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Abstract

This thesis deals with Galois representations associated to Drinfeld modules
in special characteristic. Our main goal is to determine the best possible results
about the openness of the image of the adelic Galois represenation.

Let K be a finitely generated field over a finite field κ of arbitrary transcen-
dence degree and set Ggeom

K := Gal(Ksep/Kκ). Let ϕ be a Drinfeld A-module
of rank r over K of special characteristic p0 and let F denote the quotient field
of A. The essential case boils down to proving the following statement: If the
endomorphism ring D of ϕ over an algebraic closure of K is an order in a central
simple algebra over F that does not grow when restricting ϕ to infinite subrings
of A, then the intersection of the image of Ggeom

K in the adelic representation with∏
p6=p0

Centder
GLr(Ap)(D ⊗A Ap) is open in both groups.

In closing we deduce from this the openness result for arbitrary Drinfeld
modules in special characteristic.
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Résumé

Cette thèse parle de représentations galoisiennes associées aux modules de
Drinfeld en caractéristique spéciale. Notre but principal est de déterminer les
meilleurs résultats possibles concernant l’ouverture de l’image de la représentation
galoisienne adélique.

Soit K un corps finiment engendré sur un corps fini κ de degré de transcen-
dence arbitraire et écrivons Ggeom

K := Gal(Ksep/Kκ). Soit ϕ un A-module de
Drinfeld sur K de rang r en caractéristique spéciale p0, et soit F le corps de frac-
tions de A. Le cas essentiel revient à prouver l’affirmation suivante: si l’anneau
des endomorphismes D de ϕ sur une clôture algébrique de K est un ordre dans
une algèbre centrale simple sur F qui ne s’agrandit pas quand on restreint ϕ
aux sous-anneaux infinis de A, alors l’intersection de l’image de Ggeom

K dans la
représentation adélique et de

∏
p6=p0

Centder
GLr(Ap)(D ⊗A Ap) est ouverte dans les

deux groupes.
Pour finir nous en déduisons le résultat concernant l’ouverture de l’image

adélique pour un module de Drinfeld arbitraire en caractéristique spéciale.
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CHAPTER 1

Introduction

1.1. Notation

Let Fq be a finite field with q elements and of characteristic p. Let F be a
finitely generated field of transcendence degree 1 over its constant field Fq. Let A
be the ring of elements of F which are regular outside a fixed place ∞ of F . Let
K be another finitely generated field over Fq of arbitrary transcendence degree.
Then the ring of Fq-linear endomorphisms of the additive algebraic group over K
is the non-commutative polynomial ring in one variableK{τ}, where τ represents
the endomorphism u 7→ uq and satisfies the commutation relation τu = uqτ for
all u ∈ K. Consider a Drinfeld A-module

ϕ : A→ EndFq(Ga,K) ∼= K{τ}, a 7→ ϕa

of rank r ≥ 1 overK. In what follows we assume that ϕ has special characteristic.
This means that the kernel p0 of the homomorphism A→ K determined by the
lowest coefficient of ϕ is non-zero and therefore a maximal ideal of A. For the
general theory of Drinfeld modules the reader can for example consult Drinfeld
[Dri74], Deligne and Husemöller [DH87], Hayes [Hay79] or Goss [Gos96].

Inside a fixed algebraic closure K of K we let Ksep denote the separable
closure of K. For any non-zero ideal a of A we let

ϕ[a] := {x ∈ K | ∀a ∈ a : ϕa(x) = 0}

denote the module of a-torsion of ϕ. If p0 - a, then its points are defined over
Ksep and form a free A/a-module of rank r. For any prime p of A let Ap and
Fp denote the completions of A and F at p, respectively. For p 6= p0, the p-
adic Tate module Tp(ϕ) := lim←−ϕ[pn] is a free Ap-module of rank r, on which
there is a natural action of the absolute Galois group GK of K. This action
commutes with the action of EndK(ϕ) on Tp(ϕ). It was proved independently
by Taguchi [Tag95] and Tamagawa [Tam94a], [Tam94b], [Tam95] that the
natural homomorphism

EndK(ϕ)⊗A Ap −→ EndAp,Gal(Ksep/K)(Tp(ϕ)) (1.1)

is an isomorphism. This yields a continuous representation

ρp : GK −→ CentAutAp (Tp(ϕ))(EndK(ϕ)⊗A Ap) ∼= CentGLr(Ap)(EndK(ϕ)⊗A Ap).

We denote its image in CentGLr(Ap)(EndK(ϕ)⊗A Ap) by Γp.
Let κ denote the constant field of K and κ its algebraic closure in Ksep. Then

Gal(κ/κ) is the free pro-cyclic group topologically generated by the element Frobκ
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which acts on κ by u 7→ u|κ|. Writing Ggeom
K := Gal(Ksep/Kκ), we have a natural

short exact sequence

1 −→ Ggeom
K −→ GK −→ Gal(κ/κ) −→ 1.

We are ultimately interested in the image of Ggeom
K under ρp, which we denote

by Γgeom
p . By construction this is a closed normal subgroup of Γp and the quotient

is pro-cyclic.
Let P be a finite set of places p 6= p0,∞ of F . We set TP (ϕ) := ⊕p∈PTp(ϕ),

which is a free module over AP := ⊕p∈PAp of rank r. We denote the image of
the combined representation

ρP : GK −→ CentAutAP
(TP (ϕ))(EndK(ϕ)⊗AAP ) ∼= CentGLr(AP )(EndK(ϕ)⊗AAP ).

by ΓP and the image of Ggeom
K under ρP by Γgeom

P .
For a place p 6= p0,∞ of F with residue field kp we consider the residual

representation

ρp : GK −→ CentAutkp (ϕ[p])(EndK(ϕ)⊗A kp) ∼= CentGLr(kp)(EndK(ϕ)⊗A kp).

The name comes from the fact that this representation is nothing more than the
reduction of ρp modulo p.

For n ≥ 2 we denote the reduction of ρp modulo pn by ρp,n.

Let A(p0,∞)
F denote the ring of adeles of F outside of p0 and ∞. We also

consider the adelic representation

ρad : GK −→ Cent
GLr(A(p0,∞)

F )
(EndK(ϕ)⊗A A(p0,∞)

F ).

At last, we introduce some non-standard terminology that will be in use
throughout this work: we say that a Drinfeld module ϕ : A→ K{τ} has minimal
endomorphism ring if EndK(ϕ) = A.

1.2. Main result

Let ϕ : A → K{τ} be a Drinfeld module of rank r of special characteristic
p0. The aim of the present work is to describe the image of the adelic Galois
representation up to commensurability. Pink [Pin06b] has shown that for all
primes p 6= p0,∞ the image of Γgeom

p under the determinant is finite; thus the
subgroup det(Γp) ⊂ A∗p is essentially pro-cyclic and therefore cannot be open.
It follows that we cannot expect the image of GK to be open in the adelic
representation and the central question becomes describing the image of Ggeom

K

under ρad.
Let D := EndK(ϕ), let Z denote the center of D ⊗A F and let us write

dimZ D ⊗A F = d2 and [Z/F ] = e.

We know that there exists a finite separable extension K ′ of K such that all
endomorphisms contained in D are already defined over K ′; since we are only
interested in the image of the Galois representation up to commensurability, we
may thus assume that all endomorphisms of ϕ are defined over K. In this case we
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can select a maximal commutative subring Â of D and pass to the correspond-
ing Drinfeld module ϕ̂ : Â → K{τ}, which has rank r′ := r/de and satisfies

EndK(ϕ̂) = Â. The image of the adelic Galois representation associated to ϕ
can be obtained as a projection of the image of the adelic Galois representation
associated to ϕ̂; thus we can reduce ourselves to the case of Drinfeld modules
with minimal endomorphism ring.

In generic characteristic the case of such Drinfeld modules can be treated
in a uniform way. However, in our setting a new phenomenon can occur that
we need to take into account, namely the fact that Drinfeld modules in special
characteristic can have non-commutative endomorphism rings. As a consequence,
it is possible that if we restrict ϕ̂ to a subring B̂ of Â, then the endomorphism
ring of the Drinfeld B̂-module thus obtained is larger than the one we started
out with. A natural question to ask then is whether the endomorphism ring can
grow indefinitely if we undertake a series of successive restrictions, or whether
the process stabilizes after a finite number of steps. This question was answered
by Pink in [Pin06b] and it turns out that both cases can occur:

On the one hand, if ϕ̂ is isomorphic to a Drinfeld module defined over a finite
field, then the endomorphism ring can grow infinitely often. Pink proved that
this occurs if and only if r′ = 1 and that in this case Γgeom

p is finite for all places
p 6= p0,∞ of F ; more precisely, he proved that after replacing K by a finite
extension we obtain Γgeom

p = 1 for all p 6= p0,∞. This effectively describes the
image of the adelic representation in the case r′ = 1.

On the other hand, Pink proved that if ϕ̂ is not isomorphic to a Drinfeld
module defined over a finite field, which is equivalent to saying r′ ≥ 2, then
there exists a uniquely determined infinite subring B̂ of Â such that EndK(ϕ̂|B̂)

over K is an order in a central simple algebra over the quotient field of B̂ and
that for every infinite subring Ĉ ⊂ Â we have EndK(ϕ̂|Ĉ) ⊂ EndK(ϕ̂|B̂). The
adelic Galois representation associated to ϕ̂ coincides with the adelic Galois
representation associated to ϕ̂|B̂; thus, if r′ ≥ 2, then we can always reduce

ourselves to the case of a Drinfeld module with the characteristics of ϕ̂|B̂, and
studying the behavior of such Drinfeld modules describes the image of the adelic
representation for arbitrary ones. This is what has inspired us to formulate our
Main Theorem as follows:

Theorem 1.1.
Let ϕ be a Drinfeld A-module over a finitely generated field K of special charac-
teristic p0. Assume that D := EndK(ϕ) is an order in a central simple algebra
over F of dimension d2 and that for every infinite subring B ⊂ A we have
EndK(ϕ|B) = D. Let r be the positive integer such that the rank of ϕ is equal to
rd and assume that r ≥ 2. Then

ρad(G
geom
K ) ∩ Centder

GLrd(A(p0,∞)
F )

(D ⊗A A(p0,∞)
F )
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is open in both ρad(G
geom
K ) and Centder

GLrd(A(p0,∞)
F )

(D ⊗A A(p0,∞)
F ).

Compare the formulation of this theorem with Theorem 6.1 of [Pin06b]:
Under the assumptions of our theorem the latter says that for any finite set P of
primes of A not containing p0, the intersection Centder

GLrd(AP )(D⊗AAP )∩Γgeom
P is

open in both groups. This was the result that helped us determine the outcome
to aim for in the adelic case.

The reduction steps mentioned above and the general result for arbitrary
Drinfeld modules in special characteristic that are not isomorphic to a Drinfeld
module defined over a finite field will be explained at greater length in Chapter
9.

To complete this section, we describe a special case of Theorem 1.1. Assume
that ϕ has minimal endomorphism ring which does not grow when restricting ϕ
to infinite subrings of A. This is the simplest case that can occur and the one in
which the result obtained mimics closely the one for Drinfeld modules in generic
characteristic ([PR09a], Theorem 0.1):

Corollary 1.2.
Let ϕ be a Drinfeld A-module of rank r ≥ 2 over a finitely generated field K of
special characteristic p0. Assume that for every infinite subring B ⊂ A we have
EndK(ϕ|B) = A. Then

ρad(G
geom
K ) ∩ SLr(A(p0,∞)

F )

is open in both ρad(G
geom
K ) and SLr(A(p0,∞)

F ).

1.3. Outline of the chapters

In Chapter 2 we present a few preparatory results that do not involve the
theory of Drinfeld modules. To begin with we use the general theory of rep-
resentations of linear algebraic groups to show that, if certain explicitly stated
algebraic relations are satisfied on a connected semisimple algebraic group G,
then G is isomorphic to SLn for some n ≥ 1. Next we prove an analogous result
for finite subgroups of linear algebraic groups that, combined with a previous re-
sult by Larsen and Pink [LP98], allows us to establish certain criteria that help
approximate finite subgroups of SLn in non-zero characteristic by a subgroup of
the form SLn(k) or SUn(k) for some finite field k. The exact formulation of the
result thus obtained can be found in Theorem 2.19.

Chapter 3 is also devoted to preparatory results, this time on the side of the
theory of Drinfeld modules. In the first two sections we list previously known
results about Drinfeld modules in special characteristic, in some cases after re-
formulating them to fit our setting. In Section 3.3 we collect and explain a few
important reduction steps that one can carry out before attacking the proof of
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Theorem 1.1. Finally, we devote the last section of the chapter to the properties
of Frobenius elements in the representations ρp and ρp at a given prime p of A.

The proof of the Main Theorem is carried out in Chapters 4 to 8. We assume
throughout that ϕ satisfies the conditions of Theorem 1.1 and that the reduction
steps introduced in Section 3.3 are in effect. In Chapters 4 to 7 we make the ad-
ditional assumption that the field K has transcendence degree 1; this assumption
will only be lifted in Chapter 8. We split the proof into chapters as follows:

In Chapter 4 we prove that the image of the residual representation contains
SLr(kp) for almost all primes p of A. The key ingredients are the irreducibility
of the residual representation [PT06], the Zariski density of Γp [Pin06a], the
characterization of kp in terms of the image of Frobenius elements and Theorem
2.19. In the last part we prove that the image of GK in the product of two
residual representations at distinct primes cannot be contained in the graph of
an isomorphism between the factors.

In Chapter 5 we collect a few auxiliary results from group theory and coho-
mology that will be used in the subsequent chapters.

In Chapter 6 we prove that the image of ρp contains SLr(Ap) for almost all
primes p of A. We accomplish this by proving a purely algebraic result first:
if a closed subgroup H of SLr(Ap) maps surjectively onto SLr(kp) and contains
a non-scalar matrix of the form 1 + Mp with Mp ∈ glr(p) \ glr(p

2), then H is
equal to SLr(Ap). The group Γgeom

p satisfies the first condition for almost all
p by the results of Chapter 4; thus we are left with proving the existence of a
corresponding non-scalar element Mp for almost all p. This is achieved with the
help of Frobenius elements.

In Chapter 7 we use the results of Chapter 6 and the openness of the image
of Γgeom

P at a finite set P of primes proved in [Pin06b] to establish the Main
Theorem for fields of transcendence degree 1.

In Chapter 8 the field K can have arbitrary transcendence degree, but ϕ is
still assumed to satisfy the assumptions of Theorem 1.1. We use a reduction
argument similar to the one in [PR09a] in order to deduce the general case of
Theorem 1.1 from the results of Chapter 7.

Chapter 9 is a natural completion of Section 1.2. It gives a precise description
of the results that we can deduce from Theorem 1.1 for arbitrary Drinfeld modules
of special characteristic that are not isomorphic to a Drinfeld module defined over
a finite field.

5





CHAPTER 2

Linear algebraic groups and their finite subgroups

This chapter builds towards its main result, Theorem 2.19, which will play an
important role in determining the image of the restricted residual representation
ρp|Ggeom

K
at a given place p of F .

2.1. Root system combinatorics

In this section we prove the following result: the only root systems where
there is an orbit of the Weyl group that generates the ambient vector space
while not satisfying a certain simple relation of linear dependence are of type An.
Moreover, we show that if the dimension of the root system is different from 2,
then the orbit in question is, up to a non-zero scalar multiple, the orbit of the
first fundamental weight relative to a given base of the root system.

Then, assuming that a second simple linear dependence relation is not satis-
fied, we show that the general result also holds when the dimension of the root
system equals 2.

Theorem 2.1.
Let Φ be a non-trivial root system generating the Euclidean vector space V . Let
W be the associated Weyl group and S a W-orbit in V.

Assume the following conditions are satisfied:

(a) V is generated by S as a vector space;
(b) There are no distinct elements λ1, . . . , λ4 ∈ S such that λ1+λ2 = λ3+λ4.

Then either

(1) there is an integer n ≥ 1 and a constant c 6= 0 such that

Φ ∼= An = {±(ei − ej) | 0 ≤ i < j ≤ n} ⊂ V = Rn+1/ diag(R)

and S = {cei | 0 ≤ i ≤ n}, or

(2) Φ ∼= A2.

Assuming a third condition similar to the second one from above, we get an
even stronger result:

Theorem 2.2.
Let Φ, V,W and S be as defined in Theorem 2.1 and assume that in addition to
Assumptions (a) and (b) of that theorem, the following condition also holds:

7



(c) There are no distinct elements λ1, . . . , λ6 ∈ S such that λ1 + λ2 + λ3 =
λ4 + λ5 + λ6.

Then there is an integer n ≥ 1 and a constant c 6= 0 such that

Φ ∼= An = {±(ei − ej) | 0 ≤ i < j ≤ n} ⊂ V = Rn+1/ diag(R)

and S = {cei | 0 ≤ i ≤ n}.

Proof of Theorem 2.1. In what follows we suppose that the assumptions
of the theorem are satisfied. First we show that Φ is simple and only contains
roots of the same length, thereby excluding the cases Bn,Cn,F4 and G2. Next
we impose some restrictions on the position of S in V relative to Φ in order
to exclude the cases Dn,E6,E7 and E8. Finally we make use of the well-known
structure theory of An to prove that, up to a non-zero scalar multiple, S is the
W-orbit of the first fundamental weight relative to the standard base of Φ.

Before we start, let us note that it follows from the assumptions of the theorem
that S does not contain 0; indeed, under the action of the Weyl group the orbit
of 0 is {0}, which cannot generate the non-trivial vector space V .

Lemma 2.3.
Let λ ∈ S and α1, α2 be two orthogonal roots in Φ. Then λ ⊥ α1 or λ ⊥ α2.

Proof. Let sα1 (respectively sα2) in W denote the reflexions corresponding
to α1 (respectively α2). Then

λ+ sα1sα2(λ) = sα1(λ) + sα2(λ)

and in order to avoid a contradiction to Assumption (b), we must have one of
the following equalities:

sα1(λ) = λ or sα2(λ) = λ or λ = sα1sα2(λ).

The last equality yields λ = sα1(λ) = sα2(λ) and it follows that in each case we
have λ ⊥ α1 or λ ⊥ α2. �

Proposition 2.4.
The root system Φ is simple.

Proof. Let us assume that Φ = Ψ1 + Ψ2 is decomposable and let λ ∈ S.
Since Φ generates V there exists α ∈ Φ such that α is not orthogonal to λ.
Assume without loss of generality that α ∈ Ψ2. Then, by Lemma 2.3, the vector
λ is orthogonal to all roots that are orthogonal to α, in particular λ ⊥ Ψ1 . Then
w(λ) ⊥ Ψ1 for all w ∈ W and therefore S ⊥ Ψ1. However, this is a contradiction
to Assumption (a). �
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Proposition 2.5.
All roots in Φ have the same length and are therefore conjugate under the action
of the Weyl group.

Proof. Let us assume that Φ contains roots of different lengths. By Propo-
sition 2.4 the root system Φ is simple and hence contains two roots of different
lengths that are not orthogonal; consequently these generate a sub-root system
Ψ of type B2 or G2. Let {α1, α2} be a basis of Ψ. Since S generates V , we can
find an element λ ∈ S that is not orthogonal to Ψ. We show that there are
distinct elements w1, . . . , w4 ∈ W(Ψ) ⊂ W with w1(λ) +w2(λ) = w3(λ) +w4(λ),
thus obtaining a contradiction.

Since S is aW-orbit, we can without loss of generality assume that the projec-
tion λ′ of λ onto the plane generated by Ψ lies in the Weyl chamber corresponding
to α1 and α2. Since W(Ψ) acts the same way on λ as on λ′, it is enough to find
relations for λ′. This effectively reduces the problem to the two-dimensional case.

Case B2: Let us assume that α1 is the longer root. We distinguish three cases
according to whether λ′ is on one of the boundaries of the Weyl chamber or in the
interior. In each case we proceed similarly to find a quadruple w1, . . . , w4 that
yields the desired contradiction: we put w1 = Id and for w2 we choose an element
of the Weyl group that sends λ′ to −λ′. (If λ′ lies on the exterior of the Weyl
chamber, it is the scalar multiple of a root, thus we can choose the symmetry
respective to the root in question; otherwise we can take the product of two
symmetries relative to orthogonal roots.) By this choice, we get two distinct
elements w1(λ

′) = λ′ and w2(λ
′) = −λ′ whose sum is zero; if we apply to this

sum a symmetry relative to a root that is neither parallel nor orthogonal to λ′,
we obtain a pair of distinct elements w3(λ

′) and w4(λ
′) with sum zero that are

also distinct from the first pair. Here are the exact computations for each case:

• If λ′ = c(α1 + α2), c ∈ R>0, then

λ′ + sα1+α2(λ
′) = sα1(λ

′) + sα1sα1+α2(λ
′);

• If λ′ = c(α1 + 2α2), c ∈ R>0, then

λ′ + sα1+2α2(λ
′) = sα2(λ

′) + sα2sα1+2α2(λ
′);

• If λ′ is in the interior of the Weyl chamber, then

λ′ + sα1sα1+2α2(λ
′) = sα1(λ

′) + sα1+2α2(λ
′).

Case G2: Let us assume that α1 is the shorter root. Again we distinguish
three cases according to the same principle as in the case B2 and apply the same
method to find linear relations of the desired form:

• If λ′ = c(3α1 + 2α2), c ∈ R>0, then

λ′ + s3α1+2α2(λ
′) = s2α1+α2(λ

′) + s2α1+α2s3α1+2α2(λ
′);

• If λ′ = c(2α1 + α2), c ∈ R>0, then

λ′ + s2α1+α2(λ
′) = sα1(λ

′) + sα1s2α1+α2(λ
′);

9



• If λ′ is in the interior of the Weyl chamber, then

λ′ + sα2s2α1+α2(λ
′) = sα2(λ

′) + s2α1+α2(λ
′).

We found non-trivial relations contradicting Assumption (b) for B2 and for G2

as well. Consequently the root system cannot contain roots of different lengths.
The well-known fact that the Weyl group acts transitively on every simple root
system where all roots are of equal length completes the proof. �

Lemma 2.6.
Suppose dim(V ) ≥ 3.

(1) Let λ ∈ S and α ∈ Φ. Then λ ∈ 〈α〉⊥ ∪ ({α}⊥ ∩ Φ)⊥.
(2) If Φ is of type Dn (n ≥ 4),E6,E7 or E8, then ({α}⊥ ∩ Φ)⊥ = 〈α〉 for all

α ∈ Φ.
(3) If Φ is of type An (n ≥ 3) and α = ei−ej with i 6= j, then ({α}⊥∩Φ)⊥ =
〈ei, ej〉.

Proof.
(1) If λ ⊥ α, then λ ∈ 〈α〉⊥. Now suppose λ and α are not orthogonal. Since

dim(V ) ≥ 3, we can find β ∈ Φ such that α ⊥ β. By Lemma 2.3 we
know that λ is orthogonal to either α or β; therefore λ ⊥ β. It follows
that λ ⊥

〈
{α}⊥ ∩ Φ

〉
. Thus in each case we have

λ ∈ 〈α〉⊥ ∪ ({α}⊥ ∩ Φ)⊥.

(2) Since all roots are conjugate under the action of the Weyl group, it is
enough to prove the assumption for an arbitrary element α of Φ. Clearly
we have 〈α〉 ⊂ ({α}⊥ ∩ Φ)⊥. Henceforth we proceed case by case:

Case Dn: We choose the following construction of the root system:

Φ = {±(ei ± ej) | 1 ≤ i < j ≤ n} ⊂ Rn

and the corresponding simple roots

αi = ei − ei+1 for i = 1, . . . , n− 1 and αn = en−1 + en.

By explicit calculations for α = e1 − e2 we then find

〈{α}⊥ ∩ Φ〉 = 〈e1 + e2, α3, . . . , αn〉.
This last subspace of Rn has dimension n− 1. Combining this with the
fact that 〈α〉 ⊂ ({α}⊥ ∩ Φ)⊥ yields 〈α〉 = ({α}⊥ ∩ Φ)⊥.

Case E6: We choose the following construction of the root system:

Φ = {±(ei ± ej) | 1 ≤ i < j ≤ 5}

∪

{(
1
2
ε1, . . . ,

1
2
ε5,

√
3

2
ε6

)
| ε1, . . . , ε6 ∈ {±1},

6∏
i=1

εi = 1

}
⊂ R6
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and the corresponding simple roots

αi = ei+1 − ei for i = 1, . . . , 4,

α5 = e1 + e2,

α6 = (−1
2
, . . . ,−1

2
,−

√
3

2
).

Again, by explicit calculations for α = e1 − e2 we find

〈{α}⊥ ∩ Φ〉 = 〈e3 + e4, α3, . . . , α6〉.

This last subspace of R6 has dimension 5. Therefore we can again con-
clude 〈α〉 = ({α}⊥ ∩ Φ)⊥.

Case E7: We choose the following construction of the root system:

Φ = {±(ei ± ej) | 1 ≤ i < j ≤ 6} ∪ {(0, . . . , 0,±
√

2)}

∪

{(
1
2
ε1, . . . ,

1
2
ε6,

1√
2
ε7

)
| ε1, . . . , ε7 ∈ {±1},

6∏
i=1

εi = 1

}
⊂ R7

and the corresponding simple roots

αi = ei+1 − ei for i = 1, . . . , 5,

α6 = e1 + e2,

α7 = (−1
2
, . . . ,−1

2
,− 1√

2
).

Again, by explicit calculations for α = e1 − e2 we find

〈{α}⊥ ∩ Φ〉 = 〈e3 + e4, α3, . . . , α7〉.

This last subspace of R7 has dimension 6. Thus we can again conclude
〈α〉 = ({α}⊥ ∩ Φ)⊥.

Case E8: We choose the following construction of the root system:

Φ = {±(ei ± ej) | 1 ≤ i < j ≤ 8}

∪

{(
1
2
ε1, . . . ,

1
2
ε8

)
| ε1, . . . , ε8 ∈ {±1},

8∏
i=1

εi = 1

}
⊂ R7

and the corresponding simple roots

αi = ei − ei+1 for i = 1, . . . , 7,

α8 = (−1
2
,−1

2
,−1

2
,−1

2
,−1

2
, 1

2
, 1

2
, 1

2
).

Again, by explicit calculations for α = e1 − e2 we find

〈{α}⊥ ∩ Φ〉 = 〈e1 + e2, α3, . . . , α8〉.

This last subspace of R8 has dimension 7. Therefore we can again con-
clude 〈α〉 = ({α}⊥ ∩ Φ)⊥.
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(3) Just like in the second part of the proof, here it is also sufficient to prove
the statement for an arbitrary element α of Φ, say α = e0− e1. For this
choice of α we indeed have

({α}⊥ ∩ Φ)⊥ = 〈e2 − e3, . . . , en−1 − en〉⊥ = 〈e0, e1〉. �

Proposition 2.7.
The root system Φ cannot be of type Dn (n ≥ 4),E6,E7 and E8 and is therefore
equal to An for some n ≥ 1.

Proof. Let Φ be of one of the types Dn (n ≥ 4),E6,E7 or E8 and let µ ∈ S.
Combining the first two statements of the previous lemma, for all α ∈ Φ we get

µ ∈ 〈α〉 ∪ 〈α〉⊥.

Since Φ generates V , we have
⋂
α∈Φ〈α〉⊥ = {0}. Therefore we find an α ∈ Φ

with µ ∈ 〈α〉. Let β ∈ Φ be a root not orthogonal to α with β 6= ±α, in other
words such that 〈β〉 6⊂ 〈α〉 ∪ 〈α〉⊥. Since W acts transitively on Φ, there exists
w ∈ W with w(α) = β. Then it follows from µ ∈ 〈α〉 that λ := w(µ) is contained
in 〈w(α)〉 = 〈β〉 and therefore not contained in 〈α〉 ∪ 〈α〉⊥. On the other hand,
since S is stable under the operation of W , we have w(µ) = λ ∈ S. Applying
Lemma 2.6 (1) to λ leads to a contradiction. Since we have already excluded
root systems with different root lengths, the only remaining possibilities are the
root systems of type An for some n ≥ 1. �

One part of Theorem 2.1 is now proven. It only remains to show that if n 6= 2,
then up to a non-zero scalar multiple S is the W-orbit of the first fundamental
weight. This is the object of the following proposition.

Proposition 2.8.
Let

∆ = {αi := ei−1 − ei | 1 ≤ i ≤ n}
denote the standard base of the root system An. If n 6= 2, then there is a constant
c 6= 0 such that

S = {cei | 0 ≤ i < n}.

Proof. The claim is trivial for n = 1. Let us therefore suppose n ≥ 3.
Relative to ∆ the fundamental weights are{

λi :=
i−1∑
j=0

ej | 1 ≤ i ≤ n

}
.

Let C(∆) denote the Weyl chamber relative to ∆. A vector s = (s0, s1, . . . , sn) ∈
Rn+1/ diag(R) then lies in C(∆) if and only if s0 ≥ s1 · · · ≥ sn.

Let us now fix λ ∈ S that lies in C(∆) and suppose there exist 1 ≤ i < j ≤ n
such that λ 6⊥ αi and λ 6⊥ αj. By Lemma 2.3 this is only possible if αi and αj
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are not orthogonal, in other words if j = i+ 1. By Lemma 2.6 this means

λ ∈ 〈ei−1, ei〉 ∩ 〈ej−1, ej〉 = 〈ei−1, ei〉 ∩ 〈ei, ei+1〉 = 〈ei〉,

hence λ = cei with c ∈ R>0 and 0 < i < n. However,

C(∆) ∩ {cei | c ∈ R>0, 0 < i < n} = ∅,

a contradiction.
Therefore there exists a unique 1 ≤ i ≤ n such that λ 6⊥ αi. Thus λ is a

non-zero scalar multiple of the fundamental weight λi =
∑i−1

j=0 ej. We now show
that i = 1 or i = n.

Indeed, let us suppose 2 ≤ i ≤ n−1. Then λ 6⊥ (e0− en−1) and λ 6⊥ (e1− en).
Given that e0 − en−1 and e1 − en are orthogonal, we obtain a contradiction by
Lemma 2.3. Hence we have i = 1 or i = n.

For i = 1 we find λ = ce0 and S = {cei | 0 ≤ i ≤ n}. For i = n we find
λ = c

∑n−1
j=0 ei = −cen, which yields the same result for S in this case also. �

This in turn finishes the proof of Theorem 2.1. Now we turn to the proof of
Theorem 2.2.

Proof of Theorem 2.2. Given Theorem 2.1, it only remains to show that
if we add Assumption (c) to the original hypotheses, in the two-dimensional case
we get S = {cei | 0 ≤ i ≤ 2} for some c 6= 0.

Let Φ ∼= A2. ThenW is the symmetric group on 3 elements and it acts on the
vector space V = R3/ diag(R) by permuting the coefficients. Let λ1 = (x, y, z)
be an element of S. Since S is W-stable, the conjugates of λ1, namely

λ2 = (y, z, x), λ3 = (z, x, y), λ4 = (x, z, y),

λ5 = (y, x, z), λ6 = (z, y, x)

are all elements of S. Clearly we have

λ1 + λ2 + λ3 = λ4 + λ5 + λ6,

which leads to a contradiction unless two of the λi are equal. This happens if
at least two of the coefficients x, y, z are equal. Having three equal coefficients
would mean λ1 = 0, which is impossible by Assumption (a), so exactly two of the
coefficients are equal. Let us assume without loss of generality x ≥ y ≥ z. The
two cases to consider are z = y and y = x. In the first case we get λ1 = (x, y, y) =
(x − y, 0, 0) = (x − y) · e0 and, putting c := x − y, we find S = {ce0, ce1, ce2}.
The second case yields λ1 = (x, x, z) = (0, 0, z − x) = (z − x) · e2 that, writing
c := z − x, also gives S = {ce0, ce1, ce2}. �
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2.2. Defining algebraic relations

Let R be a commutative ring, n ≥ 1 an integer and A ∈ GLn(R). Moreover,
let

cA(T ) = T n + β1T
n−1 + · · ·+ βn ∈ R[T ]

be the characteristic polynomial of A and let cA(T ) =
∏n

i=1(T − αi) be its
decomposition into linear factors in R′[T ] for a suitable ring extension R′ of R.
We define

f(A) =
∏
i1,...,i4
distinct

(αi1αi2 − αi3αi4),

g(A) =
∏
i2,i3,i4
distinct

(α2
i2
− αi3αi4),

h(A) =
∏
i1,...,i6
distinct

(αi1αi2αi3 − αi4αi5αi6).

The expressions f, g and h are symmetric in the roots of cA; therefore they are
polynomial expressions in β1, . . . , βn with coefficients in Z. This shows that the
above constructions can be carried out over any commutative ring R. Thus they
yield algebraic morphisms

f, g, h : GLn → A1.

Lemma 2.9.
Let k be a field and let f, g, h : GLn,k → A1

k be defined as above. For an integer
c ≥ 1 let fc, gc, hc denote the composition of the morphism γ 7→ γc with f, g and
h, respectively. Then fc, gc, hc do not vanish identically on SLn,k .

Proof. Let q be the characteristic of k, let k denote an algebraic closure of
k and let p be a prime 6= 2, q. Consider in SLn(k) the diagonal matrices of the
form

A =



α
αp

αp
2

. . .

αp
n−2

α−
Pn−2

i=0 pi


.

Then

fc(A) =
∏

i1,...,i4≤n−2
distinct

(αc(p
i1+pi2 ) − αc(pi3+pi4 ))

∏
i1,i2,i3≤n−2

distinct

(αc(p
i1+pi2 ) − αc(pi3−

Pn−2
j=0 p

j)).
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It is easy to check that for i1, . . . , i4 distinct and p prime, we have c(pi1 + pi2) 6=
c(pi3 + pi4), so the first product does not vanish identically on SLn,k . In the
second product one of the exponents is positive, the other negative; thus they
cannot be equal and this product does not vanish identically on SLn,k either.

Using the same diagonal matrices we can show that hc and gc do not vanish
identically on matrices of the above form. For hc we can take any prime exponent
p different from the characteristic; for gc we need the extra condition p 6= 2. �

2.3. Linear algebraic groups

We now use the results obtained about root systems to find certain conditions
under which a given linear algebraic group is equal to the special linear group.

Theorem 2.10.
Let G be a connected semisimple linear algebraic group over an algebraically
closed field L and V a finite dimensional, irreducible and faithful representation
of G over L.
If f, g and h do not vanish identically on G, then G = SLV .

We start by proving the following lemma:

Lemma 2.11.
Let G be a connected semisimple linear algebraic group over an algebraically
closed field L. Let W denote its Weyl group, Φ the associated root system and
E the Euclidean vector space generated by Φ. Let V be a finite dimensional,
irreducible and faithful representation of G over L with highest weight λ. Then
E is generated by W · λ = {w(λ) | w ∈ W}.

Proof. Let G1, . . . , Gm be simple connected linear algebraic groups defined
over L with G = G1 · · ·Gm. For all 1 ≤ i ≤ m let Wi denote the Weyl group
of Gi and Φi the associated root system and, by abuse of notation, RΦi the
Euclidean vector space generated by Φi. Then

W =W1 × · · · ×Wm and E = RΦ1 ⊕ · · · ⊕ RΦm.

Let λi ∈ RΦi denote the highest weight of the representation restricted to Gi. For
the global highest weight λ we have the decomposition λ = λ1 + · · ·+ λm. Since
the representation V is faithful, it cannot be trivial on any of the components
and thus for all 1 ≤ i ≤ m we have λi 6= 0. The factor Wi of the Weyl group W
acts trivially on RΦj for i 6= j and irreducibly on RΦi. In particular, since λi is
non-zero, we find that Wi · λi generates RΦi.

Let Wλ ⊆ E denote the subspace generated by W · λ. In order to prove that
Wλ = E, it is now enough to prove that Wi · λi ⊆ Wλ for all 1 ≤ i ≤ m. Since
Wλ is W-invariant, it is enough to show that λi ∈ Wλ. By symmetry, it suffices
to prove this for i = 1.
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We proceed by induction. By the definition of Wλ we have λ1 + · · · + λm =
λ ∈ Wλ. Now let 2 ≤ k ≤ m and assume that λ1 + · · · + λk ∈ Wλ. Then for all
ωk ∈ Wk we find

λ1 + · · ·+ λk−1 + ωk(λk) = ωk(λ1 + · · ·+ λk) ∈ Wλ

and hence also∑
ωk∈Wk

ωk(λ1 + · · ·+ λk) = |Wk|(λ1 + · · ·+ λk−1) +
∑

ωk∈Wk

ωk(λk)

= |Wk|(λ1 + · · ·+ λk−1) ∈ Wλ,

where the last equality follows from the fact that, as a fixed point of the action
of Wk on RΦk, the vector

∑
ωk∈Wk

ωk(λk) is trivial. Hence λ1 + · · ·+λk−1 ∈ Wλ.
The induction then yields λ1 ∈ Wλ. �

Proof of Theorem 2.10. Let W denote the Weyl group of G and Φ the
associated root system and E the Euclidean vector space generated by Φ. Since
the representation V is irreducible, it is characterised by its unique highest weight
λ. From Lemma 2.11 it follows that S :=W ·λ generates the whole vector space
E.

As the Weyl orbit of the highest weight, S consists only of weights. Since f
is not identically zero on G, for four distinct weights λ1, . . . , λ4 of V the relation
λ1 + λ2 = λ3 + λ4 cannot hold. Replacing f with h, we find that the analogous
relation for sextuples of weights cannot hold either. Hence the assumptions of
Theorem 2.2 are satisfied and we get Φ ∼= An for some positive integer n, as well
as

S = {cei | 0 ≤ i ≤ n}, c 6= 0.

Since S consists of weights, c is an integer. The intersection of S with the set of
dominant weights consists of either ce0 or cen, depending on the sign of c. Given
that the highest weight of a representation is by definition dominant, we thus find
that λ = ce0 if c > 0, and λ = cen otherwise. Since these two cases correspond
to dual representations, which are interchanged by the outer automorphism of
An, we can assume c > 0 and λ = ce0.

Lemma 2.12.
Supose that char(L) = p > 0. Then 0 < c ≤ p− 1.

Proof. Let us suppose that the projective representation induced by V is
tensor-decomposable, i.e. that we find r1, r2 > 1 with r1r2 = dim(V ) such that
in the projective representation G acts on V = Lr1 ⊗ Lr2 through

PGLr1,L×PGLr2,L → PGLV .

Let g ∈ G and λ, λ′ (resp. µ, µ′) be two distinct eigenvalues of g on PGLr1,L
(resp. PGLr2,L). Then ν1 := λµ, ν2 := λ′µ′, ν3 := λ′µ, ν4 := λµ′ are four distinct
eigenvalues of γ in the projective representation with ν1ν2 = ν3ν4. Since f does
not vanish identically on the projection of G if it does not vanish on G itself,
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there is an element in G for which the above relation on the eigenvalues yields
a contradiction. Consequently V is not projectively tensor-decomposable and
therefore also not tensor-decomposable in the linear representation. It follows
that G is almost simple and according to Steinberg’s Tensor Product Theorem
(cf. [Hum06], Theorem 2.7) we get 0 < c ≤ p− 1. �

We now show, independently of the characteristic of L, that c is, in fact,
equal to 1. Let α := e0−e1 be the simple root corresponding to the fundamental
weight e0. Then there exists a homomorphism ϕα : SL2 → G that sends the
matrices of the form ( 1 a

0 1 ) to the root subgroup of G corresponding to α. Let
Sα := ϕα(SL2). The subspace

⊕
i∈Z Vλ+iα is Sα-invariant and irreducible with

highest weight λ by [Jan03], Part II, Proposition 2.11. By classical results in
characteristic 0 and [Pre87], Theorem 1, in positive characteristic under the
assumption 0 < c ≤ p− 1, that is a consequence of Lemma 2.12, the associated
representation of the Lie algebra lα of Sα is irreducible with the same highest
weight. According to [Hum78], Proposition 21.3, the set of weights of this
representation is saturated. Namely, it consists of λ, λ − α, . . . , λ − rα, where
r := 〈λ, α〉 = c〈e0, e0 − e1〉 = c. More concretely,

(c, 0, 0, . . . , 0),

(c− 1, 1, 0, . . . , 0),

(c− 2, 2, 0, . . . , 0),
...

(0, c, 0, . . . , 0)

all appear in the representation of Sα, and hence in the representation V , as
weights. However, due to the fact that f and g do not vanish identically on G,
the equality

(c, 0, 0, . . . , 0) + (0, c, 0, . . . , 0) = (c− 1, 1, 0, . . . , 0) + (1, c− 1, 0, . . . , 0)

leads to a contradiction if c ≥ 2.
By [Che58] it follows from Φ ∼= An that there is an epimorphism SLn+1 � G.

The induced representation SLn+1 � G ↪→ GLV then also has highest weight e0,
which corresponds to the standard representation of SLn+1. Consequently the
image of the representation is SLV = SLn+1 . Hence G = SLV = SLn+1 . �

2.4. Finite subgroups of linear algebraic groups

In this section we prove an analogue of the previous results about linear al-
gebraic groups for their finite subgroups.

In the following let L denote an algebraically closed field of characteristic
p > 0.
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Definition 2.13.
Let G be a simply connected simple semisimple linear algebraic group over L
and let F : G → G be a surjective endomorphism whose fixed point subgroup
GF is finite. Such a map F is called a Frobenius map and, in this setting, any
non-abelian Jordan-Hölder constituent of GF is called a finite simple group of
Lie type.

The first result describes the general structure of finite simple groups of Lie
type.

Proposition 2.14.
For almost all finite simple groups of Lie type Γ there exists a simply connected
simple semisimple linear algebraic group G defined over L and a Frobenius map
F : G→ G such that

(1) Γ = GF/Z(GF ),
(2) GF is perfect, and
(3) the universal central covering group of Γ as an abstract group is GF .

Proof. By Definition 2.13 there exists a simply connected simple semisimple
linear algebraic group Γ over L and a Frobenius map F : G → G such that Γ
is a non-abelian Jordan-Hölder constituent of GF . Then by [GLS98], Theorem
2.2.6 (f), the group GF is generated by the elements whose order is a power of p =
char(L). We can therefore apply [GLS98], Theorem 2.2.7, to GF . The first part
of this theorem says that with finitely many exceptions, GF/Z(GF ) is simple and
therefore isomorphic to Γ; the second part says that, with the same exceptions as
in the first part, the group GF is perfect, proving (2). This also shows that Γ can
only appear as the last non-trivial subgroup in any Jordan-Hölder decomposition
of GF ; hence the above isomorphism between Γ and GF/Z(GF ) is an equality,
which proves (1).

By [GLS98], Theorem 5.1.2, the simple and hence perfect group Γ has a
universal central covering Γc which is unique up to isomorphism. The kernel
M(Γ) of the covering Γc → Γ is then called the Schur multiplier of Γ. Now
assume that Γ satisfies (1) and (2). Then by [GLS98], Theorem 6.1.4, the Schur
multiplier M(Γ) is in almost all cases (with the exceptions listed in Table 6.1.3)
isomorphic to Z(GF ). By (1) the group GF is a central extension of Γ; there
exists therefore a uniquely determined homomorphism α : Γc → GF such that
the following diagram commutes:

Γc
α //

����

GF

}}}}||
||

||
||

Γ
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From M(Γ) ∼= Z(GF ) it follows that α is injective and that Γc and GF have
the same cardinality. Consequently α is an isomorphism between GF and the
universal central covering of Γ. �

Definition 2.15.
We call the finite simple groups of Lie type for which there exists a simply
connected simple semisimple linear algebraic group G satisfying the conditions
of Proposition 2.14 regular.

The next result concerns irreducible representations of finite simple groups
of Lie type. It is a direct consequence of the stronger result stated in [Hum06],
Theorems 2.11 and 20.2.

Proposition 2.16.
Let G be a simply connected simple algebraic group, F : G→ G a Frobenius map
and ρ : GF → GL(V ) an irreducible representation of GF on a finite dimensional
L–vector space V . Then there is an irreducible representation ρG : G → GL(V )
such that ρ is the restriction of ρG to GF .

Now we can finally state an analogue of Theorem 2.10.

Theorem 2.17.
Let V be an L–vector space of dimension n ≥ 2 and Γ 6 SL(V ) a subgroup that
acts irreducibly on V . Assume that Γ is perfect and that Γ/(Γ ∩ (scalars)) is a
direct product of finite simple groups of Lie type that are regular in the sense of
Definition 2.15.

If f, g and h do not vanish identically on Γ, then there is a finite subfield
k′ ⊂ L and a model G′ of SLV over k′ such that Γ = G′(k′).

Proof. By assumption there exist regular finite simple groups of Lie type
Γ1, . . . ,Γm such that Γ/(Γ∩ (scalars)) = Γ1×· · ·×Γm. Then by Proposition 2.14
there exist simply connected simple semisimple algebraic groups G1, . . . , Gm and
Frobenius maps Fi : Gi → Gi for all 1 ≤ i ≤ m such that Γi = GFi

i /Z(GFi
i ) and

GFi
i is the universal central covering of Γi. Let us write Z := Γ ∩ (scalars) and

Γ := Γ/Z.

Lemma 2.18.
There exists a surjective homomorphism ρ : GF1

1 × · · · ×GFm
m → Γ such that the
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following diagram is commutative:

GF1
1 × · · · ×GFm

m

ρ //

����

Γ

xxxxqqqqqqqqqqqqq

Γ1 × · · · × Γm

Proof. For 1 ≤ i ≤ m let Γ̃i ⊂ Γ denote the preimage of Γi under the
projection map. The short exact sequence

1→ Z → Γ̃i → Γi → 1

then shows that Γ̃i is a central extension of Γi. Since GFi
i is the universal central

cover of Γi, there exists a homomorphism α̃i : GFi
i → Γ̃i such that

GFi
i

α̃i //

����

Γ̃i

~~~~}}
}}

}}
}}

Γi

commutes. Let αi denote the composition map GFi
i

α̃i−→ Γ̃i ↪→ Γ. We define

ρ : GF1
1 × · · · ×GFm

m → Γ,

(g1, . . . , gm) 7→ α1(g1) · · ·αm(gm).

Let 1 ≤ i < j ≤ m and let gi ∈ Γ̃i, gj ∈ Γ̃j. Then gigj = gjgi in Γ, so there exists
z ∈ Z such that gigjz = gjgi, in other words such that [gi, gj] = z. This shows
that the image of the commutator homomorphism

[ , ] : Γ̃i × Γ̃j −→ Γ

is contained in the scalar subgroup Z. On the other hand, [ , ] is bilinear, so
it factors through a homomorphism Γ̃i/Z × Γ̃j/Z ∼= Γi × Γj → Z. Since Z is
abelian, this map is trivial on the commutator subgroup of Γi × Γj. As a direct
product of non-abelian simple groups, Γi × Γj is perfect, so the map [ , ] itself is

trivial. It follows that Γ̃i and Γ̃i commute with each other, which in turn means
that the homomorphism ρ is well-defined.

Let g, g′ ∈ Γ. Then there exist g0, g
′
0 ∈ Im(ρ) and z, z′ ∈ Z ⊂ Z(Γ) such that

g = g0z and g′ = g′0z
′. Then [g, g′] = [g0z, g

′
0z
′] = [g0, g

′
0] ∈ Im(ρ) and hence

[Γ,Γ] 6 Im(ρ). Since we have assumed Γ to be perfect, i.e., that [Γ,Γ] = Γ, we
conclude that ρ is surjective. �

Let ρ : GF1
1 ×· · ·×GFm

m → Γ be as in the above lemma. Since Γ acts irreducibly
on V , the map ρ induces an irreducible representation of GF1

1 × · · · ×GFm
m on V .

By [Gor68], Theorem 3.7.1, there exist non-trivial irreducible representations
ρi : GFi

i → GL(Vi), unique up to isomorphism, with V ∼= V1 ⊗ · · · ⊗ Vm and
ρ ∼= ρ1 ⊗ · · · ⊗ ρm. By Proposition 2.16 the representation ρi is the restriction
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of an irreducible representation of Gi on Vi that we again call ρi. Let us write
G := G1 × · · · ×Gm and consider the representation

ρG := ρ1 ⊗ · · · ⊗ ρm : G −→ GL(V ).

As an exterior tensor product of irreducible representations, ρG is itself irre-
ducible.

Since G is a connected semisimple algebraic group, ρG(G) ⊂ GL(V ) is also
connected semisimple. Let W be the associated Weyl group, Φ the root system
of G and E the Euclidean vector space generated by Φ. Let λ denote the highest
weight of the representation ρG. Then, by Lemma 2.11, the set W · λ generates
E.

Moreover, since f, g and h do not vanish identically on Γ ⊂ ρG(G), they do
not vanish identically on ρG(G). We can therefore apply Theorem 2.10 to ρG(G)
in order to find that Φ ∼= An−1 and ρG(G) = SLV . Since the representations
ρi are all non-trivial and SLV is simple, it follows that m = 1 and G = G1.
Since SLV is simply connected, it even follows that the epimorphism G → SLV
is an isomorphism. Write F := F1. Then Γ = GF = SLFV and, by standard
classification results, as in [Car87], Proposition 4.5, the Frobenius map F is
standard, i.e., there is a finite subfield k′ ⊂ L and a model G′ of SLV over k′

such that GF = G′(k′). �

2.5. Subgroups acting irreducibly

The next theorem is the main result of this chapter.

Theorem 2.19.
For every positive integer n there is an integer constant N such that for every
algebraically closed field L of non-zero characteristic and every finite subgroup
Γ 6 SLn(L): if

(1) every subgroup of Γ of index ≤ N acts irreducibly on Ln, and
(2) the map γ 7→ fgh(γN) does not vanish identically on Γ,

then there is a finite subfield k′ of L and a model G′ of SLn over k′ such that
G′(k′) is a normal subgroup of Γ of index ≤ N .

Remark.
We expect that the result of the theorem can be strengthened as follows: Let
π : SLn → PGLn be the standard isogeny and G′ad the image of G′ under π.
Then π(G′(k′)) ⊂ π(Γ) ⊂ G′ad(k′).

Now we gather some results concerning the structure of Γ that we will use
later on in the proof of the above theorem. Let us start by recalling a general
result established by Larsen and Pink in [LP98], Theorem 0.2.
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Proposition 2.20.
For every integer n ≥ 1 there exists a constant cn depending only on n such
that any finite subgroup Γ of GLn over any field k possesses normal subgroups
Γ3 ⊂ Γ2 ⊂ Γ1 such that

(1) [Γ : Γ1] ≤ cn.
(2) Either Γ1 = Γ2, or p := char(k) is positive and Γ1/Γ2 is a direct product

of finite simple groups of Lie type in characteristic p.
(3) Γ2/Γ3 is abelian of order not divisible by char(k).
(4) Either Γ3 = {1}, or p := char(k) is positive and Γ3 is a p-group.

We deduce from it the following special case that arises in our setting.

Proposition 2.21.
For every integer n ≥ 1 there exists a constant dn such that for every algebraically
closed field L of non-zero characteristic and every finite subgroup Γ ⊂ GLn(L)
whose subgroups of index ≤ n! act irreducibly on V := Ln, there exists a normal
subgroup Γ′ of Γ such that

(1) [Γ : Γ′] ≤ dn.
(2) Γ′/(Γ′ ∩ (scalars)) is a direct product of finite simple groups of Lie type

in characteristic p.
(3) If Γ ⊂ SLn(L), then Γ′ is perfect.

Proof. Let cn and Γ1,Γ2,Γ3 be as in Proposition 2.20 and let dn := cn · n.
First we show that in our case Γ3 is trivial. By definition, Γ3 is a unipotent
normal subgroup of Γ. Since Γ3 is unipotent, we have V Γ3 6= 0 and since Γ3 is
normal in Γ, the subspace V Γ3 of V is stabilized by Γ. On the other hand V is
an irreducible representation of Γ and thus V Γ3 = V . Consequently Γ3 = {1}.

Now we show that Γ2 is a scalar subgroup of Γ. Let us consider the represen-
tation of Γ2 on V . Since Γ2 is abelian of order not divisible by char(L), we get
a decomposition into weight spaces

V = V1 ⊕ · · · ⊕ Vm.

By the normality of Γ2 in Γ, the weight spaces are permuted by Γ. Let C be the
centralizer of Γ2 in Γ. Then C is the intersection of the stabilizers of V1, . . . , Vm
under the action of Γ. This yields an injection Γ/C ↪→ Sm, where, for the
purposes of this proof, Sm denotes the symmetric group on m elements and we
find

[Γ : C] ≤ |Sm| = m! ≤ n!.

Hence the index of C in Γ is bounded by n! and it follows from the assumption
that C acts irreducibly on V . On the other hand C stabilizes V1, so we get
V1 = V . Thus Γ2 acts by scalar multiplication on V .

If Γ 6⊂ SLn(L), then we can take Γ′ = Γ1 and we have finished. Otherwise
Γ2 is a scalar subgroup of SLn and thereby it has order at most n. Moreover, as
Γ1/Γ2 is a product of simple groups, we find (Γ1/Γ2)

der = Γ1/Γ2. Let Γ′ denote
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in this case the derived group of Γ1. Then the surjection

Γ′ = Γder
1 → (Γ1/Γ2)

der = Γ1/Γ2

yields the estimate [Γ1 : Γ′] ≤ |Γ2| ≤ n. It follows that

[Γ : Γ′] = [Γ : Γ1][Γ1 : Γ′] ≤ cn · n = dn.

We can thus conclude that Γ′ and dn defined as above satisfy the conditions of
the theorem. �

Now we finally have all the ingredients together to prove Theorem 2.19.

Proof of Theorem 2.19. Suppose that Γ satisfies the conditions of the
theorem and let dn and Γ′ be as in Proposition 2.21. Moreover, let e be the order
of the largest finite simple group of Lie type that is not regular in the sense of
Definition 2.15 and let N = e ·max{n!, dn!}. Then in particular we have dn ≤ N
and, with the above definition, Γ′ is a normal subgroup of Γ of index ≤ N . Hence
Γ′ acts irreducibly on V := Ln, and Γ′/(Γ′∩(scalars)) is a product of finite simple
groups of Lie type.

Let us suppose that one of the simple groups appearing in the decomposition
of Γ′/(Γ′ ∩ (scalars)) is not regular. Let Γ0 be its preimage in Γ′ and Γc the
preimage of its complement. Then, on the one hand, Γ′ is a central product of
Γ0 and Γc and by [Gor68], Theorem 3.7.1, there exist irreducible representations
V0 of Γ0 and Vc of Γc such that V ∼= V0⊗ Vc as a representation of Γ′. Since V is
faithful and Γ0 is non-abelian, V0 has dimension > 1. Therefore dimVc 6= dimV
and Γc does not act irreducibly on V . On the other hand

[Γ : Γc] = [Γ : Γ′][Γ′ : Γc] ≤ dn · e ≤ N,

so by the first assumption of the theorem Γc acts irreducibly on V , a con-
tradiction. Consequently all simple factors appearing in the decomposition of
Γ′/(Γ′ ∩ (scalars)) are regular.

Moreover, sinceN is a multiple of dn!, for all γ ∈ Γ we find that γN ∈ Γ′. Con-
sequently γ 7→ fgh(γ) does not vanish identically on Γ′ by the second assumption
of the theorem. In particular neither of the functions f, g and h vanishes iden-
tically on Γ′. Now we can apply Theorem 2.17 to Γ′ and its representation on
V = Ln: there is a finite field k′ ⊂ L and a model G′ of SLn over k′ such that
G′(k′) = Γ′. �

We close this chapter by establishing an auxiliary result that in some cases
can give a more precise description of the field k′ and of the algebraic group G′

determined by Theorem 2.19.

Proposition 2.22.
Let k, k′ be finite subfields of L and G′ a model of SLn over k′ such that G′(k′) is
a subgroup of SLn(k). If k is a subfield of k′, then k = k′ and G′(k′) = SLn(k).
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Proof. Let q = |k| and q′ = |k′|. From k ⊆ k′ follows q ≤ q′. By [Hum06],
Table 1.6.1, if G′ is non-split, then

|G′(k′)| = (q′)n(n+1)/2

n∏
i=1

((q′)i+1 − (−1)i+1) > qn(n+1)/2

n∏
i=1

(qi+1 − 1) = | SLn(k)|,

a contradiction to G′(k′) 6 SLn(k), so this case cannot occur. If G′ is split, then

|G′(k′)| = (q′)n(n+1)/2

n∏
i=1

((q′)i+1 − 1) ≥ qn(n+1)/2

n∏
i=1

(qi+1 − 1) = | SLn(k)|,

with equality if and only if q = q′. In that case k = k′; the second desired
equality follows from G′(k′) 6 SLn(k). �
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CHAPTER 3

Preliminary results on Drinfeld modules

3.1. General results

In this section we list the most important known results about Drinfeld mod-
ules in special characteristic, using the notation introduced in Chapter 1.

Let ϕ be a Drinfeld A-module over a finitely generated field K, of special
characteristic p0.

Proposition 3.1 (cf. [Gos96], Proposition 4.7.4 and Remark 4.7.5).
There exists a finite separable extension K ′ of K inside of K such that

EndK(ϕ) = EndK′(ϕ).

Let D := EndK(ϕ), let Z denote the center of D ⊗A F and let us write

dimZ D ⊗A F = d2 and [Z/F ] = e.

There exists an iteger r ≥ 1 such that rank(ϕ) = rde. Fix a maximal commuta-

tive subring Â of D and let ϕ̂ : Â → K{τ} denote its tautological embedding.

This is a Drinfeld Â-module of rank r, except that Â is not necessarily a maximal
order in its quotient field. Let Ã denote the integral closure of Â in its quotient
field and F̃ denote the common quotient field of Â and Ã. By [Gos96], Corollary
4.7.15, the ring D⊗AF is a division algebra over F ; thus its commutative subring
Â⊗A F is a field. It follows that Â⊗A F = F̃ and F̃ is a subfield of D⊗A F . By
[Hay79], Proposition 3.2, there exists a Drinfeld module ϕ̃ : Ã → K{τ} such

that ϕ̃|Â is isogenous to ϕ̂ and the isogeny in question induces an isomorphism

EndK(ϕ̂)⊗A F̃ ∼= EndK(ϕ̃)⊗A F̃ .

On the other hand the definition of endomorphisms implies that

EndK(ϕ̂)⊗A F̃ ∼= CentEndK(ϕ)⊗AF (Â) = F̃

and thus EndK(ϕ̃) = Ã.
It was shown in [Gos96], Proposition 4.7.17, that EndK(ϕ)⊗AF∞ is a division

algebra over F∞; consequently its commutative subring F̃ ⊗AF∞ is a field, which
shows that the place ∞ does not split in F̃ . For later use, let us denote by ∞̃
the place of F̃ above ∞ and by P0 the characteristic of ϕ̃. The latter is a place
above the characteristic p0 of ϕ.
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Let K ′ be a finite extension of K as in Proposition 3.1. For a place p 6= p0,∞
of F we have GK′-equivariant isomorphisms⊕

P|p

TP(ϕ̃)⊗ÃP
F̃P
∼=

⊕
P|p

TP(ϕ̂)⊗ÂP
F̃p
∼= Tp(ϕ)⊗Ap Fp; (3.1)

hence the image of GK′ in the representation on Tp(ϕ)⊗Ap Fp coincides with the

one on
⊕

P|p TP(ϕ̃)⊗ÃP
F̃P.

Let us from now on assume that all endomorphisms of ϕ are already defined
over K, i.e., that D = EndK(ϕ) = EndK(ϕ).

Lemma 3.2.
Let p 6= p0,∞ be a place of F and P a place of F̃ above p. The representations
ρp and ρP become isomorphic upon tensoring with F̃P.

Proof. Since Â is a maximal commutative subring of D and its quotient
field is F̃ , we have D ⊗A F̃ ∼= Md×d(F̃ ) and in turn

D ⊗A F̃P
∼= Md×d(F̃P).

Thus, tensoring ρp with F̃P yields a representation

ρp⊗F̃P : GK −→ CentGLrd(F̃P)(D⊗A F̃P) ∼= CentGLrd(F̃P)(Md×d(F̃P)) ∼= GLr(F̃P).

On the other hand, starting with ρP we find

ρP ⊗ F̃P : GK −→ GLr(ÃP)⊗ F̃P
∼= GLr(F̃P).

The isomorphism of the representations follows from the above GK-equivariant
isomorphism of rational Tate modules. �

Let Gp denote the Zariski closure of Γp, which is an algebraic subgroup of the
centralizer of D ⊗A Fp in the algebraic group AutFp

(Tp(ϕ)⊗ Fp) ∼= GLrd,Fp .

Theorem 3.3.
For all places p 6= p0,∞ of F we have Gp = CentGLrd,Fp

(D⊗AFp), in other words

Γp is Zariski dense in CentGLrd,Fp
(D ⊗A Fp).

Proof. Let P be a place of F̃ above p. By [Pin06a], Theorem 1.1, the
group ΓP is Zariski dense in GLr,F̃P

. On the other hand by Lemma 3.2 we have

Gp ×Fp F̃P
∼= GLr,F̃P

,

i.e., Gp ⊂ CentGLrd,Fp
(D⊗AFp) is a model of GLr,F̃P

over Fp. The desired equality

follows. �

Combining the above theorem with [PT06], Lemma 3.8, yields
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Corollary 3.4.
Let p 6= p0,∞ be a place of F such that Γgeom

p ⊂ Centder
GLrd(Ap)(D ⊗A Ap). Then

Γgeom
p is Zariski dense in Centder

GLrd,Fp
(D ⊗A Fp).

3.2. Results building towards Theorem 1.1

Let us in this section assume that ϕ satisfies the conditions of Theorem 1.1.
We make explicit the implications for this case of a few previously established
results.

Theorem 3.5.
For every non-empty finite set P of places 6= p0,∞ of F , the subgroup

Centder
GLrd(AP )(D ⊗A AP ) ∩ Γgeom

P

is open in both Centder
GLrd(AP )(D ⊗A AP ) and Γgeom

P .

Proof. A careful reading of the proofs of Theorems 6.1 and 6.2 of [Pin06b]
shows that, even though one of the original assumptions on ϕ required it not to
be isomorphic to a Drinfeld module defined over a finite field, for the theorems
to hold it is sufficient to have the analogous assumption for ϕ̃. By [Pin06b],
Proposition 2.1, this is equivalent to r = rank(ϕ̃) ≥ 2. Since this is one of the
assumptions of Theorem 1.1, we can apply [Pin06b], Theorems 6.1 and 6.2, to
ϕ. Combining them shows that there exists a subfield E of F with [F/E] < ∞
and B := E ∩ A that is uniquely defined by either one of the following two
properties:

(1) For every infinite subring C ⊂ A we have EndK(ϕ|C) ⊂ EndK(ϕ|B).
(2) For every non-empty finite set P of places 6= p0,∞ of F , let Q denote

the set of places of E below those in P and let GQ denote the centralizer
of EndK(ϕ|B) ⊗ EQ in AutEQ

(TQ(ϕ|B) ⊗ EQ). Then Gder
Q (BQ) ∩ Γgeom

Q

is open in both Gder
Q (BQ) and Γgeom

Q .

Since F satisfies property (1) by the assumptions of Theorem 1.1 and E is
uniquely determined, we have E = F . The theorem then follows from prop-
erty (2). �

The following result is a special case a theorem proved by Matthias Traulsen
in his thesis ([PT06], Theorem B) for the case where K has transcendence degree
1 and later generalized by Egon Rütsche ([PR09b], Theorem 0.2) for fields of
arbitrary transcendence degree.

Theorem 3.6.
For almost all primes p of A the rings D ⊗A Ap and Ap[Γp] are commutants of
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each other in EndAp(Tp(ϕ)). More precisely, for almost all primes p we have

D ⊗A Ap
∼= Md×d(Ap) and Ap[Γp] ∼= Mr×r(Ap).

Let p be a prime of A for which Theorem 3.6 holds. Then

CentGLr(Ap)(D ⊗A Ap) ∼= CentGLrd(Ap)(Md×d(Ap)) ∼= GLr(Ap)

and the Galois representation associated to ϕ at p can simply be rewritten as

ρp : GK −→ GLr(Ap).

The following result is then a direct corollary of the above theorem:

Corollary 3.7.
For all primes p of A for which Theorem 3.6 holds, the residual representation
ρp : GK → GLr(kp) is absolutely irreducible.

3.3. Reduction steps building towards Theorem 1.1

Let us again assume that ϕ satisfies the assumptions of Theorem 1.1. The Ga-
lois representations remain the same under replacing ϕ by an isomorphic Drinfeld
module, thus doing so does not alter the outcome of the aforementioned theorem.
Since it only attempts to describe the image of Ggeom

K up to commensurability,
the theorem is also invariant under replacing Kκ by a finite extension, and thus
under replacing K by a finite extension. Therefore we may make the following
additional assumptions, all direct consequences of previously established well-
known facts, on ϕ before tackling its proof:

(a) Γgeom
p is contained in Centder

GLrd(Ap)(D ⊗A Ap) for every place p 6= p0,∞
of F . Indeed, fix a maximal commutative subring Â of D and let
Ã, F̃ , ϕ̃,P0 and ∞̃ be as in Section 3.1. By [Pin06b], Proposition 2.3
we may assume that Γgeom

P ⊂ SLr(ÃP) for all places P 6= P0, ∞̃ of F̃ .
The desired result for Γgeom

p then follows from Lemma 3.2.
(b) ϕ has semistable reduction everywhere.

Let x be one of the finitely many places of K at which ϕ has bad reduction. The
Tate uniformization of ϕ at x (cf. [Dri74], §7) is a pair (ϕx,Λx) where ϕx is a
Drinfeld A-module over Kx of rank r′d < rd with good reduction at x and Λx

is, via ϕx, an A-lattice in Ksep
x of rank rd− r′d. Since Dx acts on Λx through a

finite quotient, after replacing K by a finite extension we may also assume that

(c) For every place x of bad reduction, the decomposition group Dx acts
trivially on Λx.

These assumptions will be in use from Chapter 4 until the end of Chapter 8.
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3.4. Frobenius action

In this section we temporarily drop most assumptions of Theorem 1.1 on ϕ;
initially we only assume that EndK(ϕ) = EndK(ϕ).

Let x be a place ofK where ϕ has good reduction. We let Frobx ∈ Gal(Ksep/K)
denote any element of the decomposition group above x that acts by u 7→ u|kx|

on the residue field ksep
x .

We start by adapting a few well-known results about Drinfeld modules with
minimal endomorphism ring to the general case. Lemmas 3.8 and 3.9 are useful
tools for carrying out these adaptations.

Lemma 3.8.
The Drinfeld Ã-module ϕ̃ has good reduction at a place x of K if and only if ϕ
has good reduction at x.

Proof. The following good reduction criterion for Drinfeld modules in spe-
cial characteristic is a special case of the criterion proved by Takahashi in [Tak82],
Theorem 1, for arbitrary Drinfeld modules:

Reduction Criterion (in special characteristic). Let ϕ be a Drin-
feld A-module over a field K of characteristic p0 6= 0. Let x be a place of K and
let p be a prime ideal of A different from p0. Then ϕ has good reduction at x if
and only if the p-adic Tate module Tp(ϕ) is unramified at v.

Let p 6= p0 be a place of A. By (3.1) we have a GK-equivariant isomorphism

Tp(ϕ)⊗Ap Fp
∼=

⊕
P|p

TP(ϕ̃)⊗ÃP
F̃P.

Assume that ϕ has good reduction at x. Then, by the Reduction Criterion, the
left hand side is unramified at x. Since the isomorphism is GK-equivariant, the
right hand side is also unramified at x; applying the Reduction Criterion to the
Drinfeld module ϕ̃ : Ã → K{τ} in the other direction, we find that ϕ̃ has good
reduction at x.

The converse follows similarly from applying the Reduction Criterion to the
above isomorphism of rational Tate modules. �

The result of the last proposition will be used implicitly in every argument
that involves passing from ϕ to ϕ̃ and then considering the set of places of good
reduction for ϕ̃.

Lemma 3.9.
Let p 6= p0,∞ be a place of F and P a place of F̃ above p. Then the characteristic
polynomial of ρp(Frobx) is equal to the characteristic polynomial of ρP(Frobx).
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Proof. By Lemma 3.2 we have ρp ⊗ F̃P
∼= ρP ⊗ F̃P. The result follows

directly from the fact that tensoring with F̃P does not change the characteristic
polynomial on either side of the isomorphism. �

Proposition 3.10.
For every place p of F different from the characteristic p0 of ϕ and from ∞,
the representation ρp is unramified at x and the characteristic polynomial fx of
ρp(Frobx) has coefficients in A and is independent of p.

Proof. Applying [Gos96], Theorem 4.12.12 (b), to the Drinfeld Ã-module
ϕ̃, we find that for every place P of F̃ different from the characteristic P0 of
ϕ̃ and from ∞̃, the representation ρP is unramified at x and the characteristic

polynomial gx of ρP(Frobx) has coefficients in Ã and is independent of P.

Let p 6= p0,∞ be a place of F and P a place of F̃ above p. By Lemma 3.9
we have fx = gx and thus gx has coefficients in Ã ∩ Ap = A. The other two
properties are direct consequences of the isomorphism

ρp ⊗ F̃P
∼= ρP ⊗ F̃P

that was established in Lemma 3.2. �

Let α1, . . . , αr be the roots of fx in an algebraic closure F of F , with repe-
titions if necessary. Consider any normalized valuation v of F and consider an
extension v of v to F . Let kv denote the residue field at v.

Proposition 3.11.
There exists an integer d0 independent of x with 1 ≤ d0 ≤ d such that the
following properties hold:

(1) If v does not correspond to p0 or ∞, then for all 1 ≤ i ≤ r we have

v(αi) = 0.

(2) If v corresponds to ∞, then for all 1 ≤ i ≤ r we have

v(αi) = − 1

rd
· [kx/Fq]
[kv/Fq]

.

(3) If v corresponds to p0, then there exists an integer 0 < sx ≤ r such that

v(αi) =

{
1

sxd0
· [kx/Fq ]

[kv/Fq ]
for precisely sx of the αi, and

0 for the remaining r − sx of the αi.

Proof. In this proof let v always denote a normalized valuation of F̃ and v
an extension of v to F .

By Lemma 3.9 the characteristic polynomial of Frobx associated to ϕ is the
same as the one associated to the Drinfeld Ã-module ϕ̃. Applying [Dri77],
Proposition 2.1, to ϕ̃, we find
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(1) If v does not correspond to P0 or ∞̃, then for all 1 ≤ i ≤ r we have

v(αi) = 0.

(2) If v corresponds to ∞̃, then for all 1 ≤ i ≤ r we have

v(αi) = −1

r
· [kx/Fq]
[kv/Fq]

.

(3) If v corresponds to P0, then there exists an integer 0 < sx ≤ r such that

v(αi) =

{
1
sx
· [kx/Fq ]

[kv/Fq ]
for precisely sx of the αi, and

0 for the remaining r − sx of the αi.

Let us recall that [F̃ /F ] = d. The result then follows directly from passing from
normalized valuations of F̃ to the corresponding normalized valuations of F . �

Let Ad denote the adjoint representation of GLr. Proposition 3.10 implies
that the characteristic polynomial of Ad(ρp(Frobx)) has coefficients in F and is
independent of p. In the case where ϕ satisfies the assumptions of Theorem 1.1,
these characteristic polynomials can be used to give a characterization of the
field F .

Proposition 3.12 (cf. [Pin06b], Theorem 1.3).
Let ϕ be a Drinfeld A-module satisfying the assumptions of Theorem 1.1. Let X
be an integral scheme of finite type over Fp, whose function field K ′ is a finite
extension of K, and over which ϕ has good reduction. Let Σ be any set of closed
points x ∈ X of Dirichlet density 1.

(1) If p 6= 2 or r 6= 2, then the subfield F trad generated by the traces of
Ad(ρp(Frobx)) for all x ∈ X is equal to F .

(2) If p = r = 2, then either the subfield F trad generated by the traces of
Ad(ρp(Frobx)) for all x ∈ X or the subfield generated by their square
roots is equal to F .

Proof. Applying [Pin06b], Theorems 1.2 and 1.3, to ϕ̃ : Ã → K{τ}
yields the analogous result for the subfield F trad

ϕ̃ of F generated by the traces of
Ad(ρP(Frobx)) for all x ∈ X. The proposition then follows from Lemma 3.9. �

We deduce from this a result concerning the field generated by the traces of
Frobenius elements in the residual adjoint representation.

Proposition 3.13.
Let ϕ be a Drinfeld A-module satisfying the assumptions of Theorem 1.1. There
exists a finite set of primes S of A such that

(1) for all primes p 6∈ S the traces of Ad(ρp(Frobx)) mod p for all places
of good reduction x of K generate kp, and
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(2) for all distinct primes p1, p2 6∈ S the traces of Ad(ρp1(Frobx)) mod p1p2

for all places of good reduction x of K generate kp1 × kp2 .

Proof. Let Σ denote the set of places of K at which ϕ has good reduction
and let B denote the ring of elements of F that are regular outside of p0. For
x ∈ Σ let α1, . . . , αr ∈ F denote the eigenvalues of Frobx. By Proposition 3.11
they all have trivial valuation at places not above p0,∞ and constant valuation
above ∞. The eigenvalues of Ad(Frobx), which are the ratios αi/αj, are thus
units at all places not above p0. Consequently

tr(Ad(ρp(Frobx))) =
r∑

i,j=1

αi
αj
∈ B.

Let B′ denote the subring generated by the traces of Ad(ρp(Frobx)) for all
x ∈ Σ. We distinguish two cases according to Proposition 3.12.
First let us suppose that the field of fractions of B′ is equal to F . Then B′ has
finite index in B. Let f := {b ∈ B′ | bB ⊆ B′}. Then f is a non-trivial ideal of B
and the set S of primes of B containing∞ and those dividing f is finite. Moreover
for all p 6∈ S the intersection p ∩ B′ is a prime of B′ and B′/p ∩ B′ ∼= B/p. On
the other hand for all p 6∈ S we have B/p ∼= kp. Hence for all p 6∈ S the map
B′ → B/p → kp is surjective and the first assertion follows. For the second, we
use the fact that for p1 6= p2 outside of S, the ideal p1p2 ∩B′ can be decomposed
into a product of prime ideals in B′ as (p1∩B′)(p2∩B′). Then, using the Chinese
Remainder Theorem and the above observations, we find

B′/p1p2 ∩B′ = B′/p1 ∩B′ ×B′/p1 ∩B′

= B/p1 ×B/p2

= kp1 × kp2 ,

proving the surjectivity of the map B′ → B/p1p2 → kp1 × kp2 . This is the second
assertion.

By Proposition 3.12 the only remaining case is where p = r = 2 and the field
of fractions of B′ is equal to F 2. Let q0 denote the place of F 2 below p0 and BF 2

the ring of elements of F 2 that are regular outside of q0. Then [BF 2 : B′] < ∞
and, as above, there exists a finite set SF 2 of places of F 2 such that for all q 6∈ SF 2

the map B′ → BF 2/q is surjective. For a prime q 6∈ SF 2 of F 2 let p be a place of
F above q. Since F/F 2 is purely inseparable, we have BF 2/q ∼= kp. Let S be the
set of primes of F lying above the places contained in SF 2 . For this choice of S,
both assertions now follow analogously to the first case. �
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CHAPTER 4

The surjectivity of the residual representation

Let K denote a field of transcendence degree 1 and let ϕ : A → K{τ} be
a Drinfeld module satisfying the assumptions of Theorem 1.1. Proving that the
residual representation is surjective at almost all places is the first step towards
the proof of Theorem 1.1.

Throughout the chapter we assume that the reduction steps introduced in
Section 3.3 are in effect.

4.1. Surjectivity at a given prime.

For all primes p of A let ∆p denote the image of GK under ρp and ∆geom
p the

image of Ggeom
K . Our aim is to prove the following result:

Theorem 4.1.
In the above situation, we have SLr(kp) = ∆geom

p for almost all primes p of A.

Outline of the proof. First we prove that for almost all primes p of A
the finite group ∆geom

p satisfies the assumptions of Theorem 2.19. Next we prove
that the field k′ given by Theorem 2.19 is almost always equal to kp. Using
Proposition 2.22, we then deduce the desired equality.

Definition 4.2.
We denote by S1 the finite set of primes of A for which Theorem 3.6 does not
hold.

Since we are mainly interested in statements that hold for almost all primes
of A, we can focus our attention on primes not contained in S1. One particular
advantage of this is that for p 6∈ S1 the residual representation at p can be simply
written as

ρp : GK −→ GLr(kp).

Proposition 4.3.
For every integer c ≥ 1 there exists a finite set of primes S(c) ⊃ S1 of A such
that for all p 6∈ S(c) every subgroup of ∆p of index ≤ c acts absolutely irreducibly.
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Proof. For any prime p of A and any subgroup H 6 ∆p let H ′ denote⋂
γ∈∆p

γHγ−1. This is a normal subgroup of ∆p; we define αp,H as the composite
of the following homomorphisms

αp,H : GK −→ ∆p � ∆p/H
′.

Lemma 4.4.
For every integer c ≥ 1 there exists a finite set of primes S0(c) of A such that for
all p 6∈ S0(c) and all subgroups H of ∆p of index ≤ c the homomorphism αp,H is
unramified at all places of K.

Proof. For every place x of K at which ϕ has good reduction, the inertia
group Ix acts trivially on ϕ[p] and therefore the homomorphism αp,H is unramified
at these places. Since there are only finitely many places x of K where ϕ has bad
reduction, it is then enough to prove the lemma for one of them. By reduction
step (b), ϕ has semistable reduction at x. Let (ϕx,Λx) be its Tate uniformization
at x and let p be any prime of A. Then there is an exact sequence

0 −→ ϕx[p] −→ ϕ[p] −→ Λx/pΛx −→ 0

of representations of the decomposition group Dx that is invariant under the
action of EndK(ϕ). By good reduction the inertia group Ix acts trivially on
ϕx[p] and by reduction step (c) it also acts trivially on Λx/pΛx. Therefore its
image under ρp lies in a subgroup of the form(

1 ∗
0 1

)
∼= HomEndK(ϕ)⊗Akp(Λx/pΛx, ϕx[p]).

Let H be a subgroup of ∆p of index ≤ c. Then |∆p/H
′|, and thereby every

element of ∆p/H
′, has order dividing c!. In particular we have αp,H(Frobc!x ) = 1. It

follows that the restriction of αp,H to Ix factors through the group of coinvariants

HomEndK(ϕ)⊗Akp(Λx/pΛx, ϕx[p])Frobc!
x
.

It suffices to prove that this group is trivial for almost all p. Since Frobc!x acts
trivially on Λx/pΛx by reduction step (c), it is enough to prove that the group
of coinvariants ϕx[p]Frobc!

x
vanishes.

Let fx denote the characteristic polynomial of Frobc!x on the Tate module
of ϕx at the prime p, which by Proposition 3.10 has coefficients in A and is
independent of p. Moreover, by Proposition 3.11 every eigenvalue of Frobx has
valuation < 0 at ∞. It follows that 1 is not an eigenvalue of Frobc!x and so fx(1)
is a non-zero element of A. For all p not dividing fx(1), no eigenvalue of Frobc!x
is congruent to 1 modulo a place lying above p; consequently for these p we have
ϕx[p]Frobc!

x
= 0. �

For every integer c ≥ 1 let S0(c) denote the finite set of primes given by
the above lemma and S(c) := S0(c) ∪ S1. For every p 6∈ S0(c) and for every
subgroup H of ∆p of index ≤ c let K(p,H) be the field fixed by the kernel of αp,H .
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By Lemma 4.4 it is unramified over K. Moreover, its degree [K(p,H)/K] ≤ c! is
bounded independently of p and H. By a function field analogue of the Hermite-
Minkowski Theorem (cf. [Gos96], Theorem 8.23.5) about unramified extensions,
there are only finitely many possibilities for K(p,H). Therefore their compositum
K ′ is a finite extension of K such that the restriction αp,H |K′ : GK′ → ∆p/H

′ is
trivial for all p 6∈ S0(c), in particular for all p 6∈ S(c). For these primes p we find
that

ρp(GK′) ⊂ H ′ ⊂ H.

By the assumption on S1 ⊂ S(c) the Galois group GK′ acts absolutely irreducibly
under ρp for all p 6∈ S(c). This yields the desired conclusion. �

Definition 4.5.
For p 6∈ S(r!) let ∆p,1 denote a fixed choice of normal subgroup of ∆p satisfying
the conditions of Proposition 2.21 and let ∆p,2 denote ∆p,1 ∩ (scalars).

Lemma 4.6.
For p 6∈ S(r!) we have ∆p,1 ⊂ ∆p,2∆

geom
p .

Proof. By construction, ∆geom
p is a normal subgroup of ∆p and their quo-

tient is cyclic. Therefore

∆p,1∆
geom
p /∆geom

p
∼= ∆p,1/(∆p,1 ∩∆geom

p )

is also cyclic and the derived group ∆der
p,1 is contained in ∆p,1∩∆geom

p . On the other

hand, ∆p,1/∆p,2 is perfect, so there is a surjection ∆der
p,1 � ∆p,1/∆p,2. Combining

these two statements we find ∆p,1 = ∆p,2(∆p,1 ∩∆geom
p ). This in turn yields the

desired result. �

The following statement is an analogue of Proposition 4.3 for subgroups of
∆geom

p of bounded index.

Proposition 4.7.
For every integer c ≥ 1 there exists a finite set of primes S ⊃ S1 of A such that
for all p 6∈ S, every subgroup of ∆geom

p of index ≤ c acts absolutely irreducibly.

Proof. Let c be fixed and let S be the union of the finite sets S(r!) and
S(drc). For all n ≥ 1 we have by definition S(n) ⊃ S1; hence S ⊃ S1. Let p
be a prime outside of S and H a subgroup of ∆geom

p of index ≤ c. Since ∆p,2 is
a scalar group, H acts absolutely irreducibly if and only if ∆p,2H does. Then,
using Lemma 4.6 and the definition of ∆p,1, we find

[∆p : ∆p,2H] = [∆p : ∆p,2∆
geom
p ][∆p,2∆

geom
p : ∆p,2H]

≤ [∆p : ∆p,1][∆p,2∆
geom
p : ∆p,2H]

≤ dr · c.
Therefore ∆p,2H acts absolutely irreducibly by the choice of S. �
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Proposition 4.8.
Let f, g and h be the algebraic morphisms defined in Section 2.2. For every
integer c ≥ 1 there exists a finite set of primes S ⊃ S1 of A such that for all
p 6∈ S, the map γ 7→ fgh(γc) does not vanish identically on ∆geom

p .

Proof. Let us suppose that there is an infinite set P of primes p of A for
which γ 7→ fgh(γc) vanishes identically on ∆geom

p . By Lemma 4.6, possibly after
taking a finite number of primes out of P , we have P ∩ S1 = ∅ and for all p ∈ P
and all δ ∈ ∆p there exist α ∈ k∗p and δg ∈ ∆geom

p with δdr! = αδg. Consequently

δdr!r

det δdr!
=

(αδg)
r

det(αδg)
= δrg ∈ ∆geom

p .

Let x be a place of K at which ϕ has good reduction and let Frobx ∈ GK

be an associated Frobenius element. Then there exists δx ∈ ∆geom
p such that

ρp(Frobdr !r
x )

det ρp(Frobx)dr ! = δx. For p ∈ P we have by assumption

fgh

(
ρp(Frobdr!rc

x )

det ρp(Frobx)dr!c

)
= fgh(δcx) = 0

and therefore fgh(ρp(Frobdr!rc
x )) = 0.

It is a consequence of Proposition 3.10 that the characteristic polynomial
fx of ρp(Frobdr!rc

x ) has coefficients in A and is independent of p. Since there
are only finitely many possibilities to choose a bounded amount of eigenvalues
of Frobdr!rc

x , there is either a quadruple of distinct eigenvalues α1, α2, α3, α4 of
Frobdr!rc

x in F such that α1α2 − α3α4 ≡ 0, or a triple of distinct eigenvalues
α1, α3, α4 of Frobdr!rc

x in F such that α2
1 − α3α4 ≡ 0, or a sextuple of distinct

eigenvalues α1, α2, α3, α4, α5, α6 of Frobdr!rc
x in F such that α1α2α3−α4α5α6 ≡ 0

modulo a prime lying above p for infinitely many primes p of P . Since the two
other cases work analogously, let us suppose that it is the first case that occurs.
Then α1α2 − α3α4 = 0 and therefore

fc : GLr,Fp → A1
Fp
, γ 7→ f(γdr!rc)

vanishes on ρp(Frobx) for all places x of good reduction of K. Since these Frobx
form a dense set of conjugacy classes of GK and the morphism fc is conjugation-
invariant, we obtain fc|Γp = 0 and in particular fc|Γgeom

p
= 0. By Corollary 3.4

the image Γgeom
p of the geometric Galois group is Zariski dense in SLr,Fp . Since

fc is an algebraic morphism, from fc|Γgeom
p

= 0 it follows that fc also vanishes on
SLr,Fp . However, this is a contradiction by Lemma 2.9. �

Proposition 4.9.
For almost all primes p of A there is a finite subfield k′p of kp and a model G′

of SLr over k′p such that G′(k′p) is a normal subgroup of ∆geom
p of index bounded

independently of p that acts absolutely irreducibly.
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Proof. Let Nr be the integer depending on r provided by Theorem 2.19 and
let SNr ⊃ S1 be the finite set of primes of A for which, applied with the constant
Nr, either Proposition 4.7 or Proposition 4.8 does not hold. By reduction step
(a), for all primes p 6∈ SNr the image ∆geom

p of the geometric Galois group is
contained in SLr(kp) and thus we can apply Theorem 2.19 to ∆geom

p . By the
definition of SNr , assumptions (1) and (2) of Theorem 2.19 are satisfied for all
p 6∈ SNr . It follows that for every such prime p there is a finite subfield k′p of kp

and a model G′ of SLr over k′p such that G′(k′p) is a normal subgroup of ∆geom
p

of index ≤ Nr, thereby acting absolutely irreducibly. �

Proposition 4.10.
For almost all primes p of A as in Proposition 4.9 we have kp ⊆ k′p.

Proof. Let S ⊃ S1 be the finite set of primes of A for which either Propo-
sition 3.13 or Proposition 4.9 does not hold and let p be a prime outside of
S.

Let ∆p,1 be the normal subgroup of ∆p as in Definition 4.5. By the con-
struction carried out in the proof of Proposition 2.19, on which Proposition 4.9
is based, we may assume that G′(k′p) = ∆der

p,1 . As the derived group of a normal
subgroup, G′(k′p) itself is normal in ∆p.

Let γ ∈ ∆p and intG′(γ) ∈ Aut(G′(k′p)) denote the conjugation action of γ
on G′(k′p). This action, extended to G′, is defined over k′p; thus its derived map

AdG′(γ) ∈ End(LieG′) has trace in k′p. Tensoring LieG′ with k′p and considering

AdG′(γ) as an element of End(LieG′ ⊗k′p k′p) does not change the characteristic
polynomial of AdG′(γ); therefore the trace of the latter still lies in k′p.

On the other hand, since ∆p ⊂ GLr(kp), we can also consider the conjugation
action intSLr(γ) of γ on SLr(kp). As in the case of intG′(γ) above, we conclude

that the derived map AdSLr(γ) ∈ End(slr,kp ⊗kpkp) has trace in kp.
Since G′ is a model of SLr over k′p, we have

LieG′ ⊗k′p k′p = slr,kp ⊗kpkp.

Moreover, given the inclusion G′(k′p) 6 SLr(kp), we have

intG′(γ) = intSLr(γ)|G′(k′p).

Together with the equality of Lie algebras this yields that AdG′(γ) = AdSLr(γ)
on slr,kp

. Thus tr(AdSLr(γ)) lies in kp ∩ k′p.
Since tr(AdSLr(γ)) = tr(Ad(γ))− 1, it follows that tr(Ad(γ)) lies in kp ∩ k′p.

On the other hand, by Proposition 3.13, the field generated by {tr(Ad(γ))}γ∈∆p

is equal to kp. Therefore kp ⊆ k′p. �

The ingredients to finish the proof of the main theorem of this chapter are
now all gathered together.
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Proof of Theorem 4.1. By Propositions 4.9 and 4.10 for almost all primes
p of A there is a model G′ of SLr over an extension k′p of kp such that

G′(k′p) 6 ∆geom
p 6 SLr(kp).

By Proposition 2.22 both inclusions are then equalities. �

4.2. Surjectivity of products of residual representations.

Here we consider the image of the product representation ρp1 × ρp2 for pairs
of distinct primes p1 and p2 of A.

Proposition 4.11.
There exists a finite set S of primes of A such that for all pairs of distinct primes
p1 and p2 not in S the image of (ρp1×ρp2)(GK) in PGLr(kp1)×PGLr(kp1) contains
PSLr(kp1)× PSLr(kp2).

Proof. Let S ⊃ S1 be the finite set containing all primes p of A for which
the residual representation does not map surjectively onto SLr(kp), all those with
|kp| ≤ 3 and all those for which Proposition 3.13 is not satisfied. Let p1, p2 6∈ S
be distinct primes and let ∆ denote the image of GK in PGLr(kp1)×PGLr(kp2).
Suppose that

∆der 6= PSLr(kp1)× PSLr(kp2).

The assumptions on p1 and p2 ensure that ∆der surjects to both factors.
Moreover, as |kp1 |, |kp2 | > 3, these groups are simple. We can therefore apply
[Pin00], Lemmas 9.4 and 9.5, that show the existence of a field isomorphism

σ : kp2

∼−→ kp1 and of a corresponding isomorphism α : σ∗ PGLr,kp1
−→ PGLr,kp2

such that ∆ ⊂ Graph(α). Noting that the adjoint representation of GLr factors
through PGLr, we thus have Ad ◦ϕ ∼= σ∗ Ad.

Calculating inside A/p2
∼= kp2 , for every place x of K where ϕ has good

reduction we find

σ−1(tr Ad(ρp1(Frobx)) mod p1) = (tr Ad(ρp1(Frobx)) mod p2).

This implies that the image modulo p1p2 of the ring generated by the traces of
all such Ad(ρp1(Frobx)) is contained in Graph(σ−1) ( kp1 × kp2 , in contradiction
to Proposition 3.13 (b). �
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CHAPTER 5

Cohomological remarks and some group theory

We collect a few general results that are used in the next chapter. Let
gln, sln, pgln and psln denote the Lie algebras of GLn, SLn,PGLn and PSLn, re-
spectively and let c denote the center of gln.

Proposition 5.1.
Let n ≥ 1 and k be a finite field.

(1) If |k| > 3, then

H1(SLn(k), gln(k)) = 0.

(2) If |k| > 9, then

H1(SLn(k), pgln(k)) = 0.

(3) Let H be a subgroup of GLn(k) that contains SLn(k). If |k| > 9, then

H1(H, pgln(k)) = 0.

Proof. Part (1) was proved in [TZ70], Theorem 9. For (2), we show that
the natural map

H1(SLn(k), gln(k)) −→ H1(SLn(k), pgln(k))

is an isomorphism. Indeed, let us consider the exact cohomology sequence

H1(SLn(k), c(k)) −→ H1(SLn(k), gln(k))

−→ H1(SLn(k), pgln(k)) −→ H2(SLn(k), c(k))

associated to the short exact sequence

0 −→ c(k) −→ gln(k) −→ pgln(k) −→ 0

of SLn(k)-modules. Since SLn(k) is perfect if |k| > 3 and c(k) is abelian, the
group H1(SLn(k), c(k)) ∼= Hom(SLn(k), c(k)) is trivial. In a similar way, the
group H2(SLn(k), c(k)) of central extensions of SLn(k) by c(k) is trivial since, if
|k| > 9, the group SLn(k) has no central extensions by [Ste81], Theorem 1.1.
Consequently the required map is indeed an isomorphism. Combined with Part
(1) this yields (2).

Let SLn(k) 6 H 6 GLn(k). Then [H : SLn(k)] divides [GLn(k) : SLn(k)] =
|k|−1. In particular it is prime to the characteristic of k; therefore by [CPS75],
Proposition 2.3 (g), the restriction map

H1(H, pgln(k)) −→ H1(SLn(k), pgln(k))
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is injective. Part (3) then follows from (2). �

The following proposition is an adaptation of [PR09a], Proposition 2.1.

Proposition 5.2.
Let n be a natural number, k a finite field with at least 4 elements and H an
additive subgroup of gln(k). Assume that H is invariant under conjugation by
SLn(k). Then either H is contained in the group of scalar matrices or H contains
sln(k).

Proof. Consider the restriction of the adjoint representation of GLn,k to
SLn,k, the weights of which are ei − ej ∈ Rn/diag(R) for i 6= j with multiplicity
1 and 0 with multiplicity n. The weight space W0 of weight 0 is the group of
diagonal matrices in gln(k) and the weight space Wi,j of weight ei − ej is the
group of matrices with all entries zero, except, possibly, in the position (i, j).
Thus we can decompose gln(k) as

gln(k) = W0 ⊕
⊕
i,j

Wi,j.

Since the multiplicative group k∗ has at least 3 elements, any two distinct weights
of the form ei − ej remain distinct and different from 0 upon restricting the
representation to SLn(k). Therefore H can be decomposed as

H = (H ∩W0)⊕
⊕
i,j

(H ∩Wi,j).

Each Wi,j is a k-vector space of dimension 1 and the diagonal matrices T (k) in
SLn(k) act on it through a homomorphism T (k)→ k∗.

If n ≥ 3 then the above homomorphism is surjective. Hence H∩Wi,j is either
0 or equal to Wi,j.

If n = 2, then the homomorphism T (k) → k∗ is not necessarily surjective.
Let us suppose that there is a non-zero h ∈ H∩Wi,j. Then at least {α2h | α ∈ k}
is a subset of H ∩Wi,j. Since H ∩Wi,j is an additive group, {(α2 +β2)h | α ∈ k}
is also a subset thereof. As every element in the finite field k can be written as
the sum of two squares, we then have H ∩Wi,j = Wi,j. Thus in this case also
H ∩Wi,j is either 0 or equal to Wi,j.

Consider the subgroup of SLn(k) generated by the permutation matrices of
positive signature and the products of a permutation matrix of negative signature
with a scalar matrix of determinant −1. This subgroup permutes the weight
spaces Wi,j transitively. Since H is invariant under conjugation by SLn(k), we
find that either every H ∩Wi,j = 0 or every H ∩Wi,j = Wi,j. In other words,
either H is contained in the group of diagonal matrices or contains the sum of
all Wi,j, which is the group of matrices with diagonal 0.

If H is contained in the group of diagonal matrices, then take any element h
of H and denote its diagonal entries by h1, . . . , hn. Let i 6= j and u ∈ SLn(k) be
the matrix with entry 1 on the diagonal and in the position (i, j) and 0 elsewhere.
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Then uhu−1 has entry hi−hj in the position (i, j). However this entry has to be
0 because uhu−1 ∈ H, and hence hi = hj. This can be done for any pair (i, j),
which shows that H is contained in the group of scalar matrices.

If H contains the group of matrices with diagonal 0, we consider the trace
form

gln(k)× gln(k)→ k, (A,B) 7→ tr(AB),

which is a perfect pairing invariant under SLn(k). The orthogonal complement
H⊥ of H is again an SLn(k)-invariant subgroup, and since the inclusion for
orthogonal complements is reversed, it is contained in the group of diagonal
matrices. The arguments in the other case show that H⊥ is contained in the
group of scalar matrices. Taking orthogonal complements again, we deduce that
H contains all of sln(k), as desired. �

Corollary 5.3.
Let k be a finite field of characteristic 2 with at least 4 elements and H a non-zero
additive subgroup of pgl2(k). Assume that H is invariant under conjugation by
SL2(k). Then H contains psl2(k).

Proof. Consider the short exact sequence

0 −→ c(k) −→ gl2(k)
proj−→ pgl2(k) −→ 0.

Let us suppose that psl2(k) 6⊂ H. Then (psl2(k) ∩ H) � psl2(k) and therefore
proj−1(psl2(k)∩H) � sl2(k). Given that proj−1(psl2(k)∩H) is SL2(k)-invariant
if psl2(k) ∩H is, by Proposition 5.2, the group proj−1(psl2(k) ∩H) is contained
in the group of scalars c(k). Hence proj(proj−1(psl2(k) ∩ H)) = psl2(k) ∩ H is
trivial.

Let ( x yz 0 ) be a non-zero element of H. From h 6∈ psl2(k) follows that x is
non-zero. Since H is SL2(k)-invariant, we have(

0 1
1 0

) (
x y
z 0

) (
0 1
1 0

)
=

(
x z
y 0

)
∈ H.

Since H is an additive group, it follows that(
x y
z 0

)
+

(
x z
y 0

)
=

(
0 y + z

y + z 0

)
∈ H.

This is also an element of psl2(k), thus it must be zero. Consequently we have
y = z. Now let a ∈ k∗. Then(

a a
0 a−1

) (
x y
y 0

) (
a−1 a
0 a

)
=

(
x a2x

a−2y 0

)
∈ H,

as well as (
x y
y 0

)
+

(
x a2x

a−2y 0

)
=

(
0 a2x+ y

a−2y + y 0

)
∈ H.
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Since this is an element of psl2(k), it must be zero. In particular we have

a2x+ y = 0.

Since |k∗| > 1 and x 6= 0 and this holds for all a ∈ k∗, we obtain a contradiction.
Hence H must contain psl2(k). �
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CHAPTER 6

Second order and higher order approximation

In this chapter we return to the notation and the assumptions of Chapter 4.
Most notably, we assume that the field K has transcendence degree 1, that
the Drinfeld A-module ϕ satisfies the conditions of Theorem 1.1 and that the
reduction steps introduced in Section 3.3 are in effect.

6.1. Congruence filtration.

Let π be a uniformizer of A at p. The congruence filtration of GLr(Ap) is
defined by

G0
p := GLr(Ap) and

Gi
p := 1 + glr(p

i) for all i ≥ 1.

Its successive subquotients possess natural isomorphisms

v0 : G
[0]
p := G0

p/G
1
p

∼−→ GLr(kp) and

vi : G
[i]
p := Gi

p/G
i+1
p

∼−→ glr(p
i/pi+1), [1 + y] 7→ [y] for all i ≥ 1.

For any subgroupH of GLr(Ap) we defineH i := H∩Gi
p andH [i] := H i/H i+1. Via

vi we identify the latter with a subgroup of GLr(kp) or glr(p
i/pi+1), respectively.

In particular, let

G′ip := SLr(Ap)
i for all i ≥ 1.

Via vi we get isomorphisms

G
′[0]
p := G′0p /G

′1
p

∼−→ SLr(kp) and

G
′[i]
p := G′ip/G

′i+1
p

∼−→ slr(p
i/pi+1).

Similarly, for PGLr(Ap) we set

PG0
p := PGLr(Ap) and

PGi
p := 1 + pglr(p

i) for all i ≥ 1.

For i ≥ 0 the natural isomorphisms vi for GLr induce a series of natural isomor-
phisms

v0 : PG
[0]
p := PG0

p/PG
1
p

∼−→ PGLr(kp) and

vi : PG
[i]
p := PGi

p/PG
i+1
p

∼−→ pglr(p
i/pi+1).

For any subgroup H of PGLr(Ap) we define H i := H∩PGi
p and H [i] := H i/H i+1.

Via vi we identify the latter with a subgroup of PGLr(kp) or pglr(p
i/pi+1), re-

spectively.

43



For i ≥ 1 the isogeny P : SLr → PGLr induces a natural commutative
diagram

G′ip //

P
��

slr(p
i/pi+1)

dP
��

PGi
p

// pglr(p
i/pi+1).

6.2. Generalized commutator maps.

The commutator map of SLr factors through a map

[ , ]∼ : PGLr×PGLr −→ SLr .

Its total derivative at the identity element defines a generalized Lie bracket

[ , ]∼ : pglr× pglr −→ slr,

denoted by the same symbol. Its composite with the map dP : slr → pglr is the
usual Lie bracket [ , ] on pglr, respectively on slr. We also denote the induced
pairing pglr× slr → slr by [ , ]∼. Proposition 1.2 of [Pin00] shows that the
images of these pairings generate the following subspaces.

Proposition 6.1.
(a) We have [slr, slr] = slr unless r = 2 and we are in characteristic 2. In

that case we have [sl2, sl2] ⊂ c, where c denotes the center of sl2.
(b) In all cases we have [pglr, slr]

∼ = slr.

The generalized commutator maps

SLr× SLr −→ PGLr× SLr −→ PGLr×PGLr −→ SLr

induce for any i, j ≥ 1 a commutative diagram

G′ip ×G
′j
p

//

��

G
′[i]
p ×G′[j]p

∼ //

��

slr(p
i/pi+1)× slr(p

j/pj+1)

��

[ , ]

vv

PGi
p ×G

′j
p

//

��

PG
[i]
p ×G′[j]p

∼ //

��

pglr(p
i/pi+1)× slr(p

j/pj+1)

��
PGi

p × PG
j
p

//

[ , ]∼

��

PG
[i]
p × PG[j]

p
∼ //

��

pglr(p
i/pi+1)× pglr(p

j/pj+1)

[ , ]∼

��

G′i+jp
// G

′[i+j]
p

∼ // slr(p
i+j/pi+j+1),

involving, in the rightmost column, the generalized Lie brackets defined above.
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6.3. Second order approximation.

For any subgroup H of GLr(Ap), let H̃ [1] denote the image of H [1] in the

quotient glr(p/p
2)/c(p/p2) and H̃ denote the image of H/H2 in the quotient

GLr(Ap/p
2)/(1 + c(p/p2)). We have the following commutative diagram with

exact rows:

0 // H [1] //

��

H/H2 //

��

H [0] //

��

1

0 // H̃ [1] //
� _

��

H̃ //
� _

��

H [0] //
� _

��

1

0 // glr(p/p
2)/c(p/p2) // GLr(Ap/p

2)/(1 + c(p/p2)) // GLr(kp) // 1.

Let us recall that Γp and Γgeom
p denote the image of GK , respectively Ggeom

K

under ρp, as well as ∆p and ∆geom
p their images under ρp. Let us also note that,

with the notation introduced at the beginning of the chapter, we have ∆p = Γ
[0]
p

and ∆geom
p = Γ

geom,[0]
p .

Let us also recall from Definition 4.2 that S1 is the finite set of primes of A
for which Theorem 3.6 does not hold. In this chapter we once more focus our
attention on primes outside of S1.

Proposition 6.2.
For almost all primes of p of A we have Γ̃

[1]
p 6= 0; in other words, Γ

[1]
p contains a

non-scalar element.

Proof. Let S ⊃ S1 be the set of primes q with |kq| ≤ 9 and of all those
for which the residual representation does not surject onto SLr(kq). Let p be a
prime outside of S. There is a natural section

s0 : GLr(kp) −→ GLr(Ap/p
2)

using Teichmüller representatives. This in turn gives rise to a section

s0 : GLr(kp) −→ GLr(Ap/p
2)/(1 + c(p/p2)).

We denote the restriction of s0 to ∆p again by s0. Suppose that Γ̃
[1]
p = 0. Since

Γ̃p surjects onto ∆p, this then yields another section

s1 : ∆p −→ GLr(Ap/p
2)/(1 + c(p/p2)).

By the assumptions on p we have |kp| > 9 and SLr(kp) ⊆ ∆p. Proposition 5.1
(3) then shows that H1(∆p, glr(p/p

2)/c(p/p2)) = 0, from which we conclude that
sections s0 and s1 are conjugate. We may therefore assume that they are equal.
Then Γ̃p = s0(∆p) ⊆ s0(GLr(kp)) in GLr(Ap/p

2)/(1 + c(p/p2)). It follows that
every element γ ∈ Γp/Γ

2
p ⊆ GLr(Ap/p

2) can be written uniquely in the form
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γ = (1 + πλ)γ1 with λ ∈ kp and γ1 ∈ GLr(kp). Since scalars act trivially in the
adjoint representation, we have Ad γ = Ad γ1. Thus

{tr(Ad γ) | γ ∈ Γp/Γ
2
p} ⊆ kp

and in turn

{tr(Ad γ) | γ ∈ Γp} ⊆ kp ⊕ p2 in A.

If F trad = F , then this is a contradiction to the fact that the traces of Ad(ρp(Frobx))
for all places of good reduction x of K generate Ap = kp ⊕ p and the proof is
finished.

Suppose from now on that F trad = F 2, which can only occur if p = r = 2.
Then we have to use further information related to the structure of the Drinfeld
module ϕ in order to arrive to a contradiction. This will be achieved through a
series of reduction steps contained in the following lemmas.

Lemma 6.3.
After replacing K by a finite extension, we can assume for all p 6∈ S that

Γp/Γ
2
p ⊂ GL2(kp) ⊂ GL2(Ap/p

2).

Proof. Let p 6∈ S. If γ ∈ Γp/Γ
2
p, then we have already shown that there are

uniquely determined λ ∈ kp and γ1 ∈ GL2(kp) such that γ = (1 + πλ)γ1.
Let us consider the composite map

βp : GK → (1 + πkp)×GL2(kp) → kp
∼= F dp

2 ,
g 7→ ρp,2(g) = (1 + πλ)γ1 7→ λ,

where dp denotes the dimension of kp as a vector space over the prime field F2.
Being the composition of two homomorphisms, βp itself is a homomorphism.
Moreover βp is unramified at all places of K. Indeed:

(1) If x is a place at which ϕ has good reduction, then ρp,2(Ix) = {1} and
thus βp(Ix) = {0}.

(2) Let x be one of the finitely many places of bad reduction of K and
(ψx,Λx) the corresponding Tate uniformization. By reduction step (c)
of Chapter 4 we have that ρp,2(Ix) lies in a subgroup of the form ( 1 ∗

0 1 )
in GLr(Ap/p

2). The second map composing βp maps all matrices of this
form to 0; therefore in this case we also have βp(Ix) = {0}.

Let us consider the dp projection maps to the direct simple factors of F dp

2 . Since
βp is unramified, these maps are again unramified. The kernels of all such maps,
for all p 6∈ S, correspond to unramified extensions of K of degree ≤ 2. By the
Hermite-Minkowski Theorem for function fields (cf. [Gos96], Theorem 8.23.5),
there are only finitely many such extensions. Taking their compositum K ′, which
is again a finite extension of K, and replacing K by K ′, we get the desired
result. �
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Lemma 6.4.
After replacing K by a finite extension, we can assume for all primes p of A that
det(ρp,3(GK)) ⊂ (Ap/p

3)∗ is contained in k∗p.

Proof. By the definition of Ggeom
K there exists σ ∈ GK such that GK =

Ggeom
K · σZ, where σZ denotes the closed subgroup of GK that is topologically

generated by σ. For all p, writing A∗p = k∗p(1 + πAp), we have

det(ρp(σ
4)) ∈ k∗p(1 + π3Ap) ⊂ A∗p.

It follows that the image of Ggeom
K · σ4Z under det ◦ρp,3 is contained in k∗p . The

groupGgeom
K ·σ4Z is a subgroup of index 4 ofGK ; replacingK by the corresponding

extension of degree 4, we get the desired result. �

Lemma 6.5.
After replacing K by a finite extension, we can assume for all p 6∈ S that for
all g ∈ GK we can write ρp,3(g) in the form (1 + π2γ2)γ1 with γ2 ∈ sl2(kp) and
γ1 ∈ GL2(kp).

Proof. Let us replace K by a finite extension for which both previous lem-
mas are satisfied. Let p 6∈ S and g ∈ GK . By Lemma 6.3 the element ρp,3(g)
can be written in the form (1 + π2γ2)γ1 with γ2 ∈ gl2(kp) and γ1 ∈ GL2(kp).
Computing the determinant, we find

det(ρp,3(g)) = det((1 + π2γ2)γ1) = (1 + π2 tr(γ2)) det(γ1).

By Lemma 6.4 this expression is contained in k∗p . However, this is only
possible if tr(γ2) = 0, in other words if γ2 ∈ sl2(kp). �

Lemma 6.6.
For the adjoint representation AdSL2 of GL2,F2 on sl2,F2, there is a short exact
sequence of representations

0 −→ F2
ι−→ sl2,F2 −→ (std

(2)
2 ⊗ det−1)F2 −→ 0, (6.1)

where the representation on the left is the trivial representation of GL2,F2 and ι
denotes the inclusion of scalars.

Proof. In order to alleviate the notation, we omit the subscript F2 for the
length of this proof. The Lie algebra sl2 is generated by ( 1 0

0 1 ) , ( 0 1
0 0 ) and ( 0 0

1 0 ).
The center c of sl2, generated by ( 1 0

0 1 ), is a subspace of sl2 on which GL2 acts
trivially in the adjoint representation. Consequently AdSL2 factors through sl2 /c;
we denote the representation thus obtained by AdSL2 . Let [ 0 1

0 0 ] and [ 0 0
1 0 ] denote

the images of ( 0 1
0 0 ) and ( 0 0

1 0 ) in sl2 /c, respectively and let A = ( a bc d ) ∈ GL2.
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Then

AdSL2(A)

[
0 1
0 0

]
=

1

det(A)

[
0 a2

c2 0

]
,

AdSL2(A)

[
0 0
1 0

]
=

1

det(A)

[
0 b2

d2 0

]
.

On the other hand, let std
(2)
2 : GL2 → GL2 be given by g 7→ g(2), where g(2)

denotes the matrix obtained by raising the coefficients of g to the second power.
Then

(std
(2)
2 ⊗ det−1)(A)

(
1
0

)
=

1

det(A)

(
a2

c2

)
,

(std
(2)
2 ⊗ det−1)(A)

(
0
1

)
=

1

det(A)

(
b2

d2

)
.

It follows that AdSL2 and std
(2)
2 ⊗ det−1 are isomorphic representations of GL2;

this proves the desired result. �

Tensoring (6.1) with Ap/p
3, we find the short exact sequence of representa-

tions
0 −→ Ap/p

3 ι−→ sl2,Ap/p3 −→ (std
(2)
2 ⊗ det−1)Ap/p3 −→ 0,

where the representation on the left is the trivial representation of GL2,Ap/p3 .
For γ ∈ GL2(Ap/p

3) this yields the equality of traces

tr(AdSL2(γ)) = 1 + tr(std
(2)
2 ⊗ det−1)(γ) = 1 + tr(γ(2)) · det(γ)−1,

where (γ)(2) denotes the matrix obtained by raising the coefficients of γ to the
second power.

Let g ∈ GK and ρp,3(g) = (1 + π2γ2)γ1 written in the form given by Lemma
6.5. Then

tr(AdSL2)(ρp,3(g)) = 1 + tr((1 + π2γ2)
(2)γ

(2)
1 ) · det(1 + π2γ2)

−1 det(γ1)
−1

= 1 + tr((1 + π2γ2)
(2)γ

(2)
1 ) · (1 + π2 tr(γ2))

−1 det(γ1)
−1

= 1 + tr(γ
(2)
1 ) det(γ1)

−1,

where, in order to obtain the last equality, we used that (1+π2γ2)
(2) = 1+π4γ

(2)
2 =

1 in GL2(Ap/p
3), as well as the fact that tr(γ2) = 0.

Hence tr(AdSL2(γ)) is an element of kp for all γ ∈ Γp/Γ
3
p. Since tr(Ad γ) =

tr(AdSL2(γ)) + 1, it follows that

{tr(Ad γ) | γ ∈ Γp/Γ
3
p} ⊆ kp,

thereby giving
{tr(Ad γ) | γ ∈ Γp} ⊆ kp ⊕ p3 in A,

a contradiction to the fact that the traces of Ad(ρp(Frobx)) for all places of good

reduction x of K generate A
(2)
p = {a2 | a ∈ Ap} * kp ⊕ p3. This completes the

proof of Proposition 6.2. �
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Corollary 6.7.
For almost all primes of p of A we have Γ̃

geom,[1]
p 6= 0; in other words, Γ

geom,[1]
p

contains a non-scalar element.

Proof. Let S be the finite set of primes defined in the proof of Propo-
sition 6.2 and let p 6∈ S. Since ρp,2(G

geom
K ) C ρp,2(GK), the commutator group

[Γ
[1]
p , ρp,2(G

geom
K )] is a subset of Γ

geom,[1]
p . Suppose that Γ

geom,[1]
p only contains scalar

elements. Then, after quotienting by 1 + c(p/p2), we find that

[Γ̃
[1]
p , Γ̃

geom
p ] ⊆ Γ̃

geom,[1]
p = {0},

which means that the commutator action of Γ̃geom
p on Γ̃

[1]
p is trivial. However, by

the assumptions on S this action coincides with the action of SL2(kp). Since the
space of invariants (pgl2,kp

)SL2(kp) is trivial, this yields a contradiction. �

6.4. Higher order approximation.

The following result is a straightforward consequence of the previous sections
if (p, r) 6= (2, 2). The proof in the remaining case is slightly more involved and
will largely be based on [Pin00], Section 12.

Proposition 6.8.
Let H be a closed subgroup of SLr(Ap). Assume that |kp| ≥ 4, that H [0] = SLr(kp)
and H [1] ⊂ slr(p/p

2) contains a non-scalar matrix. Then H = SLr(Ap).

Proof. Since H is a closed subgroup of SLr(Ap), the claim is equivalent to
H [i] = SLr(Ap)

[i] for all i ≥ 0. By assumption we have H [0] = SLr(kp).

Lemma 6.9.
We have H [1] = slr(p/p

2).

Proof. Consider the conjugation action

H [0] ×H [1] → H [1], ([g], [h]) 7→ [ghg−1].

Under v0 and v1 this corresponds to the map

SLr(kp)× slr(p/p
2)→ slr(p/p

2), (g,X) 7→ gXg−1.

Since H [0] = SLr(kp), it follows that H [1] ⊂ slr(p/p
2) is closed under conjugation

by SLr(kp). Since it also contains a non-scalar matrix, by Proposition 5.2 it is
equal to slr(p/p

2). �

Lemma 6.10.
If (p, r) 6= (2, 2), then we have H [i] = slr(p

i/pi+1) for all i ≥ 1.
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Proof. Assume that H [i] = slr(p
i/pi+1) for some i ≥ 1 and consider the

commutator map

[ , ] : H [1] ×H [i] → H [i+1].

Under v1, vi and vi+1 it corresponds to the Lie bracket

[ , ] : slr(p/p
2)× slr(p

i/pi+1)→ slr(p
i+1/pi+2).

If (p, r) 6= (2, 2) then by Proposition 6.1 (a) the image of this latter map gen-
erates slr(p

i+1/pi+2) as an additive group. Since H [1] = slr(p/p
2) and H [i] =

slr(p
i/pi+1), we find H [i+1] = slr(p

i+1/pi+2). By induction the claim holds for all
i ≥ 1. �

If (p, r) 6= (2, 2), this finishes the proof of the proposition. Let us assume
from now on that (p, r) = (2, 2). In this case there is an exact sequence

0 −→ c −→ sl2
dP−→ pgl2 −→ pgl2 / psl2 −→ 0, (6.2)

where c and pgl2 / psl2 both have rank 1. The map

SL2(kp) ∼= G
′[0]
p −→ PG

[0]
p
∼= PGL2(kp)

is an isomorphism, since the isogeny P : SL2 → PGL2 is totally inseparable. It
follows that P−1(PG1

p) = G′1p inside G′0p . This yields the commutative diagram
with exact rows

0 // P−1(PG2
p) //

��

G′1p //

����

PG
[1]
p

∼=
��

0 // 1 + c(p/p2) //

∼=
��

G
′[1]
p

//

∼=
��

PG
[1]
p

∼=
��

0 // c(p/p2) // sl2(p/p
2) // pgl2(p/p

2).

(6.3)

By the Four Lemma we find that the composite vertical map on the left, hence-
forth denoted by µ, is surjective. Its kernel is G′2p . Consider the maps indicated
by solid arrows in the diagram

P−1(PG2
p)

P //

µ

����

PG2
p

����

PG
[2]
p

∼=
��

c(p/p2)

((

pgl2(p
2/p3)

��
(pgl2 / psl2)(p

2/p3).

(6.4)
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By the exactness of the sequence (6.2) the composite morphism from the upper
left corner to the lower right corner restricts to zero on G′2p . Hence it factors
through a unique dotted arrow making the diagram commutative.

Lemma 6.11.
The dotted arrow in the diagram (6.4) is an isomorphism.

Proof. Let λ : Gm → PGL2 denote the cocharacter given by t 7→ ( t 0
0 1 ) and

let λ̃ : Gm → SL2 denote the one given by t 7→
(
t 0
0 t−1

)
. Then λ does not lift to

a cocharacter of SL2, but λ2 lifts to λ̃. In other words we have a commutative
diagram

Gm
t7→t2 //

� _

λ̃
��

Gm� _

λ
��

SL2
P // PGL2 .

Let a denote the Lie algebra of Gm. Taking Lie algebras in the above diagram,
we get a commutative diagram with exact rows

0 // a

��

∼ // a� _

dλ̃
��

0 // a� _

dλ
��

∼ // a

��

// 0

0 // c // sl2
dP // pgl2 // pgl2 / psl2 // 0.

(6.5)

The leftmost vertical map is an isomorphism for dimension reasons. The fact
that λ is not congruent modulo 2 to a cocharacter coming from SL2 implies that
Im(dλ) 6⊂ Im(dP ). Thus again for dimension reasons the rightmost vertical map
is an isomorphism.

Taking Ap-valued points in the respective groups, we get a commutative di-
agram

Gm(Ap)

∪

// Gm(Ap)

∪

1 + p

��

t7→t2 //

λ̃

&&MMMMMMMMMMM 1 + p2

��

λ

((QQQQQQQQQQQQQQQ

P−1(PG2
p)

µ

��

P // PG2
p

��

p/p2 //

∼=

&&MMMMMMMMMMM p2/p3

∼=

((QQQQQQQQQQQQQQ

c(p/p2) // (pgl2 / psl2)(p
2/p3).
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The lower oblique maps correspond to the leftmost and rightmost vertical iso-
morphisms of the diagram (6.5), respectively. The vertical maps in the back are
defined by 1 + x 7→ x. Thus the dotted arrow in the back is given by

x 7→ (1 + x)2 − 1 = x2 + 2x.

Since we are in characteristic 2, this is just the Frobenius map x 7→ x2, which
clearly induces an isomorphism. Therefore the dotted arrow in front is an iso-
morphism, as desired. �

Lemma 6.12.
The composite map P (H) ∩ PG2

p → (pgl2 / psl2)(p
2/p3) is surjective.

Proof. Consider the commutative diagram

H ∩G′1p ⊃

��

H ∩ P−1(PG2
p) //

µ

��

P (H) ∩ PG2
p

��

G
′[1]
p

∼=
��

PG
[2]
p

����
sl2(p/p

2) ⊃ c(p/p2) // (pgl2 / psl2)(p
2/p3)

deduced from diagrams (6.3) and (6.4). The leftmost composite vertical map is
surjective by Lemma 6.9. By diagram (6.3) the left half is cartesian; hence the
middle map is surjective. The dotted arrow is bijective by Lemma 6.11. Thus
the rightmost composite vertical map is surjective. �

Lemma 6.13.
We have H [2] = sl2(p

2/p3).

Proof. We proceed similarly to the proof of Lemma 6.9. Lemma 6.12 implies

that the image of P (H) ∩ PG2
p in PG

[2]
p = pgl2(p

2/p3) is non-zero. By Corollary

5.3 the image of P (H)∩PG2
p in PG

[2]
p thus contains psl2(p

2/p3). The generalized
commutators

[P (H) ∩ PG2
p, H]∼

are contained in H ∩G′2p and their images under the composite map

H ∩G′2p −→ G
′[2]
p

∼−→ sl2(p
2/p3) � psl2(p

2/p3)

contain all commutators of SL2(kp) with psl2(p
2/p3). As SL2(kp) acts non-

trivially on this last group, the above composite map H ∩ G′2p → psl2(p
2/p3)

must be non-zero. Thus the image of H ∩ G′2p in G
′[2]
p is not contained in the

scalars. By Proposition 5.2 the map H ∩G′2p → G
′[2]
p is surjective. �
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Lemma 6.14.
We have H [i] = sl2(p

i/pi+1) for all i ≥ 1.

Proof. By the preceding lemmas and induction on i we may take i ≥ 2,
assume the assertion holds for all i′ ≤ i and prove it for i + 1. By Lemma

6.12 we may choose an element δ ∈ P (H) ∩ PG2
p whose image X ∈ PG

[2]
p =

pgl2(p
2/p3) projects to a non-zero element of (pgl2 / psl2)(p

2/p3). Let us consider
the following commutative diagram, where the vertical arrow on the left hand
side is surjective by the induction hypothesis.

[δ,H ∩G′i−1
p ]∼ ⊂

����

H ∩G′i+1
p

��

��

[X,G′i−1
p /G′ip ]∼ ⊂

!!CCCCCCCCCCCCCCCCCCCCC
G
′[i+1]
p

∼=
��

sl2(p
i/pi+1)

��
psl2(p

i/pi+1).

Proposition 6.1 implies that even though the Lie bracket pairing sl2× sl2 →
psl2 vanishes, we have [pgl2, sl2]

∼ = sl2. Let us recall that pgl2 / psl2 has rank
one. Hence for any Y ∈ pgl2 that maps to a generator of pgl2 / psl2 we find
that [Y, sl2]

∼ maps onto psl2. It follows that the oblique map in the diagram is
surjective.

Thus the composite vertical map on the right is surjective. By Proposition
5.2 the upper vertical map is then also surjective, as desired. �

Lemmas 6.10 and 6.14 together imply Proposition 6.8. �

Theorem 6.15.
For almost all primes p of A, we have Γgeom

p = SLr(Ap).

Proof. Let S be the finite set containing the primes for which either Theo-
rem 3.6, Theorem 4.1 or Proposition 6.7 does not hold and those with a residue
field having at most 3 elements. For p 6∈ S, the field kp and the group Γgeom

p satisfy
all the assumptions of Proposition 6.8. Consequently Γgeom

p = SLr(Ap). �
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CHAPTER 7

Adelic openness for fields of transcendence degree 1

This chapter brings to a close the case where K has transcendence degree 1.
We keep the notation and assumptions of the previous chapters.

Proposition 7.1.
There exist a finite set S0 of primes of A such that for every finite set of primes
S containing S0 we have

Γgeom
S = Γgeom

S0
×

∏
p∈S\S0

SLr(Ap).

Proof. First, let us fix a finite set S00 of primes of A that is sufficiently large
to ensure that for all primes outside S00 all previous propositions hold. Since
Γgeom
S00

is a closed subgroup of
∏

p∈S00
Centder

GLrd(Ap)(D ⊗A Ap), it has only finitely
many non-abelian finite simple quotients. Let Ω1, . . . ,Ωn denote these simple
quotients and let N be the maximum of their orders. Let S0 be the union of
S00 with the set of primes p 6∈ S00 for which |PSLr(kp)| ≤ N . We will prove the
proposition for this choice of S0.

We proceed by induction on S. Consider any finite set of primes S ⊃ S0 for
which the desired equality is proved and any p′ 6∈ S. To prove the equality for
S ∪ {p′}, we have to show

Γgeom
S∪{p′} = Γgeom

S × SLr(Ap′).

Identifying SLr(Ap′) with
∏

p∈S{1} × SLr(Ap′), it suffices to show that

∆ := Γgeom
S∪{p′} ∩ SLr(Ap′)

is equal to SLr(Ap′).

Lemma 7.2.
The image of ∆ modulo p′ is equal to SLr(kp′).

Proof. Consider the commutative diagram

Γgeom
S∪{p′} //

����

∏n
i=1 Ωi ×

∏
p∈S\S0

PSLr(kp)× PSLr(kp′)

����

Γgeom
S

//
∏n

i=1 Ωi ×
∏

p∈S\S0
PSLr(kp).

55



All factors on the right hand side are non-abelian finite simple groups. The
inductive assumption implies that the lower homomorphism is surjective. By
Theorem 4.1 the map Γgeom

S∪{p′} → PSLr(kp′) is surjective. Hence if the upper

homomorphism is not surjective, by Goursat’s Lemma its image lies over the
graph of an isomorphism between PSLr(kp′) and another simple factor. Since
|PSLr(kp′)| > N ≥ |Ωi| by construction, this factor must be PSLr(kp′) for some
p ∈ S \S0. This would however contradict Proposition 4.11. Therefore the upper
homomorphism is surjective.

Given that the terms on the lower right hand side are all possible non-abelian
finite simple quotients of Γgeom

S , we deduce that the surjective homomorphism
Γgeom
S∪{p′} → PSLr(kp′) does not factor through Γgeom

S . Thus its restriction to ∆

is non-trivial. Since ∆ is a normal subgroup of Γgeom
S∪{p′}, its image is a normal

subgroup of PSLr(kp′). But this group is simple, and the image is non-trivial;
hence the image is equal to PSLr(kp′).

Let ∆ denote the image of ∆ modulo p′. From the above it follows that ∆ is
a subgroup of SLr(kp′) that surjects onto PSLr(kp′). Let Z denote the center of
SLr(kp′). Then

∆Z/Z ∼= ∆/∆ ∩ Z = PSLr(kp′)

and hence ∆Z = SLr(kp′). It follows that

∆ ⊇ [∆,∆] = [∆Z,∆Z] = [SLr(kp′), SLr(kp′)].

Since we chose S00 to be large enough so that |kp′| ≥ 4, the group SLr(kp′) is
perfect and the last term of the inclusion sequence is equal to SLr(kp′). This
proves the desired equality. �

Lemma 7.3.
The group ∆[1] contains a non-scalar element.

Proof. In order to alleviate the notation, let us denote SLr(Ap′) by G in
the following proof. On the one hand, by Theorem 6.15 we have Γgeom

p′ = G. On

the other hand ∆ E Γgeom
p′ . Hence ∆ is a normal subgroup of G and thereby

[G[1],∆/∆2] ⊆ ∆[1]. Suppose that ∆[1] only contains scalar elements. Then, after
quotienting by 1 + c(p′/p′2), we find that

[G̃[1], ∆̃] ⊆ ∆̃[1] = {0}.

This means that the commutator action of ∆̃ on G̃[1] is trivial. However, by the
previous lemma this action coincides with the action of SLr(kp′), which is known
to be non-trivial. We thus obtain a contradiction. �

The two previous lemmas show that all assumptions of Proposition 6.8 are
satisfied for ∆. From this we conclude ∆ = SLr(Ap′), which completes the
proof. �

We can now prove the following special case of Theorem 1.1.
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Theorem 7.4.
The image of Ggeom

K under ρad is open in Centder

GLrd(A(p0,∞)
F )

(D ⊗A A(p0,∞)
F ).

Proof. Taking the limit over all S containing S0, Proposition 7.1 implies

that the image of Ggeom
K in Centder

GLrd(A(p0,∞)
F )

(D ⊗A A(p0,∞)
F ) is equal to

Γgeom
S0
×

∏
p6∈S0

SLr(Ap).

On the other hand, by Theorem 3.5 the subgroup

Γgeom
S0
⊂

∏
p∈S0

Centder
GLrd(Ap)(D ⊗A Ap)

is open; hence ρad(G
geom
K ) is open in Centder

GLrd(A(p0,∞)
F )

(D⊗AA(p0,∞)
F ), as stated. �
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CHAPTER 8

The case of arbitrary transcendence degree

In this chapter we let ϕ : A→ K{τ} denote a Drinfeld module satisfying the
assumptions of Theorem 1.1, but the transcendence degree of K is now arbitrary.
We prove the general case of Theorem 1.1 by reducing it to the case of a field of
transcendence degree 1, using a specialization argument in the vein of [PR09a],
Section 5.

We once more assume that the reduction steps introduced in Section 3.3 are in
effect. In particular we assume that Γgeom

p is contained in Centder
GLrd(Ap)(D⊗AAp)

for every place p 6= p0,∞ of F .

8.1. Some group theory

Let p 6= p0 be a prime of A and π a uniformizer at p. We use the same
notation for congruence filtrations as we did in Chapter 6.

Proposition 8.1.
Let H be a closed subgroup of SLr(Ap). Assume that there exists an n ≥ 1 such
that Hn/H3n = G′np /G

′3n
p . Then we have

G′np = Hn.

Proof. Since H is closed in SLr(Ap), it is enough to show that

H l/H l+1 = G′lp/G
′l+1
p (8.1)

for all l ≥ n.

Lemma 8.2.
We have H i/Hj = G′ip/G

′j
p for all n ≤ i ≤ j ≤ 3n.

Proof. Let n ≤ j ≤ 3n. We have the commutative diagram with exact rows

1 // Hj/H3n //
� _

��

Hn/H3n //

∼=
��

Hn/Hj //
� _

��

1

1 // G′jp /G
′3n
p

// G′np /G
′3n
p

// G′np /G
′j
p

// 1.

The middle vertical map is an isomorphism by assumption and thus the rightmost
vertical map is surjective; it is therefore an isomorphism. It follows that for all
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n ≤ j ≤ 3n we have

Hn/Hj = G′np /G
′j
p .

Then, for n ≤ i ≤ j ≤ 3n, we have a commutative diagram

1 // H i/Hj //
� _

��

Hn/Hj //

∼=
��

Hn/H i //

∼=
��

1

1 // G′ip/G
′j
p

// G′np /G
′j
p

// G′np /G
′i
p

// 1,

where the middle and right vertical maps are isomorphisms. By the Five Lemma
the left vertical map is also an isomorphism. �

From the above lemma we conclude that (8.1) holds for all n ≤ l ≤ 3n − 1.
From here on we proceed by induction. Let us assume there exists m ≥ 3n − 1
such that (8.1) holds for all for all n ≤ l ≤ m. We distinguish two cases:

Let us first assume that (p, r) 6= (2, 2). We have the commutative diagram

G′2np /G′2n+1
p ×G′m−2n+1

p /G′m−2n+2
p

[ , ]
//

∼=
��

G′m+1
p /G′m+2

p

∼=
��

slr(p
2n/p2n+1)× slr(p

m−2n+1/pm−2n+2)
[ , ]

// slr(p
m+1/pm+2),

where the upper horizontal map denotes the commutator pairing and the lower
horizontal map the Lie bracket pairing. By Proposition 6.1 (a) the set of commu-
tators [slr, slr] generates slr. Hence [G′2np /G′2n+1

p , G′m−2n+1
p /G′m−2n+2

p ] generates
G′m+1

p /G′m+2
p . By assumption

[G′2np /G′2n+1
p , G′m−2n+1

p /G′m−2n+2
p ] = [H2n/H2n+1, Hm−2n+1/Hm−2n+2]

and therefore

G′m+1
p /G′m+2

p ⊂ Hm+1/Hm+2.

The desired equality for m+ 1 follows.

Let us now assume (p, r) = (2, 2).

Lemma 8.3.
We have

PG2n ⊂ P (G′n) · PG2n+1.

Proof. The sets

B :=

{
1 + π2n

(
0 b
0 0

) ∣∣∣∣ b ∈ Ap

}
, C :=

{
1 + π2n

(
0 0
c 0

) ∣∣∣∣ c ∈ Ap

}
are contained in P (G′n). Let a be an arbitrary element of Ap. Since Ap/p is a
finite field of characteristic 2, the Frobenius map Ap/p → Ap/p, α 7→ α2 is an
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isomorphism. Thus the image of a in Ap/p is a square and therefore there exist
x, y ∈ Ap such that a = x2 + πy + π2n+1x2y. Then

P

((
1 + πnx 0

0 (1 + πn)−1

)) (
1 + π2n+1

(
y 0
0 0

))
=

(
1 + π2n

(
x2 0
0 0

)) (
1 + π2n+1

(
y 0
0 0

))
=

(
1 + π2n

(
a 0
0 0

))
and hence

A :=

{
1 + π2n

(
a 0
0 0

) ∣∣∣∣ a ∈ Ap

}
⊂ P (G′n) · PG2n+1.

Since A,B and C together generate PG2n
p , the lemma follows. �

By Lemma 8.2 we have Hn ·G′2n+1 = G′n, from which it follows that

P (Hn) · P (G′2n+1) = P (G′n)

and in turn P (H) · PG2n+1
p ⊃ P (G′n). Combined with Lemma 8.3, this yields

P (H) · PG2n+1
p ⊃ PG2n

p

and thus

P (H)2n/P (H)2n+1 = PG2n
p /PG

2n+1
p .

We have the commutative diagram

PG2n
p /PG

2n+1
p ×G′m−2n+1

p /G′m−2n+2
p

[ , ]∼
//

∼=
��

G′m+1
p /G′m+2

p

∼=
��

pgl2(p
2n/p2n+1)× sl2(p

m−2n+1/pm−2n+2)
[ , ]∼

// sl2(p
m+1/pm+2),

where the upper horizontal map denotes the generalized commutator pairing and
the lower horizontal map the generalized Lie bracket pairing. By Proposition 6.1
(b) the set of commutators [pgl2, sl2]

∼ generates sl2. Thus

[PG2n
p /PG

2n+1
p , G′m−2n+1

p /Gm−2n+2
p ]∼

generates G′m+1
p /G′m+2

p . By assumption

[PG2n
p /PG

2n+1
p , G′m−2n+1

p /G′m−2n+2
p ]∼

= [P (H)2n/P (H)2n+1, Hm−2n+1/Hm−2n+2]∼

and therefore

G′m+1
p /G′m+2

p ⊂ Hm+1/Hm+2.

The desired equality for m+ 1 follows also in this case. �
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8.2. Specialization with unchanging endomorphism ring

Let us choose an integral scheme X of finite type over Fp with function field
K such that ϕ extends to a family of Drinfeld A-modules of rank rd over X. For
any point x ∈ X, we obtain a Drinfeld A-module ϕx over the residue field kx
at x. The characteristic of ϕx is still p0; hence for any prime p 6= p0 of A, the
specialization map induces an isomorphism of Tate modules

Tp(ϕ)
∼−→ Tp(ϕx). (8.2)

Let kx be a separable closure of kx and x := Spec(kx) the associated geometric
point of X over x. The morphisms Spec(K) ↪→ X ←↩ x induce homomorphisms
of the étale fundamental groups

GK � πet
1 (X, x)← πet

1 (x, x) = Gkx .

The action of GK on Tp(ϕ) factors through πet
1 (X, x) and the specialization iso-

morphism (8.2) is equivariant under the above étale fundamental groups.
Let Xκ := X × κ. In this case the morphisms Spec(Kκ) ↪→ Xκ ←↩ xκ induce

homomorphisms of the étale fundamental groups

Ggeom
K � πet

1 (Xκ, xκ)← πet
1 (xκ, xκ) = Ggeom

kx
.

Similarly to the case of GK above, the action of Ggeom
K on Tp(ϕ) factors through

πet
1 (Xκ, xκ) and the specialization isomorphism (8.2) is equivariant under the

étale fundamental groups.

Proposition 8.4.
In the above situation, if ϕ satisfies the conditions of Theorem 1.1, then there
exists a point y ∈ X such that ky has transcendence degree 1, we have

EndK(ϕ) = Endky
(ϕy)

and ϕy also satisfies the conditions of Theorem 1.1.

Proof. Let p 6= p0,∞ be a place of F for which Theorem 3.6 holds. Then
Γp is a closed subgroup of GLr(Ap). For any point x ∈ X let Γx,p denote the
image of Gkx in the representation on Tp(ϕx). This is also a closed subgroup of
GLr(Ap). Since p 6= p0, the specialization isomorphism (8.2) turns Γx,p into a
subgroup of Γp and Γgeom

x,p into a subgroup of Γgeom
p .

Lemma 8.5.
There exists a point y ∈ X such that ky has transcendence degree 1 and Γgeom

y,p is
open in SLr(Ap).

Proof. It follows from Theorem 3.5 that Γgeom
p is an open subgroup of

SLr(Ap). Hence there exists n ≥ 1 such that G′np ⊂ Γgeom
p . Let K ′ be a finite

Galois extension of K such that

Gal(K ′κ/Kκ) = Γgeom
p /G′3np . (8.3)
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Since (K ′∩Kκ)κ = Kκ, replacing K by K ′∩Kκ does not change property (8.3).
Let πX̃ : X̃ → X be the normalization of X in K ′ ∩Kκ. If there exists a point

ỹ ∈ X̃ such that kỹ has transcendence degree 1 and the image of Gkỹ
is open in

SLr(Ap), then πX̃(ỹ) satisfies the conditions of the lemma; consequently we can
assume that K and K ′ have the same constant field κ. Let πX : X ′ → X be the
normalization of X in K ′.

Lemma 8.6.
Assuming that K and K ′ have the same constant field, there exists an irreducible
closed curve Y ⊂ X such that

(1) π−1
X (Y ) is also irreducible, and

(2) the function fields of Y and π−1
X (Y ) have the same constant field.

This result is proved in [Pin97], Lemma 1.6, even though the second claim
is not explicitly stated there.

Let Y ⊂ X be as in Lemma 8.6 and let y denote the generic point of Y . Then
ky is the function field of Y and thus has transcendence degree 1.

Since K and K ′ have the same constant field, we have

Gal(K ′κ/Kκ) = Gal(K ′/K).

The irreducibility of π−1
X (Y ) implies that

Gal(K ′/K) = Gal(kπ−1
X (y)/ky)

and since ky and kπ−1
X (y) have the same constant field, we also have

Gal(kπ−1
X (y)/ky) = Gal(kπ−1

X (y)κ/kyκ).

Combining these equalities with (8.3), we find

Gal(kπ−1
X (y)κ/kyκ) = Γgeom

p /G′3np .

This in turn implies

Γgeom
y,p ·G′3np = Γgeom

p .

It follows that Γgeom,n
y,p ·G′3np = G′np . In other words we have

Γgeom,n
y,p /Γgeom,3n

y,p = G′np /G
′3n
p .

By Proposition 8.1 this yields Γgeom,n
y,p = G′np . In particular Γgeom

y,p contains an
open subgroup of SLr(Ap). Thus Γgeom

y,p is itself open in SLr(Ap). �

Let y ∈ X be as in Lemma 8.5. By Proposition 3.1 there exists a finite
separable extension k′y of ky such that all endomorphisms of ϕy are defined over
k′y. This extension corresponds to an open subgroup Γy of Γgeom

y,p , which by
Lemma 8.5 is again open in SLr(Ap). The Tate conjecture for Drinfeld modules
(see (1.1)) yields an inclusion

Endky
(ϕy) = Endk′y(ϕy) ↪→ EndAp[Γy ](Tp(ϕy)).
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Since Γy is open in SLr(Ap), it is Zariski dense in SLr. Hence

EndAp[Γy ](Tp(ϕy)) = EndAp[SLr](Tp(ϕy)) ∼= EndAp[SLr](A
rd
p ) ∼= Md×d(Ap).

Combined with EndK(ϕ) ⊂ Endky
(ϕy) and EndK(ϕ) ⊗A Ap

∼= Md×d(Ap), this
yields

EndK(ϕ)⊗A Ap = Endky
(ϕy)⊗A Ap;

hence EndK(ϕ) = Endky
(ϕy).

Choose a maximal commutative subring Â of EndK(ϕ) as in Section 3.1.

Since EndK(ϕ) = Endky
(ϕy), the ring Â is a maximal commutative subring of

Endky
(ϕy). Let ϕ̂y : Â → ky{τ} denote its tautological embedding. Let Ã be a

normalization of Â in their common quotient field F̃ and let ϕ̃y : Ã→ ky{τ} be
a Drinfeld module isogenous to ϕ̂. Then rank(ϕ̃y) = r and by the assumptions
of Theorem 1.1 on ϕ we have r ≥ 2. In order to apply Theorems 6.1 and 6.2 of
[Pin06b] to ϕy in a straightforward way, we need the assumption that ϕy is not
isomorphic to a Drinfeld module defined over a finite field. However, a careful
reading of the proofs of those theorems shows that it is sufficient to have the
analogous assumption for ϕ̃y. By [Pin06b], Proposition 2.1, this is equivalent to
r = rank(ϕ̃y) ≥ 2. Thus we can apply [Pin06b], Theorems 6.1 and 6.2, to ϕy.
Combining them shows that there exists a subfield E of F with [F/E] <∞ and
B := E∩A that is uniquely defined by either one of the following two properties:

(1) For every infinite subring C ⊂ A we have EndK(ϕy|C) ⊂ EndK(ϕy|B).
(2) For every non-empty finite set P of places 6= p0,∞ of F , let Q denote

the set of places below those in P and let GQ denote the centralizer of
EndK(ϕy|B)⊗EQ in AutEQ

(TQ(ϕy|B)⊗EQ). Then Gder
y,Q(BQ)∩Γgeom

y,Q is

open in both Gder
y,Q(BQ) and Γgeom

y,Q .

By Lemma 8.5 the group Γgeom
y,p is open in SLr(Ap) for all places p of F for

which Theorem 3.6 holds; hence the field F satisfies property (2). Given that
E is uniquely determined, we thus have E = F and ϕy satisfies the remaining
assumptions of Theorem 1.1 by property (1). �

Proof of Theorem 1.1. If K has transcendence degree 1, then the result
is Theorem 7.4. In the general case let us choose y as in Proposition 8.4. Then
Theorem 7.4 shows that the image of the adelic representation associated to ϕy is

open in Centder

GLrd(A(p0,∞)
F )

(D⊗A A(p0,∞)
F ). By the specialization isomorphism (8.2)

this image is a subgroup of ρad(G
geom
K ). Thus the latter is an open subgroup of

Centder

GLrd(A(p0,∞)
F )

(D ⊗A A(p0,∞)
F ) as well. �

64



CHAPTER 9

The general case

In this chapter we generalize the result of the Main Theorem. Let ϕ be a
Drinfeld A-module over a finitely generated field K, of special characteristic p0

and assume that ϕ is not isomorphic over K to a Drinfeld module defined over a
finite field. Let Z denote the center of EndK(ϕ)⊗A F . The following result was
proved in [Pin06b], Theorems 6.1 and 6.2:

Proposition 9.1.
In the above situation, there exists a unique subfield E of Z with the following
properties:

(a) The intersection B := E∩EndK(ϕ) is infinite with quotient field E, and
[Z/E] is finite.

(b) The tautological embedding ψ : B → K{τ} is a Drinfeld B-module
(except that B is not necessarily a maximal order in E) whose endo-
morphism ring EndK(ψ) is an order in a central simple algebra over E
of dimension d′2. Moreover, there exists an integer r′ ≥ 2 such that ψ
is of rank r′d′.

(c) For any other infinite subring C ⊂ EndK(ϕ) let χ : C → K{τ} denote
the tautological embedding. Then EndK(χ) ⊂ EndK(ψ).

Let E,B and ψ be as in the above proposition and let D := EndK(ψ). By
Proposition 3.1 there exists a finite separable extension K ′ ⊂ K of K such that
D = EndK′(ψ).

We now introduce a common ring extension of A and B, and the correspond-
ing Drinfeld module. These will allow us to compare the Galois actions associated
to ϕ and ψ, respectively.

Let C denote the center of EndK(ϕ) and χ : C → K{τ} the tautological
embedding. It follows from property (c) of Proposition 9.1 that χ is defined over
K ′. Since A and B are contained in C, by the definitions of ψ and χ we have
χ|A = ϕ and χ|B = ψ.

The quotient field of C is Z. As explained in Section 3.1, the ring EndK(ϕ)⊗A
F∞ is a division algebra over F∞; thus ∞ does not split in Z. Let ∞Z denote
the unique place of Z above ∞. Among the places of Z above p0 let P0 denote
the one that corresponds to the characteristic of χ. Let ∞E denote the place of
E below ∞Z and q0 the place of E below P0.

Let P denote the set of places of F outside of p0 and ∞, let R be the set of
places of Z above those in P and let Q be the set of places of E below those in R.
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Propositions 3.5 and 3.6 of [Pin06b] imply that the only place of Z above ∞E

is∞Z and the only place of Z above q0 is P0; this shows that q0 and∞E are not

contained in Q. Let AP
F := A(p0,∞)

F denote the ring of adeles of F at places in P ,

let AR
Z ⊂ A(P0,∞Z)

Z be the ring of adeles of Z at places in R and AQ
E ⊂ A(q0,∞E)

E

the ring of adeles of E at places in Q.
The following chart summarizes the notation that we have introduced.

C,Z, χ
P0,∞Z

the set R

AR
Z ⊂ A(P0,∞Z)

Z

NNNNNNNNNNNN

pppppppppppp

B,E, ψ
q0,∞E

the set Q

AQ
E ⊂ A(q0,∞E)

E

A,F, ϕ
p0,∞

the set P

AP
F = A(p0,∞)

F

From χ|A = ϕ and χ|B = ψ we get GK′-equivariant homomorphisms∏
q∈Q

Tq(ψ)⊗BE ∼=
∏

P|q, q∈Q

TP(χ)⊗CZ �
∏
P∈R

TP(χ)⊗CZ ∼=
∏
p∈P

Tp(ϕ)⊗AF. (9.1)

We claim that the composite homomorphism induces an action of the alge-
braic group CentGL

r′d′,AQ
E

(D⊗B AQ
E) on

∏
p∈P Tp(ϕ)⊗A F . This is a consequence

of the following lemma:

Lemma 9.2.
For all places q 6= q0,∞E of E the decomposition map

Tq(ψ)⊗B E ∼=
∏
P|q

TP(χ)⊗C Z

is CentAut(Tq(ψ)⊗BE)(D ⊗B Eq)-invariant.

Proof. Let q 6= q0,∞E be a place of E. By Proposition 9.1 (c) we have
C ⊂ EndK(ϕ) ⊂ D. This yields a series of inclusions

EndEq(Tq(ψ)⊗B E) ⊃ D ⊗B Eq ⊃ C ⊗B Eq
∼= Z ⊗E Eq

∼=
∏
P|q

ZP

which, to start with, shows that
∏

P|q ZP acts on Tq(ψ)⊗BE and further implies

that this action commutes with the action of CentAut(Tq(ψ)⊗BE)(D ⊗B Eq). The
lemma follows. �
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The inclusions B ⊂ C ⊂ EndK(ϕ) and the definitions of P,Q and R yield a
series of inclusions

AQ
E ⊂ AR

Z = C ⊗A AP
F ⊂ EndK(ϕ)⊗ AP

F ,

which shows that AQ
E acts naturally on

∏
p∈P Tp(ϕ)⊗A F .

It follows that the action of CentGLr′d′ (A
Q
E)(D ⊗B AQ

E) on
∏

p∈P Tp(ϕ)⊗A F is

faithful and we can consider the intersection

ρad(G
geom
K ) ∩ Centder

GLr′d′ (A
Q
E)

(D ⊗B AQ
E).

Theorem 9.3 (Adelic openness in special characteristic).
In the above situation, the intersection

ρad(G
geom
K ) ∩ Centder

GLr′d′ (A
Q
E)

(D ⊗B AQ
E)

is open in both ρad(G
geom
K ) and Centder

GLr′d′ (A
Q
E)

(D ⊗B AQ
E).

Proof. Since K ′ is a finite extension of K, the Galois group Ggeom
K′ is open

in Ggeom
K ; hence it is sufficient to prove the statement for K ′ instead of K. Given

that the map in (9.1) is GK′-equivariant, we can thus reduce the statement to
the following lemma:

Lemma 9.4.
Let ψ : B → K ′{τ} be as above, let S ⊃ {q0,∞E} denote a finite set of places of

E and let A(S)
E be the ring of adeles of E at places outside of S. Let ρad denote

the adelic representation associated to ψ. Then the intersection

ρad(G
geom
K′ ) ∩ Centder

GLr′d′ (A
(S)
E )

(D ⊗B A(S)
E )

is open in both ρad(G
geom
K′ ) and Centder

GLr′d′ (A
(S)
E )

(D ⊗B A(S)
E ).

Proof. Given the projection A(q0,∞E)
E � A(S)

E , it is enough to prove the
lemma for the case S = {q0,∞E}.

By Proposition 9.1 the Drinfeld B-module ψ satisfies the conditions of Theo-
rem 1.1, except that B is not necessarily a maximal order in E. Let B̃ denote the
normalization of B in E. By [Hay79], Proposition 3.2, there exists a Drinfeld

module ψ̃ : B̃ → K ′{τ} such that ψ̃|B is isogenous to ψ. Let D̃ := EndK(ψ̃).
Since any isogeny induces an isomorphism of endomorphism rings up to finite
index, we have D̃ ⊗B̃ E = D ⊗B E, and thus D̃ is an order in a central sim-
ple algebra over E of dimension d′2 by Proposition 9.1 (b). By the same ar-
gument, Proposition 9.1 (c) implies that for every infinite subring C̃ of B̃ we

have EndK(ψ̃|C̃) ⊂ D̃. Moreover, since any isogeny preserves the rank, we have

rank(ψ̃) = rank(ψ) = r′d′ with, let us recall, r′ ≥ 2. Thus ψ̃ satisfies all condi-
tions of Theorem 1.1.
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On the other hand, the isogeny between ψ and ψ̃ induces a GK′-equivariant
isomorphism ∏

q6=q0,∞E

Tq(ψ)⊗B̃ E ∼=
∏

q6=q0,∞E

Tq(ψ)⊗B E.

Applying Theorem 1.1 to ψ̃ and using the above isomorphism then yields the
desired result for ψ. �

Using the set S of places of E outside Q, which is finite by the definition of
the set Q, the above lemma allows us to complete the proof of the theorem. �

This theorem effectively settles the question of adelic openness for arbitrary
Drinfeld modules in special characteristic.
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Sūrikaisekikenkyūsho Kōkyūroku, 884:154–159, 1994. Moduli spaces, Galois repre-
sentations and L-functions (Japanese) (Kyoto, 1993, 1994).

[Tam94b] Akio Tamagawa. The Tate conjecture for A-premotives. Preprint, 1994.
[Tam95] Akio Tamagawa. The Tate conjecture and the semisimplicity conjecture for t-
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