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“Les pays exotiques m’apparaissaient comme le contrepied des nôtres, le
terme d’antipodes trouvait dans ma pensée un sens plus riche et plus näıf
que son contenu littéral. On m’eût fort étonné en disant qu’une espèce
animale ou végétale pouvait avoir le même aspect des deux côtés du globe.
Chaque animal, chaque arbre, chaque brin d’herbe, devait être radicale-
ment différent, afficher au premier coup d’œil sa nature tropicale. Le
Brésil s’esquissait dans mon imagination comme des gerbes de palmiers
contournés, dissimulant des architectures bizarres, le tout baigné dans
une odeur [. . . ] (de) parfum brûlé.” 1

Claude Lévi-Strauss, Tristes tropiques

0. Introduction

Tropical mathematics is an area of theoretical computer science which saw its beginning
in the 1970s. It was concerned with the study of min-plus semirings - semirings in which
the operations are given by taking addition and minimum on certain sets as the set of
natural numbers or the ordinal numbers smaller than a certain cardinal [10]. Among its
pioneers was the Brazilian mathematician Imre Simon, in honour of whom several French
mathematicians - Dominique Perrin [10] and Christian Choffrut [12] among others - began
to call these semirings “tropical semirings”. To use the words of Sturmfels and Speyer, the
adjective tropical ‘simply stands for the French view of Brazil.’ [13]

Tropical geometry is an area of algebraic geometry which is concerned with the study
of varieties over the tropical semiring of real numbers. Tropical varieties are rational poly-
hedral complexes satisfying a certain equilibrium condition on the vertices.
Given an algebraically closed field K with valuation v and a non-zero polynomial in two
variables over K, it is possible to assign to an algebraic curve C = {(x, y) ∈ K2 | f(x, y) =
0} a tropical variety {(v(x), v(y)) ∈ R2 | (x, y) ∈ C} which preserves many properties
of the algebraic curve. Since tropical varieties are combinatorial objects, this method is
widely used to translate algebraic-geometric problems into combinatorial ones, for which
a solution may be easier to find.
A lot of work is being done to translate the language of algebraic geometry into tropical
geometry. Often a translation is justified by its correct use in the tropical setting rather
than by why it is the correct translation.

1“Tropical countries, as it seemed to me, must be the exact opposite of our own, and the name of
Antipodes had for me a sense at once richer and more ingenuous than its literal derivation. I should
have been astonished to hear it said that any species, whether animal or vegetable, could have the same
appearance on both sides of the globe. Every animal, every tree, every blade of grass, must be completely
different and give immediate notice, as it were, of its tropical character. I imagined Brazil as a tangled
mass of palm-leaves, with glimpses of strange architecture in the middle distance, and an all-permeating
smell of burning perfume.”(Translation by John Russell)
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In classical algebraic geometry an elliptic curve is defined as a smooth projective cubic
curve of genus one together with a fixed point O. A procedure defined by means of chords
and tangents - the chord-tangent law - yields an operation on the elliptic curve which in-
duces a group structure with identity element the point O. An equivalent group structure
can be defined algebraically: there is a bijection between the group of divisors of degree
zero and the elliptic curve.
In [2] Vigeland investigates the algebraic group structure on a tropical elliptic curve and
alludes briefly to a geometric group structure, in analogy with the classical case. Taking
as point of departure Vigeland’s paper [2], in this thesis we analyze the geometric group
law on a tropical elliptic curve.

The thesis is organised as follows: in section 1 we state a self-contained theory of trop-
ical curves. In section 2 we recall some notions of tropical intersection theory necessary to
the development of the thesis. In section 3 we give a brief exposition of tropical elliptic
curves and the associated group law induced by the Jacobian, mainly recalling results and
definitions given in Vigeland’s paper. Section 4 is the core of the thesis: we analyze the
group law induced by a geometric addition defined on the tropical elliptic curve, prove that
it is isomorphic to the algebraic group structure and investigate the geometric properties of
torsion points of order 2 and 3. Our interest in these particular torsion points is motivated
by their importance in the theory of classical elliptic curves.
There is not yet an unanimous consensus about many notions in tropical geometry. Since
the thesis is based upon Vigeland’s paper, we decided to adopt the definitions and conven-
tions therefrom whenever we judged them suitable for our purpose.



1. Tropical curves

Definition 1. A unitary semiring is a set R together with binary operations + and ·
satisfying the following properties:
(i) (R,+) is a commutative monoid
(ii) (R, ·) is a monoid
(iii) · is distributive over +
(iv) ∀ r ∈ R: 0 · r = r · 0 = 0, where 0 is the additive identity. (Absorption law).
A semiring is idempotent if addition is idempotent, that is to say, if for all r in R we have
that r + r = r. A semiring is commutative if (R, ·) is a commutative monoid.

Remark 2. Any unitary ring is a semiring. Unlike in a semiring, in a ring cancellation
with respect to addition holds: for any elements a, b, c of the ring, if a + b = a + c, then
b = c. This implies that idempotent rings are necessarily trivial and that the absorption
law (iv) can be deduced from the definition of a ring.

Definition 3. A semifield is a unitary commutative semiring in which every non-zero
element has a multiplicative inverse. A semifield is idempotent if addition is idempotent.

Example 4. Let R be the set of real numbers and define on it the following operations:

⊕ : R× R→ R : (a, b) 7→ max{a, b}
and

� : R× R→ R : (a, b) 7→ a+ b

where + denotes the usual addition of real numbers.
In order to have a neutral element with respect to ⊕ we extend the set of real numbers by
an element −∞ such that for all r in R : −∞⊕ r = r ⊕ −∞ = r. Furthermore we define
for all r in R ∪ {−∞}: −∞� r = r �−∞ = −∞.

Lemma 5. Rtr = (R ∪ {−∞},⊕,�) is an idempotent semifield with additive and
multiplicative identities −∞ and 0 respectively. For all r in R the multiplicative inverse is
r−1 = −r where −r is the additive inverse in the field (R,+, ·).

Remark 6. We make use of the convention that � has precedence on ⊕, that is to
say, that a⊕ b� c = a⊕ (b� c).
Furthermore we write ar for a� · · · � a︸ ︷︷ ︸

r-times

.

Definition 7. The action of a unitary commutative semiring (R,+, ·) on a monoid
(M, ◦) is a map

ρ : R×M →M

satisfying the following requirements for all m,n in M for all r, s in R:
(i) ρ(1,m) = m, where 1 is the multiplicative identity of R
(ii) ρ(rs,m) = ρ(r, ρ(s,m))
(iii) ρ(r,m ◦ n) = ρ(r,m) ◦ ρ(r, n)
(iv)ρ(r + s,m) = ρ(r,m) ◦ ρ(s,m).
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Definition 8. A semimodule over a commutative unitary semiring R is a commutative
monoid endowed with an action of R.

Example 9. Let Rntr = (Rn ∪ {−∞}n,⊕,�) be the set of n-tuples of real numbers
together with componentwise addition (x1, . . . , xn)⊕ (y1, . . . , yn) = (x1 ⊕ yn, . . . , xn ⊕ yn).
The semiring Rtr acts on Rntr in the natural way:

Rtr × Rntr −→ Rntr
(r, (x1, . . . , xn)) 7→ r � (x1, . . . , xn) := (r � x1, . . . , r � xn)

making Rntr into a semimodule over Rtr.

Definition 10. Tropical projective space is defined as Pn−1
tr = (Rntr�{−∞}n)/∼ where

(x1, . . . , xn) ∼ (y1, . . . , yn) :⇔ ∃ a ∈ R : (x1, . . . , xn) = a� (y1, . . . , yn).

As we would expect, as a topological space Pntr is compact:

Lemma 11. The space Pntr is homeomorphic to the simplex of dimension n.

Definition 12. Define the set of formal linear combinations

Rtr[X±1
1 , . . . , X±1

n ] =

⊕
k∈I

ak �Xk1
1 � · · · �Xkn

n

∣∣∣∣∣∣
I ⊂ Znfinite indexing set,

k = (k1, . . . , kn),
ak ∈ R

 ∪ {−∞} .
We call the finite indexing set I the support of f .

Using the notation f =
⊕

k∈I ak�Xk1
1 �· · ·�Xkn

n and g =
⊕

k∈J bk�Xk1
1 �· · ·�Xkn

n

define the following operations:

⊕ : Rtr[X±1
1 , . . . , X±1

n ]× Rtr[X±1
1 , . . . , X±1

n ]→ Rtr[X±1
1 , . . . , X±1

n ]

(f, g) 7→ f ⊕ g =
⊕
k∈I∪J

(ãk ⊕ b̃k)�Xk1
1 � · · · �Xkn

n

where

ãk =

{
ak, if k ∈ I
−∞, otherwise

b̃k =

{
bk, if k ∈ J
−∞, otherwise

and

� : Rtr[X±1
1 , . . . , X±1

n ]× Rtr[X±1
1 , . . . , X±1

n ]→ Rtr[X±1
1 , . . . , X±1

n ]

(f, g) 7→ f � g =
⊕
k∈I

⊕
j∈J

ak � bj �Xk1+j1
1 � · · · �Xkn+jn

n

Furthermore define f ⊕−∞ = −∞⊕ f = f and f �−∞ = −∞� f = −∞.
The elements of Rtr[X±1

1 , . . . , X±1
n ] are called tropical (Laurent) polynomials.
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From now a semiring will be a unitary, commutative and idempotent semiring.

Definition 13. A semiring homomorphism is a homomorphism of the underlying
abelian monoids which preserves the additive and multiplicative identities.
If R is a semiring, an R-semialgebra S is a semiring S together with a homomorphism of
semirings R→ S.
If S and U are R-semialgebras, an R-semialgebra homomorphism S → U is a homomor-
phism of semirings making the following diagram commute:

R - S

U
?

-

Lemma 14. The set Rtr[X±1
1 , . . . , X±1

n ] together with the above defined operations is
a semiring with additive and multiplicative identities respectively −∞ and 0. It is called
semiring of tropical polynomials and is in a natural way an Rtr-semialgebra.

From now on we will use the notation Rtr[X±1
1 , . . . , X±1

n ] to denote the semiring of
tropical polynomials.

Definition 15. Let f ∈ Rtr[X±1
1 , . . . , X±1

n ] be a tropical polynomial and I its support.
The polynomial f has degree d if maxk∈I{k1 + · · ·+ kn} = d.
If I ⊂ {k ∈ Zn | k1 + · · ·+ kn = d} then f is homogeneous of degree d.

Every tropical polynomial f ∈ Rtr[X±1
1 , . . . , X±1

n ] determines an evaluation function in
the sense that we make precise in the following.
Let F(Rntr,Rtr) denote the set of functions from Rntr to Rtr. We put on it a semiring struc-
ture by defining the following operations:

∀x ∈ Rntr ∀φ, ψ ∈ F(Rntr,Rtr) :(φ⊕ ψ)(x) = φ(x)⊕ ψ(x)

(φ� ψ)(x) = φ(x)� ψ(x).

The identity elements for ⊕ and � are then the constant functions sending every element
to −∞ and 0 respectively.
Thus F(Rntr,Rtr) is a semiring. We make it into an Rtr-semialgebra by the homomorphism

Rtr → F(Rntr,Rtr) : r 7→ (x 7→ r).
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Lemma 16. The evaluation map

ev : Rtr[X±1
1 , . . . , X±1

n ]→ F(Rntr,Rtr)⊕
k∈I

ak �Xk1
1 � · · · �Xkn

n 7→ ((x1, . . . , xn) 7→
⊕
k∈I

ak � xk11 � · · · � xknn )

−∞ 7→ ((x1, . . . xn) 7→ −∞)

is an Rtr-semialgebra homomorphism.

Definition 17. Let f =
⊕

k∈I ak �Xk1
1 � · · · �Xkn

n ∈ Rtr[X±1
1 , . . . , X±1

n ].

We say that f satisfies P at x ∈ Rntr if

(∃k 6= j ∈ I)(ev(f)(x) = ev(ak �Xk1
1 � · · · �Xkn

n )(x) = ev(aj �Xj1
1 � · · · �Xjn

n )(x)).

Definition 18. Let f ∈ Rtr[X±1
1 , . . . , X±1

n ]. The affine corner locus of f is

T (f) = {x ∈ Rntr | f satisfies P at x} .
Remark 19. If f ∈ Rtr[X±1

1 , . . . , X±1
n ] is −∞ or consists of one monomial, then

T (f) = {∅}.
Definition 20. An affine tropical curve is the affine corner locus of a tropical polyno-

mial in two variables.

In order to give the definition of a tropical curve in projective space we proceed anal-
ogously to the classical case.
Unlike in the affine case, we cannot define an evaluation map from the semiring Rtr[X±1

1 , . . . ,

X±1
n ] to the set of functions from Pn−1

tr to Rtr, since for all a in Rtr and for all x in Rntr in gen-
eral ev(f)(a�x) 6= ev(f)(x). However, if f ∈ Rtr[X±1

1 , . . . , X±1
n ] is a homogeneous polyno-

mial of degree d, then for all a in Rtr and for all x in Rntr we have ev(f)(a�x) = ad�ev(f)(x),
hence the property that f satisfies P at x ∈ (x1 : · · · : xn) ∈ Pn−1

tr depends only on the
equivalence class of x. Thus we can define:

Definition 21. Let f ∈ Rtr[X±1
1 , . . . , X±1

n ] be a homogeneous polynomial. The pro-
jective corner locus of f is

T (f) =
{

(x1 : . . . : xn) ∈ Pn−1
tr

∣∣ f satisfies P at (x1 : . . . : xn)
}
.

Definition 22. A projective tropical curve is the projective corner locus of a homoge-
neous tropical polynomial in three variables.

Definition 23 (Newton polytope). The convex hull in Rn of the support of a tropical
polynomial f ∈ Rtr[X±1

1 , . . . , X±1
n ] is called Newton polytope associated to f and denoted

by ∆f .

Definition 24. The translate of ∆f by x0 ∈ Rn is {y ∈ Rn | y = x+ x0, x ∈ ∆f} and
denoted by ∆f + x0.
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Different tropical polynomials may have the same corner locus. In the following we will
examine in which instances this occurs.

Definition 25. We define the following equivalence relation for all f, g ∈ Rtr[X±1
1 , . . . ,

X±1
n ]:

f ∼ g :⇐⇒

there exists an integer m ∈ Z≥0, there exist tropical polynomials
f0, . . . , fm such that f0 = f , fm = g and for i = 1, . . . ,m the poly-
nomial fi is obtained from fi−1 in one of the following three ways:
(i) There exists an a in R such that fi = a� fi−1.
(ii) There exists a k in {1, . . . , n} such that fi = fi−1 �Xk.
(iii) There is a monomial of fi−1 at which the maximum is never at-
tained, and fi is obtained from fi−1 by omission of this monomial.

Lemma 26. Let f, g ∈ Rtr[X±1
1 , . . . , X±1

n ] be tropical polynomials. Then

f ∼ g :⇔ T (f) = T (g).

Proof. [9, Remark 3.7] �

Lemma 27. For all tropical polynomials f the assignment T (f) 7→ ∆f + Rn is well-
defined.

Proof. Let f and g be tropical polynomials in Rtr[X±1
1 , . . . , X±1

n ] such that T (f) =
T (g). Suppose that f0, . . . , fm with f0 = f and fm = g are the tropical polynomials
satisfying the conditions for f and g to be equivalent. Suppose that fi is obtained from
fi−1 via one of the three cases of Definition 25. The first case clearly does not affect the
convex hull of the support of fi−1. In the second case the convex hull of the support of
fi−1 is translated by x = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the k-th component. In
the third case the element of the support corresponding to the monomial at which the
maximum is never attained lies in the interior of the convex hull and therefore the convex
hull is not affected by its removal.

�

We can now define the degree of a tropical curve. This definition is well-defined in
virtue of Lemma 27.

Definition 28. We denote by ∆d the simplex {(x1, x2, x3) ∈ R3 | x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
and x1 + x2 + x3 = d} and by Td the triangle {(x1, x2) ∈ R2 | x1 ≥ 0, x2 ≥ 0 and x1 +
x2 ≤ d}.
A projective tropical curve T (f) has degree d if there exists an x in R3 such that (∆f +
x) ⊂ ∆d and there does not exist an x in R3 such that (∆f +x) ⊂ ∆d−1. It is said to have
degree d with full support if there exists an x in R3 such that (∆f + x) = ∆d.
Analogously an affine tropical curve T (f) has degree d if there exists an x in R2 such that
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(∆f + x) ⊂ Td and there does not exist an x in R2 such that (∆f + x) ⊂ Td−1. It is said
to have degree d with full support if there exists an x in R2 such that (∆f + x) = Td.

Remark 29. A tropical affine (resp. projective) curve has degree 0 iff it is the corner
locus of a tropical monomial in two (resp. three) variables and is therefore empty.

We can associate to a tropical polynomial in n variables a subdivision of the Newton
polytope which is in a certain sense dual to its corner locus.

Take the convex hull of ∆̂ = {(k, t) ∈ Rn × R | k ∈ I, t ≤ ak} and project the bounded
closed faces of it to Rn by deleting the last coordinate. We thus obtain a subdivision of
the Newton polytope [9, Section 3.4].

Definition 30. The Newton polytope together with the resulting subdivision is called
the subdivision associated to f and denoted Subdivf .

Lemma 31. The minimum area of a lattice triangle is 1
2 [3, Chapter 4 Section 9].

Definition 32. Let T (f) be an affine or projective tropical curve. We say that Subdivf
is maximal if every cell is a triangle with area 1

2 .

Proposition 33. An affine or projective tropical curve T (f) is a connected graph with
bounded and unbounded edges.
Let E denote the set of bounded edges of T (f), let U denote the set of unbounded edges of
T (f) and V the set of vertices of T (f). Furthermore let I denote the set of interior edges
of Subdivf , let D denote the set of boundary edges of Subdivf and C the set of 2-cells of
Subdivf . There are bijections

E ↔ I
U ↔ D
V ↔ C.

such that corresponding edges are relatively orthogonal and the edges adjacent to a given
vertex correspond to the edges of the cell corresponding to that vertex.

Proof. See [4, Section 1.4] for affine curves, [11, Proposition 3.5] for projective curves.
�
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Example 34. Some tropical affine curves together with their subdivisions:

(a) (b)

The dots represent lattice points. Note that curve (a) has degree 1 with full support,
while curve (b) has degree 3.

Lemma 35. Let Ui =
{

(x1 : · · · : xn) ∈ Pn−1
tr

∣∣xi 6= −∞}. Then Pn−1
tr = ∪ni=1Ui.

Proposition 36. For all i in {1, . . . , n} the map

φi : Ui → Rn−1
tr : (x1 : · · · : xi : · · · : xn) 7→

(
x1

xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

)
,

where the term x̂i
xi

is omitted, is a bijection with inverse

φ−1
i : Rn−1

tr → Ui : (x1, . . . , xn−1) 7→ (x1 : · · · : xi−1 : 0 : xi : · · · : xn−1).

Definition 37. Let f =
⊕

k∈I ak � Xk1
1 � . . . Xkn

n be a tropical polynomial of de-

gree d in Rtr[X±1
1 , . . . , X±1

n ]. Let x0 be a point in Rn such that ∆f + x0 ⊂ ∆d and let

Ĩ = {y ∈ Zn|y = x + x0 for all x in I}. The homogenization of f is a homogeneous poly-
nomial of degree d in Rtr[X±1

1 , . . . , X±1
n+1] given by:⊕

k∈Ĩ

ak �Xk1
1 � · · · �Xkn

n � (Xn+1)d−k1−...−kn .

Definition 38. Let T (f) ⊂ R2
tr be an affine tropical curve.

For a choice of i in {1, 2, 3} we call

φ−1
i (T (f)) ∪

{
(x1 : x2 : x3) ∈ P2

tr

∣∣∣∣ xi = −∞ and the homogenization of f
satisfies P at (x1 : x2 : x3)

}
the projective closure of T (f).

Definition 39. Let T (f) be an affine tropical curve. Let E be an edge in T (f) and
∆′ the corresponding edge in Subdivf . The weight of E is defined as |Z2 ∩∆′|− 1 (i.e. 1 +
number of interior lattice points of ∆′).
Analogously the weight of an edge E of a projective tropical curve T (f) is |Z3 ∩∆′| − 1.
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Example 40. Some affine curves together with their subdivisions and with edges la-
beled with the corresponding weights (we use the convention that edges without label have
weight 1):

2

2

2

Definition 41. A subsetG of P2
tr (or R2

tr) is a weighted rational graph if it is a connected
finite union of rays and segments having rational slopes, rational endpoints and positive
weights. Let V be any vertex of a weighted rational graph G and let m be the number
of edges adjacent to V . For i=1,..,m let Ei be an edge adjacent to V with weight ωi and
νi be a primitive integer vector starting at V and pointing in direction Ei. The weighted
rational graph G satisfies the balancing condition at V if

∑m
i=1 ωiνi = 0.

A weighted rational graph is balanced if it satisfies the balancing condition at every vertex.

We now can formulate a purely geometric characterization of tropical curves.

Characterization of tropical curves. The tropical projective (resp. affine) curves
are the balanced rational weighted graphs in P2

tr (resp. R2
tr). The graph has d unbounded

rays counting weights in each coordinate direction if and only if the curve has degree d with
full support.

Proof. [9, Corollary 3.16][11, Theorem 3.6] �



2. Tropical intersection theory

From now on we will restrict our attention to projective tropical curves. Whenever we
write tropical curve a tropical projective curve will be understood. The theory that we are
going to develop can be translated to affine tropical curves via the bijection of Proposition
36.

Definition 42. Let V be the vertex of a tropical projective curve.
The valence of V is the number of edges adjacent to V . If V has valence 3 one defines its
multiplicity as follows:
let ω1, ω2, ω3 be the weights of the edges and ν1, ν2, ν3 the primitive integer vectors in
their direction. The multiplicity of V is

ω1ω2

∣∣∣∣∣∣det

ν11 ν12 ν13

ν21 ν22 ν23

1 1 1

∣∣∣∣∣∣ (?)
= ω2ω3

∣∣∣∣∣∣det

ν21 ν22 ν23

ν31 ν32 ν33

1 1 1

∣∣∣∣∣∣ (?)
= ω1ω3

∣∣∣∣∣∣det

ν11 ν12 ν13

ν31 ν32 ν33

1 1 1

∣∣∣∣∣∣
(?)since

∑3
i=1 ωiνi = 0

Remark 43. The multiplicity is a positive integer, since ν1, ν2, ν3 are elements of
Z3
/∼ ⊂ P2

tr, where x ∼ y iff there exists an a in Z such that x = a� y.

Definition 44. A tropical curve is smooth if every vertex is 3-valent and has multi-
plicity 1.

Lemma 45. A tropical curve T (f) is smooth iff Subdivf is maximal.

In graph theory it is known that the first Betti number of a connected graph with v
vertices and e (bounded) edges is 1 − v + e. Since a tropical curve is a connected graph
with bounded and unbounded edges, we can define its genus as follows[4]:

Definition 46. The genus of a smooth tropical curve with v vertices and e bounded
edges is 1− v + e.

We have the following geometric characterization for smooth tropical curves:

Lemma 47. A smooth tropical curve has genus g iff Subdivf has g interior lattice
points.

Proposition 48 (Degree-genus formula). The genus of a smooth tropical curve of
degree d with full support is 1

2(d− 1)(d− 2).

Proof. [4, Section 2.2] �

Definition 49. Two tropical curves C and D are said to intersect transversally if no
vertex of C lies on D and viceversa.
If two tropical curves intersect transversally then we define the intersection multiplicity as
follows:
let P be an intersection point and let E1 and E2 be the edges meeting at P with weights

15
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respectively ω1 and ω2, primitive integer direction vectors ν1 and ν2. The intersection
multiplicity at P is

µP = ω1ω2 det

ν11 ν12 ν13

ν21 ν22 ν23

1 1 1


this is different from zero 0 since ν1, ν2 are elements of Z3

/∼ and ν1 ∦ ν2 as they
intersect.

Definition 50. The translate by x ∈ P2
tr of a projective tropical curve T (f) is{

y ∈ P2
tr

∣∣y = x� z, z ∈ T (f)
}

.

Remark 51. If two tropical curves T (f) and T (f ′) differ by a translation, then
Subdivf = Subdivf ′ .

Lemma 52. Let C and D be tropical curves. Let C0 := C, D0 := D and for ε > 0 let
Cε and Dε be nearby translations of C and D such that Cε and Dε intersect transversally.
The number N of intersection points, counted with multiplicity, of Cε and Dε is independent
of the choice of translations. Furthermore the limit limε→0Cε ∩Dε is a well-defined subset
of N points, counted with multiplicity, of the intersection of C and D.

Proof. [11, theorem 4.3].
�

Definition 53 (Stable intersection). The stable intersection of two tropical curves C
and D is

C ∩st D := lim
ε→0

Cε ∩Dε

Theorem 54. [Tropical Bézout] Let C and D be two tropical curves of degree respec-
tively c and d. If at least one of the curves has full support, then their stable intersection
consists of exactly cd points counted with multiplicities.

Proof. [2, Theorem 3.16]
�

Remark 55. If neither of the curves has full support, the conclusion of the theorem
is not valid in general [2, Example 3.17].



3. Tropical elliptic curves and the algebraic group law

In this section we recall the main results from [2, Section 4 and 5].

3.1. Divisors and the Jacobian on a smooth projective tropical curve.

Definition 56. Let C be a smooth projective tropical curve. The group of divisors on
C is the free abelian group on the set of points of C and an element of Div(C) is a divisor
on C.
Let x be a divisor on C. Then x is a formal sum

∑
P∈C aPP with aP in Z and almost all

aP equal to zero. The sum of the coefficients
∑

P∈C aP is called the degree of x.

Lemma 57. The elements of degree 0 in Div(C) form a subgroup, denoted by Div0(C).

Definition 58. Let f be a tropical homogeneous polynomial such that T (f) has full
support. The divisor associated to f is the formal sum of points in C∩stT (f) each counted
with the respective intersection multiplicity. It is denoted by div(f). If T (f) and T (g)
are projective tropical curves with full support of the same degree, then div(f)− div(g) is
called principal divisor.

Lemma 59. Every principal divisor has degree 0.

Proof. Suppose div(f) − div(g) is a principal divisor and that T (f) and T (g) have
degree d with full support and let c be the degree of C. By Bézout’s Theorem the cardinality
of C ∩st T (f) as well as of C ∩st T (g) is cd, thus the degree of div(f)− div(g) is zero. �

Define the following equivalence relation on Div(C) : D1 ∼ D2 ⇐⇒ D1 − D2 is
principal.

As in the classical case, one defines the Jacobian Jac(C) of C to be the kernel of the
group homomorphism

deg : Div(C)/∼→ Z.

Lemma 60. The Jacobian of C is Div
0(C)/∼.

3.2. Tropical elliptic curves.

Definition 61. A tropical elliptic curve is a smooth tropical curve of degree 3 and
genus 1.

Example 62. In the picture below some tropical elliptic curves are depicted. Only
curve (c) has full support.

17
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(a) (b) (c)

Notation 63. The cycle in C is denoted by C̄.

Definition 64. Each connected component of C r C̄ is a tentacle of C.

Proposition 65. If P and Q are points on the closure of the same tentacle, then
P ∼ Q.

Proof. [2, Proposition 5.2]. �

Proposition 66. Let O be a fixed point of C̄ and for any point P ∈ C̄ let (P) denote

the equivalence class of P in Div(C)/∼.
The map τO : C̄ → Div0(C)/∼ : P 7→ (P −O) is a bijection of sets.

Proof. [2, Lemma 5.4, Proposition 5.5]. �

Thus the cycle C̄ has an induced group structure:

+C̄ : C̄ × C̄ → C̄ : (P,Q) 7→ P +C̄ Q := τ−1
O (τO(P ) + τO(Q))

where τ−1
O denotes the inverse of τO and + denotes the addition of Jac(C).

The neutral element with respect to the induced group structure is O.

Remark 67. In classical algebraic geometry the j-invariant of a smooth elliptic curve
is an invariant that determines the isomorphism classes of smooth elliptic curves. The
correct notion in tropical algebraic geometry seems to be that of the cycle length L of the
tropical elliptic curve [7].

Proposition 68. The cycle C̄ and the unit circle are isomorphic as groups.

Proof. [2, Corollary 5.9]. �
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4. The geometric group law

In [2, Remark 5.8] Vigeland gives a partial description of a geometric group law on C̄.
In this section we investigate the geometric group law further and prove that the geometric
group law and the group law induced from the Jacobian coincide. In the classical case,
in order to prove that the chord-tangent group law and the group law induced by the
Jacobian coincide, one needs to assume that the neutral element of the group law on the
elliptic curve is an inflection point and that the elliptic curve is in Weierstrass form. For
our purpose we assume that whenever three points P,Q,R on C̄ lie on a tropical line, then
P +C̄ Q+C̄ R = O. This assumption is justified by the following

Proposition 69. Let C̄ be the cycle of a tropical elliptic curve with fixed point O and

let λ denote the isomorphism of Proposition 68. There exists a point Õ on the cycle such

that if we replace O by Õ then for all tropical lines L which intersect C̄ in three distinct
points P , Q and R:

λ(P ) + λ(Q) + λ(R) = 0.

Proof. Let L = T (f) and L′ = T (f ′) be any pair of distinct tropical lines which
intersect C̄ in three distinct points and let L ∩ C̄ = {P,Q,R} and L′ ∩ C̄ = {P ′, Q′, R′}.
Hence P +Q+R− (P ′+Q′+R′) = div(f)− div(f ′) and thus P +Q+R ∼ P ′+Q′+R′.
Therefore we have

(P −O) + (Q−O) + (R−O) = (P ′ −O) + (Q′ −O) + (R′ −O) = (S −O)

with S ∈ C̄ independent of L and L′. Choose Õ ∈ C̄ with 3(Õ − O) = (S −O). Then

(P − Õ) + (Q− Õ) + (R− Õ) = (S −O)− 3(Õ − O) = 0.

�

4.1. Description of the geometric addition.

Definition 70. A tropical line is a tropical curve of degree 1.

From now on we assume a tropical line to have full support. By Theorem 54 we need
to make this assumption in order to describe the geometric group law for a general tropical
elliptic curve.

Definition 71. Two points P and Q on C̄ are in general position if there exists a
tropical line intersecting C̄ transversally in P and Q and in a third point different from P
and Q.
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Note that the last condition forbids a situation like the following where the third
intersection point lies on a tentacle:

P

Q

In particular, we require that the vertex of the tropical line lies in the interior of C̄.

Let P and Q be points on C̄ in general position and let l be the tropical line through P
and Q. Denote the third point of intersection by R. Suppose that R and O are in general
position. Let l′ be the tropical line through R and O. The third point of intersection of l′

with C̄ is the geometric sum of P and Q.

Now assume that P and Q are not in general position. We translate P and Q along C̄
with constant speed v(t) in opposite directions. We denote the translates of P and Q at
time t by Pt and Qt. Let t be a time at which Pt and Qt are in general position. A proof
of the existence of t is given in the second step of the proof of Lemma 5.4 in [2]. Denote
the tropical line through Pt and Qt by lt.

Lemma 72. The third point of intersection of lt with C̄ does not depend on t.

Proof. For some T in R/Z we have by construction λ(Pt) = λ(P ) − T and λ(Qt) =
λ(Q) + T , where λ denotes the isomorphism of Proposition 68.

Let Rt denote the third point of intersection of lt with C̄. By our standing assumption

Pt +C̄ Qt +C̄ Rt = O
and by Proposition 68

λ(Pt +C̄ Qt +C̄ Rt) = λ(Pt) + λ(Qt) + λ(Rt) = λ(O) = 0

Thus

λ(Pt) + λ(Qt) + λ(Rt) = λ(P ) + λ(Q) + λ(Rt) = 0

hence

λ(P ) + λ(Q) = −λ(Rt).

Now let t′ be another time instant, different from t, such that (Pt′ , Qt′) are in general
position. Let Rt′ be the third point of intersection of lt′ with C̄. By an analogous argument

λ(P ) + λ(Q) = −λ(Rt′)
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hence λ(Rt) = λ(Rt′), which is equivalent to Rt = Rt′modL, where L denotes the lattice
length of the cycle.

�

Let R be the third point of intersection of lt with C̄. If R and O are in general position
the third point of intersection on the line through R and O is the geometric sum of P
and Q. Otherwise translate R and O as described above to points Rt′ and Ot′ in general
position. The third point of intersection of the line through Rt′ and Ot′ with C̄ is the
geometric sum of P and Q.

Figure 73. The geometric addition.

O

R

P

lt

Pt

Qt

Q
v(t)

v(t)

O

R

P + Q

l′t

Rt′

Ot′

In order to add a point P to itself, apply the method to add two points not in general
position to the pair (P, P ).

We denote the geometric addition on C̄ by �.

4.2. The group structure induced by the geometric addition.

Proposition 74. For all points P , Q on C̄ the equality

λ(P �Q) = λ(P ) + λ(Q)

is satisfied.

Proof. We assume that all pairs of points that we are going to consider are not in
general position, since this case can be recovered by choosing the time t = 0.
Let Pt and St be the translates of P and S in general position and let A be the third
point of intersection with the cycle of the tropical line passing through Pt and St. By our
standing assumption and by Proposition 68

λ(P ) + λ(S) + λ(A) = λ(Pt) + λ(St) + λ(A) = 0 = λ(A) + λ(O) + λ(P � S)
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Now let (P � S)t′ and Rt′ be the translates of P � S and R in general position and let
B be the third point of intersection of the tropical line through (P � S)t′ and Rt′ and C̄.
Then by the same argument

λ(P �S)+λ(R)+λ(B) = λ((P �S)t′)+λ(Rt′)+λ(B) = 0 = λ(B)+λ(O)+λ((P �S)�R)

Thus
λ(P � S) = λ(P ) + λ(S).

�

Theorem 75. There is a bijection η : C̄ → C̄ such that for all P,Q ∈ C̄
η(P +C̄ Q) = η(P ) � η(Q).

In particular C̄ together with the geometric addition is a group with neutral element O and
this group structure is isomorphic to the group structure induced from the Jacobian.

Proof. Immediate by Proposition 68 and Lemma 74. �

4.3. Torsion points. By Proposition 68 we have the following

Lemma 76. The subgroup of torsion points on C̄ is isomorphic to Q/Z.

Example 77. We fix a point O on the curve (a) from example 62.

O

P

O

Q

Q′

The point of order 2. The two points of order 3.

In the following we describe a geometric method to find the inverse of a point which
we will then use to give a geometric description of torsion points of order 2. The method
is illustrated in Figure 78.
Let P be a point on the cycle C̄. Let l be the tropical line, unique up to translation,
passing through O and intersecting the cycle C̄ in two other distinct points. Translate l
such that it passes through O and intersects the cycle in only one other point. Denote this
translate by l0 and denote by lt the translate of l0 at time t that passes through O. Now
suppose that P and O are not in general position. Let t > 0 and let R and S be the other
two points of intersection of lt with C̄. Choose one of these points, say R. Consider R as a
translate of P and suppose that travelling with constant speed v(t) from P to R we arrive
at R after a lapse of time s. Now starting from S travel with constant speed v(t) and stop
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after the lapse of time s. Call the point thus reached P ′.
This point is the inverse of P :
By our standing assumption P ′s +C̄ Ps +C̄ O = O. Therefore λ(P ′s) = −λ(Ps) and since
λ(P ′s) + λ(Ps) = λ(P ′) + λ(P ), we get λ(P ′ � P ) = λ(O).

Figure 78. A geometric method to find the inverse of a point.

O

l0

P

lt

R = Ps

S = P ′
s

time lapse s

time lapse s

P ′

v(t)

v(t)

With the same method we can find the points of order 2:
let again R and S be the points of intersection (other than O) of the translate lt of the
tropical line l0 with C̄. We are looking for a point P such that P � P = O. Start at
the same time from R and S and travel with constant speed in direction of the point of
intersection other that O of l0 with C̄. The point at which the two trajectories meet is P .
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Figure 79. How to find the points of order 2.

O

l0 lt

Pt

Pt

P

The previous illustration could suggest that the point of order 2 is the point of inter-
section of l0 with C̄. This is not true in general as illustrated in the following figure:

O

l0lt

R = Pt

S = Pt

P

A point P is a torsion point of order 3 if and only if 3P = O if and only if 2P �P = O,
which is equivalent to −λ(2P ) = λ(P ). Thus we see that there are exactly two points
of order 3, namely the point P at lattice distance L/3 from O and the point Q at lattice
distance −L/3 from O and that Q = 2P . For these points a partial converse to our standing
assumption holds: P, 2P and 3P add to O if and only if the translates of two of them and
the third point lie on a tropical line.

In classical geometry it is a well-known result that there are exactly nine points of
inflection on an elliptic curve. If we choose the neutral element of the group law on an
elliptic curve to be an inflection point, then the points of order 3 are exactly the inflection
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points. Furthermore in this situation three points of the elliptic curve lie on a line if and
only if their sum is zero.
In tropical geometry an analogous notion of inflection point has not been developed until
now. However, one can consider the tropicalization2 of the nine inflection points:
in [8, Lemma 4.4.1] it is shown that if we assume the elliptic curve to have a particular
form - called honeycomb form - such that its tropicalization C is dual to a Newton polygon
with triangulation in equilateral triangles and consequently C̄ is an hexagon, then the
tropicalization of the nine inflection points results in three groups of three points displaced
as illustrated in the following lemma.

Lemma [8, Lemma 4.4.2] Let v1, . . . , v6 denote the vertices of the hexagon in counter-
clockwise direction and let ei denote the edge between vertex vi and vi+1, where v7 = v1,
and call li the lattice length of edge ei. Fix the counterclockwise direction as positive di-
rection. Let P be the tropicalization of an inflection point. Then one of the three following
possibilities occurs:
(i) The point P lies at distance l2−l1

3 from v2.

(ii) The point P lies at distance l4−l3
3 from v4.

(iii) The point P lies at distance l6−l5
3 from v6.

Figure 80. The three cases of [8, Lemma 4.4.2]

v1v2

v3

v4 v5

v6

P

P

P

Furthermore for this hexagon [8, Section 4.4]

l1 + l2 = l4 + l5 and l2 + l3 = l5 + l6.

2Tropicalization is a method which gives a connection between classical and tropical algebraic geometry.
The tropicalization of an algebraic variety over a non-archimedean field is defined as the closure of its amoeba
and a theorem by Kapranov[6, 3] states that the closure of the amoeba coincides with the corner locus of the
tropicalization of the polynomials defining the algebraic variety. Since many properties of algebraic curves
are preserved by tropicalization, this method is widely used to translate algebraic-geometric problems into
combinatorial ones, for which a solution may be easier to find. For a short introduction see e.g. [5]. A
reference for the tropicalization of inflection points on plane curves is [1].
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With an easy calculation we get that if we choose one of these three points to be the neutral
element for the group law, then the torsion points of order 3 are exactly the tropicalization
of the inflection points.
In general the tropicalized inflection points do not lie on a tropical line. Restricting our
attention to the tropical elliptic curve in Example 62 (c) we may ask in what case the
points of order 3 lie on a tropical line. In particular, if we require from three points on the
cycle to lie at equal lattice distance from each other and to lie on a tropical line, which
possible dispositions do we find?

Let v1, . . . , v9 denote the vertices of the cycle in counterclockwise direction and let ei
denote the edge between vertex vi and vi+1, where v10 = v9, and call li the lattice length
of edge ei. Fix the counterclockwise direction as positive direction. Let P,Q and R be the
three points in question.
With some calculations one finds the following result:
- P lies between v9 and v2 at distance l1+2l9

3 from v9;

- Q lies between v3 and v5 at distance l4+2l3
3 from v3;

- R lies between v6 and v8 at distance l7+2l6
3 from v6.

Figure 81. The three points lying on a tropical line and at equal lattice distance from
each other.

P

Q

R

v1

v9

v2

v3

v4

v5

v6 v7

v8

In analogy to the classical case we can pose the question of whether and how these
points characterize the shape of the tropical elliptic curve. Could such a characterization
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be found, we might have a translation into tropical geometry of the notion of inflection
point.





Bibliography
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