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2 Notation

|X| The cardinality of a finite set X

N,Z,Q The natural numbers (not including 0), the integers, and rationals

Q[
p
D] The field {a+ b

p
D : a, b 2 Q}

OD The ring of integers in Q[
p
D]

O⇥
D The set of units in the ring OD, namely all elements which have an inverse

⌘ The fundamental unit of a real ring of integers. It satisfies ⌘ > 1.

h The class number of a quadratic field

a, b Ideals of a ring

p Prime ideals of a ring

I ,J Fractional ideals of an integral domain

A,B Ideal classes in the ideal class group
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3 Introduction

This paper is an expository piece into the ideal properties of quadratic field extensions K/Q. The

arithmetic of K is reviewed and exciting and important results are stated for the unique factorization

of ideals in the ring of integers ofK, and the ideal class group ofK. The main result is the class number

formula for real and imaginary quadratic fields. Afterwards, some related propositions and theorems

are presented about the Dedekind ⇣-function and Dirichlet L-series for a field. Due to wanting to keep

the length of this piece short, only the main results are proven in depth, but references to proofs are

given to the other main propositions and theorems.

The arithmetic of quadratic fields has a very rich history with Euler using the unique prime

factorization of certain quadratic fields to find integer points on elliptic curves [4]. For example, to find

lattice points (x, y) 2 Z2 satisfying y3 = x2+2, Euler factorized the right side as (x+
p�2)(x�p�2).

Since there is unique prime factorization in Z[
p�2], and x+

p�2, x�p�2 are relatively prime, Euler

determined that there must exist integers a, b 2 Z such that

x+
p�2 = (a+ b

p�2)3 and x�
p
2 = (a� b

p�2)3.

But not all quadratic fields possess unique prime factorization, such as Z[
p�5] where

6 = 2 · 3 = (1 +
p�5)(1�p�5).

It was Dedekind who was able to remedy this by proving that there is unique prime factorization of

ideals in all of these rings. Based on the work of Kummer in cyclotomic fields, Dedekind developed

the theory of the ideal class group for quadratic field extensions, as well as a generalization of it to all

finite field extensions [4]. The cardinality of the ideal class group is a rough measurement for how far

the field is from being a principal ideal domain, and hence possessing unique prime factorization of its

elements. Dedekind showed that this group is finite. So a natural question to ask would be “what is the

asymptotic behavior of these class numbers and how quickly do they grow?” This resulted in several

conjectures by Gauss [4]. Gauss conjectured that the class number went to 1 as the discriminant of

a field went to �1, and this was originally proven by Heilbronn in 1934 with him showing that there

are only a finite number of discriminants with a given class number [3]. Gauss also conjectured that

there are infinitely many real quadratic fields with class number 1, which is still an open problem.

Modern work on this problem relies on the connection between the class number and the Dedekind

⇣-function [3]. Dedekind proved that his generalization of the ⇣-function has a meromorphic extension

to the complex plane with a simple pole as s = 1, and the residue at s = 1 depends on the class

number of the field. This relationship between the residue at s = 1 and the class number of the field

is known as the class number formula. Recent attempts at tackling Gauss’s second conjecture have

relied on this connection by attempting to find asymptotic minimum bounds for this residue [3].

As mentioned before, Dedekind extended the notion of class number to extensions of higher order

and extended the ⇣-function to these fields as well. The connection between the ⇣-function and the

class number exists as well in higher dimensions and this is crucial to the work done in the relatively

new branch of class field theory [4]. In this paper, we only deal with the quadratic case but encourage

the motivated reader to read Sivek [9] for a proof of the general class number formula. The ideas

used in the proof are an extension of the ones as used in our proof of the class number formula in two

degrees.

4 Concepts Needed

We assume the reader has basic knowledge rings, ideals, and prime ideals. First, we quickly review

relevant concepts the reader should also be knowledgeable about.
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4.1 The Kronecker Symbol

Refer to Chapter 1.1 of Trifković [11] for proofs.

Definition 4.1. Let p 2 N be an odd prime number and a 2 Z, then we define the Legendre symbol

as:

✓
a

p

◆
:=

8
>><

>>:

1 if a is a non zero square mod p

�1 if a is not a square mod p

0 if a ⌘ 0 (mod p)

.

Proposition 4.2. Let a, b 2 Z and p 2 N be an odd prime number. Then these are some properties

of the Legendre symbol: ✓
ab

p

◆
=

✓
a

p

◆✓
b

p

◆
,

a ⌘ b (mod p) =)
✓
a

p

◆
=

✓
b

p

◆
,

✓�1

p

◆
=

(
1 if p ⌘ 1 (mod 4)

�1 if p ⌘ 3 (mod 4)
,

✓
2

p

◆
=

(
1 if p ⌘ ±1 (mod 8)

�1 if p ⌘ ±3 (mod 8)
.

Definition 4.3. A generalization of the Legendre symbol to get rid of the constraint of p being an

odd prime is the Kronecker symbol. Let a 2 Z and 0 6= n 2 Z. Then let n = upe11 · · · pekk be the

prime factorization of n where u = ±1, the pi are distinct prime numbers, and ei 2 N for all i 2 [1, k].

Then define the Kronecker symbol as:

⇣a
n

⌘
:=

⇣a
u

⌘ kY

i=1

✓
a

pi

◆ei

,

where
⇣

a
pi

⌘
is equal to the Legendre symbol if pi is odd and define:

⇣a
2

⌘
:=

8
>><

>>:

1 if a ⌘ ±1 (mod 8)

�1 if a ⌘ ±3 (mod 8)

0 if a ⌘ 0 (mod 2)

,
⇣a
1

⌘
:= 1, and

✓
a

�1

◆
:=

(
1 if a � 0

�1 if a < 0
.

Proposition 4.4. The Kronecker symbol is multiplicative in both variables. Namely if a, b,m, n 2 Z
and mn 6= 0, then ✓

ab

n

◆
=

⇣a
n

⌘✓
b

n

◆
and

⇣ a

mn

⌘
=

⇣ a

m

⌘⇣a
n

⌘
.

4.2 Lattices

Please refer to Chapter 4 of Cohn [1] for proofs.

Definition 4.5. A lattice ⇤ ⇢ Rn is an additive subgroup of the form ⇤ =
Pn

i=1 Zvi, generated by

n linearly independent vectors v1, . . . , vn. Any such generating set {v1, . . . , vn} is called a basis of ⇤.

Proposition 4.6. For any lattice ⇤ ⇢ Rn, we have inf{|x| : x 2 ⇤\{0}} > 0.

Definition 4.7. The discriminant of a lattice ⇤ is the volume of the parallelotope defined by a basis

set {v1, . . . , vn}.
Proposition 4.8. The discriminant of a lattice ⇤ is independent of the basis set.
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5 Review about Quadratic Extensions

5.1 Ring of Integers

Refer to Chapter 4 of Trifković [11] for proofs.

Proposition 5.1. All quadratic extensions K/Q are of the form K = Q[
p
D] where D 2 Z is chosen

to be square free. Then D 6= 0, 1 and D is unique. We call K an imaginary quadratic field if

D < 0 and a real quadratic field if D > 0.

Definition 5.2. An element x 2 K of an extension K/Q is said to be integral if and only if it is a

root of a monic polynomial with integer coe�cients. This means there exist n 2 N, ai 2 Z such that

xn + an�1X
n�1 + · · ·+ a0 = 0.

Definition 5.3. The ring of integers in an extension K/Q is the set of all elements in K which are

integral.

Proposition 5.4. The ring of integers in K = Q[
p
D] is Z[�] where

� =

8
<

:

p
D if D 6⌘ 1 (mod 4)

1 +
p
D

2
if D ⌘ 1 (mod 4)

.

5.2 Norm in Quadratic Fields

Refer to chapter 4 of Trifković [11] for proofs.

Definition 5.5. For any ↵ = a + b
p
D 2 Q[

p
D], with a, b 2 Q, the conjugate of ↵ is the element

↵̄ := a� b
p
D.

Definition 5.6. The norm of an element ↵ 2 Q[
p
D] is N(↵) := ↵↵̄ 2 Q.

Proposition 5.7. The norm is a multiplicative function.

Definition 5.8. The discriminant of a field K = Q[
p
D] is defined to be DK := (� � �̄)2.

Proposition 5.9. The discriminant of the field Q[
p
D] is

DK =

(
4D if D 6⌘ 1 (mod 4)

D if D ⌘ 1 (mod 4)
.

Remark 5.10. The field Q[
p
D] is the same as Q[

p
DK ]. From now on, any mention of D will denote

the discriminant, DK , and the ring of integers in this quadratic field will be denoted OD. Also if 2 - D,

then D is square free. If 2 | D, then 4 | D and D/4 is square free and D/4 ⌘ 2 or 3 (mod 4).

5.3 The Group of Units

Refer to Chapter 6 of Cohn [1] for proofs.

Theorem 5.11. If D < 0, then the group of units in OD, denoted by O⇥
D, is finite and

|O⇥
D| =

8
>><

>>:

4 if D = �4

6 if D = �3

2 otherwise

.
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Theorem-Definition 5.12. If D > 0, there exists an ⌘ 2 OD with |⌘| 6= 1 such that all units are

of the form ±⌘n where n 2 Z. For standardization, we choose ⌘ out of the set {±⌘,±⌘�1} such that

⌘ > 1 and call this the fundamental unit.

Corollary 5.13. We call two elements a, b 2 OD associates if there exists a unit u 2 O⇥
D such that

a = bu. For any 0 6= a 2 OD with D > 0, there exists a unique associate of a such that b > 0 and

1  |b/b̄| < ⌘2. This number is called the primary associate.

6 Unique Factorization of Ideals

6.1 Containment Implies Division

Proposition 6.1. The ring OD can be embedded as a two-dimensional lattice into a plane.

Proof. IfD < 0, there is a natural embedding into the complex plane by viewing a+b
p
D as a+ib

p|D|.
This is a lattice generated by 1 and �. If D > 0, then there is a natural embedding into R2 by sending

a+ b
p
D to (a+ b

p
D, a� b

p
D) which again is generated as a lattice by the image of 1 and �.

Corollary 6.2. For each nonzero ideal a ⇢ OD, there exist ↵,� 2 OD such that a = ↵Z+ �Z.

Proof. Ideals are additive subgroups of OD, and since OD is isomorphic to Z2 through its embedding,

each ideal is isomorphic to a subgroup of Z2. Since OD can be embedded as a lattice, every ideal must

be a sublattice and hence have rank 0, 1, or 2. Let a ⇢ OD be a nonzero ideal, then there exists a

nonzero ↵ 2 a and ↵� 2 a as well. But ↵,↵� are linearly independent since ↵ 6= 0 and hence a is a

sublattice of rank 2.

Proposition 6.3. Let a ⇢ OD be an ideal and denote by ā the ideal generated by the conjugates of all

elements in a. Then there exists ↵ 2 OD : aā = (↵).

Proof. Please refer to Chapter 4.6 of Trifković [11] for proof.

Proposition 6.4. Let a, b ⇢ OD be two ideals, then a � b if and only if there exists an ideal c ⇢ OD

such that ac = b.

Proof. For the reverse direction c ⇢ OD and thus b = ac ⇢ aOD = a.

For the forward direction, if a = 0 then b = 0 and we can simply choose c = (1). So now assume

that a 6= 0. By Proposition 6.3, there exists an ↵ 2 OD such that aā = (↵) and hence (↵) � āb.

Therefore each element in āb can be written as ↵x for some x 2 OD. This means that if we define

c := {� 2 OD : ↵� 2 āb}, then ↵c = āb. So multiplying by a gives ↵ac = (↵)b and since a 6= 0, we

know that ↵ 6= 0 and hence ac = {� 2 OD : ↵� 2 ↵ac} = {� 2 OD : ↵� 2 ↵b} = b.

6.2 Unique Factorization

Theorem 6.5 (Unique factorization). Any nonzero ideal a 2 OD has a unique decomposition into

prime ideals, that is there exist distinct prime ideals p1, . . . , pk and positive integers e1, . . . , ek such

that

a =
kY

i=1

peii ,

and this decomposition is unique up to reordering.

Proof. The first step is showing there is a unique decomposition into indecomposable ideals by using

the previous proposition. Then the second step is to show that all indecomposable ideals are prime

ideals. Please refer to Chapter 7.8 in Cohn [1] for the details.

8
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6.3 Identifying Prime Ideals

Please refer to Chapter 4.9 of Trifković [11] for proofs.

Proposition 6.6. Every nonzero prime ideal p ⇢ OD contains a unique prime number p 2 N.

Proposition 6.7. Let p 2 N be a prime number. The prime factorization of (p) in OD is one of the

following three forms
8
>><

>>:

(p) = p1 in this case p is said to be inert.

(p) = p1p2 in this case p is said to be split.

(p) = p21 in this case p is said to be ramified.

All nonzero prime ideals in OD arise in one of these three ways.

Proposition 6.8. Let p 2 N be a prime number, then the decomposition of (p) in OD depends on⇣
D
p

⌘
by

✓
D

p

◆
=

8
><

>:

�1 if p is inert in OD

0 if p is ramified in OD

1 if p is split in OD

.

Corollary 6.9. Only finitely many prime numbers p 2 N are ramified in OD.

7 Ideal Class Group

7.1 Ideal Norm

For proofs of the following two propositions, please refer to Chapter 4.6 in Trifković [11].

Proposition 7.1. Let a ⇢ OD be any nonzero ideal. Then OD/a is a finite ring.

Definition 7.2. The norm of an ideal a is N(a) := |OD/a|
Proposition 7.3. The ideal norm is multiplicative.

Please refer to Chapter 8.1 in Cohn [1] for proofs.

Proposition 7.4. For any 0 6= ↵ 2 OD, we have |N(↵)| = N((↵)).

Corollary 7.5. Let a ⇢ OD be a nonzero ideal. Then aā = (N(a)).

Proposition 7.6. Let a ⇢ OD be a nonzero ideal. By Corollary 6.2, there exist ↵,� 2 OD such that

a = ↵Z+ �Z. Then N(a) =

����
↵�̄ � �↵̄p

D

����.

Proof. Please refer to Chapter 4.10 in Cohn [1] for the proof.

7.2 Fractional Ideals

Definition 7.7. A fractional ideal of OD is a non-empty subset I ⇢ Q[
p
D] which is closed under

addition, multiplication by OD, and such that there exists an x 2 OD so that xI is a nonzero ideal

of OD.

Remark 7.8. The usual ideals of OD also satisfy the definition of a fractional ideal (with x = 1).

They are called integral ideals of OD.

9
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Proposition 7.9. The set of nonzero fractional ideals of OD forms an abelian group under multipli-

cation.

Proof. Multiplication is clearly commutative, the unit ideal (1) acts as the identity, and for any

fractional ideal I , there exists a nonzero x 2 OD such that xI is an ideal and hence by Corollary 7.5

I · x

N(xI )
(xI ) = (1).

So every fractional ideal has an inverse.

Definition 7.10. A fractional ideal of the form OD · x for some x 2 K⇥ is called principal.

7.3 Ideal Class Group

Definition 7.11. Let I be the group of all nonzero fractional ideals of OD. Let P be the set of all

nonzero principal fractional ideals of OD. The subset P can easily be verified to be a subgroup of I.

The quotient group I/P is called the ideal class group of the field Q[
p
D]. The ideal class group is

a quotient group of an abelian group and hence abelian itself.

7.4 Minkowski Bound

Please refer to Trifković [11] Chapter 5.2 and 5.3 for proofs of the following two statements.

Theorem 7.12 (Minkowski). Let ⇤ ⇢ R2 be a lattice and S ⇢ R2 be a subset that is centrally

symmetric around 0, convex, and measurable. Then if the area of S is greater than 4 times the

discriminant of ⇤, there exists a nonzero point in S \ ⇤.

Proposition 7.13. Each ideal class contains an ideal with norm at most MK with:

MK =
p

|D| ·
(

2
⇡ if D < 0
1
2 if D > 0

7.5 Finiteness of the Ideal Class Group

Lemma 7.14. For each B 2 N, there are only finitely many ideals with norm B.

Proof. Please refer to Cohn [1] Chapter 7.4 for proof.

Theorem 7.15. The ideal class group is finite.

Proof. As a consequence of the previous lemma, there are only finitely many ideals with norm at most

MK . By Proposition 7.13, it follows that there are a finite number of ideal classes.

Definition 7.16. The ideal class number of a field is the order of the ideal class group and is denoted

h.

7.6 Examples of Calculating the Ideal Class Group

When trying to manually calculate the ideal class number, we can use the Minkowski bound and

unique prime factorization to simplify our search. Since every ideal has a prime factorization, the

prime ideals generate the ideal class group. Then by Proposition 7.13, we only need look at prime

ideals with norm less than MK .
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Example 7.17. The field Q[
p�5] has ideal class number 2.

Proof. We know �5 ⌘ 3 (mod 4) and hence the discriminant is 4 · (�5) = �20 and O�20 = Z[
p�5].

By Proposition 7.13, each ideal class contains an ideal of norm at most
2

⇡

p
20 ⇡ 2.8. Then we also

know that
��20

2

�
= 0 and hence (2) is ramified in O�20 and so there exists a prime ideal p ⇢ O�20

with norm 2. There are no elements of O�20 with norm 2 since x2 + 5y2 = 2 has no solutions with

x, y 2 Z. Therefore p is not principal.

Since every ideal class contains an ideal with norm at most 2.8 and prime ideals generate the ideal

class group, the ideal class group of Q[
p�5] is generated by p. Since p is not principal but p2 = (2)

is principal, p has order 2 and hence the ideal class group consists of two ideal classes. Therefore the

ideal class number is 2.

8 The Class Number Formula for Quadratic Extensions

8.1 Ideal Density

Proposition 8.1. Let �(t) : [0, 1] ! R2 be a piecewise smooth convex non-intersecting curve in the

plane with �(0) = �(1). Let A(�) denote the area of the region encapsulated by � and let N(�) denote

the number of lattice points that lie on or inside �. Finally for any 0 < t 2 R, let t� : [0, 1] ! R2 be

the curve which is a dilation of � by a factor of t. Then N(t�) = A(�)t2 +O(t) as t ! 1.

Proof. We will use a result found in Section 4 of Garbett [2], and please refer to it for a proof. It tells

us that if R is a bounded convex region, then N(t�)  A(�)t2+O(|t�|), where |t�| denotes the length
of the curve. But this is simply O(t). Hence N(t�)  A(�)t2 +O(t).

To get a lower bound on N(t�), let At denote the closed region with boundary t�, let Pt denote

the convex hull of the set of lattice points which lie in At, and let Rt be the region consisting of all

points in the interior of At which lie at least a distance of
p
2 away from boundary. We claim Rt lies

complete within Pt. For any point in Rt, it must lie in a unit square and since its distance to any of

the corners in the unit square is less than
p
2, all four corners must lie inside At and hence all four

corners must lie within Pt and so the point is in Pt as well.

Now using Pick’s Theorem for convex polygons found in Section 4 of Garbett [2], we know N(t�) �
A(Pt) � A(Rt). But since � is a convex curve, we know that the area of the di↵erence between region

Rt and At must be less than
p
2|t�|. So A(Rt) � A(At) �

p
2|t�| = A(�)t2 + O(t). Combining this

with the previous result, we have N(t�) = A(�)t2 +O(t).

8.1.1 Ideal Density in Imaginary Quadratic Fields

Proposition 8.2. Let D < 0. For all T 2 N, let F (T ) be the number of ideals in OD with 0 < N(a) 
T . Then

lim
T!1

F (T )

T
=

2⇡h

w
p|D| ,

where h is the size of the ideal class group and w = |O⇥
D|.

Proof. For any ideal class A and T 2 N, define F (A, T ) to be the number of ideals in the ideal class

A with 0 < N(a)  T . Also, for any ideal a ⇢ OD, let G(a, T ) denote the number of elements ↵ 2 a

with 0 < N(↵)  T . Now take any a 2 A

�1. We claim that F (A, T ) =
1

w
G(a, TN(a)). To see this,

if b 2 A with N(b)  T , then since a 2 A

�1, their product must be a principal ideal and hence there

exists an 0 6= ↵ 2 OD such that ab = (↵). Taking norms, N((↵)) = N(↵) = N(a)N(b)  TN(a).

11
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On the other hand, if ↵ 2 a and 0 < N(↵)  TN(a), then by Proposition 6.4, there exists an

ideal b ⇢ OD such that ab = (↵). But since (↵) is a principal ideal, we know that b 2 A

�1 and

N(a)N(b) = N(↵)  TN(a) so N(b)  T . Hence there is a one to one correspondence between ideals

which are counted in F (A, T ) and principal ideals which are counted in G(a, TN(a)). But now if

(↵) = (�) 6= (0), then N(↵) = N(�) and so ↵,� must be associates. So for each (↵) ⇢ a, there are

a total of w di↵erent elements � 2 a : (�) = (↵) and hence F (A, T ) =
1

w
G(a, TN(a)), proving the

claim.

By Proposition 6.2, we know that there exist a, b 2 a with a = aZ+ bZ and so each ↵ 2 a can be

written as ax+ by with x, y 2 Z. Then N(↵) = (ax+ by) · (āx+ b̄y) = aāx2 + (ab̄+ bā)xy+ bb̄y2 � 0.

Hence G(a, TN(a)) has a geometric interpretation: It is the number of lattice points (x, y) which

satisfy the inequality for an ellipse:

aāx2 + (ab̄+ bā)xy + bb̄y2  TN(a).

But by Proposition 8.1, we know that as T ! 1, the number of lattice points contained in the ellipse

is equal to the area with error of magnitude O(
p
TN(a)) = O(

p
T ). The area of the ellipse is

2⇡TN(a)

(4aābb̄� (ab̄+ bā)2)1/2
=

2⇡TN(a)

(�(ab̄� bā)2)1/2
7.6
=

2⇡TN(a)p|D|N(a)2
=

2⇡Tp|D| .

Therefore

lim
T!1

F (A, T )

T
= lim

T!1
G(a, Ta)

wT

8.1
= lim

T!1

2⇡Tp
|D| +O(

p
T )

wT
=

2⇡

w
p|D| .

Since this holds for any ideal class A, we have

lim
T!1

F (T )

T
= lim

T!1

P
A F (A, T )

T
=

2⇡h

w
p|D| .

8.1.2 Ideal Density in Real Quadratic Fields

Proposition 8.3. Let D > 0. Then for all T 2 N denoting F (T ) to be the number of ideals in OD

with 0 < N(a)  T , we have

lim
T!1

F (T )

T
=

2h ln ⌘p
D

,

where ⌘ is the fundamental unit.

Proof. As in the previous proof, for each ideal class A and number T 2 N, define F (A, T ) as the

number of ideals in the ideal class A with 0 < N(a)  T . For an ideal a ⇢ OD and T 2 N, we cannot

use the same definition of G(a, T ) as before since the norm of an integer is not necessarily non negative

and there are an infinite number of units and hence every integer has an infinite number of associates.

Using Corollary 5.13, we instead define G(a, T ) as the number of primary associates, ↵, contained in

a with |N(↵)|  T . Since every nonzero element of OD has a unique primary associate, the argument

used in the proof of the previous proposition gives us F (A, T ) = G(a, TN(a)).

By Corollary 6.2, there exist a, b 2 a such that a = aZ + bZ. For each ↵ 2 a, there exist x, y 2 Z
such that ↵ = ax + by. The geometric interpretation of G(a, TN(a)) is then the number of lattice

points (x, y) 2 Z2 with 0 < |N(ax+ by)|  TN(a). Since ↵ must be a primary associate, in addition

12
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Figure 1

1 
����
ax+ by

āx+ b̄y

���� < ⌘2 and ax+by > 0. For any x, y 2 R, let R denote the region defined by the following

five inequalities:
0 < |N(ax+ by)|  TN(a)

1 
����
ax+ by

āx+ b̄y

���� < ⌘2

ax+ by > 0

. (1)

By Proposition 8.1, the number of lattice points in R is equal to the area of R with error of magnitude

O(
p
T ). We are able to use Proposition 8.1 because we claim the region R is the di↵erence of two

convex bounded regions, both of which satisfy the conditions of the proposition. Admit the claim for

now. Then letting A(R) denote the area of region R, we know G(a, TN(a)) = A(R) +O(
p
T ).

To simplify the calculation of the area, we can perform a change of variables with u = ax+ by and

v = āx+ b̄y. In (u, v)-coordinates the region R is now defined by the following inequalities:

0 < |uv|  TN(a)

1 
���
u

v

��� < ⌘2

u > 0

. (2)

The region R in (u, v)-coordinates is depicted by sector ABC and its reflection across the u-axis in

Figure 1. First we briefly pause to justify our claim that we can use Proposition 8.1. Sector ABC

is the di↵erence between triangle ABC and the convex region BC. Since our transformation from

(x, y)-coordinates to (u, v)-coordinates was a linear transformation, convex regions are preserved under

this mapping and hence the preimage of sector ABC in (x, y)-coordinates satisfies the result of the

proposition. The same argument applies to the reflection of sector ABC across the u-axis. Since

region R is the disjoint union of these two regions, our claim is proven.

Now, we return to calculating the area of region R in (u, v)-coordinates. Due to symmetry, the

area of this region is twice the area of sector ABC. To calculate this area, we first take the integral of

|uv| = TN(a) from u = D to u = E to get the area of region BCED, add the area of 4ABD, then

subtract the area of 4ACE. This area is

2

2

6664

Z ⌘
p

TN(a)

p
TN(a)

TN(a)

u
du

| {z }
BCED

+
TN(a)

2| {z }
4ABD

� TN(a)

2| {z }
4ACE

3

7775
= 2TN(a) lnu|⌘

p
TN(a)p

TN(a)
= 2TN(a) ln ⌘.

13
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The area of R in (x, y)-coordinates is equal to the area of R in (u, v)-coordinates multiplied by the

absolute value of the Jacobian. The absolute value of the Jacobian is
�������

@x

@u

@x

@v
@y

@u

@y

@v

�������
=

�������

b̄

ab̄� āb

�b

ab̄� bā�ā

ab̄� āb

a

ab̄� bā

�������
=

����
ab̄� bā

(ab̄� bā)2

���� =
1

N(a)
p
D
.

Hence the area of region R in (x, y)-coordinates is
2TN(a) ln ⌘

N(a)
p
D

=
2T ln ⌘p

D
. Therefore

lim
T!1

F (A, T )

T
= lim

T!1
G(a, TN(a))

T

8.1
= lim

T!1

2T ln ⌘p
D

+O(
p
T )

T
=

2 ln ⌘p
D

.

Since this holds for every ideal class A, we conclude

lim
T!1

F (T )

T
= lim

T!1

P
A F (A, T )

T
=

2h ln ⌘p
D

.

Definition 8.4. The Dirichlet structure constant is

 :=

8
>><

>>:

2⇡

w
p|D| if D < 0

2 ln ⌘p
d

if D > 0
.

Then in both cases, the ideal density of the field is

lim
T!1

F (T )

T
= h.

8.2 The Zeta Function and L-Series

Definition 8.5. The Riemann ⇣-function is defined for all s > 1 by the series

⇣(s) :=
1X

n=1

1

ns

Theorem 8.6 (Euler Product). The above series converges absolutely for all s > 1, and ⇣(s) can be

written as an infinite product

⇣(s) =
Y

p2N

✓
1� 1

ps

◆�1

,

where the product is taken over all prime numbers p 2 N.

Proof. Refer to Chapter 8 of Stein [10] for a proof.

Theorem 8.7. The ⇣-function has a meromorphic extension to the whole complex plane with a simple

pole at z = 1 and no other poles. The residue of the ⇣-function at 1 is 1. Namely:

lim
s!1+

(s� 1)⇣(s) = 1

Proof. Refer to Rubin [7] for a proof.

14
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Definition 8.8. The Dedekind ⇣-function for Q[
p
D] is defined for all s > 1 by the series:

⇣(s;D) :=
X 1

N(a)s
,

where the sum is taken over all nonzero ideals a ⇢ OD.

Definition 8.9. The Dedekind L-series for Q[
p
D] is defined for all s > 1 by the series:

L(s;D) :=
1X

n=1

�
D
n

�

ns
.

Proposition 8.10. The Dedekind ⇣-function converges absolutely for s > 1 and ⇣(s;D) = ⇣(s)L(s;D)

for all s > 1.

Proof. We start with the L-series. We know that for all n 2 N, the Kronecker symbol is �1, 0, or 1 and

so
���D

n

���  1. Hence L(s;D) converges absolutely for all s > 1. Next note that since the Kronecker

symbol is multiplicative, for s > 1 we can rewrite the L-series in Euler product form so that

L(s;D) =
Y

p2N

0

@1�
⇣
D
p

⌘

ps

1

A
�1

=
Y

⇣
D
p

⌘
=1

✓
1� 1

ps

◆�1 Y
⇣

D
q

⌘
=�1

✓
1 +

1

qs

◆�1 Y

(D
r )=0

1,

where p, q, r are all prime numbers.

Then we can perform the same splitting of the Euler product for the Riemann ⇣-function to get

⇣(s)L(s;D) =
Y

⇣
D
p

⌘
=1

✓
1� 1

ps

◆�2 Y
⇣

D
q

⌘
=�1

✓
1 +

1

qs

◆�1✓
1� 1

qs

◆�1 Y

(D
r )=0

✓
1� 1

rs

◆�1

=
Y

⇣
D
p

⌘
=1

✓
1� 1

ps

◆�2 Y
⇣

D
q

⌘
=�1

✓
1� 1

q2s

◆�1 Y

(D
r )=0

✓
1� 1

rs

◆�1

.

But by Proposition 6.7, if
⇣
D
p

⌘
= 1, then p is split and there exist distinct prime ideals p1, p2 ⇢ OD

such that p1p2 = (p). Taking the norm gives N(p1p2) = N(p1)N(p2) = N((p)) = pp̄ = p2. But both

ideals are prime and hence N(pi) 6= 1 for i = 1, 2. Therefore N(p1) = N(p2) = p.

If
⇣
D
q

⌘
= �1, then q is inert and q = (q) is a prime ideal so N(q) = N((q)) = qq̄ = q2.

Finally if
�
D
r

�
= 0, then r is ramified and there exists a prime ideal r ⇢ OD such that r2 = (r).

Therefore N(r) = r. Using these facts, we can rewrite the Euler product in term of ideal norms so

⇣(s)L(s;D) =
Y

⇣
D
p

⌘
=1

✓
1� 1

N(p1)s

◆�1✓
1� 1

N(p2)s

◆�1 Y
⇣

D
q

⌘
=�1

✓
1� 1

N(q)s

◆�1 Y

(D
r )=0

✓
1� 1

N(r)s

◆�1

.

But since every prime ideal in OD must arise in one of the three cases in Proposition 6.7, every prime

ideal in OD appears exactly once in the above product. Therefore we can simplify to

⇣(s)L(s;D) =
Y

p⇢OD

✓
1� 1

N(p)s

◆�1

.

But we claim that this is ⇣(s;D). Every ideal a ⇢ OD has an unique prime ideal factorization and we

know that ⇣(s)L(s;D) converges absolutely for all s > 1, and hence by the same argument as Theorem

8.6, for all s > 1, we have

⇣(s)L(s;D) =
Y

p⇢OD

✓
1� 1

N(p)s

◆�1

=
X

a⇢OD

1

N(a)s
= ⇣(s;D).
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8.3 The Class Number Formula

Lemma 8.11. For n 2 N and s > 1, we have

s

ns+1
� s(s+ 1)

ns+2
 1

ns
� 1

(n+ 1)s
 s

ns+1
.

Proof. We have
1

ns
� 1

(n+ 1)s
=

Z n+1

n

s

xs+1
dx 

Z n+1

n

s

ns+1
dx =

s

ns+1
,

because
1

xs+1
 1

ns+1
for all x � n. Then

s

ns+1
�

1

ns
� 1

(n+ 1)s

�
=

Z n+1

n

⇣ s

ns+1
� s

xs+1

⌘
dx  s

Z n+1

n

✓
1

ns+1
� 1

(n+ 1)s+1

◆
dx  s(s+ 1)

ns+2
,

by applying the first result to
1

ns+1
� 1

(n+ 1)s+1
.

Theorem 8.12 (Class Number Formula). The Dedekind ⇣-function has a meromorphic extension to

C with a simple pole at s = 1 and no other poles. Moreover,

lim
s!1+

(s� 1)⇣(s;D) = L(1;D) = h,

where h, are defined as above.

Proof. Please refer to Overholt[6] for a proof of the meromorphic continuation of the Dedekind ⇣-

function.

By the Proposition 8.10, we know that ⇣(s;D) converges absolutely for all s > 1, and hence we

can rearrange the terms. We know that the N(a) 2 N and hence

⇣(s;D) =
X

a⇢OD

1

N(a)s
=

1X

n=1

X

N(a)=n

1

ns
=

1X

n=1

F (n)� F (n� 1)

ns
,

where F (T ) is the number of ideals a ⇢ OD such that 0 < N(a)  T . Then F (0) = 0 and rearranging

some more gives
1X

n=1

F (n)� F (n� 1)

ns
=

1X

n=1

F (n)


1

ns
� 1

(n+ 1)s

�
8.11
= ✏(s) +

1X

n=1

F (n)
s

ns+1
= ✏(s) + s

1X

n=1

F (n)

n

1

ns
,

where

|✏(s)| 8.11 s(s+ 1)
1X

n=1

1

n

F (n)

n

1

ns
.

Then from the proof of Propositions 8.2 and 8.3, we know that
F (n)

n
= h+O(1/

p
n). Therefore

|✏(s)|  s(s+ 1)
1X

n=1

h+O(1/
p
n)

ns+1
,

and the right term is bounded as s ! 1. Hence as s ! 1+, we have

lim
s!1+

(s� 1)✏(s) = 0.

Similarly, the expression s
1X

n=1

O(1/
p
n)

ns
remains bounded as s ! 1+ and hence

lim
s!1+

(s�1)⇣(s;D) = lim
s!1+

(s�1)✏(s)+ s(s�1)
1X

n=1

h+O(1/
p
n)

ns
= 0+ lim

s!1+
h(s�1)

1X

n=1

1

ns
8.7
= h.
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8.4 Value of the Kronecker Symbol

Theorem 8.13. Let pi denote the ith prime number. Then the series

1X

i=1

1

pi

diverges.

Proof. See Stein[10] Chapter 8 for a proof.

Lemma 8.14. For any ✏ 2 R with |✏|  1

2
, we have ln(1 + ✏) = ✏+ E(✏) where |E(✏)|  ✏2.

Proof. See Stein[10] Chapter 8 Lemma 1.8 for a proof.

Proposition 8.15. The series
1X

i=1

⇣
D
pi

⌘

pi

converges.

Proof. For s > 1, we can rewrite the L-series in Euler product form so that:

L(s;D) =
1Y

i=1

0

@1�
⇣
D
pi

⌘

psi

1

A
�1

.

We can take the logarithm of both sides so that

lnL(s;D) = �
1X

i=1

ln

0

@1�
⇣
D
pi

⌘

pi

1

A ,

and since pi � 2 for all i 2 N, Lemma 8.14 gives us

lnL(s;D) = �
1X

i=1

2

4�
⇣
D
pi

⌘

psi
+ E

0

@

⇣
D
pi

⌘

psi

1

A

3

5 .

Since

0 
������

1X

i=1

E

0

@

⇣
D
pi

⌘

psi

1

A

������


1X

i=1

������
E

0

@

⇣
D
pi

⌘

psi

1

A

������


1X

i=1

⇣
D
pi

⌘2

p2si


1X

i=1

1

i2
=

⇡2

6
,

the left most sum converges to some number C 2 R. Thus

lnL(s;D) = O(1) +
1X

i=1

⇣
D
pi

⌘

psi
.

But as s ! 1+, Theorem 8.12 tells us that L(s;D) ! h > 0. Therefore the logarithm of the L-series

must remain bounded as s tends towards 1 and hence

1X

i=1

⇣
D
pi

⌘

pi

remains bounded and so the series converges.
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Corollary 8.16. There are infinitely many prime numbers, such that
⇣
D
p

⌘
= 1, and there are infinitely

many prime numbers such that
⇣
D
p

⌘
= �1.

Proof. Assume for the sake of contradiction that there were only finitely many prime numbers such

that
⇣
D
p

⌘
= 1. By Corollary 6.9, there are only finitely many prime numbers such that

⇣
D
p

⌘
= 0.

Since the series
1X

i=1

⇣
D
pi

⌘

pi

converges, adding a finite number of terms gives us that the series

1X

i=1

�1

pi

converges, which is a contradiction to Theorem 8.13. Therefore there are infinitely many prime

numbers such that
⇣
D
p

⌘
= 1.

The proof that there are infinitely many prime numbers with
⇣
D
p

⌘
= �1 follows the same line of

arguments.

Definition 8.17. Let P denote the set of all prime numbers and A ⇢ P be any subset. Then the

limit

lim
s!1+

P
p2A p�s

P
p2P p�s

,

if it exists, is called the Dirichlet density of A.

Theorem 8.18. Let P1(D) denote the set of prime numbers such that
⇣
D
p

⌘
= 1, let P�1(D) denote

the set of prime numbers with
⇣
D
p

⌘
= �1. Then the Dirichlet densities of P1(D) and P�1(D) are both

1
2 .

Proof. See Serre [8] Chapter 6 for a proof.

Definition 8.19. Let A ⇢ P be any subset. For each n 2 N, denote An = {p 2 A : p  n} and

similarly Pn = {p 2 P : p  n}. Then the limit

lim
n!1

|An|
|Pn| ,

if it exists, is called the natural density of A.

Theorem 8.20. The natural densities of P1(D) and P�1(D) are both 1
2 .

Proof. See Serre [8] Chapter 6 for a proof.

Theorem 8.21. Let A ⇢ P be any subset. If the natural density of A exists, then the Dirichlet density

of A exists as well, and is equal to the natural density of A.

Proof. See Jun [5] Section 4 for a proof.

Remark 8.22. The converse is not necessarily true.

In order to visualize the asymptotic behavior of ⇡(x),⇡1(x), and ⇡�1(x), we wrote a program to

calculate those values for large values of x. Using D = �20 as before, the values are displayed in the

table below. The Python script can be found in the appendix.
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x 105 5 · 105 106 5 · 106 107

⇡(x) 9592 41538 78498 348513 664579

⇡1(x) 4773 20743 39140 174170 332142

⇡�1(x) 4817 20793 39356 174341 332435

8.5 Uniqueness of the Field

Proposition 8.23. Let D,D0 2 Z be discriminants of quadratic fields. If
�
D
n

�
=

⇣
D0

n

⌘
for all n 2 N,

then D = D0.

Proof. First we note that for all prime numbers p 2 N, we have

p | D ()
✓
D

p

◆
= 0 ()

✓
D0

p

◆
= 0 () p | D0,

so D and D0 have the same prime factors. We know that since D and D0 are discriminants of quadratic

fields, by Remark 5.10, if p is an odd prime number, then p2 - D. Combining this with the fact that

D and D0 have the same prime factors, for each odd prime number p, the same power of p divides

both D and D0. Now we claim that the same power of 2 divides both D and D0 as well. If
�
D
2

� 6= 0

then no positive powers of 2 divide either D,D0. If
�
D
2

�
= 0, then 2 | D and by Remark 5.10, we have

4 | D and D/4, D0/4 2 Z are both square free with residue 2 or 3 (mod 4). Suppose for the sake of

contradiction that D/4 ⌘ 2 (mod 4) and D0/4 ⌘ 3 (mod 4). Then since D and D0 have the same odd

prime factors and for each odd prime factor, the same power divides both D and D0, we must have

D = ±2D0. First suppose that D = 2D0. We know 8 is the discriminant of the field Q[
p
2] and by

Corollary 8.16, there are infinitely many prime numbers such that
⇣
8
p

⌘
= �1. Only finitely many of

these divide D, so choose p such that p - D and
⇣
8
p

⌘
= �1. Then

⇣
8
p

⌘
=

⇣
2
p

⌘⇣
4
p

⌘
=

⇣
2
p

⌘
and so

✓
D

p

◆
=

✓
2D0

p

◆
=

✓
2

p

◆✓
D0

p

◆
= �

✓
D

p

◆
.

Hence
⇣
D
p

⌘
= 0 but p - D which is a contradiction. Now suppose that D = �2D0. We know �8 is

the discriminant of the field Q[
p�2] and by Corollary 8.16, there exist infinitely many prime numbers

such that
⇣
�8
p

⌘
= �1. Choosing one such that p - D, we get

✓
D

p

◆
=

✓�2D0

p

◆
=

✓�2

p

◆✓
D0

p

◆
= �

✓
D

p

◆
.

Hence
⇣
D
p

⌘
= 0 which again is a contradiction. Therefore D/4 ⌘ D0/4 ⌘ 2 (mod 4) or D/4 ⌘ D0/4 ⌘

3 (mod 4).

Therefore for each prime number, the same power divides both D and D0 and hence |D| = |D0|.
So we need to show that D and D0 have the same sign. Suppose for the sake of contradiction

that D = �D0. We know �4 is the discriminant of Q[
p�1]. So by Corollary 8.16, there exist

infinitely many prime numbers such that
⇣
�4
p

⌘
= �1. Choose one which does not divide D. Then

⇣
�4
p

⌘
=

⇣
�1
p

⌘⇣
4
p

⌘
=

⇣
�1
p

⌘
and

✓
D

p

◆
=

✓
D0

p

◆
=

✓�D

p

◆
=

✓�1

p

◆✓
D

p

◆
= �

✓
D

p

◆
.

But
⇣
D
p

⌘
6= 0 which is a contradiction. Therefore D = D0.

19



The Class Number Formula for Quadratic Fields and Related Results Roy Zhao
Page 20/ 21

Proposition 8.24. Let (an)n2N be a bounded sequence in R. If there exists an c 2 R such that:

1X

n=1

an
ns

= 0

for all s > c, then an = 0 for all n 2 N.

Proof. Suppose for the sake of contradiction that there exists an n 2 N such that an 6= 0. Then let N

denote the smallest such index. Then
�����

1X

n=1

an
ns

����� =

�����

1X

n=N

an
ns

����� �
|aN |
N s

�
1X

n=N+1

M

ns
.

But
1

ns


Z n

n�1

1

xs
dx for any n > 1 and s > 1 and hence

�����

1X

n=1

an
ns

����� �
|aN |
N s

�M
1X

n=N+1

Z n

n�1

1

ns
ds =

|aN |
N s

�M

Z 1

N

1

xs
dx =

|aN |
N s

� M

(s� 1)N s�1
.

for all s > max(1, c) and hence let s0 =
MNt

|aN | + 1 where t 2 N is chosen such that t > 1 and

s0 > max(1, c). Then since s0 > 1, we have that
�����

1X

n=1

an
ns0

����� �
|aN |
N s0

� M

(s0 � 1)N s0�1
=

|aN |
N s0

� |aN |M
MNtN s0�1

=
|aN |
N s0


1� 1

t

�
> 0.

But since s0 > c, by assumption |P1
n=1 ann

�s0 | = 0 and hence this is a contradiction. Therefore

an = 0 for all n 2 N.

Corollary 8.25 (Uniqueness of the Field). If D,D0 2 Z are determinants of quadratic fields, and

L(s;D) = L(s;D0) for all s > 1, then D = D0.

Proof. Let an =
�
D
n

��
⇣
D0

n

⌘
which is bounded in magnitude by 2. Then we know that

P1
n=1 ann

�s =

L(s;D) � L(s;D0) = 0 for all s > 1. By the previous proposition, we know an = 0 for all n 2 N and

hence
�
D
n

�
=

⇣
D0

n

⌘
for all n 2 N. Therefore by Proposition 8.23, we have D = D0.

Corollary 8.26. If ⇣(s;D) = ⇣(s;D0) for all s > 1, then D = D0.

Proof. We know that ⇣(s;D) = ⇣(s)L(s;D) and ⇣(s) 6= 0 for all s > 1. Hence we can divide by ⇣(s)

to get L(s;D) = L(s;D0) for all s > 1 and the previous Corollary tells us D = D0.

9 Appendix

import math

de f l e g ( a , p ) :

r e turn mod(a , (p � 1)/2 , p )

de f prime (p ) :

i f x == 2 or x == 3 or x == 5 or x == 7 :

re turn True
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i f x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0 :

re turn Fal se

f o r i in range (2 , i n t (math . s q r t ( x )/6) + 2 ) :

i f x % (6 ⇤ i � 1) == 0 or x % (6 ⇤ i + 1) == 0 :

re turn Fal se

re turn True

de f run (x ) :

numP = 0

numP1 = 0

numP0 = 0

f o r i in range (2 , x ) :

i f prime ( i ) :

numP = numP + 1

i f l e g (�20 , i ) == 1 :

numP1 = numP1 + 1

e l i f 20 % p == 0 :

numP0 = numP0 + 1

pr in t numP, numP1, numP � numP1 � numP0
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