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Introduction

All algebras in this bachelor thesis assumed to be associative and unitary. As the title suggests,
our goal is to classify the quaternion algebras, i.e. central simple algebras of dimension 4, over
the field of rational numbers. To motivate this question we give an example which the reader
may already have encountered: the Hamilton quaternions. They are defined as

H := {t+ xi+ yj + zk | t, x, y, z ∈ R},

where i, j and k satisfy the relations

i2 = j2 = k2 = ijk = −1.

Endowed with an associative multiplication having 1 as neutral element and satisfying the above
relations they form a quaternion algebra over R. Stating the above relations is equivalent to
giving the relations

i2 = −1, j2 = −1, and ij = −ji = k.

In the first section of this thesis we will generalize the above example. Consider an arbitrary
field F with char(F ) 6= 2, nonzero elements a, b ∈ F× as well as an F -vector space A with basis
elements 1, i, j, k. We will show that there exists a unique F -bilinear associative multiplication
on A having 1 as neutral element and satisfying the relations

i2 = −a j2 = b, and ij = −ji = k.

This multiplication turns A into an F -algebra, which we denote by
(
a,b
F

)
. The algebra

(
a,b
F

)
is

in fact a quaternion algebra, and conversely any quaternion algebra over F is isomorphic to one
of the form

(
a,b
F

)
for some a, b ∈ F . In this notation the Hamilton quaternions can be written

as
(−1,−1

R
)
. One can also show that the matrix algebra Mat2×2(F ) is isomorphic to

( 1,1
F

)
.

This characterization allows us to show that every quaternion algebra is either isomorphic to
the matrix algebra or it is a division algebra. Furthermore the characterization gives us a very
“hands on” feel for quaternion algebras.

Given a quaternion algebra
(
a,b
F

)
we can define the map

nrd: A→ F, t+ xi+ yj + zk 7→ t2 − ax2 − by2 + abz2.

This map is called reduced norm of A and it can be seen as a homogeneous polynomial of degree
two in four variables. This polynomial yields a quadratic form on A seen as F -vector space. We
can also restrict nrd on A0 := span{i, j, k} and get a ternary quadratic form. The reduced norm
is a connecting element between the theory of quaternion algebras and the theory of quadratic
forms, which constitutes the main topic of section 2.

To each quadratic form Q over an F -vector space V we can associate an F -bilinear form T .
We will show that a change of the basis of V affects the determinant of the representation matrix
of T rescaling it by squares. Hence we will introduce the discriminant of a quadratic form as the
determinant modulo (F×)2.

We will define two equivalence relations on the set of quadratic forms: similarity and isometry.
Two quadratic forms over two F -vector spaces V and V ′ are said to be similar if they can be
“converted” in one another by a linear isomorphism and a scaling. If there is no scaling (or in
other words the scaling factor is 1), one speaks of isometric quadratic forms.
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These tools will allow us to prove the two main theorems of section 2. The first one states
that there are natural bijections:Quaternion algebras

over F up to
isomorphism

↔
 Ternary quadratic forms

over F with discriminant
1 ∈ F×/(F×)2 up to isometry

↔
Nondegenerate ternary

quadratic forms over
F up to similarity

 ,

given respectively by [A] 7→ [nrd|A0 ] and [Q] 7→ [Q]. The second theorem gives six equivalent
conditions about a quaternion algebra and the corresponding quadratic form. In particular it
states that a quaternion algebra A is a division algebra if and only if the corresponding reduced
norm nrd is isotropic if and only if the form nrd|A0 is anisotropic.

In section 3 we will introduce the reader to the p-adic numbers Qp and we will study the theory
of quadratic forms over Qp. We will show that for each prime p and for p =∞ (setting Qp := R)
there is a unique ternary anisotropic quadratic form over Qp, up to similarity. Combining this
with the two main results of section 2 we will get that, up to isomorphy, there is a unique division
quaternion algebra over each field Qp for p prime or p =∞.

Finally in section 4 we well proceed to classify the quaternion algebras over Q. Consider a
quaternion algebra A :=

(
a,b
Q
)
. For each p prime or p =∞ we consider the scalar extension

A⊗Q Qp ∼=
(a, b
Qp

)
.

From section 3 we know that for each p that A⊗Q Qp is either isomorphic to the matrix algebra
Mat2×2(Qp) or to a uniquely determined division quaternion algebra. We will introduce two
tools from number theory—the Legendre symbol and the Hilbert symbol—to show that the
ramification set of A, defined as

Ram(A) := {p prime or p =∞ | A⊗Q Qpis a division algebra},

is finite of even cardinality.
We will formulate (without proof) the Hasse-Minkowski theorem and prove a corollary, which

states that two quadratic forms are isometric over Q if and only if they are isometric over Qp for
every p, including p = ∞. We will also state (without proof) Dirichlet’s theorem on primes in
arithmetic progression, wich says that for coprime a and n ∈ Z with n 6= 0 there exist infinitely
many prime numbers p satisfying p ≡ a (modn).

These three results, as well as other small ones will allow us to prove the final theorem of this
thesis, stating that there are bijections{

Isomorphy classes of
quaternion algebras over Q

}
←→

{
Finite subsets of P
of even cardinality

}
←→

{
D ∈ Z>1 squarefree

}
.

given by
[A] 7→ Ram(A) and Σ 7→

∏
p∈Σ
p 6=∞

p

respectively. This will give us a complete classification of the quaternion algebras over the field
of rational numbers.

We will follow closely the book Quaternion algebras by John Voight ([Voi17]) for the theory of
quaternion algebras, as well as the bachelor thesis Der Satz von Hasse-Minkowski by Charlotte
Jergitsch ([Jer17]), which was also supervised by Prof. Dr. Richard Pink, and the book A Course
in Arithmetic by Jean-Pierre Serre ([Ser73]) for the theory of quadratic forms and the results
from number theory. Some other auxiliary literature will also be used.
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1 General results about algebras over a field

All rings in this thesis are associative and unitary, but not necessarily commutative.
We begin with some very basic general definitions and remarks on algebras. Fix a field F .

Definition 1.1. An F -algebra is an F -vector space (A,+, 0A) together with an F -bilinear mul-
tiplication map

· : A×A→ A,

and an element 1A such that (A,+, ·, 0A, 1A) is a ring.

Proposition 1.2. The above definition is equivalent to: A is a ring with a ring homomorphism

ϕ : F → Z(A),

where Z(A) is the center of A, i.e. the subring {x ∈ A | ∀y ∈ A : xy = yx}.

Given a nonzero F -algebra A we identify F with its image ϕ(F ) ⊂ Z(A).

Definition 1.3.
i) An isomorphism ϕ : A → B of F -algebras is an F -vector space isomorphism with the

additional property ∀x, y ∈ A : ϕ(xy) = ϕ(x)ϕ(y). In other words it is an F -vector space
isomorphism, which is also a ring isomorphism.

ii) An anti-isomorphism ϕ : A→ B of F -algebras is an F -vector space isomorphism with the
additional property ∀x, y ∈ A : ϕ(xy) = ϕ(y)ϕ(x).

Definition 1.4. Given an F -algebra A we define the opposite algebra Aop as the algebra with
the same underlying set, 0, 1, and addition, as well as with the multiplication α ·op β := β · α.
An algebra and its opposite algebra are naturally anti-isomorphic.

Definition 1.5. An F -algebra D is called a division algebra if:
i) D 6= 0,

ii) ∀a ∈ D ∀b ∈ D r {0} ∃x ∈ D : a = xb, and

iii) ∀a ∈ D ∀b ∈ D r {0} ∃y ∈ D : a = by.

Remark 1.6. An F -algebra D is a division algebra if and only if it is a division ring, i.e. if
D 6= 0 and D×=D r {0}.

Proof. First assume that D is a division algebra. Pick an element a ∈ Dr {0}. By definition of
division algebra there exists an element a′ ∈ D with a′a = 1. Thus D is a division ring.

Conversely assume that D is a division ring and pick elements a ∈ D and b ∈ D r {0}. By
setting x := ab−1 and y := b−1a the conditions in Def. 1.5 ii) and iii) are satisfied. �

Definition 1.7.
i) A nonzero F -algebra A whose only two-sided ideals are (0) and A, is called simple.

ii) An F -algebra A is said to be central if Z(A) = F .
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Lemma 1.8. Let A and B be F -algebras, with A simple, and ϕ : A → B be an F -algebra
homomorphism. Then ϕ is injective or it is the zero map.

Proof. The claim follows from the fact that ker(ϕ) is a two-sided ideal of A. �

We are now ready to define the main object of this thesis.

Definition 1.9. A quaternion algebra over a field F is a central simple F -algebra of dimension 4.

We now want to characterize quaternion algebras in terms of generators.

Proposition 1.10.
i) Let char(F ) 6= 2, let a, b ∈ F× and let A be a four-dimensional F -vector space with ba-

sis elements {1, i, j, k}. Then there exists a unique F -bilinear associative multiplication
A×A→ A satisfying:

∀α ∈ A : 1α = α, i2 = a, j2 = b, and ij = −ji = k.

Further this multiplication satisfies

k2 = −ab, ik = −ki = aj, and kj = −jk = bi.

This multiplication turns A into an F -algebra.

ii) Let char(F ) = 2, let a ∈ F, b ∈ F× and let A be a four-dimensional F -vector space with
basis elements {1, i, j, k}. Then there exists a unique F -bilinear associative multiplication
A×A→ A satisfying:

∀α ∈ A : 1α = α, i2 + i = a, j2 = b, and ij = j(i+ 1) = k.

Further this multiplication satisfies

k2 = ab, ki = (i+ 1)k = aj, and kj = jk + b = bi.

This multiplication turns A into an F -algebra.

Proof. Both statements are proven in the same way, therefore we only prove i). To prove the
existence we define a multiplication on A via the relations

∀α ∈ A : 1α := α, i2 := a, j2 := b, ij := k and ji := −k.

Since we require associativity we get k2 = (ij)2 = i(ji)j = −i2j2 = −ab. In a similar way we
can show ik = −ki = aj and kj = −jk = bi. Having defined the relations for the basis elements,
the multiplication extends uniquely to an F -bilinear multiplication on A. Since ∀α ∈ A : 1α = α,
the multiplication defines an F -algebra structure on A. �

Definition 1.11.
i) In the case char(F ) 6= 2 we denote the algebra from Prop. 1.10 i) by

(
a,b
F

)
.

ii) In the case char(F ) = 2 we denote the algebra from Prop. 1.10 ii) by
[
a,b
F

)
.

In both cases i and j are called the standard generators of the algebra.
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Proposition 1.12.
i) Let char(F ) 6= 2. Every algebra of the form

(
a,b
F

)
is a quaternion algebra. Conversely for

every quaternion algebra A there exist a, b ∈ F× such that A is isomorphic to
(
a,b
F

)
.

ii) Let char(F ) = 2. Every algebra of the form
[
a,b
F

)
is a quaternion algebra. Conversely for

every quaternion algebra A there exist a ∈ F, b ∈ F× such that A is isomorphic to
[
a,b
F

)
.

Example 1.13. We can use the above notation to describe the classical Hamilton quaternions:

H := {t+ xi+ yj + zk | t, x, y, z ∈ R, i2 = j2 = k2 = ijk = −1} =
(−1,−1

R

)
.

Example 1.14. The matrix algebra Mat2×2(F ) for char(F ) 6= 2 is isomorphic to ( 1,1
R ) via(1, 1

F

)
→ Mat2×2(F ), i 7→

(
1 0
0 −1

)
, j 7→

(
0 1
1 0

)
.

Since not all nonzero matrices are invertible, Mat2×2(F ) is not a division algebra.

Proof of Prop. 1.12. Since the goal of this thesis is to classify the quaternion algebras over Q, we
restrict ourselves to the proof of the case char(F ) 6= 2. First we consider the algebra A :=

(
a,b
F

)
.

It is clear that F ⊂ Z
(
(a,bF )

)
. Let α := t + xi + yj + zk ∈ Z

(
(a,bF )

)
. Since 2j and 2k are both

invertible we obtain:

0 = αi− iα = 2j(yi− az) ⇐⇒ yi− az = 0 ⇐⇒ y = z = 0, and
0 = αj − jα = 2xk ⇐⇒ x = 0.

Hence we have α ∈ F , which implies that
(
a,b
F

)
is central.

Now let I 6= (0) be a two-sided ideal of
(
a,b
F

)
. In order to show that I is equal to

(
a,b
F

)
it

suffices to show that I contains an element of F×. So let 0 6= α := t + xi + yj + zk ∈ I. If
x = y = z = 0 then t ∈ F× ∩ I and we are done, so assume that one of x, y, z is nonzero. By
multiplying α with i, j or k we can assume that t 6= 0. Using the invertibility of −2i,−2j, and
−2k we obtain:

αi− iα = −2i(yj + zk) ∈ I ⇒ yj + zk ∈ I ⇒ t+ xi = α− (yj + zk) ∈ I,
αj − jα = −2j(xi+ zk) ∈ I ⇒ xi+ zk ∈ I ⇒ t+ yj = α− (xi+ zk) ∈ I,
αk − kα = −2k(xi+ yj) ∈ I ⇒ xi+ yj ∈ I ⇒ t+ zk = α− (xi+ yj) ∈ I.

So −2t = α− (t+ xi)− (t+ yj)− (t+ zk) ∈ F× ∩ I and we are done.
Conversely let A be a quaternion algebra, i.e. a central simple F -algebra of dimension 4.

First we assume that A is a division algebra. We take an i ∈ A r F and consider the ring
F [i]. This is a commutative subring of the division ring A. The ring F [i] has finite dimension
as F -vector space and therefore it is a field. Since F [i] is commutative whereas A is not we
have F ( F [i] ( A, and from the multiplicativity of the degree of an extension of division
rings it follows that [F [i]/F ] = 2. Moreover F [i] is its own centralizer in A. Since char(F ) 6= 2
after replacing i by another element of F [i] r F we can assume without loss of generality that
a := i2 ∈ F . Consider the F [i]-linear map

ϕ : A→ A, α 7→ iαi−1
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(the conjugation with i). This is an endomorphism of the two-dimensional left F [i]-vector space
A. One can check by computation that ϕ2 = id, which implies that ϕ has two eigenvalues 1 and
−1 and therefore it is diagonalizable. From

ϕ(α) = iαi−1 = α ⇐⇒ iα = αi ⇐⇒ α ∈ F [i]

it follows that F [i] is the eigenspace associated to 1. We take now a j ∈ Ar F [i]. In particular
j lies in the eigenspace associated to −1 and hence iji−1 = −j ⇒ ij = −ji. From ij2 = j2i
it follows that j2 ∈ F [i], i.e. ∃b, c ∈ F : j2 = b + ic. If c 6= 0, so i = 1

c j
2 − b

c ∈ F [j] and thus
F [i] ( F [j], implying that F [j] = A, which is a contradiction by the noncommutativity of A. So
c = 0 and j2 = b ∈ F . We claim that {1, i, j, ij} is a basis of A over F . Indeed, let t, x, y, z ∈ F
such that t+ xi+ yj + zij = 0. By computing and using i2 = a, j2 = b and ij = −ji we obtain:

0 = i(αi+ iα) = 2a(t+ xi)⇒ t+ xi = 0,
0 = j(αj + jα) = 2b(t+ yj)⇒ t+ yj = 0,
0 = ij(αij + ijα) = −2ab(t+ zij)⇒ t+ zij = 0.

Hence
−2t = (t+ xi+ yj + zij)− (t+ xi)− (t+ yj)− (t+ zij) = 0,

which implies t = 0, hence xi = yj = zij = 0. Since i, j and ij are all nonzero, we have
x = y = z = 0, which implies the linear independence of 1, i, j and ij.

If A is not a division algebra, it has a nonzero proper left ideal, because by Rem. 1.6 we can
choose a nonunit α ∈ A, then the left ideal generated by α is a nontrivial left ideal of A. Let I
be a nonzero proper left ideal of A and let m := dimF (I). The operation of A on I corresponds
to an F -algebra homomorphism A → EndF (I), which is injective since A is simple. We know
from linear algebra that EndF (I) is isomorphic to Matm×m(F ) as F -vector space, and from the
injectivity it follows that m2 = dimF (Matm×m(F )) > dimF (A) = 4, and so m > 2. By arguing
in the same fashion with the quotient algebra A/I, which has dimension 4−m over F , we obtain
m 6 2, hence m = 2. Thus A is isomorphic to Mat2×2(F ) ∼=

( 1,1
F

)
. �

The proof of Prop. 1.12 yields the following proposition.

Proposition 1.15. For a quaternion algebra A over F the following are equivalent:
i) A ∼=

( 1,1
F

) ∼= Mat2×2(F ).

ii) A is not a division algebra.

Proof. The implication “i)⇒ ii)” follows directly from Rem. 1.6. The converse was shown in the
proof of Prop. 1.12. �

Let A be an F -algebra.

Definition 1.16. For a finite dimensional F -algebra A we define the algebra norm and the
algebra trace as

NmA/F : A→ F, α 7→ det(Tα), respectively
TrA/F : A→ F, α 7→ tr(Tα),

where Tα is the F -vector space endomorphism of A given by β 7→ αβ.
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Definition 1.17. An involution on A is an F -linear map

· : A→ A, α 7→ α

with
i) 1 = 1,

ii) ∀α ∈ A : α = α,

iii) ∀α, β ∈ A : αβ = βα.
The involution · is called standard if also
iv) ∀α ∈ A : αα ∈ F .

Proposition 1.18. Any F -algebra with an involution is isomorphic to its opposite algebra.

Proof. By linearity and property iii) of Def. 1.17 an involution defines a homomorphism A →
Aop, α→ α, and by ii) it is bijective. �

Lemma 1.19. Given a standard involution on A we have ∀α ∈ A : α+ α ∈ F .

Proof. For any α ∈ A we have α+ α = (α+ 1)(α+ 1)− αα− 1 ∈ F . �

Definition 1.20. Given a standard involution on A the reduced norm of α is the map

nrd: A→ F, α 7→ αα,

and the reduced trace of α is the map

trd: A→ F, α 7→ α+ α.

For α ∈ A we call the polynomial

X2 − trd(α)X + nrd(α) ∈ F [X]

the reduced characteristic polynomial of α.

Lemma 1.21. Given any standard involution on A (which induces a reduced norm and a reduced
trace), any α ∈ A is a root of its reduced characteristic polynomial.

Proof. For any α ∈ A we have:

α2 − trd(α)α+ nrd(α) = α2 − αα− αα+ αα = −αα+ αα = −αα+ αα = 0.

�

Proposition 1.22. Let K be a quadratic F -algebra (i.e. an F -algebra with dimF (K) = 2).
Then K is commutative and has a unique standard involution.
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Proof. Let α ∈ KrF . Since dimF (K) = 2 we can write K = F [α] and hence K is commutative.
Since 1 and α build a basis of K over F we can write α2 = tα− n for unique t, n ∈ F .

Assume that there is a standard involution on K and let ·̃ be any such. Then by Lemma 1.21
we have α2 = trd(α)α−nrd(α) and by uniqueness t = trd(α) = α+ α̃ and n = nrd(α) and hence
every standard involution must satisfy α̃ = t− α.

We can extend α 7→ t− α on K using F -linearity and get the map

· : K → K, x+ yα 7→ x+ y(t− α),

for any x, y ∈ F . By computing one can check that · satisfies the conditions in Def. 1.17 and
hence it defines the unique standard involution on K. �

Corollary 1.23. If A possesses a standard involution, then it is unique.

Proof. Let · be a standard involution on A and pick an arbitrary α ∈ ArF . By Lemma 1.21 we
have α2−trd(α)α+nrd(α) and hence dimF F [α] = 2. By the previous proposition the restriction
of · to F [α] is unique and since α is arbitrary the standard involution is unique on A as well. �

Corollary 1.24. Let char(F ) 6= 2. Any quaternion algebra A =
(
a,b
F

)
possesses a unique

standard involution. It is given by

α = t+ xi+ yj + zk 7→ α = t− xi− yj − zk,

and hence trd(α) = 2t and nrd(α) = t2 − ax2 − by2 + abz2.

Proof. By checking that the above defined map satisfies the axioms of a standard involution one
proves the existence; the uniqueness is given by Cor. 1.23. �

Proposition 1.25. Let A be a nontrivial F -algebra with a standard involution and α ∈ Ar{0}.
Then the following are equivalent:

i) α is not a left zero divisor.

ii) α is not a right zero divisor.

iii) nrd(α) 6= 0.

iv) α ∈ A×.

Proof. Suppose nrd(α) = αα = αα 6= 0 and pick β ∈ A with αβ = 0. Then nrd(α)β = ααβ = 0
and since nrd(α) ∈ F× we have β = 0. Conversely if α is not a left zero divisor we have
nrd(α) = αα 6= 0. This proves “i) ⇐⇒ iii)”; the equivalence “ii) ⇐⇒ iii)” can be proven
analogously.

Once again suppose that nrd(α) 6= 0. We have α α
nrd(α) = 1 and hence α ∈ A×. Finally

suppose that α ∈ A× and pick β ∈ A with αβ = 0. Then β = 1β = α−1αβ = 0 and hence α is
not a left zero divisor. �
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2 Quadratic forms and quadratic spaces

We introduce the reader to some basic theory of quadratic forms, which shall serve as foundation
for our further discussion of quaternion algebras.

Definition 2.1. A quadratic form on an F -vector space V is a map Q : V → F with
i) ∀λ ∈ F ∀x ∈ V : Q(λx) = λ2Q(x), and

ii) the map T : V × V → F, (x, y) 7→ Q(x+ y)−Q(x)−Q(y) is bilinear.
The pair (V,Q) is called quadratic space and T the (symmetric) bilinear form associated to Q.

Remark 2.2. Since for a quadratic form Q on V we have ∀x ∈ V : T (x, x) = 2Q(x), if
char(F ) 6= 2 we can uniquely determine Q by knowing T .

Let us assume that char(F ) 6= 2 and n := dimF (V ) <∞ and let B := (bi)16i6n be a basis of
V over F .

Definition 2.3. The symmetric n× n-matrix

MB(T ) = (T (bi, bj))i,j =: (mij)i,j

is called the Gram matrix of Q in the basis B.

By identifying V with Fn (endowed with the standard basis (ei)16i6n) via the isomorphism
ϕ : V → Fn, bi 7→ ei we get:

∀x, y ∈ V : T (x, y) = ϕ(x)TMB(T )ϕ(y)

as well as
∀x =

n∑
i=1

xibi ∈ V : Q(x) = 1
2ϕ(x)TMB(T )ϕ(x) = 1

2

n∑
i,j=1

mijxixj .

This yields a homogeneous polynomial of degree 2:

fQ,B(X1, . . . , Xn) = 1
2

n∑
i,j=1

mijXiXj ∈ F [X1 . . . Xn].

Definition 2.4. The polynomial fQ,B is called polynomial representation of Q in the basis B.

We consider another basis B′ := (b′i)16i6n with basis change matrix MBB′ . Then the Gram
matrix of Q with respect to B′ is given by MB′(T ) = MT

BB′MB(T )MBB′ . Since det(MB′(T )) =
det(MBB′)2 det(MB(T )) we notice that the determinant of the Gram matrix of Q is uniquely
determined up to squares.

Definition 2.5. The discriminant of Q is defined as

disc(Q) := det(M) (mod(F×)2) ∈ F/(F×)2,

and is independent of the choice of the basis.
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Remark 2.6. For a given homogeneous polynomial f of degree two in n variables and any
given basis B of V there exists precisely one quadratic form Q on V such that f = fQ,B . More
explicitly, given f =

∑n
i,j=1 aijXiXj (without loss of generality ∀i, j : aij = aji) and a basis

B := (bi)16i6n of V the form

Q
( n∑
i=1

xibi

)
:= 1

2f(x1, . . . , xn)

satisfies fQ,B = f .

Definition 2.7.
i) Two quadratic spaces (V,Q) and (V ′, Q′) are said to be similar if there exists a pair (f, u),

where f : V → V ′ is an F -vector space isomorphism and u ∈ F× satisfying

∀v ∈ V : Q′(f(x)) = uQ(x).

We denote the similarity by Q ∼ Q′.

ii) Two quadratic forms Q : V → F and Q′ : V ′ → F are said to be isometric if they are
similar with similarity factor u = 1. We denote the isometry by Q ∼= Q′. We call the
isomorphism f an isometry.

iii) In the special case (V,Q) = (V ′, Q′) the isometry is called an autometry. The set O(V ) of
all autometries of V is a subgroup of AutF (V ).

If the underlying spaces are understood we speak simply of similar, respectively isometric
quadratic forms. From the definition it follows directly that both similarity and isometry of
quadratic forms are equivalence relations.

Proposition 2.8. Let (V,Q) and (V ′, Q′) be similar quadratic spaces, (f, u) as in Def. 2.7, and
B,B′ two bases of V and V ′ respectively. Then disc(Q′) = un disc(Q) ∈ F/(F×)2.

Proof. The proof can be done with similar matrix manipulations as in Def. 2.3 – 2.5. �

Definition 2.9.
i) We say that x, y ∈ V are orthogonal with respect to the quadratic form Q if T (x, y) = 0.

ii) For a subset S ⊂ V the set S⊥ := {x ∈ V | ∀y ∈ S : T (x, y) = 0} is a subspace of V called
the orthogonal complement of S.

iii) A basis of the quadratic space (V,Q) is said to be orthogonal, if the basis elements are
pairwise orthogonal with respect to Q.

Definition 2.10.
i) The orthogonal sum of two quadratic spaces (V ′, Q′) and (V ′′, Q′′) is the quadratic space

(V,Q), where
Q : V := V ′ ⊕ V ′′ → F, x′ + x′′ 7→ Q(x) +Q(x′).

We denote the quadratic form Q by Q′ ⊥ Q′′ and the orthogonal direct sum of the two
subspaces V ′ and V ′ by V ′ k V ′′.

ii) For a ∈ F we write 〈a〉 for the quadratic form Q(x) = ax2 on F .
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iii) More generally for a1, . . . , an ∈ F we define 〈a1, . . . , an〉 := 〈a1〉 ⊥ . . . ⊥ 〈an〉.

Remark 2.11. In the notation from Def. 2.10 iii) we have:
i) ∀c ∈ F : 〈a1, . . . , an〉 ∼ c〈a1, . . . , an〉 = 〈ca1, . . . , can〉.

ii) ∀c ∈ F, ∀1 6 i 6 n : 〈a1, . . . , c
2ai, . . . , an〉 ∼= 〈a1, . . . , an〉.

iii) ∀σ ∈ Sn : 〈a1, . . . , an〉 ∼= 〈aσ1, . . . , aσn〉.

Definition 2.12.
i) The subspace rad(V ) := V ⊥ is called the radical of V . By choosing a subspace W comple-

mentary to rad(V ) we obtain a (non unique) orthogonal decomposition

V = rad(V ) kW, Q = 0 ⊥ Q|W .

ii) The rank of the quadratic form Q, denoted by rank(Q), is defined as the codimension of
rad(V ).

Proposition 2.13. Let A be an F -algebra with a standard involution. Then:
i) The reduced norm nrd defines a quadratic form on A and the associated bilinear form is

given by T (α, β) = trd(αβ).

ii) Two elements α and β of A are orthogonal if and only if trd(αβ) = αβ + αβ = 0.

iii) If 1, α, β ∈ A are linearly independent, then they are pairwise orthogonal if and only if
αβ = −βα.

Proof.
i) We check the axioms of a quadratic form. In the first place for any α ∈ A and for any
λ ∈ F we have nrd(λα) = λαλα = λ2αα = λ2nrd(α). For any α, β ∈ A we define
T (α, β) := nrd(α + β) − nrd(α) − nrd(β). This is clearly symmetric. By computing we
obtain:

T (α, β) = (α+ β)(α+ β)− αα− ββ
= αα+ αβ + βα+ ββ − αα− ββ

= αβ + αβ = trd(αβ)

By symmetry it suffices to prove the linearity of T only in the first component. For any
α, β, γ ∈ A and for any λ, µ ∈ F we have:

T (λα+ µβ, γ) = (λα+ µβ)γ + γ(λα+ µβ)
= λαγ + λγα+ µβγ + µγβ

= λT (α, γ) + µT (β, γ),

which proves the bilinearity.

ii) follows directly from i).
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iii) Using the computations from i) we obtain:

αβ + βα = α(β + β) + β(α+ α)− αβ − βα
= α trd(β) + β trd(α)− trd(αβ)
= α trd(β1) + β trd(α1)− trd(αβ).

Assume that 1, α, β are linearly independent. If they are pairwise orthogonal then αβ +
βα = 0. Conversely, if αβ + βα = 0 by linear independence we obtain trd(α) = trd(β) =
trd(αβ) = 0 and hence 1, α, β are pairwise orthogonal. �

Definition 2.14. A quadratic form Q : V → F is called nondegenerate if for all x ∈ V r {0}
the homomorphism Tx : V → F, y 7→ T (x, y) is nonzero, or equivalently if the homomorphism
V → V ∗, x 7→ Tx is injective. Otherwise Q is called degenerate.

Proposition 2.15. Let Q be a quadratic form on an n-dimensional space V . The following are
equivalent:

i) Q is nondegenerate.

ii) rad(V ) = 0.

iii) rank(Q) = n.

iv) disc(V ) 6= 0.

Proof. The equivalence of the first three statements follows directly from the definitions, hence
we prove only “i) ⇐⇒ iv)”. Choose a basis B of V and identify V with Fn endowed with the
standard basis. Let MB(T ) be the Gram matrix of Q in the basis B. Then:

Q is nondegenerate ⇐⇒ ∀x ∈ V : (∀y ∈ V : T (x, y) = 0⇒ x = 0)
⇐⇒ ∀x ∈ Fn : (∀y ∈ Fn : xTMB(T )y = 0⇒ x = 0)
⇐⇒ det(MB(T )) 6= 0
⇐⇒ disc(Q) 6= 0.

�

Example 2.16. The reduced norm of a quaternion algebra
(
a,b
F

)
with char(F ) 6= 2, as seen

in Cor. 1.24, defines a nondegenerate quadratic form of rank 4, which is isometric to the form
〈1,−a,−b, ab〉 on F 4.

Proposition 2.17. Let (V,Q) be a quadratic space and let v ∈ V with Q(v) 6= 0. Then we get
an orthogonal decomposition V = span{v}k span{v}⊥, Q = Q|span{v} ⊥ Q|span{v}⊥ .

Proof. For every x ∈ V we consider the decomposition

x = T (v, x)
T (v, v) v +

(
x− T (v, x)

T (v, v)v
)
.

Then we have T
(
v, x − T (v,x)

T (v,v)v
)

= 0 and hence x − T (v,x)
T (v,v)v ∈ span{v}⊥. Geometrically we

can interpret the second summand as the projection of x to span{v}. Since Q(v) 6= 0 we have
span{v} ∩ span{v}⊥ = {0}, which implies V = span{v} ⊕ span{v}⊥ and by definition of the
orthogonal complement we have V = span{v}k span{v}⊥. �
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Proposition 2.18. Every quadratic space (V,Q) possesses an orthogonal basis. This implies that
every quadratic form Q has a representation of the type fQ,B(X1, . . . , Xn) = a1X

2
1 +· · · anX2

n with
ai ∈ F for some basis B, or in other words for every quadratic form Q there exist a1, . . . , an ∈ F
such that Q is isometric to the form 〈a1, . . . , an〉.

Proof. The claim follows from Prop. 2.17 by induction over dimF (V ) and by taking into account
that every basis of a degenerate quadratic space is orthogonal. �

Definition 2.19. Let Q : V → F be a quadratic form.
i) We say that Q represents an element a ∈ F if there exists a x ∈ V such that Q(x) = a.

ii) The quadratic form Q (or the quadratic space (V,Q)) is said to be isotropic if it represents
0 ∈ F nontrivially, i.e. if there exists a x ∈ V r {0} such that Q(x) = 0.

iii) The quadratic form Q (or the quadratic space (V,Q)) is said to be universal if it represents
every element of F .

Remark 2.20.
i) A degenerate quadratic form is always isotropic.

ii) If Q and Q′ are two similar quadratic forms, then Q is isotropic if and only if Q′ is.

iii) Two isometric quadratic forms represent the same elements of F , so if Q and Q′ are two
isometric quadratic forms, then Q is universal if and only if Q′ is.

Example 2.21. Given a two-dimensional F -vector space V and a basis (e1, e2) the quadratic
form given by f(X,Y ) = XY (as explained in Rem. 2.6) is called hyperbolic plane. It is clearly
universal, and the Gram matrix of the quadratic form with respect to the basis (e1, e2) is given
by

M :=
(

0 1
1 0

)
.

Equivalently a quadratic form Q on V is a hyperbolic plane if there exists a basis (e1, e2) of V
with T (e1, e1) = T (e2, e2) = 0 and T (e1, e2) = 1.

Proposition 2.22. A nondegenerate quadratic form Q is isotropic if and only if it is the or-
thogonal sum of a hyperbolic plane H and a nondegenerate quadratic form Q′.

Proof. We follow the proof from Ch. 2, Lemma 2.1 of [Cas08].
“⇐” Clear since the hyperbolic plane is isotropic.

“⇒” Since Q is isotropic there exists an element e1 ∈ V with Q(e1) = 0 (and hence T (e1, e1) =
0). Since Q is nondegenerate, there exists x ∈ V with T (e1, x) 6= 0. By rescaling x we can
assume that T (e1, x) = 1. By putting e2 := x−Q(x)(e1) we get:

T (e2, e2) = T (x, x)− 2Q(x)T (x, e1) +Q(x)2T (e1, e1) = 0 and
T (e1, e2) = T (e1, x)−Q(x)T (e1, e1) = 1.

H := Q|span{e1,e2} and Q′ := Q|{e1,e2}⊥ do the job. �

Corollary 2.23. Nondegenerate isotropic quadratic forms are universal.
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Proof. A nondegenerate isotropic quadratic form contains a hyperbolic plane, which is universal.
�

Corollary 2.24. Let Q : V → F be an n-dimensional nondegenerate quadratic form, let a ∈ F×.
Then the following are equivalent:

i) Q represents a.

ii) Q is isometric to Q′ ⊥ 〈a〉 for some n− 1-dimensional nondegenerate quadratic form Q′.

iii) The quadratic form Q ⊥ 〈−a〉 represents 0 nontrivially.

Proof. It is clear that ii) implies both i) and iii). If Q represents a, so there exists x ∈ V with
Q(x) = a. Define Q′ := Q|span{x}⊥ . Since Q|span{x} is isometric to 〈a〉 we get the isometry
Q ∼= Q′ ⊥ 〈a〉. Thus i) implies ii). Finally we prove “iii) ⇒ ii)”. Let Q ⊥ 〈−a〉 represent 0
nontrivially. Then there exist x ∈ V and y ∈ F with Q(x)− ay2 = 0. If y = 0, then x 6= 0 and
hence Q is isotropic, thus by Cor. 2.23 Q represents a. If y 6= 0 we have Q(xy ) = a and we are
done. �

Now, similarly as in Prop. 2.17, for any v ∈ V with Q(v) 6= 0 we consider the endomorphism

τv : V → V, x 7→ x− 2T (v, x)
T (v, v) v.

Lemma 2.25. The endomorphism τv satisfies the following properties:
i) ∀x ∈ V : Q(τv(x)) = Q(x).

ii) ∀x ∈ V : τv(τv(x)) = x.

iii) ∀x ∈ span{v} : τv(x) = −x.

iv) ∀x ∈ span{v}⊥ : τv(x) = x.

In particular the first two statements imply that τv is an autometry of V .

Proof. The proof can be done by simple calculation. �

Lemma 2.26. For any x, y ∈ V with Q(x) = Q(y) 6= 0 there exists an autometry τ of V with
τ(x) = y.

Proof. Since Q(x) = Q(y) implies T (x, x) = T (y, y) we have

Q(x− y) +Q(x+ y) = Q(x− y + x+ y)−Q(x− y + x+ y) +Q(x− y) +Q(x+ y)
= Q(2x)− T (x− y, x+ y)
= 4Q(x)− T (x, x) + T (y, y)
= 4Q(x) 6= 0,

which implies that Q(x− y) and Q(x+ y) cannot be both equal zero. If Q(x− y) 6= 0 then

τx−y(x) = x− 2T (x, x− y)
T (x− y, x− y) (x− y) = x− 2T (x, x− y)

2T (x, x− y) (x− y) = y
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and by setting τ := τx−y we are done. Otherwise we have Q(x+ y) 6= 0 and

τx+y(x) = x− 2T (x, x+ y)
T (x+ y, x+ y) (x+ y) = x− 2T (x, x+ y)

2T (x, x+ y) (x+ y) = −y.

By the previous lemma τyτx+y(x) = τy(−y) = y and we conclude by setting τ := τyτx+y. �

Remark 2.27. We can interpret τv geometrically as the reflection with respect to the hyperplane
orthogonal to v. In the special case V = Rn and Q(x) = 1

2 ||x||
2 it is called Householder reflection;

the reader may have encountered it in linear algebra or numerical analysis.

With these both lemmas we can prove the following important theorem of the theory of
quadratic forms.

Theorem 2.28 (Witt). Let (V,Q) and (V ′, Q′) be two isometric quadratic spaces with orthogonal
decompositions W1 k W2 and W ′1 k W ′2, with nondegenerate subspaces W1 and W ′1. Then the
following two equivalent statements hold:

i) (Witt cancellation) If W1 and W ′1 are isometric, then W2 and W ′2 are isometric as well.

ii) (Witt extension) If g : W1 → W ′1 is an isometry, then there exists an isometry f : V → V ′

with f |W1 = g and f(W2) = W ′2.

Proof. We follow the proof of Satz 3.1 of [Kne02]. In the first place let us prove the equivalence
of the two statements.
“⇒” Let g : W1 → W ′1 be an isometry. By i) there is an isometry h : W2 → W ′2. Then the

isometry f := g ⊕ h : W1 kW2 →W ′1 kW ′2 is an extension of g.

“⇐” Let g : W1 → W ′1 be an isometry. By ii) there is an extension f of g with f(W2) = W ′2.
Then h := f |W2 is an isometry W2 →W ′2.

We prove ii) using induction on m := dimF (W1) = dimF (W ′1). For m = 0 there is nothing to
show. If m > 0 chose an orthogonal basis (bi)16i6m for W1. Thus we can write

V = W1 kW2 =
m−1
ë

i=1
Fbi k Fbm kW2.

By induction hypothesis there exists an isometry f̃ : V → V ′ satisfying ∀1 6 i 6 m− 1: f̃(bi) =
g(bi). We define b̃m := f̃−1(g(bm)

)
. Since f−1 ◦ g is an autometry of V it preserves or-

thogonality, which implies that b̃m is orthogonal to bi for all i < m. Moreover we have
Q(b̃m) = Q

(
f−1(g(bm)

))
= Q(bm) 6= 0 since span{bm} is a regular subspace of V . By Lemma

2.26 there is a τ ∈ {τbm−b̃m
, τb̃m

τbm+b̃m
} sending bm to b̃m. By orthogonality τ fixes bi for any

i < m. We conclude by setting f := f̃ ◦ τ . This is in fact an isometry V → V ′ and its restriction
on W1 is by construction equal to g. �

Now we can apply the theory of quadratic forms which we developed in this section to prove
three theorems which build the first step towards the classification of the rational quaternion
algebras.

Let A be a quaternion algebra over F . Then we define the subspace of pure quaternions
A0 := {α ∈ A | trd(A) = 0} = {1}⊥. By Ex. 2.16 and Thm. 2.28 i) the restriction of the reduced
norm on A0 defines a quadratic form in three variables, which is isometric to 〈−a,−b, ab〉 for a
and b in F× such that A ∼=

(
a,b
F

)
.
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Theorem 2.29. Let A and A′ be two quaternion algebras over F . According to Cor. 1.24 and
Prop. 2.13 both algebras with their respective reduced norms are quadratic spaces. Then the
following are equivalent:

i) A and A′ are isomorphic as F -algebras.

ii) A and A′op are isomorphic as F -algebras.

iii) A and A′ are isometric as quadratic spaces.

iv) A0 and A′0 are isometric as quadratic spaces.
If f : A0 → A′0 is an isometry, then f extends uniquely to either an isomorphism f : A→ A′ or
to an isomorphism f : A→ A′op of F -algebras.

Proof. The equivalence between i) and ii) follows from the fact that any any algebra with a
standard involution is isomorphic to its opposite algebra. The equivalence between iii) and iv)
follows directly from Thm. 2.28.

We prove “i) ⇒ iii)”. Let f : A→ A′ be an F -algebra isomorphism. From Cor. 1.23 we know
that the standard involutions (and hence the reduced norms) on A and on A′ are unique. Let us
denote both standard involutions by · and both reduced norms by nrd. Since α′ 7→ f

(
f−1(α′)

)
defines a standard involution on A′ as well, we have ∀α′ ∈ A′ : α′ = f

(
f−1(α′)

)
. So we have

∀α ∈ A : nrd(f(α)) = f(α)f(α) = f(α)f(α) = f(αα) = f(nrd(α)) = nrd(α),

where the last equality follows from the fact that nrd(α) ∈ F . So f is an isometry of quadratic
spaces.

Finally we prove “iv)⇒ i)”. Let f : A0 → A′0 be an isometry. Write A =
(
a,b
F

)
with a, b ∈ F×

and standard generators i, j, as in Def. 1.11. Since f(i) ∈ A′0, we have f(i) = −f(i) and hence

f(i)2 = −f(i)f(i) = −nrd(f(i)) = −nrd(i) = a.

Analogously we have f(j)2 = b. Since i, j and ij are pairwise orthogonal and isometries
preserve orthogonality, f(i), f(j) and f(ij) are pairwise orthogonal as well. In particular by
Prop. 2.13 iii) we get f(i)f(j) = −f(j)f(i). Moreover from trd

(
f(i)f(j)f(i)

)
= a trd(f(j)) = 0

and trd
(
f(i)f(j)f(j)

)
= −b trd(f(i)) = 0 it follows that f(i)f(j) is orthogonal to both f(i) and

f(j). Since dimF (A′0) = 3 there exists an u ∈ F× with f(ij) = uf(i)f(j). By taking reduced
norms we get

nrd(i)nrd(j) = nrd(ij) = nrd(f(ij)) = nrd(uf(i)f(j))
= u2nrd(f(i))nrd(f(j)) = u2nrd(i)nrd(j),

which implies that u = ±1. If u = 1 we have f(ij) = f(i)f(j) and f extends to an algebra
isomorphism A → A′ via 1 7→ 1. Otherwise f(ij) = −f(i)f(j) and f extends to an algebra
isomorphism A→ A′op via 1 7→ 1. By postcomposing it with the standard involution A′op → A′

we get an F -algebra isomorphism A→ A′. �

Theorem 2.30. There is a bijection: Quaternion algebras
over F up to
isomorphism

↔
 Ternary quadratic forms

over F with discriminant
1 ∈ F×/(F×)2 up to isometry

↔
 Nondegenerate ternary

quadratic forms over
F up to similarity
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Proof. We begin with the proof of the first bijection. From the equivalence “i) ⇐⇒ iv)” of
Thm. 2.29 the map A 7→ nrd|A0 yields a well-defined injective map [A] 7→ [nrd|A0 ] between
isomorphy and isometry classes. In order to prove the surjectivity of this map we consider
a quadratic space (Q,V ) with disc(Q) = 1 ∈ F×/(F×)2. By choosing an orthogonal basis
according to Prop. 2.18 we obtain an isometry Q ∼= 〈−a,−b, c〉 for some a, b, c ∈ F with abc ∈
(F×)2 (and following c

ab ∈ (F×)2). Rescaling the third basis vector with Rem. 2.11 ii) yields

Q ∼= 〈−a,−b, c〉 =
〈
−a,−b, ab c

ab

〉
∼= 〈−a,−b, ab〉 ∼= nrd|A0 ,

with A =
(
a,b
F

)
, so the map is surjective.

Next we prove the second bijection. The natural map sending the isometry class of a quadratic
form to the similarity class of the quadratic form is clearly well-defined. To prove the surjectivity
we need to prove that every nondegenerate ternary quadratic form is similar to some form with
discriminant 1. Let Q be a nondegenerate ternary quadratic form. By choosing an orthogonal
basis and using Rem. 2.11 we obtain

Q ∼= 〈a, b, c〉 ∼ abc〈a, b, c〉 = 〈a2bc, ab2c, abc2〉 ∼= 〈bc, ac, ab〉,

with the last quadratic form having discriminant 1 ∈ F×/(F×)2. This proves the surjectivity.
In order to prove the injectivity we consider two quadratic spaces (Q,V ) and (Q′, V ′) with

discriminant 1 ∈ F×/(F×)2 whose isometry classes map to the same similarity class (hence Q and
Q′ are similar). We want to prove that they are in fact isometric. By the definition of similarity
there exists a u ∈ F× and an isomorphism f : V → V ′ with ∀x ∈ V : Q′(f(x)) = uQ(x). By
Prop. 2.8 we have 1 = disc(Q′) = u3 disc(Q) = udisc(Q) ∈ F×/(F×)2 and following u ∈ (F×)2.
We write u = c2 for a c ∈ F× and obtain

Q′(c−1f(x)) = c−2Q′(f(x)) = u−1uQ(x) = Q(x).

So Q and Q′ are isometric via c−1f and hence the map is injective (and bijective). �

Lemma 2.31. Let a ∈ F× and let i 6∈ F with i2 = a and consider the F -algebra K := F [i],
which is isomorphic to F [X]/(X2 − a) as a ring.

i) If a is a square in F then K is isomorphic to F × F as a ring, thus it is not a field.

ii) If a is not a square in F then K is a quadratic field extension of F and is therefore equal
to its own fraction field F (i).

Proof. If a is a square in F we choose a square root of a in F and denote it by
√
a. We consider

the ring homomorphism ϕ : F [X] → F × F, f 7→
(
f(
√
a), f(−

√
a)
)
. It is surjective as for any

(b1, b2) ∈ F × F the polynomial f(X) = 1
2
√
a
(b1 − b2)X + 1

2 (b1 + b2) is a preimage of (b1, b2)
under ϕ. The ideal (X2− a) is contained in the kernel of ϕ and by the universal property of the
factor rings there exists a well-defined surjective homomorphism ϕ : F [X]/(X2 − a) → F × F ,
which is also an F -linear map between two-dimensional F -vector spaces. Dimensions being the
reason for it, ϕ is bijective and hence a ring isomorphism, which proves i).

If a is not a square in F , the polynomial X2 − a is irreducible in F [X] and hence K ∼=
F [X]/(X2 − 1) is a field, which proves ii). �
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Lemma 2.32. Let K be as in the previous lemma. Then for any α = x+ iy ∈ K we have:

NmK/F (x+ iy) = x2 − ay2.

Proof. K is a two dimensional vector space with basis B := (1, i). Since (x+ iy)1 = x+ iy and
(x+ iy)i = ay+ ix the transformation matrix of Tα : K → K, β 7→ αβ in the basis B is given by

MBB(Tα) =
(
x ay
y x

)
.

So NmK/F (x+ iy) = det(MBB(Tα)) = x2 − ay2. �

Theorem 2.33. Let A =
(
a,b
F

)
be a quaternion algebra over F with standard generators i and

j. Then the following are equivalent:
i) A ∼=

( 1,1
F

) ∼= Mat2×2(F ).

ii) A is not a division algebra.

iii) The quadratic form nrd ∼= 〈1,−a,−b, ab〉 is isotropic.

iv) The quadratic form nrd|A0
∼= 〈−a,−b, ab〉 is isotropic.

v) The binary form 〈a, b〉 represents 1.

vi) b ∈ NmK/F (K×), where K := F [i].

Proof. The equivalence between i) and ii) is the statement of Prop. 1.15. The equivalence between
ii) and iii) follows from Rem. 1.6 and Prop. 1.25.

We prove “iii) ⇒ iv)”. Choose α ∈ A r {0} with nrd(α) = 0. If trd(α) = 0 we are done.
Otherwise chose β ∈ Ar {0} orthogonal to 1 and α, satisfying trd(αβ) = 0. The last condition
tells us that αβ lies in A0. Since αβ + αβ = (α + α)β 6= 0 we get that αβ and αβ cannot be
both zero. If αβ 6= 0 we are done, since nrd(αβ) = nrd(α) nrd(β) = 0. Otherwise we observe
that trd(αβ) = trd

(
αβ
)

= trd(βα) = 0 and hence αβ lies in A0, too. Then, just as above, we
conclude by saying that nrd(αβ) = 0.

Next we prove “iv)⇒ v)”. Let α = xi+yj+zk ∈ A0 with nrd(α) = −ax2−by2 +abz2 = 0. If
z = 0, the form 〈a, b〉 is isotropic and hence universal by Cor. 2.23, so it represents 1. Otherwise
we have a( yaz )2 + b( xbz )2 = 1 and we are done.

Now we prove “v)⇒ vi)”. Assume that the form 〈a, b〉 represents 1. So there exist x and y in
F with ax2+by2 = 1. If y 6= 0, then b = ( 1

y )2−a(xy )2 = NmK/F ( 1
y−i

x
y ) ∈ NmK/F (K×). If y = 0,

then a =
( 1
x

)2 a square in F . We fix a square root
√
a ∈ F . Then NmK/F

(
(1+ b

4 )− i√
a
(1− b

4 )
)

= b

and we are done. (In fact in the case that a is a square in F the map NmK/F is surjective.)
Finally we prove “vi)⇒ iii)”. If b ∈ NmK/F (K×), there exist x and y in F with b = x2−ay2.

Then nrd(x+ iy + j) = x2 − ay2 − b = 0 and hence nrd is isotropic. �

Definition 2.34. A quaternion algebra which satisfies these equivalent conditions is said to be
split.
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3 Quaternion algebras over the fields R and Qp

The reader may already be familiar with the p-adic numbers Qp and the p-adic integers Zp.
Before we apply the theory of the p-adic numbers to rational quaternion algebras we want to
give a very quick recap of the basic definitions and some basic results. For a more detailed
introduction to the p-adic numbers we refer the reader to Ch. II of [Ser73] or to Section 2 of
[Jer17].

Given a prime number p, we consider the so-called p-adic valuation

vp : Q→ R, x 7→ vp(x) :=
{
∞ if x = 0,
n for x = pn ab , with a, b, n ∈ Z, ab 6= 0, and p - ab

.

The p-adic valuation yields an absolute value, called the p-adic absolute value, denoted by |·|p
on Q and given by |x|p := p−vp(x), with the convention p−∞ := 0. The p-adic numbers Qp arise
as a completion of Q, seen as a metric space, with respect to the p-adic absolute value.

It is conventional to allow p to be not only a prime number, but also∞. In the above notation
we denote the usual absolute value on Q by |·|∞. The field of the real numbers R can be seen
as a completion of Q with respect to |·|∞ and therefore it is sometimes denoted by Q∞. In both
cases the absolute value |·|p on Q extends isometrically to an absolute value on Qp, which we
denote in the same way.

Finally, there is the trivial absolute value on Q: it is given by |0|tr = 0 and |x|tr = 1 for x 6= 0.
The field of rational numbers is a complete metric space with respect to the metric induced by
this absolute value and is therefore its own completion.

According to Ostrowski’s theorem, any nontrivial absolute value onQ is equivalent to precisely
one of the absolute values |·|p for p a prime number or p =∞, thus the only nontrivial completions
of Q are given by Qp for p a prime number or p =∞. Since the proof of this theorem would lead
us too far away from the actual goal of this thesis, we refer the interested reader to the proof of
Thm. 3.1.3 of [Gou97].

Throughout this section we will assume p 6= ∞, unless stated otherwise. For prime p we
define the p-adic integers Zp as the closed unit ball in Qp. i.e.

Zp := {x ∈ Qp | |x|p 6 1} = {x ∈ Qp | vp(x) > 0}

One can show that Zp is a subring of the field Qp and that

Z×p = {x ∈ Qp | |x|p = 1} = {x ∈ Qp | vp(x) = 0}.

We call Z×p the group of p-adic units. It will be useful to know that for a prime p every element
x of Q×p can be written uniquely as x = upn for an integer n ∈ Z and a p-adic unit u. The
exponent n is given by the extension of the p-adic valuation to Qp, so n = vp(x).

Furthermore Zp is a local ring with maximal ideal pZp and the residue field Zp/pZp is iso-
morphic to the finite field Fp = Z/pZ (one shows this applying the homomorphism theorem to
the composition Z ↪→ Zp � Zp/pZp).

The goal of this section is to prove that over any field Qp (whereby we allow the possibility
p =∞) there exist, up to isomorphy, only two quaternion algebras: Mat2×2(Qp) and a uniquely
determined division algebra. Before we can prove this theorem we need some preparatory results
about quadratic forms over finite fields and over the p-adic integers.
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Proposition 3.1. Let k be a finite field of odd cardinality and let Q be a quadratic form over a
k-vector space V .

i) If rank(Q) > 2 then Q represents all elements of k×.

ii) If rank(Q) > 3 then Q represents all elements of k (i.e. it is universal).

Proof. We follow the proof of Prop. 4, Ch. IV of [Ser73]. We denote by q the cardinality of k.
The subgroup (k×)2 of nonzero squares has index 2 in k× (this can be easily proven applying
the homomorphism theorem to k× → k×, x 7→ x2), hence |(k×)2| = q−1

2 and |k2| = q+1
2 .

Let a, b, c ∈ k×. We show that the equation ax2 + by2 = c has a solution (x, y) 6= (0, 0). We
define the sets A := {ax2 | x ∈ k} and B := {c− by2 | y ∈ k}. Since they both have cardinality
q+1

2 they have a nonempty intersection. Let z := ax2 = c− by2 ∈ A∩B for some x, y ∈ k. Then
(x, y) is a nonzero solution of the above equation.

i) If Q : V → k is a quadratic form of rank n > 2 there exists an isometry Q ∼= 〈a, b〉 ⊥ Q′

for some a, b ∈ k× and some quadratic form Q′ : kn−2 → k. For any c ∈ k× by the above
argument we can find x, y ∈ k× with ax2 + by2 = c. Thus (〈a, b〉 ⊥ Q′)(x, y, 0, . . . , 0) = c,
hence Q represents c.

ii) If Q : V → k is a quadratic form of rank n > 3 we can write Q ∼= 〈a, b,−c〉 ⊥ Q′ for some
a, b, c ∈ k× and some quadratic form Q′ : kn−3 → k. By the above argument we can find
x, y ∈ k× with ax2 +by2 = c. Thus 〈a, b,−c〉(x, y, 1) is isotropic and by Cor. 2.23 universal.
Hence Q ∼= 〈a, b,−c〉 ⊥ Q′ is universal, too. �

Corollary 3.2. Every nondegenerate quadratic form Q of rank n > 0 over a finite field k is
isometric to one of the form 〈1, . . . , 1, d〉 on kn, where d = disc(Q) ∈ k×/(k×)2.

Proof. We prove the statement per induction over n. For n = 1 there is nothing to show. Now
let n > 1. By the previous lemma Q represents 1 and therefore by Cor. 2.24 it is isometric to
〈1〉 ⊥ Q′ for some nondegenerate form Q′ of rank n − 1 and disc(Q′) = disc(Q). The claim
follows directly from the induction hypothesis. �

At this point we want to make a generalization of the content of Section 2 and define a
quadratic form not only over a field but also over the ring of the p-adic integers Zp. We give
here only the basic results which we want to apply to our discussion of quaternion algebras and
refer the reader to Ch. 1, §6 of [Sch85] or Ch. I and V of [Kne02] for a more detailed discussion
of quadratic form over rings.

Definition 3.3. Given a free Zp-moduleM we define a quadratic form onM as a map Q : M →
Zp with

i) ∀λ ∈ Zp ∀x ∈M : Q(λx) = λ2Q(x), and

ii) the map T : M ×M → Zp, (x, y) 7→ Q(x+ y)−Q(x)−Q(y) is Zp-bilinear.
The pair (M,Q) is called quadratic module and T the symmetric bilinear form associated to Q.
If p 6= 2, then 2 ∈ Z×p and as in section 2 we can uniquely determine Q by knowing T , as in
Rem. 2.2.

23



Let us assume thatM is free of finite rank n. SinceM is free we can carry over many concepts
from the theory of quadratic forms over fields from Section 2, such as similarity, isometry and
orthogonality, defining them in the same way over Zp. Nondegeneracy is defined in a similar way
as over a field.

Definition 3.4. Denote by M∗ := HomZp
(M,Zp) the dual module of M . A quadratic form

Q : M → Zp is called nondegenerate if the homomorphism M → M∗, x 7→ (Tx : y 7→ T (x, y)) is
an isomorphism (and not only injective as in Def. 2.14). Otherwise Q is called degenerate.

In the case p 6= 2 (since we need 2 to be a unit) we can represent the quadratic form via its
Gram matrix, as done with quadratic forms over fields in section 2. Moreover we can diagonalize
the quadratic form, as shown in the next proposition.

Proposition 3.5. For p 6= 2 any nondegenerate quadratic module (M,Q) over Zp possesses an
orthogonal basis.

Proof. We follow the proof of Thm. 6.4 from Ch. 1 of [Sch85]. We first prove that there exists
v ∈ M with Q(v) ∈ Z×p . Fix a basis B := (bi)16i6n of M . Since Q is nondegenerate, the
determinant of the Gram matrix MB(T ) lies in Z×p . In particular, expanding along the first row
we get det(MB(T )) =

∑n
i=1 diT (b1, bi) ∈ Z×p with di ∈ Zp, hence there must exist a 1 6 j 6 n

with T (b1, bj) ∈ Z×p . Since T (b1, bj) = Q(b1 + bj)−Q(b1)−Q(bj), one of Q(b1 + bj), Q(b1) and
Q(bj) must be a unit. Set v equal to b1 +bj , b1 or bj , accordingly and consider the decomposition

x = T (v, x)
T (v, v) v +

(
x− T (v, x)

T (v, v)v
)
,

which is well-defined since T (v, v) = 2Q(v) ∈ Z×p . The proof is concluded in the same way as
the proofs of Prop. 2.17 and 2.18. �

An important theorem of the theory of the p-adic integers is Hensel’s lemma. Its inductive
proof can be seen as an analog of Newton’s method for finding roots of a polynomial over the
p-adics.

Theorem 3.6 (Hensel’s lemma). Let f ∈ Zp[X1, . . . Xm] and let ∂f
∂Xi

be the formal partial
derivative of f with respect to Xi, for every 1 6 i 6 n. Suppose that there exist integers j, k and
n with 1 6 j 6 n and 0 6 2k < n, as well as x = (xi)16i6m ∈ Zmp with

f(x) ≡ 0 (mod pn) and vp
(
∂f

∂Xj
(x)
)

= k.

Then there exists a root y of f in Zmp with y ≡ x (mod pn−k).

Proof. For this proof we refer the reader to Ch. II, Thm. 1 of [Ser73]. �

Corollary 3.7. Let p 6= 2 and let x, z ∈ Zp with p - x and z ≡ x2 (mod p). Then z is a square
in Zp.

Proof. Let f := X2 − z. We have f(x) ≡ 0 (mod p) and vp
(
f ′(x)

)
= vp(2x) = 0. Applying

Hensel’s lemma we get a root y ∈ Zp of f , which is a square root of z. �
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Corollary 3.8. Let x ∈ Q×2 and write x = u2n for unique u ∈ Z×2 and n > 0. Then x ∈ (Q×2 )2

if and only if n is even and u ≡ 1 (mod 8).

Proof. We follow the proof from Satz. 2.36 from [Jer17]. If x is a square, say x = y2 for some
y ∈ Q×2 , then n = v2(x) = v2(y2) = 2v2(y), hence n is even. Write y = v2 n

2 with uniquely
determined v ∈ Z×2 . By assumption we have u = v2. Since 2 - u and 2 - v we can write u = 2s+1
and v = 2t+1 with s, t ∈ Z2. Then we have 2s+1 = (2t+1)2 = 4t2 +2t+1, hence s = 2t(t+1).
Since either 2 | t or 2 | (t+ 1) we get 4 | s, thus u ≡ 1 (mod 8).

Conversely, assume that n is even and u ≡ 1 (mod 8). Let f := X2 − u ∈ Z2[X]. We have
f(3) ≡ 0 (mod 23) and v2

(
f ′(3)

)
= 1. By Hensel’s Lemma there exists an element v ∈ Z2 with

v2 = u. Thus x = (v2 n
2 )2 is a square. �

Let Q : M → Zp be a quadratic form on a free Zp-module M . Consider the reduction
· : Zp → Fp. This yields a well-defined reduction map · : M → M := M/pM . Furthermore M is
in a natural way an Fp-vector space. Let y and y′ in M with y = y′, i.e. there exists an element
z ∈M with y′ = y + pz. Then we have:

Q(y′) = Q(y + pz) = T (y, pz) +Q(y) +Q(pz) = p T (y, z) +Q(y) + p2 Q(z) = Q(y).

Definition 3.9. The reduction of Q modulo p is the quadratic form

Q := Q (mod p) : M → Fp, x 7→ Q(x) := Q(y),

where y ∈ M is an arbitrary element satisfying y = x. By the above computation this is
well-defined.

Having defined the reduction of a quadratic form we can prove another corollary of Hensel’s
lemma.

Corollary 3.10. Let p 6= 2 and Q : M → Zp be a quadratic form over Zp.
i) Q is nondegenerate if and only the reduction Q is.

ii) If Q is nondegenerate, then Q is isotropic if and only if Q is.

Proof. Let m be the rank of M . By Prop. 3.5 we can restrict ourselves to the case M = Zmp and
Q = 〈a1, . . . , am〉 for some ai ∈ Zp.

i) We have: Q is nondegenerate ⇐⇒ a1 · · · am ∈ Z×p
⇐⇒ ∀1 6 i 6 m : ai ∈ Z×p
⇐⇒ ∀1 6 i 6 m : ai 6= 0
⇐⇒ Q = 〈a1, . . . , am〉 is nondegenerate.

ii) Note that showing that Q is isotropic is equivalent to finding a nontrivial zero of the
polynomial f =

∑m
i=1 aiX

2
i . Similarly, showing that Q is isotropic is equivalent to finding

a nontrivial zero in (Fp)m of the reduced polynomial f .
Assume that Q is isotropic. Then there exists x = (xi)16i6m ∈ Zmp with f(x) = 0.
Multiplying x by max16i6m|xi|p we can assume that x 6= 0. So we have found a notrivial
zero of f , namely x, hence Q is isotropic.
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Conversely, assume that there exists 0 6= x = (xi)16i6m ∈ (Fp)m with f(x) = 0. We can
lift x to an element x = (xi)16i6m of Zmp satisfying f(x) ≡ 0 (mod p). Since x 6= 0 there
exists 1 6 j 6 m with p - xj . Since Q is nondegenerate we have ∀ 1 6 i 6 m : p - ai. Then

vp

(
∂f

∂Xj
(x)
)

= vp(2ajxj) = 0,

and applying Hensel’s lemma we find y ∈ (Zp)m with f(y) = 0, satisfying y ≡ x (mod p).
In particular y 6= 0 and thus Q is isotropic. �

Proposition 3.11. Let p 6= 2. Two nondegenerate quadratic forms Q : M → Zp and Q′ : M ′ →
Zp over Zp are isometric if and only if they reductions modulo p are.

Proof. Assume that Q and Q′ are isometric. Then there exists an isomorphism f : M → M ′

satisfying ∀x ∈ M : Q′(f(x)) = Q(x). The isomorphism f reduces to an isomorphism f : M →
M ′, which satisfies

∀x ∈M : Q′
(
f(x)

)
= Q′

(
f(y)

)
= Q′(f(y)) = Q(y) = Q(y) = Q(x),

where y ∈M is an arbitrary element with y = x.
Conversely, assume that Q and Q′ are isometric. Choose bases B of M and B′ of M ′. We

denote the respective Gram matrices by C and C ′. By isometry modulo p there exists a matrix
U ∈ GLn(Zp) with UTC ′U ≡ C (mod p).
Claim. There exists a sequence of matrices (Uk)k>1 in GLn(Zp) satisfying:

i) UTk C ′Uk ≡ C (mod p2k−1), and

ii) Uk+1 ≡ Uk (mod p2k−1).
Proof of Claim. We set U1 := U , which by definition satisfies i). Assume that Uk is constructed for
some k > 1 and set r := 2k−1. By i) there exists a matrix B ∈ Matn×n with UTk C ′Uk−C = prB.
Since C and C ′ are symmetric, B is symmetric as well. We set Uk+1 := Uk+prA for some matrix
A ∈ Matn×n(Zp). This matrix satisfies ii). Computing and using the symmetry of C ′ we obtain:

UTk+1C
′Uk+1 − C = (Uk + prA)TC ′(Uk + prA)− C

= UTk C
′Uk − C + UTk C

′prA+ prATC ′Uk + p2rA2

= pr(B + (UTk C ′A) + (UTk C ′A)T ) + p2rA2.

Setting A := − 1
2 (UTk C ′)−1B we get UTk+1C

′Uk+1 − C ≡ 0 (mod p2r), which proves i). �

By ii) and completeness of Zp the sequence (Uk)k>1 converges to a matrix Û ∈ Matn×n(Zp).
Furthermore, from ii) and det(U1) ∈ Z×p it follows that for all k > 1: det(Uk) ∈ Z×p , hence
Û ∈ GLn(Zp). Finally from i) it follows that ÛTC ′Û = C, thus Q and Q′ are isometric. �

Proposition 3.12. Let p 6= 2. Then the quotient group Q×p /(Q×p )2 has order 4 and is represented
by the classes of 1, e, p and ep, where e ∈ Z×p is any element which reduces to a nonsquare modulo
p.
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Proof. Any element x ∈ Q×p can be written uniquely as x = up2k+l with integers k ∈ Z and
l ∈ {0, 1} and u ∈ Z×p . Then clearly x ≡ upl (mod(Q×p )2). Fix an element e ∈ Z×p r (Z×p )2. We
want to show that u is congruent to either 1 or e (mod(Q×p )2).

Once more we denote by · the reduction Zp → Fp. Since [F×p : (F×p )2] = 2 we can write F×p as
a disjoint union of (F×p )2 and e(F×p )2. Thus u(F×p )2 = eε(F×p )2 for some ε ∈ {0, 1}. That is, there
exists y ∈ Z×p such that u = eεy2, or in other words u ≡ eεy2 (mod p). So ue−ε ≡ y2 (mod p)
and by Cor. 3.7 ue−ε is a square in Zp. Thus u is congruent to eε (mod(Q×p )2). �

Proposition 3.13. For every p, including p =∞, there exists precisely one anisotropic ternary
quadratic form over Qp, up to similarity.

Proof. We first prove the proposition for odd p. We show that the form 〈1,−e,−p〉 is anisotropic.
Suppose that there exist x, y, z ∈ Qp not all equal zero with x2− ey2− pz2 = 0. Multiplying x, y
and z by max{|x|p, |y|p, |z|p} we may assume that they all lie in Zp and of least one of them lies in
Z×p . Reducing modulo p we obtain x2 ≡ ey2 (mod p). If p - y, then y ∈ Z×p and e ≡ (xy )2 (mod p)
which is a contradiction to the definition of e. So p | y, which implies p | x and z ∈ Z×p . Then we
have 1 = vp(pz2) = vp(x2 − ey2) > 2, which is a contradiction. Thus 〈1,−e,−p〉 is anisotropic.

To show the uniqueness let Q be an anisotropic (hence nondegenerate) ternary quadratic form
over Qp and choose a′, b′, c′ such that Q ∼= 〈a′,−b′,−c′〉. By Rem. 2.11 multiplying a′, b′ and c′ by
even powers of p doesn’t affect the isometry, so we can assume that vp(a′), vp(b′), vp(c′) ∈ {0, 1}.
Claim. There exist b, c ∈ Z×p with vp(b) = 0 and vp(c) = 1 such that Q ∼= 〈a′,−b′,−c′〉 ∼
〈1,−b,−c〉
Proof of Claim.

• If vp(a′) = vp(b′) = vp(c′), we set b := b′

a′ and c := c′

a′ .

• If two of the valuations are equal 0 and the other one is equal 1 by permuting we can
assume that vp(a′) = vp(b′) = 0 and vp(c′) = 1. Then set b := b′

a′ and c := c′

a′ .

• If one of the valuations is equal 0 and the other two are equal 1 by permuting we can
assume that vp(a′) = vp(b′) = 1 and vp(c′) = 0. Then set b := b′

a′ and c := c′p2

a′ .
In all three cases we get 〈a′,−b′,−c′〉 ∼ 〈1,−b,−c〉 with vp(b) = 0 and vp(c) ∈ {0, 1}.
We consider the form 〈1,−b,−c〉 as quadratic form Z3

p → Zp. If vp(c) = 0 then the form
〈1,−b,−c〉 (mod p) : Z3

p → Fp is nondegenerate. By Prop. 3.1 it is isotropic, and by Cor. 3.10
〈1,−b,−c〉 (and hence Q) is isotropic too, which is a contradiction. So vp(c) = 1. �

By Prop. 3.12 we can reduce the discussion to the case b ∈ {1, e} and c ∈ {p, ep}. If b = 1 the
form 〈1,−b,−c〉 contains a hyperbolic plane and therefore it is isotropic, which is a contradiction.
So b = e. Since by Rem. 2.11, Cor. 3.2 and Prop. 3.11

〈1,−e,−ep〉 ∼ 〈e,−e2,−e2p〉 ∼= 〈e,−1,−p〉 ∼= 〈1,−e,−p〉,

we can assume that c = p, and hence we have shown that Q is similar to the form 〈1,−e,−p〉.
In the case p = 2 one possibility is to argue in a similar fashion as for odd p with the form

〈1,−5,−2〉. We refer the reader for this proof to Prop. 1.6 of [Che10]. Alternatively one can use
the Hilbert symbol, which we will introduce in section 4, to prove that this form is anisotropic
and then show that every anisotropic ternary form over Q2 is similar to 〈1,−5,−2〉. Since
[Q×2 : (Q×2 )2] = 8 (see Lemma 3.6 of [Jer17]) this is in fact a finite problem.
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Another possibility is to work with the quadratic form given by the polynomial X2 +XY +
Y 2 + 2Z2 ∈ Q2[X,Y, Z]. However this would require some results from the theory of quadratic
forms over fields of characteristic 2, since in the proof we need to reduce the form modulo 2,
getting a form over F2. These results were not treated in this thesis, but an overview of the
theory can be found in Ch. 6 of [Voi17] or in Sect. 7 of [EKM08]. The proof of the proposition
for the form given by X2 +XY + Y 2 + 2Z2 can be found in Prop. 12.4.2 of [Voi17].

Finally we consider the case p = ∞. The form 〈1, 1, 1〉 is clearly anisotropic over R. Now
let Q be a ternary anisotropic quadratic form over R and chose a, b, c ∈ R with Q ∼= 〈a, b, c〉.
Since R×/(R×)2 = {1,−1} we can assume that a, b, c ∈ {1,−1}. Since Q is anisotropic we have
a = b = c, thus in either case Q is similar to 〈1, 1, 1〉. �

Theorem 3.14. For any p prime number or p =∞ there is a unique division quaternion algebra
over Qp, up to isomorphy.

i) For prime p it is given by
(
e,p
Qp

)
, where e ∈ Z×p is an arbitrary element that reduces to a

nonsquare modulo p.

ii) For p = 2 it is given by
( 5,2
Q2

)
.

iii) For p =∞ it is given by the Hamilton quaternions H =
( 1,1

R
)
.

Proof. The statement follows directly from Prop. 3.13, Thm. 2.30 and from the equivalence
“ii)⇐⇒ iv)” of Thm. 2.33. �
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4 Quaternion algebras over Q

The goal of this section—and of this thesis—is to classify the rational quaternion algebras up
to isomorphism. We need to use some tools from number theory, such as the Legendre symbol,
the Hilbert norm residue symbol and the theorems connected with them, Dirichlet’s theorem on
arithmetic progressions, the Hasse-Minkowski theorem about rational quadratic forms, as well
as the main result of the previous section.

Definition 4.1. Given an odd prime p and an integer a ∈ Z we define the Legendre symbol as

(
a

p

)
:=


1 if p - a and a is congruent to a square (mod p),
0 if p | a,
−1 if p - a and a is not congruent to a square (mod p).

If
(
a
p

)
= 1 we call a a quadratic residue modulo p and if

(
a
p

)
= −1 we call a a quadratic nonresidue

modulo p. Clearly if a and b are congruent modulo p, their Legendre symbols will be equal, so
we can see the Legendre symbol as a map Fp → {−1, 0, 1}. Since Zp/pZp ∼= Fp we can extend
the Legendre symbol to all p-adic integers Zp, defining the Legendre symbol of a ∈ Zp via its
congruence class modulo p.

Proposition 4.2. The Legendre symbol is multiplicative, i.e.

∀p odd prime, ∀a, b ∈ Zp :
(
ab

p

)
=
(
a

p

)(
b

p

)
.

Proof. We consider several cases:
• If p divides a or b, then it divides ab as well and the statement follows.

• If both a and b are quadratic residues modulo p, say a ≡ x2 (mod p) and b ≡ y2 (mod p),
then ab ≡ (xy)2 (mod p) and therefore it is a quadratic residue as well. So the product of
two quadratic residues is again a quadratic residue.

• Conversely assume that both a and ab are quadratic residues, say a ≡ x2 (mod p) and
ab ≡ z2 (mod p). Then b ≡

(
z
x

)2 (mod p) a quadratic residue. This proves indirectly that
the product of a quadratic residue and a quadratic nonresidue is a quadratic nonresidue.

• Finally we claim that the product of two quadratic nonresidues is a quadratic residue. We
argue directly over the finite field Fp. Let a ∈ Fp be a nonsquare and consider the unit
group

F×p = {1, 2, . . . , p− 1} = {a, 2a, . . . , (p− 1)a}.

By the previous case we know that the product of a and a square is a nonsquare and since
p is odd we know that there are exactly p−1

2 squares in F×p . Hence, cardinality being the
reason for it, the product of a and any of p−1

2 nonsquares is a square, and since a is an
arbitrary nonsquare we are done. �

From now on let P be the set {p ∈ Z>0 | p is prime} ∪ {∞}.
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Definition 4.3. Given p ∈ P and two elements a, b ∈ Q×p we define the Hilbert norm residue
symbol as

(a, b)p :=
{

1 if Z2 − aX2 − bY 2 = 0 possesses a nontrivial solution (z, x, y) ∈ Q3
p,

−1 otherwise.

Proposition 4.4. For any p ∈ P and any a, b ∈ Q×p the following are equivalent:
i) (a, b)p = 1.

ii) The binary form 〈a, b〉 over Qp represents 1.

iii) The quaternion algebra
(
a,b
Qp

)
is isomorphic to the matrix algebra Mat2×2(Qp).

Proof. The equivalence “i)⇐⇒ iii)” follows from Cor. 2.24:

(a, b)p = 1 ⇐⇒ The form 〈1,−a,−b〉 is isotropic.
⇐⇒ The form 〈−1, a, b〉 ∼= 〈a, b〉 ⊥ 〈−1〉 is isotropic.
⇐⇒ 〈a, b〉 represents 1.

The equivalence “ii) ⇐⇒ iii)” was already stated and proven for an arbitrary field F of charac-
teristic 6= 2 in Thm. 2.33. �

Proposition 4.5. For any p ∈ P the Hilbert symbol defines a symmetric, bimultiplicative map-
ping on the equivalence classes modulo (Q×p )2, i.e. for any a, b, c ∈ Q×p we have the following:

i) (a, b)p = (b, a)p.

ii) (a, bc2)p = (a, b)p.

iii) (a, bc)p = (a, b)p(a, c)p.
Using these relations to determine all the values of the Hilbert symbol it suffices to explicitly

give only the following values:
iv) In the case p =∞ the values are given by

(1, 1)p = (1,−1)p = (−1, 1)p = 1 and (−1,−1)p = −1.

v) For an odd prime p and any p-adic units u, v ∈ Z×p we have

(p, p)p = (−1)
p−1

2 , (p, u)p =
(
u

p

)
, (u, v)p = 1.

vi) For p = 2 and any 2-adic units u, v ∈ Z×2 we have

(2, 2)p = 1, (2, u)p = (−1)
u2−1

8 , (u, v)p = (−1)
u−1

2
v−1

2 ,

where for any a ∈ Z2 we define (−1)a as (−1)a (mod 2).
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Proof. We will only give a sketch of the proof of this proposition, referring the reader to Prop. 3.5
and Satz 3.8 of [Jer17] or to Satz 9.6.2, Satz 9.6.3 and Lemma 9.6.5 of [Sch07] for a complete
proof.

The statements i) and ii) follow immediately from the definition of the Hilbert symbol. To
show the multiplicativity there are various ways, but the most direct one is to compute all the
values of the Hilbert symbol. In the case the case p = ∞ there are 4 values to compute, in the
case that p is an odd prime there are 42 = 16 values to compute (as seen in Prop. 3.12 the factor
group Q×p /(Q×p )2 consists of 4 elements) and in the case p = 2 there are 82 = 64 to compute
(since the factor group Q×2 /(Q×p )2 consists of 8 elements, see Lemma 3.6 in [Jer17]). Using the
symmetry of the Hilbert symbol one actually has to compute only the half of those values.

After having computed all the values of the Hilbert symbol and having set up the table for
all the values the (bi)multiplicativity and the values in iv), v) and vi) follow.

In the case p =∞ it is clear that the values from iv) are sufficient to compute all other values,
since a nonzero real number is either a square or the product of −1 with a square.

Given p 6= ∞, and a, b ∈ Q×p we can write a = upm and b = vpm for unique m,n ∈ Z and
u, v ∈ Z×p . Since by i) we can rescale a and b by squares, we can assume that m,n ∈ {0, 1}. By
multiplicativity we have

(pu, v) = (p, v)(u, v) and (pu, pv) = (p, p)(u, p)(p, v)(u, v),

hence the values computed in v) and vi) are sufficient to compute all the values of the Hilbert
symbol over Qp. �

Corollary 4.6. Let a, b ∈ Q. Then for all but possibly finitely many p ∈ P we have (a, b)p = 1.

Proof. Since we can multiply both a and b by squares, we can assume that a, b ∈ Z. We know
that for all primes p that do not divide 2ab we have (a, b)p = 1. Since ab (and hence 2ab) has
only finitely many prime factors we can conclude. �

Proposition 4.7 (Law of quadratic reciprocity).

i) Given two disctinct odd primes p and q we have:
(
p
q

)(
q
p

)
= (−1) p−1

2
q−1

2 .

ii) (First supplement) For any odd prime p we have:
(−1
p

)
= (−1) p−1

2 .

iii) (Second supplement) For any odd prime p we have:
( 2
p

)
= (−1) p2−1

8 .

Proof. There are many different ways to prove this classical proposition from number theory.
We refer the reader to the one found in Ch. I, Thm. 4 and 5 of [Ser73]. �

Proposition 4.8 (Law of Hilbert reciprocity). For any a, b ∈ Q× we have∏′

p∈P
(a, b)p = 1.
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Proof. We want to use the the law of quadratic reciprocity to prove Hilbert’s reciprocity law.
The two laws are actually equivalent, and the proof of the law of quadratic reciprocity follows
very easily from Hilbert reciprocity using Prop. 4.5 iv), v) and vi).

So we assume the law of quadratic reciprocity. Let a, b ∈ Q×. Multiplying a and b by squares
without loss of generality we can assume that a and b lie in Z. The product

∏′
p∈P (a, b)p is

well-defined since all but possibly finitely many factors are equal 1, by Cor. 4.6.
Writing a = q0 · · · qm and b = r0 · · · rn with q0, r0 ∈ {+1,−1}, primes qi and ri for i > 1 and

using the bimultiplicativity of the Hilbert symbol we obtain∏′

p∈P
(a, b)p =

m∏
i=0

n∏
j=0

∏′

p∈P
(qi, rj)p,

so it suffices to prove the proposition only for the case that a and b are primes or −1 (since if
a or b is equal 1, then all the Hilbert symbols are equal 1, too). By symmetry we can restrict
ourselves to the following 7 different cases:

• a = b = −1,

• a = −1, b = q for an odd prime q,

• a = −1, b = 2,

• a = 2, b = q for an odd prime q.

• a = b = 2

• a = b = q for an odd prime q, and

• a = q, b = r for distinct odd primes q and r.
We show only the last case, the one where the law of quadratic reciprocity is required. All other
cases follow in an analogous way directly from Prop. 4.5. If q and r are distinct odd primes we
have:

(q, r)p =


1 if p 6= 2, q, r(
r
q

)
if p = q(

q
r

)
if p = r

(−1) q−1
2

r−1
2 if p = 2

.

Then
∏′

p∈P (q, r)p = 1 follows directly from the law of quadratic reciprocity. �

Theorem 4.9 (Dirichlet’s theorem on arithmetic progressions). Given a, n ∈ Z coprime with
n 6= 0 there are infinitely many primes p with p ≡ a (modn).

Proof. For its long proof, which would lead us too far away from the goal of this bachelor’s thesis,
we refer the reader to Ch. VI of [Ser73]. �

Dirichlet’s theorem is needed as an intermediate step in the proof of the Hasse-Minkowski
theorem, which we will state below, as well as in the proof of our main theorem, as we will see.

Let V be a finitely dimensional Q-vector space, n := dimQ(V ), and p ∈ P . Consider the
scalar extension Vp := Qp ⊗Q V . This is in a natural way an n-dimensional Qp-vector space.
Every basis B := (bi)16i6n of V over Q yields a basis Bp := (bp,i)16i6n := (1 ⊗ bi)16i6n of Vp
over Qp.

32



Definition 4.10. For V, n, p,B and B′ as above consider a quadratic form Q : V → Q and the
polynomial representation fQ,B ∈ Q[X1, . . . , Xn] ⊂ Qp[X1, . . . , Xn] of Q in the basis B (see
Def. 2.4). We define the extension of Q on Vp as the unique quadratic form Qp : Vp → Qp
satisfying fQp,Bp

= fQ,B . This is well-defined by Rem. 2.6.

Theorem 4.11 (Hasse-Minkowski). Let Q be a rational quadratic form. Then Q is isotropic if
and only if the extensions Qp are isotropic for every p ∈ P .

Proof. This theorem is the main goal of [Jer17]; we therefore refer the reader to its proof in this
thesis (see Satz 5.1). �

Corollary 4.12. Let Q and Q′ be two rational nondegenerate quadratic forms of the same rank.
Then they are isometric if and only for every p ∈ P their extensions Qp and Q′p are.

Proof. If Q and Q′ are isometric we can extend the isometry over Q to an isometry over Qp and
so Qp and Q′p are isometric for every p ∈ P , which proves one direction. We prove the converse
by induction on n := rank(Q) = rank(Q′). If n = 0, there is nothing to show, so assume n > 1.

Assume that the extensions Qp and Q′p are isometric for every p ∈ P . Since Q is nonzero
we can choose an element a ∈ Q× represented by Q. Then a is represented by Qp for all
p and by isometry also by Q′p for all p. From Cor. 2.24 it follows that for every p the form
〈−a〉 ⊥ Q′p

∼=
(
〈−a〉 ⊥ Q′

)
p
is isotropic. Applying the Hasse-Minkowski theorem and Cor. 2.24

we get that Q′ represents a.
Applying one last time Cor. 2.24 we can write Q ∼= 〈a〉 ⊥ Q̂ and Q′ ∼= 〈a〉 ⊥ Q̂′ for some

forms Q̂ and Q̂′ of rank n− 1. By assumption the forms

Qp ∼=
(
〈a〉 ⊥ Q̂

)
p
∼= 〈a〉 ⊥ Q̂p and Q′p ∼=

(
〈a〉 ⊥ Q̂′

)
p
∼= 〈a〉 ⊥ Q̂′p

are isometric, and from Witt’s theorem (Thm. 2.28) it follows that Q̂p and Q̂′p are isometric.
By the induction hypothesis Q̂ and Q̂′ are isometric, which implies that Q and Q′ are isometric,
concluding the proof. �

We are now ready to state and prove our main theorem. Let A = (a,bQ ) be a rational quaternion
algebra. For all p ∈ P we consider the scalar extension

A⊗Q Qp ∼=
(a, b
Qp

)
.

As seen in the previous section for each p there are only two possibilities, up to isomorphy, for
the quaternion algebra A⊗Q Qp, namely Mat2×2(Qp) or a uniquely determined division algebra.
If the first case occurs we say that A is split at p, otherwise we say that A is nonsplit or ramified
at p. We denote the set of all p’s at which A ramifies—the so-called ramification set—by

Ram(A) := {p prime or p =∞ | A⊗Q Qp is a division algebra}.

Theorem 4.13. There is a bijection:{
Isomorphy classes of

quaternion algebras over Q

}
←→

{
Finite subsets of P
of even cardinality

}
←→

{
D ∈ Z>1 squarefree

}
.
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The maps are given by
f : [A] 7→ Ram(A) and g : Σ 7→

∏
p∈Σ
p 6=∞

p

respectively.

Proof. The well-definedness and the injectivity of g are immediate. For any squarefree integer
a > 1 with prime factorization a = p1 · · · pn for n > 0 and distinct prime numbers pi we define

Σa :=
{
{p1, . . . , pn}, if n is even
{p1, . . . , pn,∞}, if n is odd

.

Clearly g(Σa) = a, thus g is bijective.
The well-definedness of f follows directly from Cor. 4.6 and Prop. 4.8. We prove the in-

jectivity, which is a consequence of Cor. 4.12. Let A and A′ are two quaternion algebras with
Ram(A) = Ram(A′) and denote by nrd and nrd′ the reduced norms on A and A′, respectively.
We observe that for every p ∈ P the extension of nrd to A ⊗Q Qp (which we denote by nrdp
according to Def. 4.10) is equal to the reduced norm on A⊗Q Qp; the same holds for nrd′. Using
the fact that for every p there is (up to isomorphy) a unique division quaternion algebra over Qp
(Thm. 3.14), and that two quaternion algebras algebras are isomorphic if and only if they are
isometric as quadratic spaces (endowed with the respective reduced norm, Thm. 2.29), as well
as the Hasse-Minkowski theorem (Thm. 4.11) we get:

Ram(A) = Ram(A′) ⇐⇒ ∀p ∈ P : A⊗Q Qp is a division algebra if and only if A′ ⊗Q Qp is
⇐⇒ ∀p ∈ P : A⊗Q Qp ∼= A′ ⊗Q Qp
⇐⇒ ∀p ∈ P : nrdp ∼= nrd′p
⇐⇒ nrd ∼= nrd′

⇐⇒ A ∼= A′.

Finally we prove the surjectivity of f . Let Σ ⊂ P be a subset of even cardinality and define

D = g(Σ) :=
∏
p∈Σ
p 6=∞

p, u :=
{
−1, if ∞ ∈ Σ

1, if ∞ 6∈ Σ
, D∗ := uD.

Claim. There exists a prime q such that q∗ := uq satisfies the following:

∀p odd with p | D :
(
q∗

p

)
= −1, and q∗ ≡

{
1 (mod 8), if 2 - D
5 (mod 8), if 2 | D

.

Proof of Claim. We prove the case u = 1 and 2 - D, since the other three cases are analogous. Let
p1, . . . , pn be the odd prime factors of D and choose integers a1, . . . , an with ∀1 6 i 6 n :

(
ai

pi

)
=

−1. From the Chinese remainder theorem it follows that the system of congruences
r ≡ a1 (mod p1)
...

r ≡ an (mod pn)
r ≡ 1 (mod 8)
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has a solution a modulo 8p1 · · · pn, thus we can write r ≡ a (mod 8p1 · · · pn). We know that a
and 8p1 · · · pn are coprime, since if there exists an i with pi | a, then ai ≡ 0 (mod pi), which is a
contradiction; and if 2 | a, then a 6≡ 1 (mod 8), which is a contradiction as well. Using Dirichlet’s
theorem on arithmetic progressions (Thm. 4.9) we can conclude that there exists a prime q with

q ≡ a ≡ r (mod 8p1 · · · pn).

Thus q satisfies the required congruence relations, which proves the claim. �

Now we consider the quaternion algebra A =
(
D∗,q∗

Q ) and compute the Legendre symbols
(D∗, q∗)p for all p ∈ P r {q} using Prop. 4.5.

• (D∗, q∗)∞ = u,

• ∀p - 2Dq : (D∗, q∗)p = 1,

• ∀p odd with p | D : (D∗, q∗)p =
(
q∗

p

)
= −1, and

• (D∗, q∗)2 =
{

(−1) D∗−1
2

q∗−1
2 = 1, if 2 - D

(−1) q∗2−1
8 · (−1)

D∗/2−1
2

q∗−1
2 = −1, if 2 | D

.

So we have Σ ⊂ Ram(A) ⊂ Σ ∪ {q}. The Hilbert reciprocity law Prop. 4.8 implies

1 =
∏′

p∈P
(D∗, q∗)p = (D∗, q∗)q

∏
p∈Σ∪{2,∞}

(D∗, q∗)p.

If 2 6∈ Σ, then (D∗, q∗)2 = 1, similarly if ∞ 6∈ Σ, then (D∗, q∗)∞ = 1. Knowing that Σ is of
even cardinality and that ∀p ∈ Σ: (D∗, q∗)p = −1 we can conclude that the product on the right
hand side of the equality is equal to 1. This implies that (D∗, q∗)q is also equal to 1 and hence
q 6∈ Ram(A). So Ram(A) = Σ which proves the bijectivity of f . �

Definition 4.14. The integer D∗ defined in the proof of Thm. 4.13 is called the discriminant
of A and denoted by disc(A).
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