
field of constants of Sr+1 is the intersection of the fields of constants of Sr and D. By
induction hypothesis

Sr := S =
{
di,ei

zi,ei
pci ; r ≤ i ≤ n, 1 ≤ ei ≤ ji, 0 ≤ ci < min(i, r)

}
has field of constants K(Mpr

).Hence Fr+1 = K(Mpr
) ∩ T0 and sinceK(Mpr+1

) ⊆
K(Mpr

) we see Fr+1 ⊇ K(Mpr+1
). Assume now that there exists x ∈ Fr+1 \

K(Mpr+1
). Then x ∈ K(Mpr

) and by Lemma 6.9, there exists di,j
zi,jpr ∈ D such

that (di,j
zi,jpr) |K(Mpr ) (x) 6= 0. Hence x /∈ Fr+1 which is a contradiction. That is

Fr+1 = K(Mpr+1
).

Theorem 6.19. Let M be an intermediate subfield of L and K, such that L is modular
over M and M is modular over K. Then every rank t higher derivation on M over
K extends to L if and only if there exists a field J such that K ⊆ J ⊆ L, J is modular
over K and L = M ⊗K J .

Proof. If L = M ⊗K J then every rank t higher derivation on M over K can be
extended by acting trivially on J .
Assume now that every rank t higher derivation on M over K can be extended to L.
Let B = B1∪ ...∪Bn be a subbase of L over M where b ∈ Bi is of exponent i over M .
We claim Bpr

r ⊆ K(Mpr
) for each 1 ≤ r ≤ n. Let A be a standard set of generators

for H t
K(M) with dual base {xi,ei

; 1 ≤ i ≤ n, 1 ≤ ei ≤ ji}. By Lemma 6.18, K(Mpr
)

is the field of constants of the set of maps

S =
{

(di,ei

zi,ei
pci ); 1 ≤ i ≤ n, 1 ≤ ei ≤ ji, 0 ≤ ci < min(i, r)

}
.
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Thus it suffices to show each xpr ∈ Bpr

r is annihilated by all maps in S. If p - zi,ei
,

since di,ei can be extended to L, we have

di,ei

zi,ei
pr−1(x

pr

) = (di,ei
zi,ei

(xp))pr−1

= 0

for all 0 ≤ ci < min(i, r), where we have used Lemma 4.9 for both equalities. If p | zi,ei

then consider the higher derivation e ∈ H t
K(M) with e(zi,ei

+1)·l = dzi,ei
·l for (zi,ei

+1)l ≤
t and ej = 0 if (zi,ei

+ 1) - j, j ≤ t. We claim (zi,ei
+ 1)pci ≤ t if 0 ≤ ci < min(i, r)

(unless t = 1, in which case the result is obvious). For if not, then (zi,ei
+ 1)pi−1 > t,

hence zi,ei
+ 1 > t/pi−1 and zi,ei

+ 1 > t/pi which is a contradiction to the definition
of zi,e. Since p - (zi,ei

+ 1) we see e(zi,ei
+1)pr−1(xpr

) = (e(zi,ei
+1)(x

p))pr−1
= 0 where

we have used again Lemma 4.9. Thus we have 0 = e(zi,ei
+1)pr−1(xpr

) = di,ei

zi,ei
pr−1(x

pr
)

by definition of e. Hence xpr ∈ K(Mpr
) and consequently Bpr

r ⊆ K(Mpr
) for all

1 ≤ r ≤ n. By Lemma 6.17,

Bpr

r ⊆ (Lpr ∩K)(Mpr

) ⊆ (Lpr ∩K)((M(Br+1, ..., Bn))pr

).

The result follows immediately from Theorem 6.16.

Corollary 6.20. Let M be an intermediate subfield of L and K such that L is modular
over M . Let M0 be the field of constantsof all rank t higher derivations on M over K.
Then every rank t higher derivation on M over K extends to L if and only if there
exists a field J such that M0 ⊆ J ⊆ L, J is modular over M0 and L = M ⊗M0 J .

Proof. Note that every rank t higher derivation on M over K is also a rank t higher
derivation on M over M0. By Theorem 4.11, M is modular over M0 and since
K ⊆ M0 ⊆ L, L is also finite dimensional over M0. Hence we can apply Theorem
6.19 to the chain of fields M0 ⊆M ⊆ L and we obtain the result.
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